[go: up one dir, main page]

JP7588316B2 - Fiber mesh sheet, its manufacturing method, and cell culture chip using the fiber mesh sheet - Google Patents

Fiber mesh sheet, its manufacturing method, and cell culture chip using the fiber mesh sheet Download PDF

Info

Publication number
JP7588316B2
JP7588316B2 JP2021023538A JP2021023538A JP7588316B2 JP 7588316 B2 JP7588316 B2 JP 7588316B2 JP 2021023538 A JP2021023538 A JP 2021023538A JP 2021023538 A JP2021023538 A JP 2021023538A JP 7588316 B2 JP7588316 B2 JP 7588316B2
Authority
JP
Japan
Prior art keywords
fibers
mesh sheet
aligned
fiber
fiber mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021023538A
Other languages
Japanese (ja)
Other versions
JP2021146733A (en
Inventor
太一 中村
法人 塚原
浩二 池田
清孝 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to CN202110188290.7A priority Critical patent/CN113481663A/en
Priority to US17/198,185 priority patent/US20210285138A1/en
Priority to DE102021105994.1A priority patent/DE102021105994A1/en
Publication of JP2021146733A publication Critical patent/JP2021146733A/en
Application granted granted Critical
Publication of JP7588316B2 publication Critical patent/JP7588316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/10Perfusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • D04H3/045Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles for net manufacturing

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、繊維メッシュシートとその製造方法及び繊維メッシュシートを用いた細胞培養チップに関する。 The present invention relates to a fiber mesh sheet, a manufacturing method thereof, and a cell culture chip using the fiber mesh sheet.

近年、細胞培養に用いるチップとして、生体機能チップ(Organ On a Chip:OoC)の開発が盛んに行われている(例えば、特許文献1参照。)。OoCとは、ガラス、樹脂等を組み合わせた人工の微小空間において、細胞を培養することで、生体内の組織機能をマイクロスケールで再現した、細胞培養チップである。 In recent years, there has been active development of organ-on-a-chip (OoC) chips for use in cell culture (see, for example, Patent Document 1). OoC is a cell culture chip that reproduces the tissue functions of a living body on a microscale by culturing cells in an artificial microspace that combines glass, resin, etc.

このような細胞培養チップを用いて培養した細胞に対して、薬剤を投与することで、薬剤の薬効、毒性試験や吸収、代謝、排泄等、従来マウスを用いた動物試験によって評価していた試験を生体外の人工チップにおいて、生体内により近い機能を持つ細胞での評価が実施可能となる。 By administering drugs to cells cultured using such cell culture chips, it becomes possible to carry out tests that previously were conducted using animal tests using mice to evaluate the efficacy, toxicity, absorption, metabolism, excretion, etc. of drugs, using cells with functions closer to those found in the living body in an artificial chip outside the body.

特開2019-180354号公報JP 2019-180354 A

生体内により近い機能を持つ肝細胞または腸管細胞を含む細胞シートを提供するために、例えば、特許文献1に記載されている従来の細胞培養チップでは細胞を培養するための足場にマイクロメッシュシートが用いられている。 In order to provide cell sheets containing liver cells or intestinal cells with functions closer to those in vivo, for example, a conventional cell culture chip described in Patent Document 1 uses a micromesh sheet as a scaffold for culturing cells.

しかしながら、2種類の細胞を上下別々の細胞シートとして培養により形成して、上下別々に異なる流体を灌流させて細胞シートに対する薬物透過の評価を行う場合がある。これには、上下の細胞を分離したまま培養するためにメッシュ開口部を細胞1個の通過を抑制する大きさにする必要があり、それによってメッシュ開口部に被験物質が詰まりやすく、薬物透過性が阻害されるといった課題があった。 However, there are cases where two types of cells are cultured as separate upper and lower cell sheets, and different fluids are perfused separately from the top and bottom to evaluate drug permeability through the cell sheets. To do this, the mesh openings must be large enough to prevent the passage of a single cell, in order to culture the upper and lower cells separately, but this poses the problem that the test substance can easily become clogged in the mesh openings, inhibiting drug permeability.

特に、近年、新薬の候補化合物として高分子量化が進んでいることからこの課題はより顕在化している。 In particular, this issue has become more pronounced in recent years as candidate compounds for new drugs have become increasingly polymeric.

そこで、本発明は、前記従来の課題を解決するもので、メッシュ開口部に対する被験物の詰まりを抑制し得る適度な大きさのメッシュ開口部を有した状態であっても、2種類の細胞を上下で分離しながら培養できる細胞培養チップに用いる繊維メッシュシートを提供することを目的とする。 The present invention aims to solve the above-mentioned problems of the conventional art by providing a fiber mesh sheet for use in a cell culture chip that can culture two types of cells separately above and below, even when the mesh openings are of an appropriate size to prevent clogging of the mesh openings with the test specimen.

上記目的を達成するために、本発明に係る繊維メッシュシートは、高分子材料からなる複数の繊維が面内で前記繊維の長手方向を一方向に沿って配列した平面状の配列繊維群を2層以上積層させたメッシュ構造であって、
隣接する2層の配列繊維群は、それぞれの配列繊維群の前記繊維のそれぞれの長手方向が、面に垂直な方向から見た平面視で30°以上150°以下の交差角で交差しており、
最下層の配列繊維群の繊維の断面の隣接する配列繊維群のある側の上部が略円形状で、隣接する配列繊維群のない側の下部が略平坦状であり、
最下層以外の配列繊維群の繊維の断面は略円形状である。
In order to achieve the above object, the fiber mesh sheet of the present invention has a mesh structure in which two or more planar aligned fiber groups are laminated, in which a plurality of fibers made of a polymer material are aligned in one direction along the longitudinal direction of the fibers within a plane,
The longitudinal directions of the fibers of each of the adjacent two aligned fiber groups intersect at a crossing angle of 30° or more and 150° or less in a plan view seen from a direction perpendicular to the surface,
an upper portion of a cross section of the fibers of the aligned fiber group in the lowest layer on a side where there is an adjacent aligned fiber group is substantially circular, and a lower portion on a side where there is no adjacent aligned fiber group is substantially flat;
The cross sections of the fibers in the aligned fiber groups other than the bottom layer are substantially circular.

以上のように、本発明に係る繊維メッシュシートによれば、最下層の配列繊維群の繊維の略平坦状の下部において1細胞サイズの物質を分離して捕捉、回収することが可能となる。
また、その繊維メッシュシートを細胞を培養するための足場として用い、細胞培養チップを構成することで、メッシュ開口部に対する被験物の詰まりを抑制し得る適度な大きさのメッシュ開口部を有した状態でも2種類の細胞を上下で分離しながら培養可能となる。これにより、高分子量化が進む近年の新薬の候補化合物の評価にも対応できる。
As described above, the fiber mesh sheet of the present invention makes it possible to separate, capture and recover substances the size of a single cell at the substantially flat lower portion of the aligned fibers in the lowest layer.
In addition, by using the fiber mesh sheet as a scaffold for culturing cells and constructing a cell culture chip, it becomes possible to culture two types of cells separately above and below even with mesh openings of an appropriate size that can prevent the test subject from clogging the mesh openings. This makes it possible to evaluate candidate compounds for new drugs, which are becoming increasingly high molecular weight in recent years.

実施の形態1に係る繊維メッシュシートの構成を示す概略斜視図である。1 is a schematic perspective view showing a configuration of a fiber mesh sheet according to a first embodiment. FIG. 図1Aの繊維メッシュシートの第1層及び第2層を構成する繊維の構造及び寸法を示す概略斜視図である。1B is a schematic perspective view showing the structure and dimensions of the fibers constituting the first and second layers of the fiber mesh sheet of FIG. 1A. FIG. 実施の形態1に係る繊維メッシュシートの製造方法のフローチャートである。4 is a flowchart of a method for manufacturing a fiber mesh sheet according to the first embodiment. 実施の形態1に係る細胞培養チップの構成を示す分解斜視図である。1 is an exploded perspective view showing a configuration of a cell culture chip according to a first embodiment. 比較例と実施例とのそれぞれの条件及び細胞培養チップに用いた場合の培養結果を示す表1である。Table 1 shows the conditions for the comparative example and the examples, and the culture results when used in a cell culture chip.

