JP3674368B2 - Pure water production method - Google Patents
Pure water production method Download PDFInfo
- Publication number
- JP3674368B2 JP3674368B2 JP05571899A JP5571899A JP3674368B2 JP 3674368 B2 JP3674368 B2 JP 3674368B2 JP 05571899 A JP05571899 A JP 05571899A JP 5571899 A JP5571899 A JP 5571899A JP 3674368 B2 JP3674368 B2 JP 3674368B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- exchange resin
- ion exchange
- mixed
- resin layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 210
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000001223 reverse osmosis Methods 0.000 claims description 98
- 239000012528 membrane Substances 0.000 claims description 91
- 238000000926 separation method Methods 0.000 claims description 79
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 75
- 239000011347 resin Substances 0.000 claims description 69
- 229920005989 resin Polymers 0.000 claims description 69
- 238000005342 ion exchange Methods 0.000 claims description 51
- 239000003729 cation exchange resin Substances 0.000 claims description 45
- 239000003957 anion exchange resin Substances 0.000 claims description 39
- 239000003513 alkali Substances 0.000 claims description 17
- 238000011033 desalting Methods 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 230000001172 regenerating effect Effects 0.000 claims description 4
- 238000011069 regeneration method Methods 0.000 description 41
- 230000008929 regeneration Effects 0.000 description 38
- 239000003456 ion exchange resin Substances 0.000 description 31
- 229920003303 ion-exchange polymer Polymers 0.000 description 31
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 238000010612 desalination reaction Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000002253 acid Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 238000011001 backwashing Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000012466 permeate Substances 0.000 description 8
- 150000003839 salts Chemical group 0.000 description 8
- 238000011835 investigation Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000005273 aeration Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000006392 deoxygenation reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 239000012492 regenerant Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000006902 nitrogenation reaction Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、アルカリ剤を添加した後、逆浸透(RO)膜分離装置に通水して脱塩するRO膜分離工程と、カチオン交換樹脂とアニオン交換樹脂との混合樹脂層に通水して脱塩するイオン交換工程とを有する純水製造方法に係り、特に、混合樹脂層の再生に当たり、カチオン交換樹脂とアニオン交換樹脂とを系内の水を逆洗水として有効利用して効率的に分離することにより、混合樹脂層の再生効率を高め、結果として得られる純水の純度の向上、製造コストの低減を図る方法に関する。
【0002】
【従来の技術】
発電所や、医薬、液晶、半導体製造工場などの、高度な純度の水質が要求される分野で使用される純水は、一般に、工業用水、市水、河川水、井水、希薄排水などを原水として、RO膜分離装置及び混床式イオン交換脱塩装置と共に、凝集装置、濾過装置、精密濾過膜、限外濾過膜などの膜分離装置、活性炭吸着装置、軟化装置、生物処理装置、紫外線照射装置、脱炭酸、脱酸素などの脱気装置などが任意の位置に配置された純水製造装置で水中の懸濁物質や溶解物質を除去することにより製造されている。
【0003】
このような純水の製造方法において、RO膜分離装置での脱塩処理に当っては、炭酸、シリカ、ホウ素、有機酸などの除去率を向上させる目的で、RO膜に供給する水(以下「RO給水」と称す。)にアルカリ剤(一般的には水酸化ナトリウム)を添加してアルカリ性としてRO膜に給水することが行われている。即ち、RO給水をアルカリ性にすることにより、上述した物質は解離し易くなり、RO膜分離装置で分離できるようになる。この場合、RO給水のpHが高いほどこれらの物質の解離が起こり易いことから、使用するRO膜の耐アルカリ性度合いを考慮した上で、RO給水は通常pH8以上、好ましくはpH9〜11に調整される。
【0004】
アルカリ剤が添加されてアルカリ性に調整されたRO給水をRO膜分離装置でRO膜分離すると、アルカリ剤の一部はRO膜を透過し、透過水中に移行するので、透過水はアルカリ性を維持する。また、アルカリ剤の残部はRO膜で排除されて濃縮され、濃縮水のpHをより高くする。例えば、pH8でRO膜分離装置に給水した場合、透過水のpHは7.5になり、濃縮水のpHは8.5になるケースがある。また、pH10でRO膜分離装置に給水すると、透過水のpHは9.0になり、濃縮水のpHは10.5になるケースがある。
【0005】
