[go: up one dir, main page]

JP7625376B2 - METHOD FOR MANUFACTURING TRANSMISSION OPTICAL ELEMENT, EXPOSURE APPARATUS, METHOD FOR MANUFACTURING ARTICLE, AND TRANSMISSION OPTICAL ELEMENT - Google Patents

METHOD FOR MANUFACTURING TRANSMISSION OPTICAL ELEMENT, EXPOSURE APPARATUS, METHOD FOR MANUFACTURING ARTICLE, AND TRANSMISSION OPTICAL ELEMENT Download PDF

Info

Publication number
JP7625376B2
JP7625376B2 JP2020110820A JP2020110820A JP7625376B2 JP 7625376 B2 JP7625376 B2 JP 7625376B2 JP 2020110820 A JP2020110820 A JP 2020110820A JP 2020110820 A JP2020110820 A JP 2020110820A JP 7625376 B2 JP7625376 B2 JP 7625376B2
Authority
JP
Japan
Prior art keywords
thin film
optical
optical thin
optical element
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020110820A
Other languages
Japanese (ja)
Other versions
JP2022020087A5 (en
JP2022020087A (en
Inventor
大樹 ▲高▼田
広美 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020110820A priority Critical patent/JP7625376B2/en
Priority to TW110116704A priority patent/TWI858256B/en
Priority to KR1020210061721A priority patent/KR20220000809A/en
Priority to CN202110689013.4A priority patent/CN113848680A/en
Publication of JP2022020087A publication Critical patent/JP2022020087A/en
Publication of JP2022020087A5 publication Critical patent/JP2022020087A5/ja
Application granted granted Critical
Publication of JP7625376B2 publication Critical patent/JP7625376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

本発明は、透過型の光学素子を製造する製造方法、露光装置、物品の製造方法及び透過型の光学素子に関する。 The present invention relates to a manufacturing method for a transmissive optical element, an exposure apparatus, a manufacturing method for an article, and a transmissive optical element.

半導体デバイスなどの物品を製造するためのリソグラフィ工程において、原版を照明する照明光学系と、照明光学系によって照明された原版のパターンを基板に投影する投影光学系とを有する露光装置が用いられている。原版のパターンが基板に投影されることによって、かかるパターンが基板の表面に配置(塗布)されているレジスト(感光剤)に転写される。露光装置では、原版の照明が不均一であると、基板上のレジストへのパターンの転写が良好になされない可能性がある。従って、照明光学系には、原版を均一な照度で照明するために、ロッド型オプティカルインテグレータや二次元的に配置された複数の波面分割要素を含むオプティカルインテグレータが用いられている。 In the lithography process for manufacturing articles such as semiconductor devices, an exposure apparatus is used that has an illumination optical system that illuminates an original and a projection optical system that projects the pattern of the original illuminated by the illumination optical system onto a substrate. The pattern of the original is projected onto the substrate, and the pattern is transferred to a resist (photosensitive agent) that is disposed (coated) on the surface of the substrate. In an exposure apparatus, if the illumination of the original is non-uniform, the pattern may not be transferred well to the resist on the substrate. Therefore, in order to illuminate the original with uniform illuminance, a rod-type optical integrator or an optical integrator that includes multiple wavefront division elements arranged two-dimensionally is used in the illumination optical system.

一方、照明光学系では、光学系の汚れや偏心、反射防止膜のむらなどに起因して、被照明面上の照度分布に不均一性が認められる場合がある。そこで、被照明面と光学的に共役な関係となる位置に、石英基板上にドットパターン(遮光物)を設けたフィルタを配置し、ドットの密度(透過率分布)を変化させることで被照明面上の照度分布を均一化する技術が開示されている(特許文献1参照)。 On the other hand, in illumination optical systems, non-uniformity in the illuminance distribution on the illuminated surface may be observed due to contamination or decentering of the optical system, unevenness in the anti-reflection coating, etc. Therefore, a technology has been disclosed in which a filter with a dot pattern (light shielding object) on a quartz substrate is placed in a position that is optically conjugate with the illuminated surface, and the dot density (transmittance distribution) is changed to uniform the illuminance distribution on the illuminated surface (see Patent Document 1).

特開2006-210554号公報JP 2006-210554 A

しかしながら、特許文献1に開示された技術では、被照明面上の照度分布を十分な精度で均一化することが難しい。例えば、フィルタによって透過率を僅かに変化させる必要がある場合には、ドットの数が少なくなるため、ドットのサイズの誤差による透過率の誤差が大きくなり、被照明面上の照度分布を高精度に補正することができない。 However, with the technology disclosed in Patent Document 1, it is difficult to uniformize the illuminance distribution on the illuminated surface with sufficient precision. For example, when it is necessary to slightly change the transmittance using a filter, the number of dots is reduced, and the error in the transmittance due to the error in the dot size becomes large, making it impossible to correct the illuminance distribution on the illuminated surface with high precision.

本発明は、このような従来技術の課題に鑑みてなされ、被照明面における照度分布を均一にするのに有利な透過型の光学素子に関する技術を提供することを例示的目的とする。 The present invention has been made in consideration of the problems with the conventional technology, and has as an example objective the provision of technology relating to a transmissive optical element that is advantageous in achieving a uniform illuminance distribution on an illuminated surface.

上記目的を達成するために、本発明の一側面としての製造方法は、被照明面を照明する照明光学系に組み込まれる、光透過型の光学素子を製造する製造方法であって、前記光学素子の表面に、屈折率が互いに異なる複数の薄膜を重ね合わせた光学薄膜を形成する工程と、前記被照明面に形成される照度分布を取得する工程と、取得した前記照度分布に基づいて、前記光学薄膜の光透過率分布を設計する工程と、前記光透過率分布に応じて、前記光学素子の表面内において前記光学薄膜を除去すべき部分及び当該部分における前記光学薄膜の除去量を決定する工程と、前記光学素子の表面に形成された前記光学薄膜に対して前記除去すべき部分において前記光学薄膜の一部が残存するように前記除去量だけ前記光学薄膜の厚さ方向に除去する工程と、を有することを特徴とする。 In order to achieve the above-mentioned object, a manufacturing method as one aspect of the present invention is a method for manufacturing a light-transmitting optical element to be incorporated in an illumination optical system that illuminates an illuminated surface , the method comprising the steps of: forming an optical thin film on a surface of the optical element by superimposing a plurality of thin films having different refractive indices ; acquiring an illuminance distribution formed on the illuminated surface; designing a light transmittance distribution of the optical thin film based on the acquired illuminance distribution; determining a portion of the surface of the optical element where the optical thin film should be removed and an amount of the optical thin film to be removed in the portion according to the light transmittance distribution; and removing the optical thin film formed on the surface of the optical element by the amount of removal in a thickness direction of the optical thin film such that a portion of the optical thin film remains in the portion to be removed .

本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される実施形態によって明らかにされるであろう。 Further objects and other aspects of the present invention will become apparent from the embodiments described below with reference to the accompanying drawings.

本発明によれば、例えば、被照明面における照度分布を均一にするのに有利な透過型の光学素子に関する技術を提供することができる。 The present invention can provide, for example, technology relating to a transmissive optical element that is advantageous for achieving a uniform illuminance distribution on an illuminated surface.