第1の態様に係る繊維メッシュシートは、高分子材料からなる複数の繊維が面内で前記繊維の長手方向を一方向に沿って配列した平面状の配列繊維群を2層以上積層させたメッシュ構造であって、
隣接する2層の配列繊維群は、それぞれの配列繊維群の前記繊維のそれぞれの長手方向が、面に垂直な方向から見た平面視で30°以上150°以下の交差角で交差しており、
最下層の配列繊維群の繊維の断面の隣接する配列繊維群のある側の上部が略円形状で、隣接する配列繊維群のない側の下部が略平坦状であり、
最下層以外の配列繊維群の繊維の断面は略円形状である。
The fiber mesh sheet according to the first aspect has a mesh structure in which two or more planar aligned fiber groups are laminated, in which a plurality of fibers made of a polymer material are aligned in one direction along the longitudinal direction of the fibers in a plane, and
The longitudinal directions of the fibers of each of the adjacent two aligned fiber groups intersect at a crossing angle of 30° or more and 150° or less in a plan view seen from a direction perpendicular to the surface,
an upper portion of a cross section of the fibers of the aligned fiber group in the lowest layer on a side where there is an adjacent aligned fiber group is substantially circular, and a lower portion on a side where there is no adjacent aligned fiber group is substantially flat;
The cross sections of the fibers in the aligned fiber groups other than the bottom layer are substantially circular.

第2の態様に係る繊維メッシュシートは、上記第1の態様において、最下層以外の前記配列繊維群の前記繊維の前記略円形状の水との接触角は、90°以上150°以下であってもよい。 In the fiber mesh sheet according to the second aspect, in the first aspect described above, the contact angle of the fibers of the substantially circular shape of the arranged fiber group other than the bottom layer with water may be 90° or more and 150° or less.

第3の態様に係る繊維メッシュシートは、上記第1又は第2の態様において、前記配列繊維群の前記繊維の平均径は、1μm以上50μm以下であってもよい。 The fiber mesh sheet according to the third aspect may be the fiber mesh sheet according to the first or second aspect, in which the average diameter of the fibers in the arranged fiber group is 1 μm or more and 50 μm or less.

第4の態様に係る繊維メッシュシートの製造方法は、高分子材料からなる複数の繊維が面内で前記繊維の長手方向を一方向に沿って配列した平面状の配列繊維群を、面に垂直な方向から見た平面視で30°以上150°以下の交差角で隣接する2層の配列繊維群の前記繊維のそれぞれの長手方向が交差するように、2層以上積層させる工程と、
前記繊維の前記高分子材料の融点以上前記繊維が溶融切断する温度(融点+100℃)以下の温度で加熱処理する工程と、を含み、
前記加熱処理する工程により隣接する2層の前記配列繊維群の相接部分の過半数部を交絡させる。
A method for producing a fiber mesh sheet according to a fourth aspect includes a step of laminating two or more planar aligned fiber groups, each of which has a plurality of fibers made of a polymeric material aligned in one direction along a plane, such that the longitudinal directions of the fibers in adjacent aligned fiber groups intersect at a crossing angle of 30° or more and 150° or less in a plan view seen from a direction perpendicular to the plane;
and a step of heat-treating the fibers at a temperature equal to or higher than the melting point of the polymeric material of the fibers and equal to or lower than a temperature (melting point + 100° C.) at which the fibers melt and break,
The heat treatment step causes the majority of the contact portions of the aligned fiber groups of the two adjacent layers to be entangled.

第5の態様に係る繊維メッシュシートの製造方法は、上記第4の態様において、前記繊維の前記高分子材料の融点以上前記繊維が溶融切断する温度(融点+100℃)以下の温度で加熱処理する工程により、最下層の前記配列繊維群の前記繊維の断面の隣接する前記配列繊維群のない側の下部を略平坦状としてもよい。 The method for producing a fiber mesh sheet according to the fifth aspect may be the fourth aspect described above, in which the lower part of the cross section of the fibers of the aligned fiber group of the lowest layer on the side where there is no adjacent aligned fiber group is made substantially flat by a process of heat treating the fibers at a temperature equal to or higher than the melting point of the polymeric material of the fibers and equal to or lower than the temperature at which the fibers melt and break (melting point + 100°C).

第6の態様に係る細胞培養チップは、上記第1から第3のいずれかの態様に係る繊維メッシュシートを含む。 The cell culture chip according to the sixth aspect includes a fiber mesh sheet according to any one of the first to third aspects.

以下、実施の形態に係る繊維メッシュシート及びその製造方法、細胞培養チップについて添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。 The fiber mesh sheet and its manufacturing method, and the cell culture chip according to the embodiment will be described below with reference to the attached drawings. Note that substantially the same components in the drawings are given the same reference numerals.

(実施の形態1)<繊維メッシュシート>
図1Aは、実施の形態1に係る繊維メッシュシート101の構成を示す概略斜視図である。図1Bは、図1Aの繊維メッシュシートの第1層及び第2層を構成する繊維の構造及び寸法を示す概略斜視図である。なお、図面において、便宜上、第1層の配列繊維群102及び第2層の配列繊維群103の面内をXY平面とし、積層方向をZ方向として示している。
繊維メッシュシート101は、高分子材料からなる複数の繊維1、2が面内(XY平面)で繊維の長手方向を一方向に沿って配列した平面状の配列繊維群102、103を2層以上積層したメッシュ構造を有する。隣接する2層の配列繊維群102、103は、それぞれの配列繊維群102、103の繊維1、2のそれぞれの長手方向が、面に垂直な方向(Z方向)から見た平面視で30°以上150°以下の交差角θで交差している。第1層の配列繊維群102は、複数の繊維1の長手方向を同一方向に等間隔に細線状で整列した高分子材料からなる繊維群であり、各繊維1の断面形状は、上部が略円形状であり、下部が略平坦状である。なお、上部とは、隣接する配列繊維群のある側、つまりZ方向の正方向であり、下部とは、隣接する配列繊維群のない側、つまりZ方向の負方向である。第2層の配列繊維群103は、複数の繊維2の長手方向を同一方向に等間隔に細線状で整列した高分子材料からなる繊維群であり、第2層の配列繊維群103を構成する繊維2の断面形状は略円形状である。第2層の配列繊維群103の繊維2の下部の過半数部分は、第1層の配列繊維群102の繊維1の上部に交絡し、接合されている。なお、「交絡」とは、繊維1と繊維2とが交差し、互いに接する箇所でそれぞれの一部が接合されていることを意味する。
(Embodiment 1) <Fiber mesh sheet>
Fig. 1A is a schematic perspective view showing the configuration of a fiber mesh sheet 101 according to embodiment 1. Fig. 1B is a schematic perspective view showing the structure and dimensions of fibers constituting a first layer and a second layer of the fiber mesh sheet of Fig. 1A. For convenience, in the drawing, the plane of the aligned fiber groups 102 of the first layer and the aligned fiber groups 103 of the second layer is shown as an XY plane, and the stacking direction is shown as a Z direction.
The fiber mesh sheet 101 has a mesh structure in which two or more planar arranged fiber groups 102, 103 in which a plurality of fibers 1, 2 made of a polymer material are arranged in one direction in a plane (XY plane) are laminated. The longitudinal directions of the fibers 1, 2 of the adjacent two arranged fiber groups 102, 103 cross each other at a crossing angle θ of 30° to 150° in a planar view seen from a direction perpendicular to the plane (Z direction). The first layer arranged fiber group 102 is a fiber group made of a polymer material in which the longitudinal directions of the plurality of fibers 1 are aligned in the same direction in a thin line shape at equal intervals, and the cross-sectional shape of each fiber 1 is approximately circular at the top and approximately flat at the bottom. The upper part refers to the side where there is an adjacent arranged fiber group, that is, the positive direction in the Z direction, and the lower part refers to the side where there is no adjacent arranged fiber group, that is, the negative direction in the Z direction. The aligned fiber group 103 of the second layer is a fiber group made of a polymer material in which a plurality of fibers 2 are aligned in the same longitudinal direction at equal intervals in the form of thin lines, and the cross-sectional shape of the fibers 2 constituting the aligned fiber group 103 of the second layer is substantially circular. The majority of the lower portions of the fibers 2 of the aligned fiber group 103 of the second layer are entangled and joined to the upper portions of the fibers 1 of the aligned fiber group 102 of the first layer. Note that "entangled" means that the fibers 1 and 2 cross each other and are partially joined to each other at the points where they come into contact with each other.

この繊維メッシュシートによれば、隣接する2層の配列繊維群102、103は、それぞれの繊維1、2の長手方向が、面に垂直な方向(Z方向)から見た平面視で30°以上150°以下の交差角θで交差している。これによって、細胞の通過と被験物の詰まりの両方の抑制が可能である。 In this fiber mesh sheet, the longitudinal directions of the fibers 1 and 2 of the two adjacent layers of aligned fiber groups 102 and 103 cross at a crossing angle θ of 30° to 150° in plan view from the direction perpendicular to the surface (Z direction). This makes it possible to suppress both the passage of cells and clogging of the test object.