なお、RO膜分離装置は1段で設置される場合もあるが、2段又は3段以上の複数段に直列に配置されて設置される場合もある。また、RO膜分離装置を複数段に直列に配置した場合、アルカリ剤は必ずしも1段目のRO給水に添加されるとは限らず、2段目以降のRO給水に添加される場合もある。
【0006】
一方、混床式イオン交換脱塩装置では、その使用によりイオン交換樹脂のイオン交換能が低下してくるため、一定の採水量を経た後は、薬剤を用いて再生が行われるが、この再生に先立ちカチオン交換樹脂とアニオン交換樹脂とを分離する必要がある。この分離は、多くの場合、混合樹脂層の下部より水を上向流で通水し、カチオン交換樹脂とアニオン交換樹脂とを逆洗水流で展開させて、各々の比重及び粒径の差を利用して行われる。
【0007】
この分離工程においては、カチオン交換樹脂とアニオン交換樹脂とを高度に分離し、分離後のカチオン交換樹脂中へのアニオン交換樹脂の混入、分離後のアニオン交換樹脂中へのカチオン交換樹脂の混入を極力避けることが重要となる。即ち、分離工程後の再生工程において、アニオン交換樹脂の混入したカチオン交換樹脂を塩酸や硫酸などの酸溶液で再生すると、混入しているアニオン交換樹脂がCl形やSO4形などに再生され、また、カチオン交換樹脂の混入したアニオン交換樹脂を水酸化ナトリウムなどのアルカリ溶液で再生すると、混入しているカチオン交換樹脂がNa形などに再生される、逆再生が起こり、次の通水工程において、処理水の純度の立ち上りが悪くなったり、採水量の低下を招いたりする場合がある。また、分離後のカチオン交換樹脂に混入しているアニオン交換樹脂にシリカのような物質が吸着されていた場合には、再生不良となって、次の通水工程における処理水質が悪くなり、著しい場合には、樹脂表面においてコロイダルシリカが形成され、樹脂の反応速度を低下させるなどの劣化を引き起こすことがある。
【0008】
このようなことから、混床式イオン交換脱塩装置における混合樹脂層の再生に当っては、カチオン交換樹脂とアニオン交換樹脂との分離を確実に行うことが極めて重要となる。
【0009】
しかし、カチオン交換樹脂の表面は、その特性上負の電荷を有し、一方、アニオン交換樹脂は正の電荷を持つ。これらの電荷の度合いは、それぞれの塩形組成によって変化するが、カチオン交換樹脂もアニオン交換樹脂も多少とも荷電を帯びており、このため、お互いに電気的に引き寄せ合って絡みついている場合が多い。こうした樹脂の絡みつきは、分離工程において長時間の水逆洗を行っても解消することは難しい。そこで、一般的には空気や窒素といった気体を導入し、混合樹脂層に対して曝気を行うことで絡みつきを解消させる方法が採られることが多い。
【0010】
しかしながら、曝気は、イオン交換樹脂を酸化、物理的損傷で劣化させることがあるため、長時間の曝気を行うことはできない。また、装置の構造上、均一に曝気を行えない場合もあり、イオン交換樹脂の絡みつきがひどい場合には曝気による絡みつきの解消効果は低いといった問題もある。
【0011】
特に、混床式イオン交換脱塩装置の前段にRO膜分離装置が設置され、RO給水にアルカリ又は酸を添加してpH調整を行っている場合には、RO膜分離装置の透過水のイオンバランスが崩れ、混床式イオン交換脱塩装置に酸又はアルカリに偏ったイオン負荷が付与されることとなるが、この場合には、カチオン交換樹脂又はアニオン交換樹脂のいずれか一方へのイオン負荷が少ないことにより上述の絡みつきが著しくなり、曝気により解消できない場合が多い。
【0012】
このようなイオン交換樹脂の絡みつきを強引に解消するために、希薄な酸やアルカリ、その他塩類を含む溶液を予め通水する方法が知られており、特に、混合樹脂層の分離工程でこのような溶液によって逆洗を行うと、流動しているイオン交換樹脂に対して塩負荷を与えていることになることから、大きな効果が得られることが判明している。
【0013】
【発明が解決しようとする課題】
このように、酸やアルカリの溶液で混合樹脂層を逆洗する場合、用いる酸やアルカリの溶液が濃厚な場合には、イオン交換樹脂の割れを生じさせるなどの劣化を引き起こすことがあることから、樹脂の再生に用いる酸又はアルカリ溶液を、そのまま使用することはできない。このため、希薄な酸又はアルカリ溶液を調製するために、新たに希釈槽を設けることが必要となるが、混合樹脂層のイオン交換樹脂を逆洗展開させるのに必要な量を貯槽するためには、巨大なタンク又は貯槽が必要である。
【0014】
また、逆洗水に塩類を使用する場合についても同様であり、希釈槽だけでなく、更に別個に塩類を貯槽しておくための薬液タンクやポンプも必要となり、イオン交換樹脂の再生に当って混合樹脂層の分離を行う目的のためにのみ必要とされる付帯設備として、大きな設備が必要となる。
【0015】
本発明は上記従来の問題点を解決し、RO膜分離装置によるRO膜分離工程と、混床式イオン交換脱塩装置によるイオン交換工程とを有する純水製造方法において、混床式イオン交換脱塩装置の混合樹脂層の再生に当り、系内の水を逆洗水として有効利用することにより、カチオン交換樹脂とアニオン交換樹脂とを効率的に分離する方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の純水製造方法は、逆浸透膜分離装置を1段以上含み、アルカリ剤を添加した後逆浸透膜分離装置に通水して脱塩する逆浸透膜分離工程と、カチオン交換樹脂とアニオン交換樹脂との混合樹脂層に通水して脱塩するイオン交換工程とを有する純水製造方法において、該混合樹脂層を再生するに当たり、該混合樹脂層に、前記逆浸透膜分離装置のアルカリ性の透過水及び/又は2段目以降の逆浸透膜分離装置のアルカリ性の濃縮水を、上向流で通水してカチオン交換樹脂とアニオン交換樹脂とを分離することを特徴とする。
【0017】
前述の如く、混合樹脂層の分離工程において、カチオン交換樹脂とアニオン交換樹脂との絡みつきを解消する手段として、希薄な酸又はアルカリ溶液により逆洗する分離操作が有効であることが知られている。そこで、本発明者は、この分離工程における逆洗水として使用する希薄溶液を検討した結果、RO給水がアルカリ性に調整されているRO膜分離装置の透過水及び/又は2段目以降のRO膜分離装置の濃縮水、例えば、一般的に混床式イオン交換脱塩装置の供給水とされるRO膜分離装置の透過水を使用することで、絡みつきを有効に解消して効率的な分離を行えることを見出した。
【0018】
例えば、RO膜分離装置の透過水は、仮りにRO給水のpH調整のために水酸化ナトリウムを使用した場合には、pH7以上のほぼNaOHのみを含む水溶液となる。特に、RO膜分離装置においてシリカやホウ素を効率良く除去するべくRO給水の調整が行われている場合には、透過水はpH8以上となっている場合が多く、従って、イオン交換樹脂相互の絡みつきを十分に解消することができる。しかも、この透過水は一般に混床式イオン交換脱塩装置に供給される水であり、Na以外の不純物の殆どはRO膜で排除されているため、逆洗水として用いても、イオン交換樹脂に新たな汚染を引き起こすこともない。特に、アルカリ溶液による逆洗においては、該溶液中にCaが含まれている場合に、Ca(OH)2といった難溶解性の物質の生成が懸念されるが、RO膜分離装置の透過水ではCaを含まないため、このような問題はない。
【0019】
更に、RO膜分離装置には連続的に通水が行われており、RO膜分離装置の透過水の貯槽を設けることもなく、逆洗に必要な十分量の水量を確保することができ、しかも、透過水自体が十分な圧力を有するため、別途ポンプを設ける必要もなく、混合樹脂層に上向流通水することかできる。
【0020】
また、RO膜分離装置を2段以上直列に配置した場合においては、2段目以降のRO膜分離装置の濃縮水もまた、上記透過水と同様、比較的純度の高いアルカリ溶液となるため、この濃縮水を用いても、イオン交換樹脂の二次汚染を引き起こすことなく、効率的な分離を行える。
【0021】