本発明の一側面としての露光装置の構成を示す概略図である。1 is a schematic diagram showing a configuration of an exposure apparatus according to one aspect of the present invention. 光透過型の光学素子の構成を示す概略図である。FIG. 1 is a schematic diagram showing a configuration of a light-transmitting optical element. 本発明の一側面としての光学素子を製造する製造方法を説明するためのフローチャートである。1 is a flowchart illustrating a method for manufacturing an optical element according to one aspect of the present invention. 図3に示すS02の工程を詳細に説明するためのフローチャートである。4 is a flowchart for illustrating in detail step S02 shown in FIG. 3. 図3に示すS02の工程を詳細に説明するための図である。FIG. 4 is a diagram for explaining step S02 shown in FIG. 3 in detail. 図3に示すS02の工程を詳細に説明するための図である。FIG. 4 is a diagram for explaining step S02 shown in FIG. 3 in detail. 図4に示すS24の除去加工の具体的な手法を説明するための図である。5 is a diagram for explaining a specific technique for the removal process in S24 shown in FIG. 4. 図4に示すS24の除去加工の具体的な手法を説明するための図である。5 is a diagram for explaining a specific technique for the removal process in S24 shown in FIG. 4. 図4に示すS24の除去加工の具体的な手法を説明するための図である。5 is a diagram for explaining a specific technique for the removal process in S24 shown in FIG. 4. 図4に示すS24の除去加工の具体的な手法を説明するための図である。5 is a diagram for explaining a specific technique for the removal process in S24 shown in FIG. 4.

以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。更に、添付図面においては、同一もしくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 The following embodiments are described in detail with reference to the attached drawings. Note that the following embodiments do not limit the invention according to the claims. Although the embodiments describe multiple features, not all of these multiple features are necessarily essential to the invention, and multiple features may be combined in any manner. Furthermore, in the attached drawings, the same reference numbers are used for the same or similar configurations, and duplicate explanations are omitted.

図1は、本発明の一側面としての露光装置100の構成を示す概略図である。露光装置100は、例えば、半導体デバイスなどの製造工程(リソグラフィ工程)に用いられ、基板上にパターンを形成するリソグラフィ装置である。露光装置100は、原版Rを介して基板Wを露光し、本実施形態では、原版Rと基板Wとを走査方向に移動させながら基板Wを露光(走査露光)して、原版Rのパターンを基板上に転写するステップ・アンド・スキャン方式の露光装置(スキャナー)である。但し、露光装置100は、ステップ・アンド・リピート方式やその他の露光方式を採用することも可能である。 Figure 1 is a schematic diagram showing the configuration of an exposure apparatus 100 according to one aspect of the present invention. The exposure apparatus 100 is a lithography apparatus used, for example, in a manufacturing process (lithography process) for semiconductor devices and the like, for forming a pattern on a substrate. The exposure apparatus 100 exposes a substrate W via an original R, and in this embodiment, is a step-and-scan exposure apparatus (scanner) that exposes the substrate W (scanning exposure) while moving the original R and the substrate W in the scanning direction, thereby transferring the pattern of the original R onto the substrate. However, the exposure apparatus 100 can also employ a step-and-repeat method or other exposure methods.

露光装置100は、図1に示すように、照明光学系101と、原版駆動部102と、投影光学系103と、基板駆動部104と、計測部105とを有する。また、本実施形態では、基板Wの法線方向に沿った軸をZ軸とし、基板Wと平行な面内で互いに直交する方向に沿った軸をX軸及びY軸とする座標系を定義する。 As shown in FIG. 1, the exposure apparatus 100 has an illumination optical system 101, an original driving unit 102, a projection optical system 103, a substrate driving unit 104, and a measurement unit 105. In this embodiment, a coordinate system is defined in which the axis along the normal direction of the substrate W is the Z axis, and the axes along directions perpendicular to each other in a plane parallel to the substrate W are the X axis and the Y axis.

照明光学系101は、光源1からの光(光束)を用いて、被照明面(投影光学系103の物体面)に配置されている原版Rを照明する。光源1は、例えば、i線(波長365nm)などの光を発する超高圧水銀ランプを含む。但し、光源1は、限定されるものではなく、248nmの波長の光を発するKrFエキシマレーザ、193nmの波長の光を発するArFエキシマレーザ、又は、157nmの波長の光を発するFレーザであってもよい。また、光源1は、11nm~14nm程度の極紫外線波長の光(EUV光)を発するEUV光源であってもよい。 The illumination optical system 101 uses light (light beam) from the light source 1 to illuminate the original R placed on the illuminated surface (object surface of the projection optical system 103). The light source 1 includes, for example, an extra-high pressure mercury lamp that emits light such as i-line (wavelength 365 nm). However, the light source 1 is not limited to this, and may be a KrF excimer laser that emits light with a wavelength of 248 nm, an ArF excimer laser that emits light with a wavelength of 193 nm, or an F2 laser that emits light with a wavelength of 157 nm. The light source 1 may also be an EUV light source that emits light with an extreme ultraviolet wavelength (EUV light) of about 11 nm to 14 nm.

原版Rには、基板Wに転写すべきパターン(例えば、回路パターン)が形成されている。原版Rは、光源1(照明光学系101)からの光を透過する材料、例えば、石英ガラスを母材として構成されている。原版駆動部102は、例えば、原版Rを保持する可動の原版ステージと、原版ステージをX軸及びZ軸に関して駆動する原版駆動機構とを含む。 The original R has a pattern (e.g., a circuit pattern) to be transferred to the substrate W formed thereon. The original R is made of a material that transmits light from the light source 1 (illumination optical system 101), such as quartz glass, as a base material. The original drive unit 102 includes, for example, a movable original stage that holds the original R, and an original drive mechanism that drives the original stage about the X-axis and Z-axis.

投影光学系103は、照明光学系101によって照明された原版Rのパターンを基板Wに投影する。投影光学系103は、結像光学系を含み、その前側焦点は、原版Rが配置される面(位置)に配置され、その後側焦点は、基板Wが配置される面に配置されている。換言すれば、投影光学系103は、原版Rの配置位置と基板Wの配置位置とを共役な関係にする。 The projection optical system 103 projects the pattern of the original R illuminated by the illumination optical system 101 onto the substrate W. The projection optical system 103 includes an imaging optical system, the front focal point of which is located on the surface (position) on which the original R is placed, and the rear focal point of which is located on the surface on which the substrate W is placed. In other words, the projection optical system 103 makes the placement position of the original R and the placement position of the substrate W conjugate with each other.

基板Wは、原版Rのパターンが転写される基板であって、表面にレジスト(感光性材料)を有する。基板駆動部104は、基板Wを保持する可動の基板ステージと、基板ステージをX軸、Y軸及びZ軸(並びに、それらの回転方向であるωx、ωy及びωz)に関して駆動する基板駆動機構とを含む。 The substrate W is a substrate onto which the pattern of the original R is transferred, and has a resist (photosensitive material) on its surface. The substrate drive unit 104 includes a movable substrate stage that holds the substrate W, and a substrate drive mechanism that drives the substrate stage about the X-axis, Y-axis, and Z-axis (and their respective rotational directions ωx, ωy, and ωz).

計測部105は、例えば、光量センサを含み、被照明面に形成される照度分布を計測する。計測部105は、本実施形態では、投影光学系103の物体面、具体的には、原版駆動部102を構成する原版ステージに配置されている。 The measurement unit 105 includes, for example, a light quantity sensor, and measures the illuminance distribution formed on the illuminated surface. In this embodiment, the measurement unit 105 is disposed on the object surface of the projection optical system 103, specifically, on the original stage that constitutes the original driving unit 102.

以下、照明光学系101について詳細に説明する。照明光学系101は、第1リレーレンズ3と、折り曲げミラーM1と、オプティカルインテグレータ4と、第2リレーレンズ5と、折り曲げミラーM2とを含む。第1リレーレンズ3及び折り曲げミラーM1は、第1照明光学系10を構成し、第2リレーレンズ5及び折り曲げミラーM2は、第2照明光学系12を構成する。第1照明光学系10からの光は、オプティカルインテグレータ4を介して、第2照明光学系12に入射する。 The illumination optical system 101 will be described in detail below. The illumination optical system 101 includes a first relay lens 3, a folding mirror M1, an optical integrator 4, a second relay lens 5, and a folding mirror M2. The first relay lens 3 and the folding mirror M1 constitute the first illumination optical system 10, and the second relay lens 5 and the folding mirror M2 constitute the second illumination optical system 12. Light from the first illumination optical system 10 enters the second illumination optical system 12 via the optical integrator 4.