また、最下層ではない第2層の配列繊維群103の繊維2の略円形状の水との接触角は、90°以上150°以下であってもよい。これによって、繊維2の略円形状の側面方向に対して濡れることでメッシュの開口部を介して、細胞種と接することで生体内により近い機能を持つ細胞シートを得ることが更に期待できる。 The contact angle of the approximately circular shape of fiber 2 of the aligned fiber group 103 in the second layer (not the bottom layer) with water may be 90° or more and 150° or less. This further promises to obtain a cell sheet with functions closer to those found in vivo by wetting the lateral direction of the approximately circular shape of fiber 2 and contacting the cell type through the openings in the mesh.

さらに、第1層及び第2層の配列繊維群102、103の繊維1、2の平均径は、例えば、1μm以上50μm以下であってもよい。
なお、平均径とは、繊維1、2の直径の平均値である。繊維1、2の直径とは繊維の長さ方向に対して垂直な断面の直径である。そのような断面が円形でない場合には、最大径を直径と見なしてよい。また、第1層及び第2層の配列繊維群102、103の1つの主面の法線方向からみたときの、繊維の長さ方向に対して垂直な方向の幅を、繊維の直径と見なしてもよい。平均繊維径は、例えば、第1層及び第2層の配列繊維群102、103に含まれる任意の10本の繊維の任意の箇所の直径の平均値を画像処理計測にて求めた平均値である。
なお、第2層の配列繊維群103のさらに上方、つまりZ方向の正方向に第3層以上の配列繊維群が設けられていてもよい。
Furthermore, the average diameter of the fibers 1, 2 in the aligned fiber groups 102, 103 in the first and second layers may be, for example, 1 μm or more and 50 μm or less.
The average diameter is the average value of the diameters of the fibers 1 and 2. The diameters of the fibers 1 and 2 are the diameters of the cross sections perpendicular to the length direction of the fibers. When such cross sections are not circular, the maximum diameter may be regarded as the diameter. Also, the width in the direction perpendicular to the length direction of the fibers when viewed from the normal direction of one of the main faces of the aligned fiber groups 102 and 103 in the first and second layers may be regarded as the diameter of the fibers. The average fiber diameter is, for example, the average value of the diameters of any 10 fibers included in the aligned fiber groups 102 and 103 in the first and second layers, determined by image processing measurement.
In addition, a third or more layers of aligned fiber groups may be provided above the second layer of aligned fiber groups 103, that is, in the positive direction of the Z direction.

<繊維メッシュシートの製造方法>
図2は、実施の形態1に係る繊維メッシュシート101の製造方法のフローチャートである。(1)S01は、フィルムを準備する工程である。フィルム表面は、フッ素処理等で適度な剥離性を有する物が望ましい。これは、後述するS02、S04の各工程でフィルム上に繊維を紡糸する際は繊維に対する粘着機能が必要であると共に、繊維メッシュシートを後で細胞培養チップに組み込む際にはフィルムからの繊維メッシュシートの剥離機能が必要となるからである。(2)S02は、第1層の配列繊維群102を紡糸する工程である。繊維メッシュシート101として用いる高分子材料を加熱による溶融もしくは、有機溶媒により膨潤させた溶液をS01の工程で準備したフィルム上に同一方向に等間隔に細線状で塗布する。
ここで、溶融もしくは、溶液状態で供給された高分子材料は自然冷却もしくは、自然乾燥されることによって固形状態のみの繊維が形成される。
実施の形態1では、高分子材料として細胞毒性の低いポリスチレンを採用し、またペレット状のポリスチレンを有機溶媒であるDMF(N,N-ジメチルホルムアミド)に30重量%膨潤させた溶液を用いて、5μm相当径の繊維を同一方向に30μm相当間隔で塗布した。なお、繊維の平均径は、1μm以上50μm以下であってもよい。
<Method of manufacturing fiber mesh sheet>
2 is a flow chart of a method for manufacturing the fiber mesh sheet 101 according to the first embodiment. (1) S01 is a step of preparing a film. The surface of the film is preferably one that has a suitable releasability due to fluorine treatment or the like. This is because, when fibers are spun onto the film in each of steps S02 and S04 described below, an adhesive function for the fibers is required, and when the fiber mesh sheet is later incorporated into a cell culture chip, a function for peeling the fiber mesh sheet from the film is required. (2) S02 is a step of spinning the first layer of aligned fibers 102. A solution of a polymer material used as the fiber mesh sheet 101, which is melted by heating or swollen with an organic solvent, is applied in the same direction in thin lines at equal intervals on the film prepared in step S01.
Here, the polymer material supplied in a molten or liquid state is naturally cooled or naturally dried to form fibers in a solid state only.
In the first embodiment, polystyrene with low cytotoxicity is used as the polymer material, and a solution of pellet-shaped polystyrene swollen to 30% by weight in DMF (N,N-dimethylformamide), an organic solvent, is used to coat fibers with a diameter of 5 μm in the same direction at intervals of 30 μm. The average diameter of the fibers may be 1 μm or more and 50 μm or less.

(3)S03は、S02の工程で第1層の配列繊維群102を紡糸したフィルムを面内で90°回転する工程である。(4)S04は、S03の工程において、面内で90°回転したフィルム上に第2層の配列繊維群103を紡糸する工程である。繊維メッシュシート101として用いる高分子材料を加熱による溶融もしくは、有機溶媒により膨潤させた溶液をS03の工程で準備したフィルム上に細線状態で同一方向に等間隔に細線状で塗布する。
実施の形態1では、S02の工程と同様に高分子材料として細胞毒性の低いポリスチレンを採用し、またペレット状のポリスチレンを有機溶媒であるDMF(N,N-ジメチルホルムアミド)に30重量%膨潤させた溶液を用いて、5μm相当径の繊維を同一方向に30μm相当間隔で塗布した。(5)S05は、S04の工程までで作成したフィルム上の繊維メッシュシートを加熱する工程である。具体的には高分子材料(実施の形態1ではポリスチレン)の融点以上前記繊維が溶融切断する温度(融点+100℃)以下の温度で一定時間加熱することで第1層の配列繊維群102の上部と第2層の配列繊維群103の下部の接点における過半数部を交絡させると共に、第1層の配列繊維群102の下部を略平坦状とする。なお、第1層の配列繊維群102の上部と第2層の配列繊維群103の下部との接点の交絡は、例えば、交差する繊維の溶融による接合であってもよい。
以上によって、繊維メッシュシートが得られる。
(3) S03 is a process of rotating the film on which the first layer of aligned fibers 102 has been spun in S02 by 90° in-plane. (4) S04 is a process of spinning the second layer of aligned fibers 103 on the film rotated 90° in-plane in S03. A solution of a polymer material used for the fiber mesh sheet 101, which has been melted by heating or swollen with an organic solvent, is applied in the form of thin lines at equal intervals in the same direction on the film prepared in S03.
In the first embodiment, polystyrene with low cytotoxicity was used as the polymer material as in the step S02, and a solution in which pellet-shaped polystyrene was swollen to 30% by weight in DMF (N,N-dimethylformamide), an organic solvent, was used to apply fibers with a diameter equivalent to 5 μm in the same direction at intervals equivalent to 30 μm. (5) S05 is a step of heating the fiber mesh sheet on the film created up to the step S04. Specifically, by heating for a certain period of time at a temperature equal to or higher than the melting point of the polymer material (polystyrene in the first embodiment) and equal to or lower than the temperature at which the fibers melt and break (melting point + 100°C), the majority of the contact points at the upper part of the aligned fiber group 102 of the first layer and the lower part of the aligned fiber group 103 of the second layer are entangled, and the lower part of the aligned fiber group 102 of the first layer is made substantially flat. The entanglement of the contact points between the upper part of the aligned fiber group 102 of the first layer and the lower part of the aligned fiber group 103 of the second layer may be, for example, a joining by melting intersecting fibers.
In this manner, a fiber mesh sheet is obtained.