本発明では、このようなアルカリ性のRO膜分離装置の透過水及び/又は2段目以降のRO膜分離装置の濃縮水(以下単に「透過水及び/又は濃縮水」と称す。)を逆洗水として混合樹脂層に通水することで、透過水及び/又は濃縮水中のアルカリ成分が混合樹脂層中のカチオン交換樹脂に負荷を起こすと共にイオン交換樹脂の周囲環境を中性からアルカリ性へと変えることで、イオン交換樹脂の絡みつきを低減する。
【0022】
例えば、アルカリ剤を添加してRO給水をアルカリ性に調整してRO膜分離装置で脱塩処理し、その透過水を混床式イオン交換脱塩装置で脱塩処理する純水の製造プロセスにおいて、RO膜分離装置の透過水に含まれる不純物の殆どはNa+であるため、混床式イオン交換脱塩装置のカチオン交換樹脂に負荷が加えられ、一方、アニオン交換樹脂への負荷は小さく、わずかなClやSiO2のみである。この結果、再生に入る前のイオン交換樹脂の大部分が、カチオン交換樹脂はR−Na型、アニオン交換樹脂はR−OH型で存在していると考えられる。
【0023】
この状態の混合樹脂層に、混合樹脂層下部からRO膜分離装置の透過水及び/又は濃縮水を導入すると、まだ交換容量の残っているカチオン交換樹脂に対してわずかな負荷が起こる。かつ、イオン交換樹脂の周囲の雰囲気が変わるため、イオン交換樹脂表面の電荷もわずかに変化する。これらのことから、イオン交換樹脂の絡みつきが化学的、物理的に破壊され、分離しやすい状況になる。
【0024】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
【0025】
本発明を適用し得る純水製造工程は、RO給水にアルカリ剤を添加してRO膜分離装置に通水するRO膜分離工程と、カチオン交換樹脂とアニオン交換樹脂との混合樹脂層を有する混床式イオン交換脱塩装置に通水するイオン交換工程とを備えるものであれば良く、RO膜分離装置や混床式イオン交換脱塩装置の前段や後段、或いはRO膜分離装置と混床式イオン交換脱塩装置との間に設けられている他の浄化装置(凝集装置、濾過装置、精密濾過膜、限外濾過膜などの膜分離装置、活性炭吸着装置、軟化装置、生物処理装置、紫外線照射装置、脱炭酸、脱酸素などの脱気装置など)等には特に制限はない。また、RO膜分離装置と混床式イオン交換脱塩装置との設置順序にも制限はないが、一般的には、RO膜分離装置の後段に混床式イオン交換脱塩装置が設けられる。
【0026】
本発明はこのような純水製造工程において、RO膜分離装置の透過水及び/又は濃縮水を混床式イオン交換脱塩装置の混合樹脂層の再生処理のための分離工程の逆洗水として利用する。
【0027】
前述の如く、RO膜分離装置は1段に設置される場合と2段以上の複数段に設置される場合とがあるが、RO膜分離装置が複数段に設置されている場合、アルカリ性を示すものであれば、いずれのRO膜分離装置の透過水を使用しても良い。ただし、後段の透過水ほど不純物量が少なく、イオン交換樹脂の汚染の問題がないことから、後段側のRO膜分離装置の透過水がアルカリ性であれば、この透過水を利用するのが好ましい。また、このように複数段にRO膜分離装置を設けた場合には、後段側の濃縮水も十分に純度が高く、しかもアルカリが適度に濃縮されていることから、この濃縮水を用いることにより、より短時間で効率的な分離操作を行える。この場合、濃縮水の水量は透過水の水量に比べて少ないため、逆洗水として水量が不足する場合には、適宜いずれかのRO膜分離装置の透過水を混合して使用しても良い。
【0028】
なお、逆洗水として用いるRO膜分離装置の透過水及び/又は濃縮水の水質は、イオン交換樹脂の絡みつきを効果的に解消して効率的な分離を行うと共に、イオン交換樹脂の二次汚染を防止する観点から、pH7.5〜12、導電率15〜250μS/cm、シリカ濃度100ppb以下であることが好ましい。
【0029】
このように、RO膜分離装置の透過水や濃縮水を逆洗水として使用する場合、一般的にはRO膜分離装置には連続して通水が行われているため、逆洗水としての透過水や濃縮水の貯槽を設けることなく、十分量の水量を確保することができ、しかもこれらは十分な圧力を有するため、新たにポンプを設けることなく混合樹脂層の逆洗水として上向流通水することができるが、必要に応じて濃縮水又は透過水の貯槽や濃縮水と透過水との混合槽を設けても良い。
【0030】
即ち、一般に、純水の製造プロセスでは、混床式イオン交換脱塩装置には予備のイオン交換塔があり、混床式イオン交換脱塩装置が再生工程に入った場合には、この予備塔に通水され、連続的に純水の製造が行われる。従って、再生工程の混合樹脂層の分離工程でRO膜分離装置の透過水及び/又は濃縮水が必要になったときには、運転中のRO膜分離装置の透過水及び/又は濃縮水の配管から分岐してそれらの水を混合樹脂層に供給することができる。このような予備塔がなく、混合樹脂層の再生工程に入るとRO膜分離装置の運転も停止されるような場合には、予めRO膜分離装置の透過水及び/又は濃縮水を貯槽に貯留しておき、必要に応じて逆洗水として使用すれば良い。
【0031】
この混合樹脂層の分離のための逆洗水として使用した水は、RO膜分離装置の給水として再度処理しても良く、また、混床式イオン交換脱塩装置やその他の浄化装置の給水とすることもできる。
【0032】
ところで、混床式イオン交換脱塩装置の混合樹脂層の再生方式には塔内再生方式と塔外再生方式とがある。塔内再生方式は、通水を停止し、当該イオン交換塔内でイオン交換樹脂の分離、薬剤による再生、押し出し、洗浄の各工程を行うものであり、従って、当該イオン交換塔に、逆洗水導入手段、酸(塩酸、硫酸などのカチオン交換樹脂再生剤)導入手段、アルカリ(水酸化ナトリウムなどのアニオン交換樹脂再生剤)導入手段などが付設されている。一方、塔外再生方式は、イオン交換塔からイオン交換樹脂を分離兼カチオン交換樹脂再生塔に移送し、そこで両樹脂を分離し、分離したアニオン交換樹脂をアニオン再生塔に移送し、両塔でそれぞれのイオン交換樹脂を再生し、再生後、もとのイオン交換塔に戻すものである。
【0033】
本発明の方法は、これらのいずれの再生方式にも適用できることは言うまでもない。
【0034】
また、混床式イオン交換脱塩装置に使用されるイオン交換樹脂にも特に制限はなく、従来一般的に使用されている粒径にガウス分布をもつイオン交換樹脂であっても、粒径分布の幅の狭い均一粒径のイオン交換樹脂であっても良い。
【0035】
このように逆洗水としてRO膜分離装置の透過水及び/又は濃縮水を用いる本発明の純水製造方法によれば、系内の水を利用して、混合樹脂層のイオン交換樹脂を効率的に分離することができるが、なお、更に次の▲1▼〜▲5▼のような操作を行うことにより、より一層確実にカチオン交換樹脂とアニオン交換樹脂とを分離して再生することができ、逆再生を防止して再生後の混合樹脂層のイオン交換性能を著しく高めることができる。
【0036】
▲1▼ アルカリ性のRO膜分離装置の透過水及び/又は濃縮水を混合樹脂層に上向流で通水して逆洗する。
▲2▼ 展開させたイオン交換樹脂を沈静させてカチオン交換樹脂層とアニオン交換樹脂層とに分離する。
▲3▼ 分離したカチオン交換樹脂層に塩酸や硫酸などの酸を通水してカチオン交換樹脂を再生する。
▲4▼ 再生後のカチオン交換樹脂を純水で水逆洗した後沈静させ、カチオン交換樹脂層にわずかに混入し、逆再生されたアニオン交換樹脂を比重差を利用して分離する。即ち、逆再生されたアニオン交換樹脂は塩形(Cl形)となり、OH形のときとは樹脂の表面電位が変化して、カチオン交換樹脂と容易に分離することができる。この水逆洗に用いる純水には、当該混床式イオン交換脱塩装置のイオン交換水或いは当該純水製造システムの処理水としての純水を用いることができる。
▲5▼ ▲2▼と▲4▼で分離したアニオン交換樹脂層に水酸化ナトリウムなどのアルカリを通水してアニオン交換樹脂を再生する。
【0037】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0038】