楕円ミラー2は、第1焦点及び第2焦点を有し、第1焦点に配置された光源1からの光を第2焦点に集光する。第1リレーレンズ3は、結像光学系を含み、その前側焦点は、楕円ミラー2の第2焦点に配置され、その後側焦点は、オプティカルインテグレータ4の入射面に配置されている。換言すれば、第1リレーレンズ3は、楕円ミラー2の第2焦点とオプティカルインテグレータ4の入射面とを共役な関係にする。このように、本実施形態では、照明光学系101は、楕円ミラー2の第2焦点とオプティカルインテグレータ4の入射面とを共役な関係にする第1照明光学系10を含んでいるが、このような関係をもたない第1照明光学系を含んでいてもよい。第1リレーレンズ3の瞳面近傍には、特定の波長域の光を遮断する波長フィルタ(不図示)が配置され、かかる波長フィルタによって露光波長(基板Wを露光する光の波長)が規定される。 The elliptical mirror 2 has a first focus and a second focus, and focuses light from the light source 1 arranged at the first focus at the second focus. The first relay lens 3 includes an imaging optical system, the front focus of which is arranged at the second focus of the elliptical mirror 2, and the rear focus of which is arranged at the incident surface of the optical integrator 4. In other words, the first relay lens 3 makes the second focus of the elliptical mirror 2 and the incident surface of the optical integrator 4 in a conjugate relationship. Thus, in this embodiment, the illumination optical system 101 includes the first illumination optical system 10 that makes the second focus of the elliptical mirror 2 and the incident surface of the optical integrator 4 in a conjugate relationship, but may include a first illumination optical system that does not have such a relationship. A wavelength filter (not shown) that blocks light in a specific wavelength range is arranged near the pupil plane of the first relay lens 3, and the exposure wavelength (the wavelength of light that exposes the substrate W) is determined by the wavelength filter.

オプティカルインテグレータ4は、入射面と、反射面と、射出面ESとを含む内面反射型のオプティカルインテグレータである。オプティカルインテグレータ4は、入射面に入射した光を反射面によって複数回にわたって反射させることで、射出面ESに均一な光強度分布(照度分布)を形成する。オプティカルインテグレータ4は、本実施形態では、光軸AXと直交する断面(XY面)において、矩形形状を有しているが、他の形状(例えば、多角形)を有していてもよい。また、オプティカルインテグレータ4は、内面反射型のオプティカルインテグレータに限定されるものではなく、ハエの目レンズなどのマイクロレンズアレイ型のオプティカルインテグレータであってもよい。 The optical integrator 4 is an internal reflection type optical integrator including an incident surface, a reflecting surface, and an exit surface ES. The optical integrator 4 forms a uniform light intensity distribution (illuminance distribution) on the exit surface ES by reflecting the light incident on the incident surface multiple times by the reflecting surface. In this embodiment, the optical integrator 4 has a rectangular shape in a cross section (XY plane) perpendicular to the optical axis AX, but may have other shapes (e.g., polygonal). Furthermore, the optical integrator 4 is not limited to an internal reflection type optical integrator, and may be a microlens array type optical integrator such as a fly-eye lens.

第2照明光学系12は、オプティカルインテグレータ4の射出面ESからの光を用いて、原版Rを照明する。第2リレーレンズ5は、結像光学系を含み、その前側焦点は、オプティカルインテグレータ4の射出面ESに配置され、その後側焦点は、原版Rが配置される面に配置されている。換言すれば、第2リレーレンズ5は、オプティカルインテグレータ4の射出面ESと原版Rの配置面とを共役な関係にする。第2リレーレンズ5は、原版Rの配置面にオプティカルインテグレータ4の射出面ESの光強度分布(照度分布)を形成する。 The second illumination optical system 12 illuminates the original R using light from the exit surface ES of the optical integrator 4. The second relay lens 5 includes an imaging optical system, the front focal point of which is located at the exit surface ES of the optical integrator 4, and the rear focal point of which is located on the surface on which the original R is placed. In other words, the second relay lens 5 makes the exit surface ES of the optical integrator 4 and the placement surface of the original R conjugate with each other. The second relay lens 5 forms a light intensity distribution (illuminance distribution) of the exit surface ES of the optical integrator 4 on the placement surface of the original R.

本実施形態における露光装置100では、第2照明光学系12には、被照明面における照度分布を補正する補正フィルタとして機能する光透過型の光学素子6が組み込まれている。光学素子6は、照明光学系101の被照明面(例えば、原版Rが配置される面)、かかる被照明面と共役な関係にある共役面、或いは、被照明面や共役面の近傍に配置される。光学素子6は、本実施形態では、原版Rが配置される面の近傍、具体的には、後述する光学素子6の表面に形成された光学薄膜が原版Rに対向するように、照明光学系101の最も投影光学系103の側の面に配置されている。 In the exposure apparatus 100 of this embodiment, the second illumination optical system 12 incorporates a light-transmitting optical element 6 that functions as a correction filter to correct the illuminance distribution on the illuminated surface. The optical element 6 is disposed on the illuminated surface of the illumination optical system 101 (e.g., the surface on which the original R is placed), on a conjugate surface that is conjugate with the illuminated surface, or near the illuminated surface or the conjugate surface. In this embodiment, the optical element 6 is disposed near the surface on which the original R is placed, specifically, on the surface of the illumination optical system 101 closest to the projection optical system 103 so that an optical thin film formed on the surface of the optical element 6, which will be described later, faces the original R.

図2は、光透過型の光学素子6の構成を示す概略図である。光学素子6は、図2に示すように、基材7(母材)の少なくとも1つの面(光学素子6の表面)に形成され、反射防止膜として機能(作用)する光学薄膜Cを有する。本実施形態では、膜厚(最大膜厚)Dを有する光学薄膜Cの任意の箇所(部分)に対して、光学薄膜Cの厚さ方向(Z軸方向)に、光学薄膜Cを除去量δだけに部分的に除去することによって、光学薄膜面内に膜厚分布が形成されている。このように、光学薄膜Cは、光学素子6(基材7)の表面内にわたって存在し、且つ、かかる表面内において膜厚分布を有する。換言すれば、光学薄膜Cは、光学素子6の表面内において、光学薄膜Cが厚さ方向に部分的に除去された部分を含み、かかる部分には、光学薄膜Cの少なくとも一部が残存している。 Figure 2 is a schematic diagram showing the configuration of a light-transmitting optical element 6. As shown in Figure 2, the optical element 6 has an optical thin film C formed on at least one surface (surface of the optical element 6) of the substrate 7 (base material) and functioning (acting) as an anti-reflection film. In this embodiment, for any part (portion) of the optical thin film C having a thickness (maximum thickness) D, the optical thin film C is partially removed in the thickness direction (Z-axis direction) of the optical thin film C by an amount of removal δ, thereby forming a film thickness distribution in the optical thin film surface. In this way, the optical thin film C exists across the surface of the optical element 6 (substrate 7) and has a film thickness distribution in this surface. In other words, the optical thin film C includes a part where the optical thin film C is partially removed in the thickness direction in the surface of the optical element 6, and at least a part of the optical thin film C remains in this part.