<細胞培養チップ>
以下では、さらに、実施の形態1に係る繊維メッシュシート101を用いた細胞培養チップ300について説明する。
図3は、実施の形態1に係る細胞培養チップ300の構成を示す分解斜視図である。なお、図面において、便宜上、第1基板11等の面内をXY平面とし、これに垂直な方向をZ方向として示している。
実施の形態1に係る細胞培養チップ300は、本体部と、繊維メッシュシートの製造方法で作製した繊維メッシュシート101とを備える。本体部は、各々がXY平面に平行な主面を有し、第1基板11と、第1隔壁層12と、第2隔壁層14と、第2基板15とが所定方向(図中のZ軸方向)に沿ってこの順に積層された積層構造を有する。また、繊維メッシュシート101は、本体部の第1隔壁層12及び第2隔壁層14によって挟持されている。
<Cell culture chip>
Further, a cell culture chip 300 using the fiber mesh sheet 101 according to the first embodiment will be described below.
3 is an exploded perspective view showing a configuration of the cell culture chip 300 according to the embodiment 1. For convenience, in the drawing, the in-plane of the first substrate 11 etc. is shown as an XY plane, and the direction perpendicular thereto is shown as a Z direction.
The cell culture chip 300 according to the first embodiment includes a main body and a fiber mesh sheet 101 produced by a fiber mesh sheet manufacturing method. The main body has a main surface parallel to the XY plane, and has a layered structure in which a first substrate 11, a first partition layer 12, a second partition layer 14, and a second substrate 15 are layered in this order along a predetermined direction (the Z-axis direction in the figure). The fiber mesh sheet 101 is sandwiched between the first partition layer 12 and the second partition layer 14 of the main body.

以下に、この細胞培養チップ300を構成する部材について説明する。 The components that make up this cell culture chip 300 are described below.

<第1基板>
第1基板11は、ガラス等の材料を用いて形成された板状の部材である。なお、第1基板11の材料は、ガラスに限られず、樹脂、セラミックス等の任意の材料を用いてもよい。また、第1基板11は、細胞を培養する際に当該細胞と接触するため、細胞毒性を有さない材料で形成される。
第1基板11は、実施の形態1においては、矩形の主面を有する板状である。また、第1基板11には、積層される第1隔壁層12に通じるように、所定方向に沿って第1基板11を貫通する孔31が設けられる。
<First Substrate>
The first substrate 11 is a plate-like member formed using a material such as glass. The material of the first substrate 11 is not limited to glass, and any material such as resin or ceramics may be used. In addition, the first substrate 11 is formed from a material that does not have cytotoxicity because it comes into contact with the cells when the cells are cultured.
The first substrate 11 is in the form of a plate having a rectangular main surface in the embodiment 1. The first substrate 11 is provided with a hole 31 penetrating the first substrate 11 along a predetermined direction so as to communicate with the first partition layer 12 to be laminated thereon.

<第1隔壁層>
第1隔壁層12の一部が第1基板11と重ならずに露出している場合等、第1基板11の孔31を介さずに、直接に第1隔壁層12に通じる構成であってもよい。第1隔壁層12は、シリコーン樹脂によって形成された板状の部材である。
第1隔壁層12は、少なくとも一部が第1基板11に第1隔壁層12を厚み方向(Z軸方向)に貫通する第1貫通孔を有する。詳細は後述するが、第1貫通孔は、第1流路33に対応している。
第1貫通孔の両端は、第1基板11に形成された孔31のうちの2つに対応している。また、第1隔壁層12には、孔31のうち、第1貫通孔に対応する2つを除く、残り2つの孔31に対応し、積層される第2隔壁層14に通じるように、第1隔壁層12を厚み方向に貫通する孔32が設けられる。
<First partition layer>
In a case where a part of the first partition layer 12 is exposed without overlapping with the first substrate 11, for example, the first partition layer 12 may be configured to directly communicate with the first partition layer 12 without passing through the hole 31 of the first substrate 11. The first partition layer 12 is a plate-like member formed of a silicone resin.
The first partition layer 12 has a first through hole that penetrates the first partition layer 12 in the thickness direction (Z-axis direction) at least partially in the first substrate 11. The first through hole corresponds to the first flow path 33, which will be described in detail later.
Both ends of the first through hole correspond to two of the holes 31 formed in the first substrate 11. Furthermore, the first partition layer 12 is provided with holes 32 that penetrate the first partition layer 12 in the thickness direction so as to correspond to the remaining two holes 31 other than the two that correspond to the first through holes and to communicate with the second partition layer 14 to be laminated thereon.

<繊維メッシュシート>
繊維メッシュシート101は、第1隔壁層12側の第1主面101a及び第2隔壁層側の第2主面101bを有する。第1主面101aは、図1Aの第2層の配列繊維群の繊維の断面形状が略円状であり、第2主面101bは、図1Aの第1層の配列繊維群の繊維の断面形状が平坦状となる。また、互いに背向する第1主面101aと第2主面101bとを貫通する所定の開口が形成されている。なお、「背向」とは、第1主面101aと第2主面101bとが背中合わせにあるという意味である。
ここで、所定の開口とは、細胞培養チップ300を用いて培養される細胞の細胞径よりも小さく設定される。したがって、繊維メッシュシート101は、所定の開口よりも大きい細胞が第1主面101aから第2主面101b、又は第2主面101bから第1主面101aへと通過することを抑制し、所定の開口よりも小さい溶液成分(例えば、被験物や培地成分)を通過させる半通過性の機能を持つ。
<Fiber mesh sheet>
The fiber mesh sheet 101 has a first main surface 101a on the first partition layer 12 side and a second main surface 101b on the second partition layer side. The first main surface 101a has a substantially circular cross-sectional shape of the fibers of the aligned fiber group of the second layer in FIG. 1A, and the second main surface 101b has a flat cross-sectional shape of the fibers of the aligned fiber group of the first layer in FIG. 1A. In addition, a predetermined opening is formed through the first main surface 101a and the second main surface 101b, which are facing back to back. Note that "facing back to back" means that the first main surface 101a and the second main surface 101b are facing back to back.
Here, the predetermined opening is set to be smaller than the cell diameter of the cells cultured using the cell culture chip 300. Therefore, the fiber mesh sheet 101 has a semi-permeable function of preventing cells larger than the predetermined opening from passing from the first main surface 101a to the second main surface 101b, or from the second main surface 101b to the first main surface 101a, and allowing solution components (e.g., test substances and medium components) smaller than the predetermined opening to pass through.

また、繊維メッシュシート101は、細胞培養チップ300において培養される細胞の足場としての機能を有する。したがって、繊維メッシュシート101は、培養される細胞に対する毒性が低く接着可能な材料が選定されて用いられればよい。 The fiber mesh sheet 101 also functions as a scaffold for the cells being cultured in the cell culture chip 300. Therefore, the fiber mesh sheet 101 may be made of a material that is less toxic to the cells being cultured and that can be adhered to the cells.

繊維メッシュシート101は、第1貫通孔及び後述する第2貫通孔に対応する箇所に配置され、積層方向(Z方向)から見た平面視における第1貫通孔及び第2貫通孔の外側で第1隔壁層12と第2隔壁層14との間に挟持される。
このようにすることで、第1貫通孔と第2貫通孔とが重なる箇所において、繊維メッシュシート101によって第1貫通孔及び第2貫通孔がそれぞれ区画される。このようにして、第1基板11の主面、第1貫通孔、ならびに第1主面101aによって画定される第1主流路36を有する第1流路33が形成される。言い換えると、第1基板11と繊維メッシュシート101との間に第1貫通孔によって第1主流路36が形成される。
The fiber mesh sheet 101 is positioned at locations corresponding to the first through hole and the second through hole described later, and is sandwiched between the first partition layer 12 and the second partition layer 14 outside the first through hole and the second through hole when viewed in a planar view from the stacking direction (Z direction).
In this manner, where the first through hole and the second through hole overlap, the first through hole and the second through hole are each defined by the fiber mesh sheet 101. In this manner, a first flow path 33 is formed having a first main flow path 36 defined by the main surface of the first substrate 11, the first through hole, and the first main surface 101a. In other words, the first main flow path 36 is formed between the first substrate 11 and the fiber mesh sheet 101 by the first through hole.

第1主流路36は、第1貫通孔によって形成される第1流路33の一部である。このように画定される第1流路33の、特に、第1主流路36に接しており、第1主流路36内を第1主流路36に沿って延びる。
また、第1流路33には、孔31に対応する一端に第1流入口34、他端に第1流出口38が形成され、それぞれ孔31を介して細胞培養チップ300の外部に連通している。
また、第1流路33は、第1流入口34から第1主流路36につながる第1入流路35、及び、第1流出口38から第1主流路36につながる第1出流路37を有する。第1入流路35及び第1出流路37は、第1主流路36に対して、繊維メッシュシート101に代えて第2隔壁層14によって画定される。
The first main flow passage 36 is a part of the first flow passage 33 formed by the first through hole. The first main flow passage 36 is in contact with the first flow passage 33 thus defined, in particular the first main flow passage 36, and extends within and along the first main flow passage 36.
The first flow path 33 has a first inlet 34 at one end corresponding to the hole 31 and a first outlet 38 at the other end, each of which communicates with the outside of the cell culture chip 300 via the hole 31 .
The first flow path 33 has a first inlet flow path 35 connecting from the first inlet 34 to the first main flow path 36, and a first outlet flow path 37 connecting from the first outlet 38 to the first main flow path 36. The first inlet flow path 35 and the first outlet flow path 37 are defined by the second partition wall layer 14 instead of the fiber mesh sheet 101 with respect to the first main flow path 36.