以下の実施例及び比較例では、野木町水を原水とし、活性炭塔、脱気装置及び第1RO膜分離装置に順次通水し、第1RO膜分離装置の透過水にアルカリとして水酸化ナトリウムを添加してpH10に調整した後、第2RO膜分離装置に通水し、第2RO膜分離装置の透過水を混床式イオン交換脱塩装置に通水して処理する純水製造システムで実験を行った。
【0039】
第2RO膜分離装置で得られる濃縮水及び透過水の水質は次の通りであった。
【0040】
【表1】
【0041】
混床式イオン交換脱塩装置のイオン交換塔は、内径10cm、高さ200cmの樹脂カラムに下記のイオン交換樹脂を充填して混合樹脂層を形成したものであり、この混床式イオン交換脱塩装置に第2RO膜分離装置の透過水をSV=30hr-1の通水速度で通水し、5000BV通水後に通水を停止して塔内再生方式にて再生工程に入る処理を行った。
【0042】
〔混合樹脂層〕
カチオン交換樹脂(栗田工業(株)製「EX−CG」):1.5L
アニオン交換樹脂(栗田工業(株)製「EX−AG」):3.0L
各イオン交換樹脂の再生条件は次の通りとした。
【0043】
実施例1
下記の操作手順で混合樹脂層の再生とイオン交換性能の調査を行った後、次の再生工程において下記の手順でイオン交換樹脂の分離状況の調査を行い、結果を表2に示した。
【0044】
〔混合樹脂層の再生とイオン交換性能の調査〕
▲1▼ 通水停止後、5分間沈静した。
▲2▼ 樹脂カラム下部より、第2RO膜分離装置の透過水をLV=10m/hrで導入し、10分間逆洗展開させた。
▲3▼ 5分間沈静させた後、分離されたカチオン交換樹脂層とアニオン交換樹脂層とにそれぞれ薬注、押出、洗浄を実施した。
▲4▼ 通水を再開した。
▲5▼ 通水再開後、水質が安定したときの処理水(混床式イオン交換脱塩装置の流出水)の水質(比抵抗,シリカ濃度)を調べた。
【0045】
〔分離状況の調査〕
▲1▼ 通水停止後、5分間沈静した。
▲2▼ 樹脂カラム下部より、第2RO膜分離装置の透過水をLV=10m/hrで導入し、10分間逆洗展開させた。
▲3▼ 5分間沈静させた後、カチオン交換樹脂層、アニオン交換樹脂層をそれぞれ抜き出し、樹脂の混入率を調べた。
【0046】
なお、樹脂の混入率は、下記式で算出した。
【0047】
【数1】
【0048】
ここでアニオン交換樹脂の容積は、Cl形基準で測定し、カチオン交換樹脂層中に混入したアニオン交換樹脂量は、カチオン交換樹脂層を18重量%NaOH水溶液に浸漬し、攪拌して分離し、その容積を測定することにより求めた。
【0049】
実施例2
混合樹脂層の再生及び分離状況の調査に当り、混合樹脂層の逆洗水として第2RO膜分離装置の透過水ではなく第2RO膜分離装置の濃縮水を用い、逆洗展開時間を7分としたこと以外は実施例1と同様にして再生を行ってイオン交換性能の調査及び分離状況の調査を行い、結果を表2に示した。
【0050】
実施例3
下記の操作手順で混合樹脂層の再生とイオン交換性能の調査を行った後、次の再生工程において下記の手順でイオン交換樹脂の分離状況の調査を行い、結果を表2に示した。
【0051】
〔混合樹脂層の再生とイオン交換性能の調査〕
▲1▼ 通水停止後、5分間沈静した。
▲2▼ 樹脂カラム下部より、第2RO膜分離装置の濃縮水をLV=10m/hrで導入し、7分間逆洗展開させた。
▲3▼ 5分間沈静させた後、カチオン交換樹脂層の薬注、押出、洗浄を実施した。
▲4▼ カチオン交換樹脂の再生処理後、樹脂カラム下部より純水をLV=5m/hrで導入し、水逆洗を7分実施した。
▲5▼ 5分間沈静させた後、アニオン交換樹脂層の薬注、押出、洗浄を実施した。
▲6▼ 通水を再開した。
▲7▼ 通水再開後、水質が安定したときの処理水(混床式イオン交換脱塩装置の流出水)の水質(比抵抗,シリカ濃度)を調べた。
【0052】
〔分離状況の調査〕
▲1▼ 通水停止後、5分間沈静した。
▲2▼ 樹脂カラム下部より、第2RO膜分離装置の濃縮水をLV=10m/hrで導入し、7分間逆洗展開させた。
▲3▼ 5分間沈静させた後、分離されたカチオン交換樹脂層の薬注、押出、洗浄を実施した。
▲4▼ カチオン交換樹脂の再生処理後、樹脂カラム下部より純水をLV=5m/hrで導入し、水逆洗を7分実施した。
▲5▼ 5分間沈静させた後、カチオン交換樹脂層、アニオン交換樹脂層をそれぞれ抜き出し、樹脂の混入率を調べた。
【0053】
比較例1
混合樹脂層の再生及び分離状況の調査に当り、混合樹脂層の逆洗水として第2RO膜分離装置の透過水ではなく、純水を用いたこと以外は実施例1と同様にして再生を行ってイオン交換性能の調査及び分離状況の調査を行い、結果を表2に示した。
【0054】
比較例2
混合樹脂層の再生及び分離状況の調査に当り、混合樹脂層の逆洗水として第2RO膜分離装置の透過水ではなく、別途調製したpH9.5のNaOH水溶液を用いたこと以外は実施例1と同様にして再生を行ってイオン交換性能の調査及び分離状況の調査を行い、結果を表2に示した。
【0055】
【表2】
【0056】
表2より、本発明によれば、アルカリ性のRO膜分離装置の濃縮水又は透過水を混合樹脂層の逆洗水として利用することにより、混合樹脂層のイオン交換樹脂を効率的に分離し、高い再生効果を得ることができることがわかる。
【0057】
【発明の効果】
以上詳述した通り、本発明の純水製造方法によれば、アルカリ性のRO膜分離装置の透過水及び/又は濃縮水を逆洗水として使用することで、混合樹脂層の再生時におけるイオン交換樹脂の分離を確実に行って、逆再生を防止することができ、混合樹脂層の再生効果を高め、より一層高純度な水を安定に製造することが可能となる。
【0058】
本発明の方法の実施には、既存のプロセスに対してわずかな配管の追加又は改造だけでよく、また、逆洗水として使用した水は再度、RO膜分離装置の給水として再利用することができ、或いは、そのまま混床式イオン交換脱塩装置や他の浄水装置の給水として使用することも可能である。このため、従来、混床式イオン交換脱塩装置の逆洗水として大量の水が必要であったが、こうした純水の使用量も大幅に低減され、全体としての水の使用量や、純水の製造に関わる電気代やその他の付帯設備を削減することができる。[0001]
BACKGROUND OF THE INVENTION
In the present invention, after adding an alkaline agent, water is passed through a reverse osmosis (RO) membrane separator to desalinate, and water is passed through a mixed resin layer of a cation exchange resin and an anion exchange resin. The present invention relates to a method for producing pure water having an ion exchange step for desalting, and in particular, in the regeneration of a mixed resin layer, the cation exchange resin and the anion exchange resin are efficiently used by effectively using the water in the system as backwash water. The present invention relates to a method for improving the regeneration efficiency of the mixed resin layer by separating, improving the purity of the resulting pure water, and reducing the production cost.