光学薄膜Cとしての反射防止膜は、基材7の上に、屈折率が互いに異なる物質からなる複数の薄膜を重ね合わせて構成され、光の干渉を利用して反射率を下げて、全体として高い透過率を得るものである。反射防止膜を構成する各薄膜は、通常、所定の透過率又は反射率が得られるように、薄膜の数、材質及び厚さなどが調整され、光の干渉条件が最適化されている。従って、光学薄膜Cを厚さ方向に部分的に除去する際の除去量δに応じて、光学薄膜Cの透過率又は反射率を変化させることができる。なお、光学薄膜Cの種類(膜種)は、誘電体多層膜だけに限定されるものではなく、単層膜であってもよい。 The anti-reflection film as the optical thin film C is constructed by stacking multiple thin films made of materials with different refractive indices on the substrate 7, and uses optical interference to reduce the reflectance and obtain a high overall transmittance. The number, material, and thickness of each thin film constituting the anti-reflection film are usually adjusted to obtain a predetermined transmittance or reflectance, and the optical interference conditions are optimized. Therefore, the transmittance or reflectance of the optical thin film C can be changed according to the amount δ removed when partially removing the optical thin film C in the thickness direction. The type (film type) of the optical thin film C is not limited to a dielectric multilayer film, and may be a single layer film.

一方、基材7の上に形成した光学薄膜Cを厚さ方向に完全に除去してしまうと、光学薄膜Cを厚さ方向に完全に除去した部分が反射防止膜として機能しなくなる。但し、被照明面における照度分布を補正する、即ち、照度分布を均一にする目的においては、光学薄膜Cの除去量δは、反射防止膜を構成する複数の薄膜のうちの最表層の薄膜の膜厚(膜厚分布)を調整する程度でよい。従って、本実施形態において、光学薄膜Cの厚さ方向への部分的な除去が反射防止膜としての機能に与える影響は、極僅かであり、無視することができる。 On the other hand, if the optical thin film C formed on the substrate 7 is completely removed in the thickness direction, the portion of the optical thin film C from which it has been completely removed in the thickness direction will no longer function as an anti-reflection film. However, for the purpose of correcting the illuminance distribution on the illuminated surface, i.e., for the purpose of making the illuminance distribution uniform, the amount δ of the optical thin film C removed may be sufficient to adjust the film thickness (film thickness distribution) of the outermost thin film among the multiple thin films that make up the anti-reflection film. Therefore, in this embodiment, the effect of the partial removal of the optical thin film C in the thickness direction on its function as an anti-reflection film is extremely small and can be ignored.

以下、図3を参照して、光学素子6を製造する製造方法について説明する。S01(第1工程)では、基材7の表面に、反射防止膜として機能する光学薄膜Cを形成する。S01で形成される光学薄膜Cは、上述したように、光学薄膜Cを構成する薄膜の数、材質及び厚さなどが調整され、光の干渉条件が最適化されている。本実施形態では、基材7の表面に、一様な膜厚Dを有する光学薄膜Cを形成する。 The manufacturing method for manufacturing the optical element 6 will be described below with reference to FIG. 3. In S01 (first step), an optical thin film C that functions as an anti-reflection film is formed on the surface of the substrate 7. As described above, the optical thin film C formed in S01 has the number, material, thickness, etc. of the thin films that make up the optical thin film C adjusted to optimize the optical interference conditions. In this embodiment, an optical thin film C with a uniform thickness D is formed on the surface of the substrate 7.

S02(第2工程)では、S01で形成された光学薄膜Cを厚さ方向に除去する。この際、光学薄膜Cが除去される領域であっても、光学薄膜Cの少なくとも一部が残存するように、光学薄膜Cを厚さ方向に除去する。従って、S02を経ても、基材7の表面に形成された光学薄膜Cは、基材7の表面内にわたって、光学薄膜Cの厚さ方向に、光学薄膜Cの少なくとも一部が残存する。本実施形態では、膜厚Dを有する光学薄膜Cの任意の箇所に対して、光学薄膜Cの厚さ方向に、光学薄膜Cを除去量δだけに部分的に除去する。これにより、図2に示すように、基材7の表面内にわたって存在し、且つ、かかる表面内において膜厚分布を有する光学薄膜Cが形成された透過型の光学素子6を製造することができる。 In S02 (second step), the optical thin film C formed in S01 is removed in the thickness direction. At this time, the optical thin film C is removed in the thickness direction so that at least a part of the optical thin film C remains even in the area where the optical thin film C is removed. Therefore, even after S02, at least a part of the optical thin film C formed on the surface of the substrate 7 remains in the thickness direction of the optical thin film C across the surface of the substrate 7. In this embodiment, the optical thin film C is partially removed in the thickness direction of the optical thin film C by a removal amount δ for any location of the optical thin film C having a thickness D. As a result, as shown in FIG. 2, a transmission type optical element 6 can be manufactured in which an optical thin film C is formed that exists across the surface of the substrate 7 and has a thickness distribution across the surface.

ここで、図4を参照して、光学薄膜Cを厚さ方向に除去する工程(S02の工程)について詳細に説明する。 Now, with reference to Figure 4, the process of removing the optical thin film C in the thickness direction (step S02) will be described in detail.

S21(第3工程)では、透過型の光学素子6を取り外した状態の照明光学系101からの光によって被照明面に形成される照度分布を取得する。具体的には、原版ステージに設けられた計測部105を原版Rが配置される面に配置し、透過型の光学素子6を取り外した状態の照明光学系101からの光を、計測部105(光量センサ)で計測することで被照明面における照度分布を取得する。図5(a)は、S21で取得される被照明面における照度分布の一例を示す図である。図5(a)に示す照度分布は、被照明面内の座標aにおいて局所的に照度が低くなっている。 In S21 (third step), the illuminance distribution formed on the illuminated surface by the light from the illumination optical system 101 with the transmissive optical element 6 removed is acquired. Specifically, the measurement unit 105 provided on the original stage is placed on the surface on which the original R is placed, and the light from the illumination optical system 101 with the transmissive optical element 6 removed is measured by the measurement unit 105 (light quantity sensor) to acquire the illuminance distribution on the illuminated surface. Figure 5(a) is a diagram showing an example of the illuminance distribution on the illuminated surface acquired in S21. In the illuminance distribution shown in Figure 5(a), the illuminance is locally low at coordinate a on the illuminated surface.

S22では、S21で取得された被照明面における照度分布を打ち消すように、反射防止膜として機能する光学薄膜Cにおける透過率分布を設計する。図5(b)は、S22で設計される光学薄膜Cにおける透過率分布の一例を示す図である。図5(b)に示す透過率分布は、図5(a)に示す照度分布に対して設計される透過率分布であって、被照明領域内の座標aに対応する光学薄膜面内の座標Aで最大の透過率Tmaxを有する。 In S22, a transmittance distribution in the optical thin film C functioning as an anti-reflection film is designed so as to cancel the illuminance distribution on the illuminated surface acquired in S21. Fig. 5(b) is a diagram showing an example of the transmittance distribution in the optical thin film C designed in S22. The transmittance distribution shown in Fig. 5(b) is a transmittance distribution designed for the illuminance distribution shown in Fig. 5(a), and has a maximum transmittance Tmax at coordinate A in the optical thin film surface corresponding to coordinate a in the illuminated region.