<第2隔壁層>
第2隔壁層14は、シリコーン樹脂によって形成された板状の部材である。詳細は後述するが、第2貫通孔は、第2流路41に対応している。第2貫通孔の両端は、第1基板11に形成された孔31、及び、第1隔壁層12に形成された孔32に対応している。
<Second partition layer>
The second partition layer 14 is a plate-like member formed of a silicone resin. The second through hole corresponds to the second flow path 41, as will be described in detail later. Both ends of the second through hole correspond to the hole 31 formed in the first substrate 11 and the hole 32 formed in the first partition layer 12.

<第2基板>
第2基板15は、ガラス等の材料を用いて形成された板状の部材である。なお、第2基板15の材料は、ガラスに限られず、樹脂、セラミックス等の任意の材料を用いてもよい。第2基板15は、実施の形態1においては、矩形の主面を有する板状である。
<Second Substrate>
The second substrate 15 is a plate-like member formed using a material such as glass. The material of the second substrate 15 is not limited to glass, and any material such as resin, ceramics, etc. may be used. In the first embodiment, the second substrate 15 is a plate-like member having a rectangular main surface.

このようにして、第2基板15の主面、第2貫通孔、ならびに第2主面101bによって画定される第2主流路44を有する第2流路41が形成される。
言い換えると、第2基板15と繊維メッシュシート101との間に第2貫通孔によって第2主流路44が形成される。第2主流路44は、第2貫通孔によって形成される第2流路41の一部である。
In this manner, the second flow path 41 is formed, which has a second main flow path 44 defined by the main surface of the second substrate 15, the second through hole, and the second main surface 101b.
In other words, the second main flow path 44 is formed by the second through hole between the second substrate 15 and the fiber mesh sheet 101. The second main flow path 44 is a part of the second flow path 41 formed by the second through hole.

繊維メッシュシート101は、第1流路33のうちの第1主流路36が第1主面101a上に位置し、かつ、第2流路41のうちの第2主流路44が第2主面101b上に位置するように、第1流路33及び第2流路41の間に配置されている。
したがって、繊維メッシュシート101を介して、第1主流路36と第2主流路44とは、それぞれの流路を通流する被験物や培地成分等の、所定の孔径よりも小さい成分を交換可能である。
The fiber mesh sheet 101 is arranged between the first flow path 33 and the second flow path 41 such that the first main flow path 36 of the first flow path 33 is located on the first main surface 101a and the second main flow path 44 of the second flow path 41 is located on the second main surface 101b.
Therefore, via the fiber mesh sheet 101, the first main flow path 36 and the second main flow path 44 can exchange components that are smaller than a predetermined pore size, such as test substances and culture medium components that flow through each flow path.

また、第2流路41には、孔31及び孔32に対応する一端に第2流入口42、他端に第2流出口46が形成され、それぞれ孔31及び孔32を介して細胞培養チップ300の外部に連通している。
また、第2流路41は、第2流入口42から第2主流路44につながる第2入流路43、及び、第2流出口46から第2主流路44につながる第2出流路45を有する。第2入流路43及び第2出流路45は、第2主流路44に対して、繊維メッシュシート101に代えて第1隔壁層12によって画定される。
In addition, the second flow path 41 has a second inlet 42 at one end corresponding to holes 31 and 32, and a second outlet 46 at the other end, which are connected to the outside of the cell culture chip 300 via holes 31 and 32, respectively.
The second flow path 41 has a second inlet flow path 43 that connects from the second inlet 42 to the second main flow path 44, and a second outlet flow path 45 that connects from the second outlet 46 to the second main flow path 44. The second inlet flow path 43 and the second outlet flow path 45 are defined by the first partition wall layer 12 instead of the fiber mesh sheet 101 with respect to the second main flow path 44.

つまり、積層方向(Z方向)から見た平面視において、第1入流路35と第2入流路43とは重ならず、かつ、第1出流路37と第2出流路45とは重ならない。これにより、第1入流路35及び第1出流路37では、第2隔壁層14の第2貫通孔が形成されていない主面によって第1流路33の一部を形成している。
また、第2入流路43及び第2出流路45では、第1隔壁層12の第1貫通孔が形成されていない主面によって第2流路41の一部を形成している。
That is, in a plan view seen from the stacking direction (Z direction), the first inlet flow path 35 and the second inlet flow path 43 do not overlap, and the first outlet flow path 37 and the second outlet flow path 45 do not overlap. As a result, in the first inlet flow path 35 and the first outlet flow path 37, a part of the first flow path 33 is formed by the main surface of the second partition layer 14 on which the second through hole is not formed.
In the second inlet flow passage 43 and the second outlet flow passage 45, a part of the second flow passage 41 is formed by the main surface of the first partition layer 12 where the first through holes are not formed.

<実施例と比較例の対比>
以下、実施の形態1における比較例と実施例とを図4の表1を用いて説明する。
比較例・実施例共に繊維メッシュシートとして本実施の形態1に記載の繊維メッシュシートの製造方法により作製し、本実施の形態1に記載の細胞培養チップに対して、第1層を第2主流路側に、第2層を第1主流路に向けて搭載する。
但し、比較例は、本実施の形態に記載の繊維メッシュシートの製造方法のS05の加熱温度/時間を制御することで第1層・第2層間の交絡は形成するものの、第1層・第2層共に断面形状が略円状としたものを用いる。
また、細胞培養チップに対して播種する細胞として、第1主流路側に播種する細胞種Xとして浸潤性の低い細胞と、高い細胞と、を用い、第2主流路側に播種する細胞種Yとして浸潤性の低い細胞と、高い細胞と、を用い、また第1主流路側、第2主流路側に播種する順番を変えることで培養の評価を行う。
Comparison of Examples and Comparative Examples
A comparative example and an example of the first embodiment will be described below with reference to Table 1 in FIG.
In both the comparative example and the example, a fiber mesh sheet was prepared by the fiber mesh sheet manufacturing method described in this embodiment 1, and the first layer was mounted on the cell culture chip described in this embodiment 1 so as to face the second main flow path, and the second layer was mounted facing the first main flow path.
However, in the comparative example, although entanglement between the first and second layers is formed by controlling the heating temperature/time in S05 of the fiber mesh sheet manufacturing method described in this embodiment, both the first and second layers have an approximately circular cross-sectional shape.
In addition, for the cells to be seeded into the cell culture chip, low invasive cells and high invasive cells are used as cell type X to be seeded on the first main flow path side, and low invasive cells and high invasive cells are used as cell type Y to be seeded on the second main flow path side, and the culture is evaluated by changing the order in which the cells are seeded on the first main flow path side and the second main flow path side.

ここで、実施の形態においては細胞種X、細胞種Y共に、1つの細胞サイズが20μm相当の細胞を用い、また被験物質として高分子化合物溶液1μM(分子量75万相当)を用いる。 In this embodiment, for both cell type X and cell type Y, cells with a size equivalent to 20 μm are used, and a 1 μM polymer compound solution (equivalent to a molecular weight of 750,000) is used as the test substance.

本実施の形態に記載の繊維メッシュシートの製造方法で作製した繊維メッシュシートは、5μm相当径、30μm相当間隔で25μm相当四方の開口となり、1つの細胞サイズである20μm相当より大きく、被験物質として用いた高分子化合物溶液1μM(分子量75万相当)は詰まりにくい。 The fiber mesh sheet produced by the fiber mesh sheet manufacturing method described in this embodiment has openings with a diameter of 5 μm, spaced at intervals of 30 μm, and measuring 25 μm square, which is larger than the size of a single cell (20 μm), and is less likely to become clogged with the 1 μM polymer compound solution (equivalent to a molecular weight of 750,000) used as the test substance.

一方、培養評価結果は、細胞種Xと細胞種Yとが混合せずに各々シート状に形成される状態を示し、AからEは、それぞれ、A:細胞種Xと細胞種Yが混合せずに各々がシート状に形成される割合が100%B:細胞種Xと細胞種Yが混合せずに各々がシート状に形成される割合が100%未満80%以上C:細胞種Xと細胞種Yが混合せずに各々がシート状に形成される割合が80%未満60%以上D:細胞種Xと細胞種Yが混合せずに各々がシート状に形成される割合が60%未満40%以上E:細胞種Xと細胞種Yが混合せずに各々がシート状に形成される割合が40%未満であることを示す。 On the other hand, the culture evaluation results show that cell type X and cell type Y are not mixed and are each formed into a sheet, with A to E indicating that A: cell type X and cell type Y are not mixed and are each formed into a sheet at 100% B: cell type X and cell type Y are not mixed and are each formed into a sheet at less than 100% and 80% or more C: cell type X and cell type Y are not mixed and are each formed into a sheet at less than 80% and 60% or more D: cell type X and cell type Y are not mixed and are each formed into a sheet at less than 60% and 40% or more E: cell type X and cell type Y are not mixed and are each formed into a sheet at less than 40%.

表1の比較例1、比較例2では第1主流路側に播種する細胞種Xと、第2主流路側に播種する細胞種Yとについて、共に浸潤性の低い細胞を用いた場合、細胞を播種する順番に関わらず、培養結果はCである。 In Comparative Examples 1 and 2 in Table 1, when cell type X seeded on the first main channel side and cell type Y seeded on the second main channel side are both low invasive cells, the culture result is C, regardless of the order in which the cells are seeded.

これは、播種する1つの細胞サイズよりも繊維メッシュシートの開口サイズが大きいことにより、一部の細胞が播種された主流路側から対向する主流路側へとすり抜けたためと推察される。 This is presumably because the opening size of the fiber mesh sheet was larger than the size of a single cell to be seeded, allowing some cells to slip through from the main channel side where they were seeded to the opposing main channel side.

これに対して比較例3、比較例4では、第2主流路側に播種する細胞種Yを浸潤性の高い細胞を用いた場合、細胞を播種する順番が第1主流路側→第2主流路側では培養結果がDと悪化し、第2主流路側→第1主流路側では培養結果が更に悪化してEとなる。
これは、比較例3では第1主流路側に播種した浸潤性の低い細胞の大部分が先にシート状に形成されたものの、次に第2主流路側に播種した浸潤性の高い細胞の多くが第1主流路側にすり抜けて混合したためと推察される。
In contrast, in Comparative Examples 3 and 4, when highly invasive cells were used as cell type Y to be seeded on the second main flow path side, the culture results deteriorated to D when the cells were seeded in the order of first main flow path side → second main flow path side, and the culture results deteriorated further to E when the cells were seeded in the order of second main flow path side → first main flow path side.
This is presumably because in Comparative Example 3, most of the low invasive cells seeded on the first main flow path were formed into a sheet first, but most of the highly invasive cells seeded next on the second main flow path slipped through to the first main flow path and were mixed in.

また、比較例4では第2主流路側に播種した浸潤性の高い細胞がほぼ全数第1主流路側に繊維メッシュシートをすり抜けてしまうことで、次に第1主流路側に播種した細胞種Xがシート状に形成されなくなったものと推察される。 In addition, in Comparative Example 4, it is presumed that almost all of the highly invasive cells seeded on the second main channel side slipped through the fiber mesh sheet to the first main channel side, which caused the cell type X seeded next on the first main channel side to not form a sheet.

同様に、比較例5、比較例6では第1主流路側に播種する細胞種Xを浸潤性の高い細胞を用い、第2主流路側に播種する細胞種Yを浸潤性の低い細胞を用いた場合、上記比較例3、比較例4同様に、浸潤性の高い細胞を先に播種する比較例5がE、浸潤性の高い細胞を次に播種する比較例6がDとなる。 Similarly, in Comparative Examples 5 and 6, when highly invasive cells are used as cell type X seeded on the first main channel side and less invasive cells are used as cell type Y seeded on the second main channel side, Comparative Example 5, in which the more invasive cells are seeded first, is classified as E, and Comparative Example 6, in which the more invasive cells are seeded second, is classified as D, just like Comparative Examples 3 and 4 above.

一方、比較例7、比較例8では第1主流路側に播種する細胞種Xと、第2主流路側に播種する細胞種Yとについて、共に浸潤性の高い細胞を用いた場合、細胞を播種する順番に関わらず、培養結果はEである。これについても同様に、先に播種される培養が次に細胞が播種される主流路側へと繊維メッシュシートをすり抜けてしまうことで、次に播種される細胞種がシート状に形成される部分が極少化したものと推察される。 On the other hand, in Comparative Examples 7 and 8, when highly invasive cells were used for cell type X seeded on the first main channel side and cell type Y seeded on the second main channel side, the culture result was E, regardless of the order in which the cells were seeded. Similarly, it is presumed that the culture seeded first slipped through the fiber mesh sheet to the main channel side where the next cells were seeded, minimizing the area in which the next cell type seeded was formed into a sheet.

一方、比較例に対応する実施例は全て培養結果が良化し、特にその傾向は第2主流路側から先に浸潤性の高い細胞種を播種する実施例において顕著となる(実施例4・6・8)。
つまり、実施の形態における繊維メッシュシート101を用い、浸潤性の高い細胞種Yを播種する第2主流路側から先に播種することで、繊維メッシュシート101をすり抜けることなく第2主流路側で細胞種Yがシート状に培養され、次に、第1主流路側に播種する細胞種Xの浸潤性の高/低問わずシート状に培養されることから、第1主流路側、第2主流路側両方の細胞種X・Yの細胞が共にシート状で積層することができるものと推察される。
On the other hand, the culture results improved in all of the Examples corresponding to the Comparative Examples, and this tendency was particularly noticeable in the Examples in which highly invasive cell types were seeded first from the second main channel side (Examples 4, 6, and 8).
In other words, by using the fiber mesh sheet 101 in the embodiment and seeding the highly invasive cell type Y first on the second main flow path side, the cell type Y is cultured in sheet form on the second main flow path side without slipping through the fiber mesh sheet 101, and then the cell type X to be seeded on the first main flow path side is cultured in sheet form regardless of whether the cell type X has a high or low invasiveness, so that it is presumably possible to stack cells of cell types X and Y on both the first main flow path side and the second main flow path side in sheet form.

これは、浸潤性の高い細胞種は略円形状側からはすり抜けやすいが、略平坦側からはすり抜けにくい効果を発現していることを意味する。
つまり、浸潤性の高い細胞種は略円形状の表面よりも側面方向に対して濡れることでメッシュの隙間に填まりやすく、そのまま開口をすり抜けやすくなるのに対し、略平坦状側では略円形状側に比べて表面方向に対して濡れやすくなることでメッシュの隙間への填まり現象を抑制するものと推察される。
This means that highly invasive cell types exhibit the effect of easily passing through the approximately circular side, but having difficulty passing through the approximately flat side.
In other words, it is presumed that highly invasive cell types are more likely to get stuck in the gaps in the mesh by wetting laterally rather than on the approximately circular surface, making them more likely to slip through the openings, whereas the approximately flat side is more likely to wet in the surface direction than the approximately circular side, thereby preventing the cell types from getting stuck in the gaps in the mesh.

加えて、浸潤性の高い細胞種Xを第1主流路側に播種する場合、略円形状の側面方向に対して濡れることでメッシュの開口部を介して、第2主流路側に予め播種された細胞種Yと接することで生体内により近い機能を持つ細胞シートを得ることが更に期待できる。
このような効果を得るために、実施の形態においては略円形状として最も望ましい水との接触角を90°としたが、接触角は90°以上150°以下であれば同様の効果の発現が期待できる。
In addition, when highly invasive cell type X is seeded on the first main flow path side, it is expected that a cell sheet with functions closer to those in the body can be obtained by wetting the lateral direction of the approximately circular shape and coming into contact with cell type Y previously seeded on the second main flow path side through the openings in the mesh.
In order to obtain such an effect, in the embodiment, the most desirable contact angle with water for the substantially circular shape is set to 90°, but the same effect can be expected if the contact angle is between 90° and 150°.

また、実施の形態においては1つの細胞サイズが30μm相当の細胞種X、細胞種Yを用い、また被験物質として1μM(分子量75万相当)を用い、繊維メッシュシート101の間隔として被験物の詰まりを抑制し得る30μmとするが、適宜設定可能である。
具体的には、下限としては用いる被験物の分子量や濃度によってその被験物が詰まるサイズよりも大きくしておく必要があるが、上限としては播種する細胞の通過を抑制できる間隔とすればよい。
また、実施の形態においては5μm径のポリスチレン繊維を用いたが、適宜設定可能である。
In the embodiment, cell type X and cell type Y with a cell size equivalent to 30 μm are used, and 1 μM (equivalent to a molecular weight of 750,000) is used as the test substance. The spacing of the fiber mesh sheet 101 is set to 30 μm so as to prevent clogging of the test substance, but this can be set appropriately.
Specifically, the lower limit must be greater than the size at which the analyte used becomes clogged depending on its molecular weight and concentration, while the upper limit should be set to a distance that prevents the passage of the seeded cells.
In addition, in the embodiment, polystyrene fibers having a diameter of 5 μm are used, but this can be set appropriately.

具体的には、培養する細胞の足場として機能が期待される1μm以上50μm以下であればよい。材質もポリスチレンに限らず、細胞毒性の低いポリ乳酸系やシリコーン系であってもよいが、細胞の足場としての機能としては柔軟性があることが求められることから高分子材料であることが望ましい。
加えて、本実施の形態に記載の繊維メッシュシートの製造方法のS03の工程における面内での回転角度90°もこの限りではなく、30°以上150°以下であれば細胞の通過と被験物の詰まりの両方の抑制が可能である。
Specifically, the thickness is 1 μm to 50 μm, which is expected to function as a scaffold for the cells to be cultured. The material is not limited to polystyrene, and may be a polylactic acid or silicone-based material with low cytotoxicity, but since flexibility is required to function as a scaffold for cells, a polymer material is preferable.
In addition, the in-plane rotation angle in step S03 of the fiber mesh sheet manufacturing method described in this embodiment is not limited to 90°, and as long as it is between 30° and 150°, it is possible to suppress both the passage of cells and clogging of the test object.

また、用いる細胞培養チップによって繊維メッシュシートの厚みを増やす必要がある場合は、本実施の形態に記載の繊維メッシュシートの製造方法のS04の工程以降に、フィルムの回転と紡糸を同様に繰り返せばよい。この場合、回転する角度と繊維の間隔とは統一することが被験物の詰まりを抑制するにあたって望ましい。 If it is necessary to increase the thickness of the fiber mesh sheet depending on the cell culture chip used, the film rotation and spinning can be repeated in the same manner after step S04 of the fiber mesh sheet manufacturing method described in this embodiment. In this case, it is desirable to standardize the rotation angle and fiber spacing to prevent clogging of the test object.

<1細胞レベルでの捕捉・回収>
実施の形態における繊維メッシュシートの細胞培養チップで示した効果は、細胞の捕捉・回収においても奏功する。
具体的には、例えば、繊維メッシュシートを試料(例えば、血液)から1細胞サイズの物質(例えば、8μm相当径の赤血球)を捕捉・回収する分離隔膜として用いる場合、断面形状が略円状の繊維のみで構成された比較例では、略円形状の表面よりも側面方向に対して濡れることでメッシュの隙間に1細胞サイズの物質が填まりやすく、捕捉は可能であるものの回収し難い。
一方、断面形状が略平坦状の繊維を有する実施例では、略円形状側に比べて表面方向に対して濡れやすくなることでメッシュの隙間への填まり現象を抑制し、1細胞サイズの物質の捕捉と回収との両立が可能となる。
<Capturing and recovering at the single cell level>
The effects shown in the cell culture chip of the fiber mesh sheet in the embodiment are also effective in capturing and recovering cells.
Specifically, for example, when a fiber mesh sheet is used as a separation membrane for capturing and recovering single-cell-sized substances (e.g., red blood cells with a diameter equivalent to 8 μm) from a sample (e.g., blood), in a comparative example constituted only by fibers having a substantially circular cross-sectional shape, the single-cell-sized substances are more likely to get stuck in the gaps in the mesh due to wetting in the lateral direction rather than the surface of the substantially circular shape, making it possible to capture the single-cell-sized substances but difficult to recover them.
On the other hand, in the embodiment having fibers with an approximately flat cross-sectional shape, the fibers are more likely to wet in the surface direction than the fibers with an approximately circular cross-sectional shape, which suppresses the phenomenon of the fibers getting stuck in the gaps in the mesh, making it possible to simultaneously capture and recover substances the size of a single cell.

なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。 Note that this disclosure includes appropriate combinations of any of the various embodiments and/or examples described above, and can achieve the effects of each embodiment and/or example.

本開示に係る繊維メッシュシートによれば、当該繊維メッシュシートを用いて、例えば、細胞培養チップを用いて培養された細胞による試験系の構築等、医薬品開発等における新たな展開に寄与する。 The fiber mesh sheet according to the present disclosure can be used to contribute to new developments in pharmaceutical development, for example, by constructing a test system using cells cultured using a cell culture chip.

1、2 繊維
101 繊維メッシュシート
102 第1層の配列繊維群
103 第2層の配列繊維群
S01 フィルム準備
S02 第1層紡糸
S03 90°回転
S04 第2層紡糸
300 細胞培養チップ
11 第1基板
12 第1隔壁層
14 第2隔壁層
15 第2基板
31 孔
32 孔
33 第1流路
34 第1流入口
35 第1入流路
36 第1主流路
37 第1出流路
38 第1流出口
41 第2流路
42 第2流入口
43 第2入流路
44 第2主流路
45 第2出流路
46 第2流出口
1, 2 Fiber 101 Fiber mesh sheet 102 First layer of aligned fibers 103 Second layer of aligned fibers S01 Film preparation S02 First layer spinning S03 90° rotation S04 Second layer spinning 300 Cell culture chip 11 First substrate 12 First partition layer 14 Second partition layer 15 Second substrate 31 Hole 32 Hole 33 First flow path 34 First inlet 35 First inlet flow path 36 First main flow path 37 First outlet flow path 38 First outlet 41 Second flow path 42 Second inlet 43 Second inlet flow path 44 Second main flow path 45 Second outlet flow path 46 Second outlet

Claims (4)

高分子材料からなる複数の繊維が面内で前記繊維の長手方向を一方向に沿って配列した平面状の配列繊維群を2層以上積層させたメッシュ構造であって、
隣接する2層の配列繊維群は、それぞれの配列繊維群の前記繊維のそれぞれの長手方向が、面に垂直な方向から見た平面視で30°以上150°以下の交差角で交差しており、
最下層の配列繊維群の繊維の断面の隣接する配列繊維群のある側の上部が略円形状で、隣接する配列繊維群のない側の下部が略平坦状であり、
最下層以外の配列繊維群の繊維の断面は略円形状であって、
前記配列繊維群の前記繊維の平均径は、1μm以上50μm以下である、
繊維メッシュシート。
A mesh structure in which two or more layers of planar aligned fiber groups are laminated, in which a plurality of fibers made of a polymer material are aligned in one direction along the longitudinal direction of the fibers within a plane,
The longitudinal directions of the fibers of each of the adjacent two aligned fiber groups intersect at a crossing angle of 30° or more and 150° or less in a plan view seen from a direction perpendicular to the surface,
an upper portion of a cross section of the fibers of the aligned fiber group in the lowest layer on a side where there is an adjacent aligned fiber group is substantially circular, and a lower portion on a side where there is no adjacent aligned fiber group is substantially flat;
The cross section of the fibers of the arranged fiber group other than the bottom layer is substantially circular,
The average diameter of the fibers in the aligned fiber group is 1 μm or more and 50 μm or less.
Fiber mesh sheet.
最下層以外の前記配列繊維群の前記繊維の前記略円形状の水との接触角は、90°以上150°以下である、請求項1に記載の繊維メッシュシート。 The fiber mesh sheet according to claim 1, wherein the contact angle of the substantially circular fibers of the aligned fiber groups other than the bottom layer with water is 90° or more and 150° or less. 高分子材料からなる複数の繊維が面内で前記繊維の長手方向を一方向に沿って配列した平面状の配列繊維群を、面に垂直な方向から見た平面視で30°以上150°以下の交差角で隣接する2層の配列繊維群の前記繊維のそれぞれの長手方向が交差するように、2層以上積層させる工程と、
前記繊維の前記高分子材料の融点以上前記繊維が溶融切断する温度(融点+100℃)以下の温度で加熱処理する工程と、
を含み、
前記加熱処理する工程により隣接する2層の前記配列繊維群の相接部分の過半数部を交絡させると共に、
前記繊維の前記高分子材料の融点以上前記繊維が溶融切断する温度(融点+100℃)以下の温度で加熱処理する工程により、最下層の前記配列繊維群の前記繊維の断面の隣接する前記配列繊維群のない側の下部を略平坦状とする、繊維メッシュシートの製造方法。
a step of laminating two or more planar aligned fiber groups, each of which has a plurality of fibers made of a polymeric material aligned in one direction along a plane, such that the longitudinal directions of the fibers in adjacent aligned fiber groups intersect at a crossing angle of 30° or more and 150° or less in a planar view seen from a direction perpendicular to the plane;
a step of heat-treating the fibers at a temperature equal to or higher than the melting point of the polymeric material of the fibers and equal to or lower than a temperature (melting point + 100° C.) at which the fibers melt and break;
Including,
The heat treatment step entangles the majority of the contact portions of the aligned fiber groups of the two adjacent layers ,
A method for manufacturing a fiber mesh sheet, comprising the steps of: heating the fibers at a temperature equal to or higher than the melting point of the polymer material of the fibers and lower than the temperature at which the fibers melt and break (melting point + 100°C) to make the lower part of the cross section of the fibers of the lowest layer of aligned fiber groups on the side where there are no adjacent aligned fiber groups approximately flat .
請求項1又は2に記載の繊維メッシュシートを含む、細胞培養チップ。 A cell culture chip comprising the fiber mesh sheet according to claim 1 or 2 .
JP2021023538A 2020-03-16 2021-02-17 Fiber mesh sheet, its manufacturing method, and cell culture chip using the fiber mesh sheet Active JP7588316B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110188290.7A CN113481663A (en) 2020-03-16 2021-02-18 Fiber mesh, method for producing same, and cell culture chip using fiber mesh
US17/198,185 US20210285138A1 (en) 2020-03-16 2021-03-10 Fiber mesh sheet, method for manufacturing fiber mesh sheet, and cell culture chip formed of fiber mesh sheet
DE102021105994.1A DE102021105994A1 (en) 2020-03-16 2021-03-11 FIBER GRID, PROCESS FOR MANUFACTURING A FIBER GRID AND CELL CULTURE CHIP FORMED FROM FIBER GRID

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020045525 2020-03-16
JP2020045525 2020-03-16

Publications (2)

Publication Number Publication Date
JP2021146733A JP2021146733A (en) 2021-09-27
JP7588316B2 true JP7588316B2 (en) 2024-11-22

Family

ID=77850565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021023538A Active JP7588316B2 (en) 2020-03-16 2021-02-17 Fiber mesh sheet, its manufacturing method, and cell culture chip using the fiber mesh sheet

Country Status (2)

Country Link
JP (1) JP7588316B2 (en)
CN (1) CN113481663A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499446B2 (en) 2020-04-23 2024-06-14 パナソニックIpマネジメント株式会社 Manufacturing method of laminated aligned fiber sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281924A (en) 2004-03-30 2005-10-13 Nitto Boseki Co Ltd Nonwoven fabric manufacturing method and nonwoven fabric
US20160114077A1 (en) 2013-05-31 2016-04-28 University Of Massachusetts Medical School Elastomeric and degradable polymer scaffolds and high-mineral content polymer composites, and in vivo applications thereof
US20180015700A1 (en) 2016-07-13 2018-01-18 Panasonic Intellectual Property Management Co., Ltd. Method for producing medium and fiber assembly, and apparatus for producing medium
JP2018014993A (en) 2016-07-13 2018-02-01 パナソニックIpマネジメント株式会社 Production method of culture medium and fiber assembly, and culture medium production device
JP2019024340A (en) 2017-07-26 2019-02-21 パナソニックIpマネジメント株式会社 Culture scaffold and method of producing same
JP2021172912A (en) 2020-04-23 2021-11-01 パナソニックIpマネジメント株式会社 Stacked arrangement fiber sheet manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741329A (en) * 1994-12-21 1998-04-21 Board Of Regents, The University Of Texas System Method of controlling the pH in the vicinity of biodegradable implants
JP2000117865A (en) * 1998-10-16 2000-04-25 Chisso Corp Continuous inorganic fiber reinforced sheet
JP3661181B2 (en) * 1999-08-26 2005-06-15 日東紡績株式会社 Method for forming non-woven fabric, cloth cylinder and lining material inside pipe
JP3868892B2 (en) * 2002-11-19 2007-01-17 花王株式会社 Absorbent article surface sheet
CN101166859B (en) * 2005-04-25 2010-09-29 花王株式会社 Nonwoven stretch fabric and process for producing the same
DE102005062052B4 (en) * 2005-12-22 2009-06-04 Sartorius Stedim Biotech Gmbh Disposable bioreactor for the cultivation of cells in a nutrient medium
CN102814080A (en) * 2006-02-13 2012-12-12 唐纳森公司 Web comprising fine fiber and reactive, adsorptive or absorptive particulate
US10588997B2 (en) * 2014-02-10 2020-03-17 Case Western Reserve University Polymer nanofiber scaffolds and uses thereof
JP6528246B2 (en) * 2016-03-02 2019-06-12 パナソニックIpマネジメント株式会社 FIBER LAMINATE AND METHOD FOR MANUFACTURING THE SAME
JP6614450B2 (en) * 2016-05-11 2019-12-04 パナソニックIpマネジメント株式会社 Nonwoven fabric and sound absorbing material
CN109023724B (en) * 2018-09-21 2021-05-18 江苏开迪新材料有限公司 Method for producing non-woven fabric by dividing filament into nets by using filament bundle cakes as raw materials
CN109763265A (en) * 2019-03-07 2019-05-17 王洲 A web preparation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281924A (en) 2004-03-30 2005-10-13 Nitto Boseki Co Ltd Nonwoven fabric manufacturing method and nonwoven fabric
US20080045109A1 (en) 2004-03-30 2008-02-21 Ube Nitto Kasei Co., Ltd. Process for Producing Nonwoven Fabric and Nonwoven Fabric
US20160114077A1 (en) 2013-05-31 2016-04-28 University Of Massachusetts Medical School Elastomeric and degradable polymer scaffolds and high-mineral content polymer composites, and in vivo applications thereof
US20180015700A1 (en) 2016-07-13 2018-01-18 Panasonic Intellectual Property Management Co., Ltd. Method for producing medium and fiber assembly, and apparatus for producing medium
JP2018014993A (en) 2016-07-13 2018-02-01 パナソニックIpマネジメント株式会社 Production method of culture medium and fiber assembly, and culture medium production device
JP2019024340A (en) 2017-07-26 2019-02-21 パナソニックIpマネジメント株式会社 Culture scaffold and method of producing same
JP2021172912A (en) 2020-04-23 2021-11-01 パナソニックIpマネジメント株式会社 Stacked arrangement fiber sheet manufacturing method

Also Published As

Publication number Publication date
CN113481663A (en) 2021-10-08
JP2021146733A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
DE60011429T3 (en) DETECTION DEVICE WITH A FLUID CONTROL FILM LAYER WITH CAPILLARY CHANNELS
EP2326364B1 (en) Gas transfer device
JP7588316B2 (en) Fiber mesh sheet, its manufacturing method, and cell culture chip using the fiber mesh sheet
Zhang et al. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane
US12097308B2 (en) Bio-electrode for measuring bio-signal and producing electrical activity based on nano-porous permeable membrane having high specific surface area and method of manufacturing the same
CN101073009A (en) Test element with nanofibers
CN104053461A (en) Method for reducing blood injection volume and membrane surface area in a microfluidic lung assist device
Lee et al. Polymeric nanofiber web-based artificial renal microfluidic chip
BR102014011022B1 (en) filter media
CN109789369A (en) Gas separation membrane element, gas separation membrane module and gas fractionation unit
KR101985311B1 (en) 3 Dimensional Cell Culture Microchip Containing Nano-porous Membrane And Manufacturing Method Thereof
Zhang et al. Laser ablated Janus hydrogel composite membrane for draining excessive blood and biofluid around wounds
JP2011101837A (en) Separation membrane, and method of producing the same
CN113038978B (en) Microfluidic gas exchange device and method of manufacturing the same
US20210285138A1 (en) Fiber mesh sheet, method for manufacturing fiber mesh sheet, and cell culture chip formed of fiber mesh sheet
KR102253053B1 (en) Method for fabricating a microfluidic chip and microfluidic chip fabricated by the method
US11911760B2 (en) Caps for assay devices
DE112022004458T5 (en) MICRONEEDLE PATCHES
WO2015060592A1 (en) Vesicle manufacturing apparatus
Na et al. Fabrication and Customization of Highly Porous PLGA Membranes Utilizing Near‐Field Electrospinning, Thermal Transitions, and Multilayer Strategies
JP2019024340A (en) Culture scaffold and method of producing same
WO2020144920A1 (en) Microchannel chip
WO2019142784A1 (en) Partition wall for formation of lipid bilayer membrane, and method for producing same
WO2019230086A1 (en) Microchannel chip
WO2024080363A1 (en) Device, system, method, and pharmaceutical evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241028

R150 Certificate of patent or registration of utility model

Ref document number: 7588316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150