[0002]
[Prior art]
Pure water used in fields that require high-purity water quality, such as power plants, pharmaceuticals, liquid crystals, and semiconductor manufacturing plants, generally uses industrial water, city water, river water, well water, diluted wastewater, etc. As raw water, together with RO membrane separation device and mixed-bed ion exchange desalination device, membrane separation device such as agglomeration device, filtration device, microfiltration membrane, ultrafiltration membrane, activated carbon adsorption device, softening device, biological treatment device, ultraviolet ray It is manufactured by removing suspended substances and dissolved substances in water with a pure water manufacturing apparatus in which an irradiation device, a degassing device such as decarbonation and deoxygenation, etc. are arranged at an arbitrary position.
[0003]
In such a pure water production method, in the desalination treatment in the RO membrane separator, water supplied to the RO membrane (hereinafter referred to as “RO membrane”) is used for the purpose of improving the removal rate of carbonic acid, silica, boron, organic acid and the like. Alkaline agent (generally sodium hydroxide) is added to “RO water supply”) to make it alkaline and water is supplied to the RO membrane. That is, by making the RO water supply alkaline, the above-mentioned substances are easily dissociated and can be separated by the RO membrane separation device. In this case, the higher the pH of the RO water supply, the easier the dissociation of these substances occurs. Therefore, the RO water supply is usually adjusted to pH 8 or higher, preferably pH 9 to 11 in consideration of the degree of alkali resistance of the RO membrane used. The
[0004]
When RO membrane water that has been adjusted to be alkaline with the addition of an alkaline agent is RO membrane separated by the RO membrane separator, a portion of the alkaline agent permeates the RO membrane and moves into the permeated water, so that the permeated water remains alkaline. . Further, the remainder of the alkaline agent is removed by the RO membrane and concentrated, and the pH of the concentrated water is made higher. For example, when water is supplied to the RO membrane separation device at pH 8, the pH of the permeate may be 7.5 and the pH of the concentrated water may be 8.5. In addition, when water is supplied to the RO membrane separation device at pH 10, the pH of the permeate may be 9.0 and the pH of the concentrated water may be 10.5.
[0005]
Note that the RO membrane separation device may be installed in one stage, but may be installed in series in two or more stages. Further, when the RO membrane separation devices are arranged in series in a plurality of stages, the alkaline agent is not necessarily added to the first stage RO feed water, and may be added to the second stage or later RO feed water.
[0006]
On the other hand, in the mixed bed type ion exchange desalting apparatus, the ion exchange capacity of the ion exchange resin is reduced due to its use. Therefore, after a certain amount of water is collected, regeneration is performed using chemicals. Prior to this, it is necessary to separate the cation exchange resin and the anion exchange resin. In this separation, in many cases, water is passed upward from the lower part of the mixed resin layer, and the cation exchange resin and the anion exchange resin are developed in the backwash water flow, and the difference in specific gravity and particle size of each is obtained. It is done using.
[0007]
In this separation step, the cation exchange resin and the anion exchange resin are highly separated, and the anion exchange resin is mixed into the cation exchange resin after separation, and the cation exchange resin is mixed into the anion exchange resin after separation. It is important to avoid as much as possible. That is, in the regeneration step after the separation step, when the cation exchange resin mixed with the anion exchange resin is regenerated with an acid solution such as hydrochloric acid or sulfuric acid, the mixed anion exchange resin is regenerated into a Cl form or SO 4 form, In addition, when the anion exchange resin mixed with the cation exchange resin is regenerated with an alkali solution such as sodium hydroxide, the mixed cation exchange resin is regenerated to Na form or the like, and reverse regeneration occurs. In some cases, the purity of the treated water deteriorates, or the amount of water collected decreases. In addition, when a substance such as silica is adsorbed on the anion exchange resin mixed in the cation exchange resin after separation, it becomes a regeneration failure and the quality of treated water in the next water passing process is deteriorated, which is remarkable. In some cases, colloidal silica is formed on the resin surface, which may cause deterioration such as a decrease in the reaction rate of the resin.
[0008]
For this reason, it is extremely important to reliably separate the cation exchange resin and the anion exchange resin when regenerating the mixed resin layer in the mixed bed ion exchange desalting apparatus.
[0009]
However, the surface of the cation exchange resin has a negative charge due to its properties, while the anion exchange resin has a positive charge. Although the degree of these charges varies depending on the respective salt form composition, both the cation exchange resin and the anion exchange resin are somewhat charged, and are therefore often attracted and entangled with each other. . Such entanglement of the resin is difficult to eliminate even if water backwashing is performed for a long time in the separation step. Therefore, generally, a method of eliminating entanglement by introducing a gas such as air or nitrogen and aeration of the mixed resin layer is often employed.
[0010]
However, aeration cannot be performed for a long time because the ion exchange resin may be oxidized and deteriorated due to physical damage. In addition, there is a case where aeration cannot be performed uniformly due to the structure of the apparatus, and when the entanglement of the ion exchange resin is severe, there is a problem that the effect of eliminating the entanglement due to aeration is low.
[0011]
In particular, when the RO membrane separation device is installed in front of the mixed bed type ion exchange desalination device and the pH is adjusted by adding alkali or acid to the RO feedwater, the ions of the permeated water of the RO membrane separation device The balance is lost, and an ion load that is biased toward acid or alkali is applied to the mixed bed type ion exchange desalting apparatus. In this case, the ion load on either the cation exchange resin or the anion exchange resin is applied. The above-mentioned entanglement becomes remarkable due to a small amount of slag and often cannot be eliminated by aeration.
[0012]
In order to forcibly eliminate such entanglement of the ion exchange resin, a method in which a solution containing a dilute acid, alkali, or other salt is passed in advance is known, and particularly in the separation step of the mixed resin layer. When backwashing with a simple solution, a salt load is applied to the flowing ion exchange resin, and it has been found that a great effect can be obtained.
[0013]
[Problems to be solved by the invention]
Thus, when the mixed resin layer is backwashed with an acid or alkali solution, if the acid or alkali solution used is concentrated, it may cause deterioration such as cracking of the ion exchange resin. The acid or alkali solution used for resin regeneration cannot be used as it is. For this reason, in order to prepare a dilute acid or alkali solution, it is necessary to newly provide a dilution tank, but in order to store an amount necessary for backwashing and developing the ion exchange resin of the mixed resin layer Requires a huge tank or storage tank.
[0014]
The same applies to the case where salts are used for backwash water, and not only a dilution tank but also a chemical tank and pump for storing salts separately are required. A large facility is required as an incidental facility required only for the purpose of separating the mixed resin layer.