S23(第4工程)では、S21で取得された被照明面における照度分布と、S22で設計された光学薄膜Cにおける透過率分布とに基づいて、光学薄膜Cの膜厚分布を決定する。なお、光学薄膜Cの膜厚分布の決定は、光学素子6(基材7)の表面内において光学薄膜Cを除去すべき部分(光学薄膜面内の座標)、及び、かかる部分における光学薄膜Cの除去量δを決定することを意味する。具体的には、図5(c)に示すように、図5(a)に示す照度分布と図5(b)に示す透過率分布とを掛け合わせて、被照明面において照度分布が均一となるように(即ち、図5(b)に示す透過率分布を実現するように)、光学薄膜Cの膜厚分布を決定する。図5(c)を参照するに、光学薄膜Cの膜厚分布として、最大の透過率Tmaxを有する光学薄膜面内の座標Aにおける除去量δをゼロとし、最大の透過率Tmaxと各座標(位置)における透過率Tとの透過率差(Tmax-T)に応じて除去量δを決定する。図6は、透過率差(Tmax-T)と除去量δとの関係を示している。このような関係を予め取得しておくことで、光学薄膜面内の各座標(位置)について、透過率差(Tmax-T)に応じた除去量δを決定することが可能となる。 In S23 (fourth step), the film thickness distribution of the optical thin film C is determined based on the illuminance distribution on the illuminated surface acquired in S21 and the transmittance distribution of the optical thin film C designed in S22. The determination of the film thickness distribution of the optical thin film C means determining the portion (coordinates in the optical thin film plane) where the optical thin film C should be removed on the surface of the optical element 6 (substrate 7) and the removal amount δ of the optical thin film C in the portion. Specifically, as shown in FIG. 5(c), the illuminance distribution shown in FIG. 5(a) is multiplied with the transmittance distribution shown in FIG. 5(b) to determine the film thickness distribution of the optical thin film C so that the illuminance distribution on the illuminated surface becomes uniform (i.e., so as to realize the transmittance distribution shown in FIG. 5(b)). Referring to FIG. 5(c), the removal amount δ at the coordinate A in the optical thin film plane having the maximum transmittance T max is set to zero as the film thickness distribution of the optical thin film C, and the removal amount δ is determined according to the transmittance difference (T max -T) between the maximum transmittance T max and the transmittance T at each coordinate (position). 6 shows the relationship between the transmittance difference (T max -T) and the removal amount 6. By acquiring such a relationship in advance, it becomes possible to determine the removal amount 6 according to the transmittance difference (T max -T) for each coordinate (position) in the optical thin film plane.

S24では、S23で決定された膜厚分布(光学薄膜面内の各座標での除去量δ)に従って、S01で基材7に形成された光学薄膜Cに対して、光学薄膜Cを厚さ方向に部分的に除去する除去加工を施す。これにより、光学薄膜Cは、基材7の表面内にわたって存在し、且つ、基材7の表面内において、光学素子6を透過した光が形成すべき照度分布に応じた膜厚分布を有することになる。なお、S24で施される除去加工の具体的な手法については後述する。 In S24, the optical thin film C formed on the substrate 7 in S01 is subjected to a removal process to partially remove the optical thin film C in the thickness direction according to the film thickness distribution determined in S23 (the amount of removal δ at each coordinate in the optical thin film plane). As a result, the optical thin film C exists across the surface of the substrate 7, and has a film thickness distribution within the surface of the substrate 7 that corresponds to the illuminance distribution that should be formed by the light transmitted through the optical element 6. The specific method of the removal process performed in S24 will be described later.

S25では、S24で除去加工が施された光学素子6を照明光学系101に組み込む。本実施形態では、上述したように、光学素子6を、光学薄膜Cが原版Rに対向するように、照明光学系101の最も投影光学系103の側の面に組み込む。 In S25, the optical element 6 that has been subjected to the removal process in S24 is incorporated into the illumination optical system 101. In this embodiment, as described above, the optical element 6 is incorporated into the surface of the illumination optical system 101 closest to the projection optical system 103, so that the optical thin film C faces the original R.

S26では、透過型の光学素子6を組み込んだ状態の照明光学系101からの光によって被照明面に形成される照度分布を取得する。具体的には、原版ステージに設けられた計測部105を原版Rが配置される面に配置し、透過型の光学素子6を組み込んだ状態の照明光学系101からの光を、計測部105(光量センサ)で計測することで被照明面における照度分布を取得する。図5(d)は、S26で取得される被照明面における照度分布の一例を示す図である。図5(d)に示す照度分布は、被照明面内において照度が均一になっている。 In S26, the illuminance distribution formed on the illuminated surface by the light from the illumination optical system 101 with the transmissive optical element 6 incorporated is acquired. Specifically, the measurement unit 105 provided on the original stage is placed on the surface on which the original R is placed, and the light from the illumination optical system 101 with the transmissive optical element 6 incorporated is measured by the measurement unit 105 (light quantity sensor) to acquire the illuminance distribution on the illuminated surface. Figure 5(d) is a diagram showing an example of the illuminance distribution on the illuminated surface acquired in S26. The illuminance distribution shown in Figure 5(d) has a uniform illuminance within the illuminated surface.

このように、本実施形態によれば、被照明面における照度分布の均一化を実現する透過型の光学素子6を製造(提供)することができる。このような透過型の光学素子6が組み込まれた照明光学系101を有する露光装置100は、原版Rを均一に照明することが可能となり、基板上のレジストへの原版Rのパターンの転写を良好に行うことができる。 In this way, according to this embodiment, it is possible to manufacture (provide) a transmissive optical element 6 that realizes a uniform illuminance distribution on the illuminated surface. An exposure apparatus 100 having an illumination optical system 101 incorporating such a transmissive optical element 6 is able to uniformly illuminate the original R, and can satisfactorily transfer the pattern of the original R to the resist on the substrate.

図7を参照して、光学薄膜Cを厚さ方向に部分的に除去する除去加工(S24)の具体的な手法の一例を説明する。除去加工には、光学薄膜Cを除去すべき部分にイオンビームを照射することで、かかる部分における光学薄膜Cを厚さ方向に除去する加工技術、所謂、IBF(Ion Beam Figuring)を用いればよい。 With reference to FIG. 7, an example of a specific technique for the removal process (S24) of partially removing the optical thin film C in the thickness direction will be described. The removal process may use a processing technique known as IBF (Ion Beam Figuring), which irradiates an ion beam onto the portion of the optical thin film C to be removed, thereby removing the optical thin film C in the thickness direction in the portion.

図7は、IBFを実現するイオンビーム加工装置200の構成を示す概略図である。イオンビーム加工装置200は、真空状態を保持するためのチャンバ21と、イオンビーム発生部22と、駆動ステージ24と、電流密度計測部25とを有する。イオンビーム発生部22、駆動ステージ24及び電流密度計測部25は、チャンバ21の内部に設けられている。 Figure 7 is a schematic diagram showing the configuration of an ion beam processing apparatus 200 that realizes IBF. The ion beam processing apparatus 200 has a chamber 21 for maintaining a vacuum state, an ion beam generating unit 22, a driving stage 24, and a current density measuring unit 25. The ion beam generating unit 22, the driving stage 24, and the current density measuring unit 25 are provided inside the chamber 21.

イオンビーム発生部22からのイオンビーム23は、駆動ステージ24に保持(設置)された被加工物である透過型の光学素子6、具体的には、基材7に形成された光学薄膜Cに照射される。駆動ステージ24を走査駆動して、光学薄膜Cの任意の部分(位置)にイオンビーム23を照射することで、光学薄膜Cを厚さ方向に部分的に除去する除去加工を行う。 The ion beam 23 from the ion beam generator 22 is irradiated onto a transmissive optical element 6, which is the workpiece held (mounted) on a driving stage 24, specifically, onto an optical thin film C formed on a substrate 7. The driving stage 24 is driven in a scanning manner to irradiate any portion (position) of the optical thin film C with the ion beam 23, thereby performing a removal process that partially removes the optical thin film C in the thickness direction.

イオンビーム発生部22からのイオンビーム23を駆動ステージ24に設けられた電流密度計測部25に照射することで、イオンビーム23のビームプロファイルを計測することが可能である。電流密度計測部25で計測されるイオンビーム23のビームプロファイルを、光学薄膜Cの除去量δ(加工量)や加工ピッチなどの加工条件に対して最適化することで、高精度な除去加工を実現することができる。 By irradiating the ion beam 23 from the ion beam generating unit 22 to the current density measuring unit 25 provided on the driving stage 24, it is possible to measure the beam profile of the ion beam 23. By optimizing the beam profile of the ion beam 23 measured by the current density measuring unit 25 for processing conditions such as the removal amount δ (processing amount) of the optical thin film C and the processing pitch, it is possible to realize highly accurate removal processing.

このようなイオンビーム加工装置200を除去加工(S24)に用いることで、被照明面における照度分布の不均一性を高精度に補正する、即ち、被照明面における照度分布の均一化を実現する透過型の光学素子6を製造(提供)することができる。 By using such an ion beam processing device 200 for the removal processing (S24), it is possible to manufacture (provide) a transmissive optical element 6 that can correct the non-uniformity of the illuminance distribution on the illuminated surface with high precision, i.e., achieve uniformity of the illuminance distribution on the illuminated surface.

図8を参照して、光学薄膜Cを厚さ方向に部分的に除去する除去加工(S24)の具体的な手法の別の例を説明する。除去加工には、光学薄膜Cを除去すべき部分を、砥粒を含む磁性流体を用いて研磨することで、かかる部分における光学薄膜Cを厚さ方向に除去する加工技術、所謂、MRF(Magneto-Rheological Finishing)を用いてもよい。MRFは、磁力を用いた高精度研磨技術である。 With reference to FIG. 8, another example of a specific technique for the removal process (S24) for partially removing the optical thin film C in the thickness direction will be described. For the removal process, a processing technique known as MRF (Magneto-Rheological Finishing) may be used, in which the portion where the optical thin film C is to be removed is polished with a magnetic fluid containing abrasive grains, thereby removing the optical thin film C in the thickness direction in the portion. MRF is a high-precision polishing technique that uses magnetic force.

具体的には、図8に示すように、砥粒を含む磁性流体31を、基材7に形成された光学薄膜Cとステージ32との間に流し込む。そして、磁性流体31に対して電磁石33から磁力34を与えると、磁力34の影響によって、磁性流体31に含まれる、磁気を帯びた砥粒が光学薄膜Cの表面に接触する。この際、ステージ32を駆動することで、磁性流体31が光学薄膜Cの表面を流れ、かかる磁性流体31により光学薄膜Cが研磨される。電磁石33による磁力34を制御することで、高精度な除去加工を実現することができる。 Specifically, as shown in FIG. 8, a magnetic fluid 31 containing abrasive grains is poured between an optical thin film C formed on a substrate 7 and a stage 32. When a magnetic force 34 is applied to the magnetic fluid 31 from an electromagnet 33, the magnetic force 34 causes the magnetic abrasive grains contained in the magnetic fluid 31 to come into contact with the surface of the optical thin film C. At this time, the stage 32 is driven to cause the magnetic fluid 31 to flow over the surface of the optical thin film C, which is then polished by the magnetic fluid 31. By controlling the magnetic force 34 from the electromagnet 33, a highly accurate removal process can be achieved.

このような高精度研磨技術を除去加工(S24)に用いることで、被照明面における照度分布の不均一性を高精度に補正する、即ち、被照明面における照度分布の均一化を実現する透過型の光学素子6を製造(提供)することができる。 By using such high-precision polishing technology in the removal process (S24), it is possible to manufacture (provide) a transmissive optical element 6 that corrects the non-uniformity of the illuminance distribution on the illuminated surface with high precision, i.e., achieves uniformity of the illuminance distribution on the illuminated surface.

図9(a)乃至図9(d)を参照して、光学薄膜Cを厚さ方向に部分的に除去する除去加工(S24)の具体的な手法の更に別の例を説明する。除去加工には、光学薄膜Cを除去すべき部分をエッチングすることで、かかる部分における光学薄膜Cを厚さ方向に除去する加工技術、例えば、レジストを用いたエッチング技術を用いてもよい。 With reference to Figures 9(a) to 9(d), yet another example of a specific technique for the removal process (S24) of partially removing the optical thin film C in the thickness direction will be described. The removal process may be a processing technique for removing the optical thin film C in the thickness direction in the portion where the optical thin film C should be removed by etching the portion, for example, an etching technique using a resist.

具体的には、まず、図9(a)に示すように、基材7に形成された光学薄膜Cの上に、レジスト41を塗布する。次いで、図9(b)に示すように、光学薄膜Cを除去すべき部分42に対して、露光装置などを用いた露光及び現像を行うことで、部分42におけるレジスト41を除去する。次に、図9(c)に示すように、部分42に対して、エッチング加工を施すことで、部分42における光学薄膜Cを除去する(削る)。そして、図9(d)に示すように、光学薄膜Cの上に塗布したレジスト41を剥がす。図9(a)乃至図9(d)に示す工程を経ることで、光学薄膜Cの任意の部分に対して高精度な除去加工を実現することができる。 Specifically, first, as shown in FIG. 9(a), resist 41 is applied onto the optical thin film C formed on the substrate 7. Next, as shown in FIG. 9(b), a portion 42 from which the optical thin film C is to be removed is exposed to light using an exposure device or the like and developed, thereby removing the resist 41 from the portion 42. Next, as shown in FIG. 9(c), etching is performed on the portion 42 to remove (scrape) the optical thin film C from the portion 42. Then, as shown in FIG. 9(d), the resist 41 applied onto the optical thin film C is peeled off. By going through the steps shown in FIG. 9(a) to FIG. 9(d), highly accurate removal processing can be achieved for any portion of the optical thin film C.

このようなエッチング技術を除去加工(S24)に用いることで、被照明面における照度分布の不均一性を高精度に補正する、即ち、被照明面における照度分布の均一化を実現する透過型の光学素子6を製造(提供)することができる。 By using such an etching technique for the removal process (S24), it is possible to manufacture (provide) a transmissive optical element 6 that can correct the non-uniformity of the illuminance distribution on the illuminated surface with high precision, i.e., achieve a uniform illuminance distribution on the illuminated surface.

図10(a)乃至図10(c)を参照して、光学薄膜Cを厚さ方向に部分的に除去する除去加工(S24)の具体的な手法の更に別の例を説明する。除去加工には、光学薄膜Cを除去すべき部分に剥離剤を作用させることで、かかる部分における光学薄膜Cを厚さ方向に除去する加工技術を用いてもよい。剥離剤としては、例えば、HF(フッ酸)を用いる。 With reference to Figures 10(a) to 10(c), yet another example of a specific technique for the removal process (S24) of partially removing the optical thin film C in the thickness direction will be described. The removal process may use a processing technique in which a remover is applied to the portion of the optical thin film C from which the optical thin film C should be removed, thereby removing the optical thin film C in the thickness direction in that portion. For example, HF (hydrofluoric acid) is used as the remover.

具体的には、まず、図10(a)に示すように、基材7に形成された光学薄膜Cの上に、開口部52を含むマスク51を配置する。次に、図10(b)に示すように、マスク51の開口部52に対して、剥離剤53を流し込むことで、開口部52に露出している部分における光学薄膜Cを除去(剥離)する。そして、図10(c)に示すように、光学薄膜Cの上に配置したマスク51を取り除く。図10(a)乃至図10(c)に示す工程を経ることで、光学薄膜Cの任意の部分に対して高精度な除去加工を実現することができる。 Specifically, first, as shown in FIG. 10(a), a mask 51 including an opening 52 is placed on the optical thin film C formed on the substrate 7. Next, as shown in FIG. 10(b), a remover 53 is poured into the opening 52 of the mask 51 to remove (peel off) the optical thin film C in the portion exposed in the opening 52. Then, as shown in FIG. 10(c), the mask 51 placed on the optical thin film C is removed. By going through the steps shown in FIG. 10(a) to FIG. 10(c), highly accurate removal processing can be achieved for any portion of the optical thin film C.