[0015]
The present invention solves the above-mentioned conventional problems, and in a pure water production method having an RO membrane separation step by an RO membrane separation device and an ion exchange step by a mixed bed type ion exchange desalination device, the mixed bed type ion exchange desorption is performed. It is an object of the present invention to provide a method for efficiently separating a cation exchange resin and an anion exchange resin by effectively using water in the system as backwash water when regenerating a mixed resin layer of a salt device.
[0016]
[Means for Solving the Problems]
The method for producing pure water of the present invention comprises a reverse osmosis membrane separation device comprising at least one reverse osmosis membrane separation device, adding an alkaline agent, and then passing water through the reverse osmosis membrane separation device for desalting, a cation exchange resin, In a pure water production method having an ion exchange step of passing water through a mixed resin layer with an anion exchange resin and desalting, when regenerating the mixed resin layer, the mixed resin layer is provided with the reverse osmosis membrane separation device. The alkaline permeated water and / or the alkaline concentrated water of the reverse osmosis membrane separation apparatus in the second and subsequent stages are passed in an upward flow to separate the cation exchange resin and the anion exchange resin.
[0017]
As described above, it is known that a separation operation of backwashing with a dilute acid or alkali solution is effective as a means for eliminating the entanglement between the cation exchange resin and the anion exchange resin in the separation step of the mixed resin layer. . Therefore, as a result of studying a dilute solution used as backwash water in the separation step, the present inventor has found that the RO permeated water and / or the second and subsequent RO membranes in which the RO water supply is adjusted to be alkaline. By using the concentrated water of the separation device , for example, the permeated water of the RO membrane separation device, which is generally supplied to the mixed bed type ion exchange desalination device, the entanglement is effectively eliminated and efficient separation is achieved. I found out what I can do.
[0018]
For example, if the sodium hydroxide is used to adjust the pH of the RO feed water, the permeated water of the RO membrane separation device becomes an aqueous solution containing almost NaOH having a pH of 7 or higher. In particular, when RO water supply is adjusted in order to efficiently remove silica and boron in the RO membrane separation device, the permeated water often has a pH of 8 or more, and accordingly, the ion exchange resins are entangled with each other. Can be solved sufficiently. Moreover, this permeated water is generally water supplied to the mixed bed type ion exchange desalination apparatus, and most of the impurities other than Na are eliminated by the RO membrane. It does not cause any new pollution. In particular, in backwashing with an alkaline solution, when Ca is contained in the solution, there is a concern about the formation of a hardly soluble substance such as Ca (OH) 2. Since Ca is not included, there is no such problem.
[0019]
Furthermore, water is continuously passed through the RO membrane separation device, and it is possible to secure a sufficient amount of water necessary for backwashing without providing a permeated water storage tank of the RO membrane separation device. Moreover, since the permeated water itself has a sufficient pressure, it is not necessary to provide a separate pump, and the upward circulating water can be supplied to the mixed resin layer.
[0020]
In addition, when the RO membrane separator is arranged in two or more stages in series, the concentrated water of the RO membrane separator after the second stage is also an alkaline solution having a relatively high purity, similar to the permeated water, Even when this concentrated water is used, efficient separation can be performed without causing secondary contamination of the ion exchange resin.
[0021]
In the present invention, the permeated water of such an alkaline RO membrane separator and / or the concentrated water of the RO membrane separator in the second and subsequent stages (hereinafter simply referred to as “permeated water and / or concentrated water”) are back- washed. By passing the water through the mixed resin layer as water, the alkaline component in the permeated water and / or concentrated water causes a load on the cation exchange resin in the mixed resin layer and changes the ambient environment of the ion exchange resin from neutral to alkaline. This reduces the entanglement of the ion exchange resin.
[0022]
For example, in a pure water production process in which an alkali agent is added to adjust the RO water supply to be alkaline and desalinate with an RO membrane separator, and the permeate is desalted with a mixed bed ion exchange desalter. Since most of the impurities contained in the permeated water of the RO membrane separator are Na + , a load is applied to the cation exchange resin of the mixed bed type ion exchange desalting apparatus, while the load on the anion exchange resin is small and slightly Only Cl and SiO 2 . As a result, it is considered that most of the ion exchange resin before the regeneration is present in the R-Na type as the cation exchange resin and the R-OH type as the anion exchange resin.
[0023]
When the permeated water and / or concentrated water of the RO membrane separation device is introduced into the mixed resin layer in this state from the lower part of the mixed resin layer, a slight load is generated on the cation exchange resin still having the exchange capacity. In addition, since the atmosphere around the ion exchange resin changes, the charge on the surface of the ion exchange resin also slightly changes. From these things, the entanglement of the ion exchange resin is chemically and physically destroyed, and it becomes easy to separate.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0025]
The pure water production process to which the present invention can be applied includes a RO membrane separation process in which an alkali agent is added to RO water supply and water is passed through the RO membrane separation apparatus, and a mixed resin layer having a mixed resin layer of a cation exchange resin and an anion exchange resin. And an ion exchange process for passing water through the bed type ion exchange desalination apparatus, and the former stage and the rear stage of the RO membrane separation apparatus and the mixed bed type ion exchange desalination apparatus, or the RO membrane separation apparatus and the mixed bed type. Other purification devices provided between the ion exchange desalination device (flocculation device, filtration device, membrane separation device such as microfiltration membrane, ultrafiltration membrane, activated carbon adsorption device, softening device, biological treatment device, ultraviolet ray There are no particular restrictions on the irradiation device, degassing device such as decarboxylation and deoxygenation, etc. Moreover, although there is no restriction | limiting in the installation order of RO membrane separator and mixed bed type | mold ion exchange desalination apparatus, Generally, a mixed bed type ion exchange desalination apparatus is provided in the back | latter stage of RO membrane separation apparatus.
[0026]
In the pure water production process, the present invention uses the permeated water and / or concentrated water of the RO membrane separator as backwash water in the separation process for the regeneration treatment of the mixed resin layer of the mixed bed ion exchange desalting apparatus. Use.
[0027]
As described above, the RO membrane separation device may be installed in one stage or in two or more stages, but when the RO membrane separation apparatus is installed in multiple stages, it exhibits alkalinity. As long as it is a thing, you may use the permeated water of any RO membrane separation apparatus. However, since the amount of impurities is less in the latter-stage permeate and there is no problem of contamination of the ion exchange resin, it is preferable to use this permeate if the permeate in the rear-stage RO membrane separator is alkaline. In addition, when the RO membrane separation device is provided in a plurality of stages as described above, the concentrated water on the rear stage side is sufficiently high in purity, and the alkali is moderately concentrated. , More efficient separation operation in a shorter time. In this case, since the amount of concentrated water is smaller than the amount of permeated water, when the amount of water as backwash water is insufficient, the permeated water of any RO membrane separation device may be used as appropriate. .
[0028]
The quality of the permeated water and / or concentrated water of the RO membrane separation device used as backwash water effectively eliminates the entanglement of the ion exchange resin and performs efficient separation, and also causes secondary contamination of the ion exchange resin. From the viewpoint of preventing the above, it is preferable that the pH is 7.5 to 12, the conductivity is 15 to 250 μS / cm, and the silica concentration is 100 ppb or less.
[0029]
As described above, when the permeated water or concentrated water of the RO membrane separation device is used as the backwash water, since the RO membrane separation device is generally continuously passed, A sufficient amount of water can be secured without providing a permeated water or concentrated water storage tank, and since these have sufficient pressure, they can be used as backwash water for the mixed resin layer without a new pump. Although circulating water can be supplied, if necessary, a storage tank of concentrated water or permeated water or a mixing tank of concentrated water and permeated water may be provided.
[0030]
That is, generally, in the pure water production process, the mixed bed type ion exchange desalination apparatus has a spare ion exchange tower, and when the mixed bed type ion exchange desalination apparatus enters the regeneration step, this spare tower The pure water is continuously produced. Therefore, when the permeated water and / or concentrated water of the RO membrane separation device is required in the separation step of the mixed resin layer in the regeneration step, it is branched from the permeated water and / or concentrated water piping of the operating RO membrane separation device. Then, the water can be supplied to the mixed resin layer. If there is no such a preparatory tower and the operation of the RO membrane separator is stopped when entering the regeneration step of the mixed resin layer, the permeated water and / or concentrated water of the RO membrane separator is stored in the storage tank in advance. In addition, it may be used as backwash water as needed.
[0031]
The water used as the backwash water for separation of the mixed resin layer may be treated again as the feed water for the RO membrane separation device, and the feed water for the mixed bed ion exchange desalination device and other purification devices. You can also
[0032]
By the way, as a regeneration method of the mixed resin layer of the mixed bed type ion exchange desalination apparatus, there are an in-tower regeneration method and an outside regeneration method. In the tower regeneration system, water flow is stopped, and the ion exchange resin separation, chemical regeneration, extrusion, and washing steps are performed in the ion exchange tower. Therefore, backwashing is performed in the ion exchange tower. Water introduction means, acid (cation exchange resin regenerant such as hydrochloric acid and sulfuric acid) introduction means, alkali (anion exchange resin regenerant such as sodium hydroxide) introduction means and the like are attached. On the other hand, in the outside regeneration system, the ion exchange resin is separated from the ion exchange tower and transferred to the cation exchange resin regeneration tower, where both resins are separated, and the separated anion exchange resin is transferred to the anion regeneration tower. Each ion exchange resin is regenerated, and after regeneration, returned to the original ion exchange tower.
[0033]
It goes without saying that the method of the present invention can be applied to any of these reproduction methods.
[0034]
In addition, there is no particular limitation on the ion exchange resin used in the mixed bed type ion exchange desalination apparatus, and even if the ion exchange resin has a Gaussian distribution in the particle size generally used conventionally, the particle size distribution May be an ion exchange resin having a narrow uniform particle diameter.
[0035]
As described above, according to the pure water production method of the present invention using the permeated water and / or concentrated water of the RO membrane separation device as the backwash water, the ion exchange resin of the mixed resin layer is efficiently used using the water in the system. However, it is possible to separate and regenerate the cation exchange resin and the anion exchange resin more reliably by performing the following operations (1) to (5). It is possible to prevent reverse regeneration and remarkably enhance the ion exchange performance of the mixed resin layer after regeneration.
[0036]
(1) The permeated water and / or concentrated water of the alkaline RO membrane separator is passed through the mixed resin layer in an upward flow and backwashed.
{Circle around (2)} The developed ion exchange resin is settled and separated into a cation exchange resin layer and an anion exchange resin layer.
(3) An acid such as hydrochloric acid or sulfuric acid is passed through the separated cation exchange resin layer to regenerate the cation exchange resin.
(4) The regenerated cation exchange resin is back-washed with pure water and then allowed to settle, and it is slightly mixed in the cation exchange resin layer, and the reversely regenerated anion exchange resin is separated using the difference in specific gravity. That is, the reversely regenerated anion exchange resin takes a salt form (Cl form), and the surface potential of the resin changes from that in the OH form , so that it can be easily separated from the cation exchange resin. The pure water used for this water backwashing can be ion exchange water of the mixed bed ion exchange desalting apparatus or pure water as treated water of the pure water production system.
(5) An anion exchange resin is regenerated by passing an alkali such as sodium hydroxide through the anion exchange resin layer separated in (2) and (4).
[0037]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0038]
In the following examples and comparative examples, Nogi-cho water is used as raw water, and water is sequentially passed through the activated carbon tower, the deaerator, and the first RO membrane separator, and sodium hydroxide is added as alkali to the permeated water of the first RO membrane separator. After adjusting the pH to 10, the water was passed through the second RO membrane separator, and the experiment was conducted in a pure water production system in which the permeated water of the second RO membrane separator was passed through the mixed-bed ion exchange desalinator for treatment. It was.
[0039]
The water quality of the concentrated water and permeate obtained by the second RO membrane separation apparatus was as follows.
[0040]
[Table 1]
[0041]
The ion exchange tower of the mixed bed type ion exchange desalination apparatus is formed by filling a resin column having an inner diameter of 10 cm and a height of 200 cm with the following ion exchange resin to form a mixed resin layer. The salt water was passed through the permeated water of the second RO membrane separator at a flow rate of SV = 30 hr −1 , and after 5000 BV, the water flow was stopped and the regeneration process was performed using the regeneration system in the tower. .
[0042]
[Mixed resin layer]
Cation exchange resin ("EX-CG" manufactured by Kurita Kogyo Co., Ltd.): 1.5L
Anion exchange resin ("EX-AG" manufactured by Kurita Kogyo Co., Ltd.): 3.0L
The regeneration conditions for each ion exchange resin were as follows.
[0043]
Example 1
After examining the regeneration of the mixed resin layer and the ion exchange performance by the following operation procedure, the separation status of the ion exchange resin was examined by the following procedure in the next regeneration step, and the results are shown in Table 2.
[0044]
[Reproduction of mixed resin layer and investigation of ion exchange performance]
(1) After stopping the water flow, it was calmed for 5 minutes.
(2) The permeated water of the second RO membrane separator was introduced from the bottom of the resin column at LV = 10 m / hr and backwashed for 10 minutes.
(3) After allowing to settle for 5 minutes, the separated cation exchange resin layer and anion exchange resin layer were respectively subjected to chemical injection, extrusion, and washing.
(4) Water flow resumed.
(5) After restarting the water flow, the water quality (specific resistance, silica concentration) of the treated water (outflow water of the mixed bed type ion exchange desalting apparatus) when the water quality was stabilized was examined.
[0045]
[Investigation of separation status]
(1) After stopping the water flow, it was calmed for 5 minutes.
(2) The permeated water of the second RO membrane separator was introduced from the bottom of the resin column at LV = 10 m / hr and backwashed for 10 minutes.
(3) After being allowed to settle for 5 minutes, the cation exchange resin layer and the anion exchange resin layer were each extracted, and the mixing ratio of the resin was examined.
[0046]
The resin mixing ratio was calculated by the following formula.
[0047]
[Expression 1]
[0048]
Here, the volume of the anion exchange resin was measured on the basis of Cl type, and the amount of the anion exchange resin mixed in the cation exchange resin layer was separated by stirring the cation exchange resin layer in an 18 wt% NaOH aqueous solution, The volume was determined by measuring.