このような剥離剤を用いた技術を除去加工(S24)に用いることで、被照明面における照度分布の不均一性を高精度に補正する、即ち、被照明面における照度分布の均一化を実現する透過型の光学素子6を製造(提供)することができる。 By using such a technique using a release agent in the removal process (S24), it is possible to manufacture (provide) a transmissive optical element 6 that corrects the non-uniformity of the illuminance distribution on the illuminated surface with high precision, i.e., achieves uniformity of the illuminance distribution on the illuminated surface.

本発明の実施形態における物品の製造方法は、例えば、半導体素子、フラットパネルディスプレイ、液晶表示素子、MEMSなどの物品を製造するのに好適である。かかる製造方法は、上述した露光装置100を用いて感光剤が塗布された基板を露光する工程と、露光された感光剤を現像する工程とを含む。また、現像された感光剤のパターンをマスクとして基板に対してエッチング工程やイオン注入工程などを行い、基板上に回路パターンが形成される。これらの露光、現像、エッチングなどの工程を繰り返して、基板上に複数の層からなる回路パターンを形成する。後工程で、回路パターンが形成された基板に対してダイシング(加工)を行い、チップのマウンティング、ボンディング、検査工程を行う。また、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、レジスト剥離など)を含みうる。本実施形態における物品の製造方法は、従来に比べて、物品の性能、品質、生産性及び生産コストの少なくとも1つにおいて有利である。 The manufacturing method of the article in the embodiment of the present invention is suitable for manufacturing articles such as semiconductor elements, flat panel displays, liquid crystal display elements, and MEMS. The manufacturing method includes a step of exposing a substrate coated with a photosensitive agent using the above-mentioned exposure apparatus 100, and a step of developing the exposed photosensitive agent. In addition, an etching step, an ion implantation step, and the like are performed on the substrate using the developed photosensitive agent pattern as a mask, and a circuit pattern is formed on the substrate. These steps of exposure, development, etching, and the like are repeated to form a circuit pattern consisting of multiple layers on the substrate. In a post-process, dicing (processing) is performed on the substrate on which the circuit pattern is formed, and chip mounting, bonding, and inspection steps are performed. In addition, the manufacturing method may include other well-known steps (oxidation, film formation, deposition, doping, planarization, resist stripping, etc.). The manufacturing method of the article in the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article compared to the conventional method.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above-described embodiment, and various modifications and variations are possible without departing from the spirit and scope of the invention. Therefore, the following claims are appended to disclose the scope of the invention.

100:露光装置 101:照明光学系 103:投影光学系 6:透過型の光学素子 7:基材 C:光学薄膜 100: Exposure device 101: Illumination optical system 103: Projection optical system 6: Transmissive optical element 7: Substrate C: Optical thin film

Claims (11)

被照明面を照明する照明光学系に組み込まれる、光透過型の光学素子を製造する製造方法であって、
前記光学素子の表面に、屈折率が互いに異なる複数の薄膜を重ね合わせた光学薄膜を形成する工程と、
前記被照明面に形成される照度分布を取得する工程と、
取得した前記照度分布に基づいて、前記光学薄膜の光透過率分布を設計する工程と、
前記光透過率分布に応じて、前記光学素子の表面内において前記光学薄膜を除去すべき部分及び当該部分における前記光学薄膜の除去量を決定する工程と、
前記光学素子の表面に形成された前記光学薄膜に対して、前記除去すべき部分において前記光学薄膜の一部が残存するように前記除去量だけ前記光学薄膜の厚さ方向に除去する工程と、を有することを特徴とする製造方法。
A method for manufacturing a light-transmitting optical element to be incorporated in an illumination optical system that illuminates an illuminated surface, comprising the steps of:
forming an optical thin film on a surface of the optical element by superposing a plurality of thin films having refractive indices different from each other;
acquiring an illuminance distribution formed on the illuminated surface;
designing a light transmittance distribution of the optical thin film based on the acquired illuminance distribution;
determining a portion of the surface of the optical element where the optical thin film should be removed and an amount of the optical thin film to be removed in that portion according to the light transmittance distribution;
removing the optical thin film formed on the surface of the optical element in a thickness direction of the optical thin film by the removal amount so that a portion of the optical thin film remains in the portion to be removed.
前記光学薄膜は、反射防止膜を含むことを特徴とする請求項1に記載の製造方法。 The manufacturing method according to claim 1, characterized in that the optical thin film includes an anti-reflection film. 前記除去する工程では、前記表面内において前記光学薄膜を除去すべき部分にイオンビームを照射することで、当該部分における前記光学薄膜を前記厚さ方向に除去することを特徴とする請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, characterized in that in the removing step, an ion beam is irradiated onto a portion of the surface where the optical thin film is to be removed, thereby removing the optical thin film in the thickness direction in that portion. 前記除去する工程では、前記表面内において前記光学薄膜を除去すべき部分を、砥粒を含む磁性流体を用いて研磨することで、当該部分における前記光学薄膜を前記厚さ方向に除去することを特徴とする請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, characterized in that in the removing step, the portion of the surface from which the optical thin film is to be removed is polished with a magnetic fluid containing abrasive grains, thereby removing the optical thin film in the portion in the thickness direction. 前記除去する工程では、前記表面内において前記光学薄膜を除去すべき部分をエッチングすることで、当該部分における前記光学薄膜を前記厚さ方向に除去することを特徴とする請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, characterized in that in the removing step, the optical thin film is removed in the thickness direction in the portion of the surface where the optical thin film is to be removed by etching the portion. 前記除去する工程では、前記表面内において前記光学薄膜を除去すべき部分に剥離剤を作用させることで、当該部分における前記光学薄膜を前記厚さ方向に除去することを特徴とする請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, characterized in that in the removing step, a remover is applied to the portion of the surface from which the optical thin film is to be removed, thereby removing the optical thin film in the thickness direction in that portion. 前記決定する工程では、前記光学素子を透過した光によって前記照度分布を打ち消す照度分布が前記被照明面に形成されるように、前記部分及び前記除去量を決定することを特徴とする請求項1に記載の製造方法。 The manufacturing method according to claim 1, characterized in that in the determining step, the portion and the amount of removal are determined so that an illuminance distribution that cancels out the illuminance distribution is formed on the illuminated surface by the light transmitted through the optical element. 原版を介して基板を露光する露光装置であって、
被照明面に配置された前記原版を照明する照明光学系と、
前記照明光学系によって照明された前記原版のパターンを前記基板に投影する投影光学系と、を有し、
前記照明光学系は、屈折率が互いに異なる複数の薄膜を重ね合わせた反射防止膜が表面に形成された透過型の光学素子を含み、
前記反射防止膜は、前記光学素子の少なくとも1つの面の全体に形成され、前記被照明面における照度分布が均一になるように決定された膜厚分布を有する、
ことを特徴とする露光装置。
An exposure apparatus that exposes a substrate through an original, comprising:
an illumination optical system that illuminates the original disposed on an illumination surface ;
a projection optical system that projects the pattern of the original illuminated by the illumination optical system onto the substrate,
the illumination optical system includes a transmission type optical element having an anti-reflection film formed on a surface thereof, the anti-reflection film being formed by overlapping a plurality of thin films having refractive indices different from one another;
the anti-reflection film is formed on at least one entire surface of the optical element, and has a film thickness distribution determined so as to make the illuminance distribution on the illuminated surface uniform.
An exposure apparatus comprising:
前記光学素子は、前記照明光学系の被照明面、又は、前記被照明面の共役面に配置されていることを特徴とする請求項8に記載の露光装置。 The exposure apparatus according to claim 8, characterized in that the optical element is disposed on the illuminated surface of the illumination optical system or on a conjugate surface of the illuminated surface. 前記光学素子は、前記反射防止膜が前記原版に対向するように、前記照明光学系の最も前記投影光学系の側に配置されていることを特徴とする請求項8に記載の露光装置。 9. An exposure apparatus according to claim 8, wherein the optical element is disposed on the side of the illumination optical system that is closest to the projection optical system, so that the anti-reflection film faces the original. 請求項9乃至10のうちいずれか1項に記載の露光装置を用いて基板を露光する工程と、
露光された前記基板を現像する工程と、
現像された前記基板から物品を製造する工程と、
を有することを特徴とする物品の製造方法。
exposing a substrate using an exposure apparatus according to any one of claims 9 to 10;
developing the exposed substrate;
producing an article from the developed substrate;
A method for producing an article, comprising the steps of:
JP2020110820A 2020-06-26 2020-06-26 METHOD FOR MANUFACTURING TRANSMISSION OPTICAL ELEMENT, EXPOSURE APPARATUS, METHOD FOR MANUFACTURING ARTICLE, AND TRANSMISSION OPTICAL ELEMENT Active JP7625376B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020110820A JP7625376B2 (en) 2020-06-26 2020-06-26 METHOD FOR MANUFACTURING TRANSMISSION OPTICAL ELEMENT, EXPOSURE APPARATUS, METHOD FOR MANUFACTURING ARTICLE, AND TRANSMISSION OPTICAL ELEMENT
TW110116704A TWI858256B (en) 2020-06-26 2021-05-10 Exposure device and method for manufacturing article
KR1020210061721A KR20220000809A (en) 2020-06-26 2021-05-13 Method of manufacturing transmission type optical element, exposure apparatus, method of manufacturing article, and transmission type optical element
CN202110689013.4A CN113848680A (en) 2020-06-26 2021-06-22 Method for manufacturing transmission-type optical element, exposure apparatus, method for manufacturing article, and transmission-type optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020110820A JP7625376B2 (en) 2020-06-26 2020-06-26 METHOD FOR MANUFACTURING TRANSMISSION OPTICAL ELEMENT, EXPOSURE APPARATUS, METHOD FOR MANUFACTURING ARTICLE, AND TRANSMISSION OPTICAL ELEMENT

Publications (3)

Publication Number Publication Date
JP2022020087A JP2022020087A (en) 2022-02-01
JP2022020087A5 JP2022020087A5 (en) 2023-06-19
JP7625376B2 true JP7625376B2 (en) 2025-02-03

Family

ID=78975077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020110820A Active JP7625376B2 (en) 2020-06-26 2020-06-26 METHOD FOR MANUFACTURING TRANSMISSION OPTICAL ELEMENT, EXPOSURE APPARATUS, METHOD FOR MANUFACTURING ARTICLE, AND TRANSMISSION OPTICAL ELEMENT

Country Status (4)

Country Link
JP (1) JP7625376B2 (en)
KR (1) KR20220000809A (en)
CN (1) CN113848680A (en)
TW (1) TWI858256B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091704A (en) 1999-09-22 2001-04-06 Tsurumi Soda Co Ltd Peeling agent for optical thin film and method for peeling the same
JP2006243583A (en) 2005-03-07 2006-09-14 Seiko Epson Corp Removal method of optical surface film
JP2010117473A (en) 2008-11-12 2010-05-27 Canon Inc Optical filter, optical system and exposure apparatus
JP2011148227A (en) 2010-01-22 2011-08-04 Hoya Corp Substrate for mask blank, method for manufacturing the same, mask blank for imprint mold, and method for manufacturing imprint mold

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235079A (en) * 1993-02-09 1994-08-23 Canon Inc Regeneration method for thin film, regeneration method for substrate and formation of thin film
JPH0720312A (en) * 1993-06-30 1995-01-24 Ushio Inc Optical filter
JP3636098B2 (en) * 2001-06-06 2005-04-06 東芝三菱電機産業システム株式会社 Power converter control circuit
JP2008279597A (en) * 2006-05-10 2008-11-20 Oji Paper Co Ltd Convex / concave pattern forming sheet and manufacturing method thereof, antireflection body, retardation plate, process sheet original plate, and manufacturing method of optical element
KR20130047634A (en) * 2011-10-28 2013-05-08 호야 가부시키가이샤 Antireflective film and optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091704A (en) 1999-09-22 2001-04-06 Tsurumi Soda Co Ltd Peeling agent for optical thin film and method for peeling the same
JP2006243583A (en) 2005-03-07 2006-09-14 Seiko Epson Corp Removal method of optical surface film
JP2010117473A (en) 2008-11-12 2010-05-27 Canon Inc Optical filter, optical system and exposure apparatus
JP2011148227A (en) 2010-01-22 2011-08-04 Hoya Corp Substrate for mask blank, method for manufacturing the same, mask blank for imprint mold, and method for manufacturing imprint mold

Also Published As

Publication number Publication date
KR20220000809A (en) 2022-01-04
JP2022020087A (en) 2022-02-01
TWI858256B (en) 2024-10-11
TW202201143A (en) 2022-01-01
CN113848680A (en) 2021-12-28

Similar Documents

Publication Publication Date Title
KR100877639B1 (en) Multi-layer film mirror, evaluation method, exposure apparatus and device manufacturing method
WO1999031717A1 (en) Projection exposure method and projection aligner
TWI239033B (en) Adjustment method and apparatus of optical system, and exposure apparatus
US20040174533A1 (en) Wavefront aberration measuring apparatus
KR100589235B1 (en) Lithographic apparatus, device manufacturing methods, devices manufactured thereby, method of manufacturing a reflector, reflector manufactured thereby and phase shift mask
JP2008270564A (en) Exposure apparatus, and device manufacturing method
US20070188870A1 (en) Multilayer mirror manufacturing method, optical system manufacturing method, exposure apparatus, and device manufacturing method
JP2003233002A (en) Reflective projection optical system, exposure device, and method for manufacturing device
JP3368227B2 (en) Optical element manufacturing method
JP2009032747A (en) Scanning stepper and device manufacturing method
KR20010006578A (en) Opitical correction plate, and its application in a lithographic projection apparatus
JP7625376B2 (en) METHOD FOR MANUFACTURING TRANSMISSION OPTICAL ELEMENT, EXPOSURE APPARATUS, METHOD FOR MANUFACTURING ARTICLE, AND TRANSMISSION OPTICAL ELEMENT
JP7535667B2 (en) Method for adjusting an optical system, particularly for microlithography - Patents.com
JP3958261B2 (en) Optical system adjustment method
US20050237502A1 (en) Exposure apparatus
KR100563103B1 (en) Method of Fabricating an Optical Element, Lithographic Apparatus and Device Manufacturing Method
JP3870118B2 (en) Imaging optical system, exposure apparatus having the optical system, and aberration reduction method
JP2009162851A (en) Mask, method for manufacturing the same, exposure method and apparatus, and device manufacturing method
JP2004311897A (en) Method and equipment for exposure, process for fabricating device, and mask
JP3990901B2 (en) Polishing method and apparatus, exposure apparatus, device manufacturing method and device
JP7538790B2 (en) Exposure apparatus, exposure method, and article manufacturing method
JP2025008257A (en) Illumination optical system, exposure apparatus, and article manufacturing method
JP2006120899A (en) Projection optical system, adjustment method thereof, projection aligner, projection exposure method, and adjustment method of projection aligner
JP4307039B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP2006351990A (en) Exposure device and manufacturing method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250122

R150 Certificate of patent or registration of utility model

Ref document number: 7625376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150