[0049]
Example 2
In the investigation of the regeneration and separation status of the mixed resin layer, the concentrated water of the second RO membrane separation device was used as the backwash water of the mixed resin layer instead of the permeated water of the second RO membrane separation device, and the backwash development time was 7 minutes. Except for the above, regeneration was performed in the same manner as in Example 1 to investigate the ion exchange performance and the separation status, and Table 2 shows the results.
[0050]
Example 3
After examining the regeneration of the mixed resin layer and the ion exchange performance by the following operation procedure, the separation status of the ion exchange resin was examined by the following procedure in the next regeneration step, and the results are shown in Table 2.
[0051]
[Reproduction of mixed resin layer and investigation of ion exchange performance]
(1) After stopping the water flow, it was calmed for 5 minutes.
(2) Concentrated water from the second RO membrane separator was introduced at LV = 10 m / hr from the bottom of the resin column, and backwashed for 7 minutes.
(3) After being allowed to settle for 5 minutes, the cation exchange resin layer was poured, extruded and washed.
(4) After regeneration treatment of the cation exchange resin, pure water was introduced from the lower part of the resin column at LV = 5 m / hr, and water backwashing was carried out for 7 minutes.
(5) After being allowed to settle for 5 minutes, the anion exchange resin layer was poured, extruded, and washed.
(6) Water flow resumed.
(7) After restarting the water flow, the water quality (specific resistance, silica concentration) of the treated water (outflow water of the mixed bed type ion exchange desalting apparatus) when the water quality was stabilized was examined.
[0052]
[Investigation of separation status]
(1) After stopping the water flow, it was calmed for 5 minutes.
(2) Concentrated water from the second RO membrane separator was introduced at LV = 10 m / hr from the bottom of the resin column, and backwashed for 7 minutes.
(3) After being allowed to settle for 5 minutes, the separated cation exchange resin layer was poured, extruded and washed.
(4) After regeneration treatment of the cation exchange resin, pure water was introduced from the lower part of the resin column at LV = 5 m / hr, and water backwashing was carried out for 7 minutes.
(5) After being allowed to settle for 5 minutes, the cation exchange resin layer and the anion exchange resin layer were each extracted, and the mixing ratio of the resin was examined.
[0053]
Comparative Example 1
In the investigation of the regeneration and separation status of the mixed resin layer, regeneration was performed in the same manner as in Example 1 except that pure water was used instead of the permeated water of the second RO membrane separation device as the backwash water for the mixed resin layer. The ion exchange performance and the separation situation were investigated, and the results are shown in Table 2.
[0054]
Comparative Example 2
Example 1 except that a separately prepared NaOH aqueous solution having a pH of 9.5 was used as the backwash water for the mixed resin layer, instead of the permeated water of the second RO membrane separation device, as a backwash water for the mixed resin layer in the investigation of the regeneration and separation state of the mixed resin layer. Regeneration was carried out in the same manner as above to investigate the ion exchange performance and the separation status, and the results are shown in Table 2.
[0055]
[Table 2]
[0056]
From Table 2, according to the present invention, by using concentrated water or permeated water of an alkaline RO membrane separator as backwash water for the mixed resin layer, the ion exchange resin of the mixed resin layer is efficiently separated, It can be seen that a high reproduction effect can be obtained.
[0057]
【The invention's effect】
As described above in detail, according to the pure water production method of the present invention, the ion exchange at the time of regeneration of the mixed resin layer is performed by using the permeated water and / or concentrated water of the alkaline RO membrane separator as backwash water. The resin can be reliably separated and reverse regeneration can be prevented, the regeneration effect of the mixed resin layer can be enhanced, and water with higher purity can be stably produced.
[0058]
The implementation of the method of the present invention requires only a few additional pipes or modifications to the existing process, and the water used as the backwash water can be reused as the water supply for the RO membrane separation device. Alternatively, it can be used as water supply for a mixed bed ion exchange desalination apparatus or other water purification apparatus as it is. For this reason, in the past, a large amount of water was required as backwash water for the mixed bed type ion exchange desalination apparatus. However, the amount of pure water used was greatly reduced, and the amount of water used as a whole was reduced. Electricity costs related to water production and other incidental facilities can be reduced.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05571899A JP3674368B2 (en) | 1999-03-03 | 1999-03-03 | Pure water production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05571899A JP3674368B2 (en) | 1999-03-03 | 1999-03-03 | Pure water production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000246118A JP2000246118A (en) | 2000-09-12 |
JP3674368B2 true JP3674368B2 (en) | 2005-07-20 |
Family
ID=13006664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05571899A Expired - Fee Related JP3674368B2 (en) | 1999-03-03 | 1999-03-03 | Pure water production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3674368B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7343525B2 (en) * | 2018-05-01 | 2023-09-12 | ディディピー スペシャルティ エレクトロニック マテリアルズ ユーエス,エルエルシー | Water treatment with resin beads and microbial beds |
-
1999
- 1999-03-03 JP JP05571899A patent/JP3674368B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000246118A (en) | 2000-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3200301B2 (en) | Method and apparatus for producing pure or ultrapure water | |
JP5189255B2 (en) | Iodine recovery from polarizing film manufacturing wastewater | |
TWI808053B (en) | Ultrapure water production system and ultrapure water production method | |
US20160159671A1 (en) | Method and apparatus for treating water containing boron | |
JP5157941B2 (en) | Method for treating boron-containing water | |
US20100288308A1 (en) | Method and system for producing ultrapure water, and method and system for washing electronic component members | |
JP4385407B2 (en) | Method for treating tetraalkylammonium ion-containing liquid | |
JP4599803B2 (en) | Demineralized water production equipment | |
Kim | High-rate MIEX filtration for simultaneous removal of phosphorus and membrane foulants from secondary effluent | |
JP6310819B2 (en) | Pure water production apparatus, ultrapure water production system, and pure water production method | |
JPS62110795A (en) | High purity water production equipment | |
JPH0889956A (en) | Ultrapure water production system | |
JP2012225755A (en) | Radioactive contamination water processing system, barge type radioactive contamination water processing facility, radioactive contamination water processing method, and on-barge radioactive contamination water processing method | |
JP6437874B2 (en) | Method and apparatus for regenerating ion exchange resin | |
WO2015063147A1 (en) | Water purification method | |
JP3968678B2 (en) | Method for treating tetraalkylammonium ion-containing liquid | |
JP2005246126A (en) | Device and method for manufacturing pure water or ultra pure water | |
JP3674368B2 (en) | Pure water production method | |
WO2019188309A1 (en) | Anion exchange resin and water treatment method using same | |
JP3413882B2 (en) | Pure water production method and apparatus | |
JP6924300B1 (en) | Wastewater treatment method, ultrapure water production method and wastewater treatment equipment | |
JP2950621B2 (en) | Ultrapure water production method | |
JP2742976B2 (en) | Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus | |
JP2008062223A (en) | Membrane filtering method and membrane filtering system | |
JP2001170658A (en) | Treatment apparatus and treatment method for fluorine-containing wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040316 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050418 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090513 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090513 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100513 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110513 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |