[go: up one dir, main page]

JP7583981B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7583981B2
JP7583981B2 JP2020084831A JP2020084831A JP7583981B2 JP 7583981 B2 JP7583981 B2 JP 7583981B2 JP 2020084831 A JP2020084831 A JP 2020084831A JP 2020084831 A JP2020084831 A JP 2020084831A JP 7583981 B2 JP7583981 B2 JP 7583981B2
Authority
JP
Japan
Prior art keywords
refrigerator
compartment
compressor
evaporator
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020084831A
Other languages
Japanese (ja)
Other versions
JP2021179278A (en
Inventor
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020084831A priority Critical patent/JP7583981B2/en
Publication of JP2021179278A publication Critical patent/JP2021179278A/en
Application granted granted Critical
Publication of JP7583981B2 publication Critical patent/JP7583981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本開示は、冷蔵庫に関するものである。 This disclosure relates to refrigerators.

特許文献1は、冷凍室と冷蔵室それぞれに蒸発器を備え、圧縮機の回転数により蒸発器の温度を制御する冷蔵庫を開示する。 Patent document 1 discloses a refrigerator that has an evaporator in each of the freezer and refrigerator compartments, and controls the temperature of the evaporator by the rotation speed of the compressor.

特開平11-173729号公報Japanese Patent Application Publication No. 11-173729

本開示は、冷蔵室を冷却する際の冷凍サイクル効率を向上させ、消費電力量を低減することができる冷蔵庫を提供する。 This disclosure provides a refrigerator that can improve the efficiency of the refrigeration cycle when cooling the refrigerator compartment and reduce power consumption.

本開示における冷蔵庫は、冷蔵室と、冷凍室と、冷蔵蒸発器と、冷凍蒸発器と、冷蔵蒸発器と直列に接続された冷蔵減圧手段と、冷凍蒸発器と直列に接続された冷凍減圧手段と、冷蔵蒸発器の出口配管と冷凍蒸発器の出口配管と接続される圧縮機と、圧縮機の吐出配管と直列に接続される放熱器と、冷蔵蒸発器と冷凍蒸発器への冷媒の流れを切り替える切替弁を備え、冷蔵蒸発器の入口パイプまたは出口パイプのいずれかと熱的に接触する蓄熱材を備える。 The refrigerator according to the present disclosure includes a refrigerator compartment, a freezer compartment, a refrigerated evaporator, a freezer evaporator, a refrigerated pressure reducing means connected in series with the refrigerated evaporator, a freezer pressure reducing means connected in series with the freezer evaporator, a compressor connected to an outlet pipe of the refrigerated evaporator and an outlet pipe of the freezer evaporator, a radiator connected in series with a discharge pipe of the compressor, a switching valve for switching the flow of refrigerant to the refrigerated evaporator and the freezer evaporator, and a heat storage material in thermal contact with either the inlet pipe or the outlet pipe of the refrigerated evaporator.

本開示における冷蔵庫は、冷蔵室を冷却する際の冷凍サイクル効率を向上させることができ、消費電力量を低減することができる。 The refrigerator disclosed herein can improve the efficiency of the refrigeration cycle when cooling the refrigerator compartment, thereby reducing power consumption.

実施の形態1における冷蔵庫の断面図Cross-sectional view of a refrigerator according to a first embodiment. 実施の形態1における冷蔵庫の冷凍サイクル図Refrigeration cycle diagram of a refrigerator in embodiment 1 実施の形態1における冷蔵庫の動作と室内温度変化を示すタイミングチャートA timing chart showing the operation of a refrigerator and a change in room temperature in the first embodiment. 従来の冷蔵庫の断面図Cross-section of a conventional refrigerator 従来の冷蔵庫の冷凍サイクル図Diagram of the refrigeration cycle of a conventional refrigerator

(本開示の基礎となった知見等)
従来の冷蔵庫としては、冷凍室と冷蔵室それぞれに蒸発器を備え、圧縮機の回転数により蒸発器の温度を制御するものがある(例えば、特許文献1参照)。
(Foundations and other information that form the basis of this disclosure)
2. Description of the Related Art Some conventional refrigerators include an evaporator in each of a freezing compartment and a refrigerating compartment, and the temperature of the evaporator is controlled by the rotation speed of a compressor (see, for example, Patent Document 1).

図4は、上記特許文献1に記載された従来の冷蔵庫の断面図、図5は、同冷蔵庫の冷凍サイクル図である。 Figure 4 is a cross-sectional view of the conventional refrigerator described in the above-mentioned Patent Document 1, and Figure 5 is a diagram of the refrigeration cycle of the same refrigerator.

図4、5において、従来の冷蔵庫1は、前面を開口し、仕切り2により上下に仕切られた断熱箱体3から構成されており、仕切り2より上方を、室内を約4℃の冷蔵温度帯に維持した冷蔵室4、仕切り2より下方を、室内を約-18℃の冷凍温度帯に維持した冷凍室5とし、前面が断熱扉6、7によって開閉自在に閉塞されている。 In Figures 4 and 5, a conventional refrigerator 1 is composed of an insulated box 3 with an open front and divided into upper and lower compartments by a partition 2. The area above the partition 2 is a refrigerator compartment 4, in which the interior temperature is maintained at a refrigeration temperature of approximately 4°C, and the area below the partition 2 is a freezer compartment 5, in which the interior temperature is maintained at a freezing temperature of approximately -18°C. The front is closed by insulated doors 6 and 7, which can be opened and closed freely.

冷蔵室4と冷凍室5の背面には、図示しないインバーター電源により能力制御可能な圧縮機8と、圧縮機8の吐出配管8aと接続される放熱器としての凝縮器9と、切替弁としての三方弁10と、冷蔵減圧手段としての冷蔵キャピラリ11と、冷凍減圧手段としての冷凍キャピラリ12と接続して冷凍サイクル13を構成する冷蔵蒸発器14及び冷凍蒸発器15と、それぞれの蒸発器で生成した冷気を冷蔵室4及び冷凍室5内へそれぞれ循環させる冷蔵ファン16、冷凍ファン17を備えている。 On the back of the refrigerator compartment 4 and the freezer compartment 5, there are a compressor 8 whose capacity can be controlled by an inverter power supply (not shown), a condenser 9 as a radiator connected to the discharge pipe 8a of the compressor 8, a three-way valve 10 as a switching valve, a refrigerator capillary 11 as a refrigerator pressure reduction means, a refrigerator evaporator 14 and a freezer evaporator 15 connected to the freezer capillary 12 as a freezer pressure reduction means to form a freezer cycle 13, and a refrigerator fan 16 and a freezer fan 17 that circulate the cold air generated by each evaporator into the refrigerator compartment 4 and the freezer compartment 5, respectively.

また、冷蔵室4と冷凍室5の内部には、それぞれの貯蔵室(冷蔵室4、冷凍室5)内の温度を測定する冷蔵室センサ18と冷凍室センサ19を備えている。 Furthermore, inside the refrigerator compartment 4 and the freezer compartment 5, there are a refrigerator compartment sensor 18 and a freezer compartment sensor 19 that measure the temperature inside each storage compartment (refrigerator compartment 4, freezer compartment 5).

以上のように構成された従来の冷蔵庫において、冷却運転を開始すると、圧縮機8が運転し、冷蔵室センサ18、冷凍室センサ19の検知した温度を元に、三方弁10によって冷媒の流れが切り替わることにより、冷蔵室4の冷却と冷凍室5の冷却を切り替える。 In a conventional refrigerator configured as described above, when the cooling operation starts, the compressor 8 starts operating, and the flow of the refrigerant is switched by the three-way valve 10 based on the temperatures detected by the refrigerator compartment sensor 18 and the freezer compartment sensor 19, thereby switching between cooling the refrigerator compartment 4 and the freezer compartment 5.

まず冷凍室5の冷却時は、圧縮機8により圧縮された高温高圧のガス冷媒は、凝縮器9で冷却され、低温高圧の液冷媒となる。この液冷媒は、三方弁10により、冷凍キャピラリ12を流れ、低温低圧の気液二層冷媒となって冷凍蒸発器15へと流れる。 First, when cooling the freezer compartment 5, the high-temperature, high-pressure gas refrigerant compressed by the compressor 8 is cooled in the condenser 9 to become a low-temperature, high-pressure liquid refrigerant. This liquid refrigerant flows through the freezer capillary 12 via the three-way valve 10, and becomes a low-temperature, low-pressure gas-liquid two-layer refrigerant that flows to the freezer evaporator 15.

冷凍蒸発器15へと流れた冷媒は、冷凍室5内の空気と熱交換することで蒸発し、蒸発気化熱により冷気を生成し、再び圧縮機8へと吸い込まれる。 The refrigerant that flows into the freezer evaporator 15 evaporates through heat exchange with the air in the freezer compartment 5, generating cold air using the heat of evaporation, which is then sucked back into the compressor 8.

この時生成した冷気は、冷凍ファン17により、冷凍室5内を循環し、冷凍室5を冷却し、冷凍室センサ19がある一定の温度以下になると冷凍室5の冷却運転は終了する。 The cold air generated at this time is circulated through the freezer compartment 5 by the freezer fan 17, cooling the freezer compartment 5, and when the freezer compartment sensor 19 drops below a certain temperature, the cooling operation of the freezer compartment 5 ends.

次に、冷蔵室4の冷却時は、圧縮機8により圧縮された高温高圧のガス冷媒は、凝縮器9で冷却され、低温高圧の液冷媒となる。この液冷媒は、三方弁10により、冷蔵キャピラリ11を流れ、低温低圧の気液二層冷媒となって冷蔵蒸発器14へと流れる。 Next, when cooling the refrigerator compartment 4, the high-temperature, high-pressure gas refrigerant compressed by the compressor 8 is cooled in the condenser 9 to become a low-temperature, high-pressure liquid refrigerant. This liquid refrigerant flows through the refrigeration capillary 11 via the three-way valve 10, and becomes a low-temperature, low-pressure gas-liquid two-layer refrigerant that flows to the refrigeration evaporator 14.

冷蔵蒸発器14へと流れた冷媒は、冷蔵室4内の空気と熱交換することで蒸発し、蒸発気化熱により冷気を生成し、再び圧縮機8へと吸い込まれる。 The refrigerant that flows into the refrigeration evaporator 14 evaporates through heat exchange with the air in the refrigerator compartment 4, generating cold air using the latent heat of evaporation, which is then sucked back into the compressor 8.

この時生成した冷気は、冷蔵ファン16により、冷蔵室4内を循環し、冷蔵室4を冷却し、冷蔵室センサ18がある一定の温度以下になると、冷蔵室4の冷却運転は終了する。 The cold air generated at this time is circulated through the refrigerator compartment 4 by the refrigerator fan 16, cooling the refrigerator compartment 4, and when the refrigerator compartment sensor 18 drops below a certain temperature, the cooling operation of the refrigerator compartment 4 ends.

冷蔵室4の冷却時、冷蔵室4の温度は、約4℃の冷蔵温度帯となっており、冷凍室5の冷却時に比べて冷蔵蒸発器14と熱交換する空気温度が高くなることにより、冷蔵蒸発器14の温度も冷凍室23の冷却モード時に比べて高くなる。これにより、圧縮機8の吸込ガスと吐出ガスの圧力比である圧縮比が小さくなることにより、圧縮機8の入力と冷蔵蒸発器14の能力の比であらわされる、冷凍サイクル13の効率も高くなる。 When cooling the refrigerator compartment 4, the temperature of the refrigerator compartment 4 is in the refrigeration temperature range of approximately 4°C, and since the air temperature exchanging heat with the refrigeration evaporator 14 is higher than when cooling the freezer compartment 5, the temperature of the refrigeration evaporator 14 is also higher than when the freezer compartment 23 is in cooling mode. As a result, the compression ratio, which is the pressure ratio of the intake gas and discharge gas of the compressor 8, becomes smaller, and the efficiency of the refrigeration cycle 13, which is expressed as the ratio of the input of the compressor 8 to the capacity of the refrigeration evaporator 14, also increases.

一方、冷蔵蒸発器14の温度が高くなることにより、圧縮機8が吸い込む冷媒ガスの密度が、冷凍室5の冷却時に比べて約2倍に大きくなる。これにより、冷凍サイクル13を循環する冷媒の循環量が大きくなり、冷蔵蒸発器14の能力が冷蔵室4の負荷量に比べて大きくなるため、能力を使い切れないと、実際に使われる能力が減少することによる冷凍サイクル13の効率低下だけでなく、冷蔵蒸発器14で蒸発し切れなかった液冷媒を圧縮機8が吸い込んでしまう。 On the other hand, as the temperature of the refrigerated evaporator 14 rises, the density of the refrigerant gas sucked into the compressor 8 becomes approximately twice as high as when cooling the freezer compartment 5. This increases the amount of refrigerant circulating through the refrigeration cycle 13, and the capacity of the refrigerated evaporator 14 becomes greater than the load on the refrigerated compartment 4. If the capacity is not fully utilized, not only will the efficiency of the refrigeration cycle 13 decrease due to a decrease in the capacity actually used, but the compressor 8 will suck in the liquid refrigerant that did not evaporate in the refrigerated evaporator 14.

圧縮機8が液冷媒を吸い込むと、液冷媒が圧縮機8内の摺動部(図示せず)の潤滑油を洗い流すことにより摩耗が発生したり、圧縮機8が液を圧縮することにより内部の部品を破損させるなど、信頼性を低下させる恐れがある。 When the compressor 8 sucks in liquid refrigerant, the liquid refrigerant may wash away the lubricating oil on the sliding parts (not shown) inside the compressor 8, causing wear, or the compressor 8 may compress the liquid and damage internal parts, reducing reliability.

この時、冷蔵室センサ18の検知した温度により、圧縮機8の能力を低下させたり、冷蔵ファン16の能力を増加させたりすることにより、冷蔵蒸発器14の能力を使い切ることができる。 At this time, the capacity of the refrigeration evaporator 14 can be fully utilized by reducing the capacity of the compressor 8 or increasing the capacity of the refrigeration fan 16 depending on the temperature detected by the refrigeration chamber sensor 18.

そして、冷蔵室センサ18、冷凍室センサ19の温度がある一定の温度以下になると、圧縮機8を停止し、冷却運転を終了する。 When the temperatures of the refrigerator compartment sensor 18 and freezer compartment sensor 19 fall below a certain temperature, the compressor 8 is stopped and the cooling operation ends.

しかしながら、上記従来の冷蔵庫の構成では、蒸発温度を冷蔵室4を冷却するのに適した温度に上昇させるために、圧縮機8の能力を低下させる、または冷蔵ファン16の能力を上昇させる制御となっており、圧縮機8の能力を低下させると、圧縮機8の効率が低下したり、騒音が大きくなるなどの課題があり、冷蔵ファン16の能力を上昇させると、冷蔵ファン16の入力が大きくなったり、冷蔵ファン16の騒音が大きくなるなどの課題があった。 However, in the above-mentioned conventional refrigerator configuration, in order to raise the evaporation temperature to a temperature suitable for cooling the refrigerator compartment 4, the capacity of the compressor 8 is reduced or the capacity of the refrigerator fan 16 is increased. When the capacity of the compressor 8 is reduced, there are problems such as a decrease in the efficiency of the compressor 8 and an increase in noise, and when the capacity of the refrigerator fan 16 is increased, there are problems such as an increase in the input power of the refrigerator fan 16 and an increase in the noise of the refrigerator fan 16.

発明者らは、以上のような課題があることを発見し、その課題を解決するために、本開示の主題を構成するに至った。 The inventors discovered the above problems and came up with the subject matter of this disclosure to solve these problems.

そこで、本開示は、冷蔵室を冷却する際の冷凍サイクル効率を向上させることができ、消費電力量を低減することができる冷蔵庫を提供する。 Therefore, the present disclosure provides a refrigerator that can improve the efficiency of the refrigeration cycle when cooling the refrigerator compartment and reduce power consumption.

以下図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明を省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 The following describes the embodiments in detail with reference to the drawings. However, more detailed explanations than necessary may be omitted. For example, detailed explanations of matters that are already well known or duplicate explanations of substantially identical configurations may be omitted.

なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.

(実施の形態1)
以下、図1~3を用いて実施の形態1を説明する。なお、上記従来の冷蔵庫と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to Figures 1 to 3. Note that the same parts as those in the above-mentioned conventional refrigerator will be given the same reference numerals and the description thereof will be omitted.

[1-1.構成]
図1及び図2において、本実施の形態における冷蔵庫20は、仕切り2により上下に仕切られた断熱箱体21から構成されており、仕切り2より上方を、室内を約4℃の冷蔵温度帯に維持した冷蔵室22、仕切り2より下方を、室内を約-18℃の冷凍温度帯に維持した冷凍室23とし、前面が断熱扉6、7によって開閉自在に閉塞されている。
[1-1. Configuration]
1 and 2, a refrigerator 20 in this embodiment is composed of an insulated box 21 divided into upper and lower parts by a partition 2, with the space above the partition 2 being a refrigerator compartment 22 in which the interior temperature is maintained at a refrigeration temperature range of approximately 4° C. and the space below the partition 2 being a freezer compartment 23 in which the interior temperature is maintained at a freezing temperature range of approximately −18° C. The front is closed by insulated doors 6 and 7 which can be opened and closed freely.

冷蔵室22と冷凍室23の背面には、圧縮機8、凝縮器9、三方弁10、冷蔵キャピラリ11、冷凍キャピラリ12、逆止弁24と接続して冷凍サイクル25を構成する冷蔵蒸発器26及び冷凍蒸発器15と、それぞれの蒸発器で生成した冷気を冷蔵室22及び冷凍室23内へ循環させる冷蔵ファン16、冷凍ファン17を備えている。 The backs of the refrigerator compartment 22 and freezer compartment 23 are equipped with a refrigerator evaporator 26 and a freezer evaporator 15, which are connected to the compressor 8, condenser 9, three-way valve 10, refrigerator capillary 11, freezer capillary 12, and check valve 24 to form a refrigeration cycle 25, as well as a refrigerator fan 16 and a freezer fan 17 that circulate the cold air generated by each evaporator into the refrigerator compartment 22 and freezer compartment 23.

冷蔵蒸発器26及び冷凍蒸発器15のそれぞれの出口パイプ26a、15aは、圧縮機8に接続されている。 The outlet pipes 26a, 15a of the refrigerating evaporator 26 and the freezing evaporator 15 are connected to the compressor 8.

また、冷蔵室22と冷凍室23内部には、それぞれの貯蔵室内の温度を測定する冷蔵室センサ18と冷凍室センサ19を備えている。 Furthermore, inside the refrigerator compartment 22 and the freezer compartment 23, there are a refrigerator compartment sensor 18 and a freezer compartment sensor 19 that measure the temperature inside each storage compartment.

冷蔵蒸発器26の近傍には、蓄熱材27を備えている。蓄熱材27は、凝固点が、冷蔵室22の温度より低く冷凍室23の温度より高い温度、例えば、-5℃の高吸水性樹脂を、図示しない樹脂ケース内に充填した構成となっており、冷蔵蒸発器26の入口パイプ28と熱的に接触している。 A heat storage material 27 is provided near the refrigerated evaporator 26. The heat storage material 27 is made by filling a resin case (not shown) with a highly water-absorbent resin whose freezing point is lower than the temperature of the refrigerated compartment 22 and higher than the temperature of the freezer compartment 23, for example, -5°C, and is in thermal contact with the inlet pipe 28 of the refrigerated evaporator 26.

[1-2.動作]
以上のように構成された実施の形態1の冷蔵庫について、以下その動作、作用の一例を図3に基づいて説明する。
[1-2. Operation]
An example of the operation and function of the refrigerator according to the first embodiment configured as above will be described below with reference to FIG.

図3に示すように、冷却運転を開始すると、冷蔵室センサ18、冷凍室センサ19が検知した温度を元に、冷凍室冷却モードと、冷蔵室蓄冷モードと、冷蔵室放冷モードを切り替える。 As shown in FIG. 3, when the cooling operation starts, the refrigerator switches between freezer cooling mode, refrigerator cold storage mode, and refrigerator cold release mode based on the temperatures detected by the refrigerator sensor 18 and the freezer sensor 19.

まず冷凍室冷却モードについて説明する。冷蔵室センサ18がある一定温度以下で且つ、冷凍室センサ19がある一定温度以上の時に、冷凍室冷却モードとなる。 First, we will explain the freezer cooling mode. When the refrigerator sensor 18 is below a certain temperature and the freezer sensor 19 is above a certain temperature, the freezer cooling mode is activated.

冷凍室冷却モード時、圧縮機8により圧縮された高温高圧のガス冷媒は、凝縮器9で冷却され、低温高圧の液冷媒となる。この液冷媒は、三方弁10により、冷凍キャピラリ12を流れ、低温低圧の気液二層冷媒となって冷凍蒸発器15へと流れる。 In freezer cooling mode, the high-temperature, high-pressure gas refrigerant compressed by the compressor 8 is cooled in the condenser 9 to become a low-temperature, high-pressure liquid refrigerant. This liquid refrigerant flows through the freezer capillary 12 via the three-way valve 10, and becomes a low-temperature, low-pressure gas-liquid two-layer refrigerant that flows to the freezer evaporator 15.

冷凍蒸発器15へと流れた冷媒は、冷凍室23内の空気と熱交換することで蒸発し、蒸発気化熱により冷気を生成し、冷凍蒸発器15を出たガス冷媒は、逆止弁24を流れ、再び圧縮機8へと吸い込まれる。 The refrigerant that flows into the freezer evaporator 15 evaporates through heat exchange with the air in the freezer compartment 23, generating cold air using the heat of vaporization. The gas refrigerant that leaves the freezer evaporator 15 flows through the check valve 24 and is sucked back into the compressor 8.

この時生成した冷気は、冷凍ファン17により、冷凍室23内を循環し、冷凍室23を冷却し、冷凍室センサ19がある一定の温度以下になると冷凍室冷却モードは終了する。 The cold air generated at this time is circulated through the freezer compartment 23 by the freezer fan 17, cooling the freezer compartment 23, and when the freezer compartment sensor 19 drops below a certain temperature, the freezer compartment cooling mode ends.

次に、冷蔵室蓄冷モードについて説明する。冷蔵室センサ18がある一定温度以上で、冷凍室センサ19がある一定温度以下、且つ蓄熱材27が融解した状態の時に、冷蔵室蓄冷モードとなる。 Next, the refrigerator compartment cold storage mode will be explained. The refrigerator compartment cold storage mode is activated when the refrigerator compartment sensor 18 is at or above a certain temperature, the freezer compartment sensor 19 is at or below a certain temperature, and the heat storage material 27 is melted.

冷蔵室蓄冷モード時、圧縮機8により圧縮された高温高圧のガス冷媒は、凝縮器9で冷却され、低温高圧の液冷媒となる。この液冷媒は、三方弁10により、冷蔵キャピラリ11を流れ、低温低圧の気液二層冷媒となって冷蔵蒸発器26へと流れる。 During the cold storage mode, the high-temperature, high-pressure gas refrigerant compressed by the compressor 8 is cooled in the condenser 9 to become a low-temperature, high-pressure liquid refrigerant. This liquid refrigerant flows through the refrigeration capillary 11 via the three-way valve 10, and becomes a low-temperature, low-pressure gas-liquid two-layer refrigerant that flows to the refrigeration evaporator 26.

冷蔵蒸発器26へと流れた冷媒は、冷蔵蒸発器26で冷蔵室22内の空気と熱交換することで蒸発し、蒸発気化熱により冷気を生成し、再び圧縮機8へと吸い込まれる。 The refrigerant that flows into the refrigeration evaporator 26 evaporates by exchanging heat with the air in the refrigerator compartment 22, generating cold air using the heat of vaporization, which is then sucked back into the compressor 8.

この時生成した冷気は、冷蔵ファン16により、冷蔵室22内を循環し、冷蔵室22を冷却し、冷蔵室センサ18がある一定の温度以下になると、冷蔵室蓄冷モードは終了する。 The cold air generated at this time is circulated through the refrigerator compartment 22 by the refrigerator fan 16, cooling the refrigerator compartment 22, and when the refrigerator compartment sensor 18 falls below a certain temperature, the refrigerator compartment cold storage mode ends.

またこれと同時に、蓄熱材27が冷蔵蒸発器26の入口パイプ28と熱交換する。この時、入口パイプ28の温度は蓄熱材27の凝固点である-5℃以下となっており、蓄熱材27が凝固する。 At the same time, the heat storage material 27 exchanges heat with the inlet pipe 28 of the refrigerated evaporator 26. At this time, the temperature of the inlet pipe 28 is below -5°C, which is the freezing point of the heat storage material 27, and the heat storage material 27 solidifies.

冷蔵室冷却時、冷蔵室22の温度は、約4℃の冷蔵温度帯となっており、冷凍室23冷却時に比べて冷蔵蒸発器26と熱交換する空気温度が高くなることにより、冷蔵蒸発器26の温度も冷凍室冷却モード時に比べて高くなる。これにより、圧縮機8の吸込ガスと吐出ガスの圧力比である圧縮比が小さくなることにより、圧縮機8の入力と冷蔵蒸発器26の能力の比であらわされる、冷凍サイクル25の効率も高くなる。 When cooling the refrigerator compartment 22, the temperature is in the refrigeration temperature range of approximately 4°C, and since the air temperature exchanging heat with the refrigeration evaporator 26 is higher than when cooling the freezer compartment 23, the temperature of the refrigeration evaporator 26 is also higher than in freezer compartment cooling mode. As a result, the compression ratio, which is the pressure ratio of the intake gas and discharge gas of the compressor 8, becomes smaller, and the efficiency of the refrigeration cycle 25, which is expressed as the ratio of the input of the compressor 8 to the capacity of the refrigeration evaporator 26, also increases.

一方、冷蔵蒸発器26の温度が高くなることにより、圧縮機8が吸い込む冷媒ガスの密度が、冷凍室23の冷却時に比べて約2倍に大きくなる。これにより、冷凍サイクル25を循環する冷媒の循環量が大きくなり、冷蔵蒸発器26の能力が冷蔵室22の負荷量に比べて大きくなるため、能力を使い切れないと、実際に使われる能力が減少することによる冷凍サイクル25の効率低下だけでなく、冷蔵蒸発器26で蒸発し切れなかった液冷媒を圧縮機8が吸い込んでしまうことによる圧縮機8の信頼性を低下させる恐れがある。 On the other hand, as the temperature of the refrigerated evaporator 26 rises, the density of the refrigerant gas sucked into the compressor 8 becomes approximately twice as high as when cooling the freezer compartment 23. This increases the amount of refrigerant circulating through the refrigeration cycle 25, and the capacity of the refrigerated evaporator 26 becomes greater than the load on the refrigerated compartment 22. If the capacity is not fully utilized, not only will the efficiency of the refrigeration cycle 25 decrease due to a decrease in the capacity actually used, but the reliability of the compressor 8 may decrease as the compressor 8 sucks in the liquid refrigerant that did not completely evaporate in the refrigerated evaporator 26.

これに対し、本実施の形態においては、冷蔵室22の冷却で使い切れなかった冷蔵蒸発器26の能力を、冷蔵蒸発器26の入口パイプ28と熱的に接触している蓄熱材27を凝固させる際の凝固潜熱として利用することができる。 In contrast, in this embodiment, the capacity of the refrigeration evaporator 26 that is not fully used in cooling the refrigerator compartment 22 can be used as latent heat of solidification when solidifying the heat storage material 27 that is in thermal contact with the inlet pipe 28 of the refrigeration evaporator 26.

次に、冷蔵室放冷モードについて説明する。冷蔵室センサ18がある一定温度以上で、冷凍室センサ19がある一定温度以下、且つ蓄熱材27が凝固した状態の時に、冷蔵室放冷モードとなる。 Next, the refrigerator compartment cold release mode will be explained. The refrigerator compartment cold release mode is activated when the refrigerator compartment sensor 18 is at or above a certain temperature, the freezer compartment sensor 19 is at or below a certain temperature, and the heat storage material 27 is solidified.

冷蔵室放冷モード時、圧縮機8を停止し、冷蔵ファン16のみを運転する。この時、蓄熱材27は凝固状態であると共に、冷蔵蒸発器26と熱的に接触しているため、蓄熱材27が冷蔵室22内の空気と熱交換することにより、蓄熱材27が融解し、融解潜熱により冷気を生成する。そして冷蔵ファン16により、冷蔵室22内を循環し、冷蔵室22を冷却し、冷蔵室センサ18がある一定の温度以下になると、冷蔵室放冷モードは終了する。 In the refrigerator compartment cold release mode, the compressor 8 is stopped and only the refrigerator fan 16 is operated. At this time, the heat storage material 27 is in a solidified state and is in thermal contact with the refrigerator evaporator 26, so the heat storage material 27 exchanges heat with the air in the refrigerator compartment 22, causing the heat storage material 27 to melt and generate cold air due to the latent heat of fusion. The refrigerator fan 16 then circulates the air in the refrigerator compartment 22, cooling it, and when the refrigerator compartment sensor 18 drops below a certain temperature, the refrigerator compartment cold release mode ends.

そして、冷蔵室センサ18、冷凍室センサ19のそれぞれの温度がある一定の温度以下になると、圧縮機8を停止し、冷却運転を終了する。 When the temperatures of the refrigerator compartment sensor 18 and the freezer compartment sensor 19 fall below a certain temperature, the compressor 8 is stopped and the cooling operation ends.

[1-3.効果等]
以上のように、本実施の形態において、冷蔵庫20は、冷蔵室22と、冷凍室23と、冷蔵蒸発器26と、冷凍蒸発器15と、冷蔵キャピラリ11と、冷凍キャピラリ12と、圧縮機8と、凝縮器9と、三方弁10と、蓄熱材27を備えている。冷蔵キャピラリ11は、冷蔵蒸発器26と直列に接続されている。冷凍キャピラリ12は、冷凍蒸発器15と直列に接続されている。圧縮機8は、冷蔵蒸発器26の出口パイプ26aと冷凍蒸発器15の出口パイプ15aと接続される。
[1-3. Effects, etc.]
As described above, in this embodiment, the refrigerator 20 includes the refrigerator compartment 22, the freezer compartment 23, the refrigerator evaporator 26, the freezer evaporator 15, the refrigerator capillary 11, the freezer capillary 12, the compressor 8, the condenser 9, the three-way valve 10, and the heat storage material 27. The refrigerator capillary 11 is connected in series to the refrigerator evaporator 26. The freezer capillary 12 is connected in series to the freezer evaporator 15. The compressor 8 is connected to the outlet pipe 26a of the refrigerator evaporator 26 and the outlet pipe 15a of the freezer evaporator 15.

凝縮器9は、圧縮機8の吐出配管8aと直列に接続される。三方弁10は、冷蔵蒸発器26、冷凍蒸発器15への冷媒の流れを切り替える。蓄熱材27は、冷蔵蒸発器26の入口パイプ28に熱的に接触している。 The condenser 9 is connected in series with the discharge pipe 8a of the compressor 8. The three-way valve 10 switches the flow of refrigerant to the refrigerated evaporator 26 and the freezing evaporator 15. The heat storage material 27 is in thermal contact with the inlet pipe 28 of the refrigerated evaporator 26.

これにより、圧縮機8の能力を低下させることなく、冷蔵蒸発器26の能力を使い切ることができ、圧縮機8の効率低下や冷蔵ファン16の入力増加また、騒音増大をさせることもなく、冷凍サイクル25の効率を向上させ、冷蔵庫20の省エネ性能を向上させることができる。また、蓄熱材27の潜熱を利用して冷蔵室22冷却時の蒸発温度を上昇させることができる。 This allows the capacity of the refrigeration evaporator 26 to be fully utilized without reducing the capacity of the compressor 8, improving the efficiency of the refrigeration cycle 25 and improving the energy-saving performance of the refrigerator 20 without reducing the efficiency of the compressor 8, increasing the input of the refrigeration fan 16, or increasing noise. In addition, the latent heat of the heat storage material 27 can be used to increase the evaporation temperature when cooling the refrigerator compartment 22.

また、冷蔵室蓄冷モード時に、蓄熱材27に蓄えた冷熱により、圧縮機8を運転することなく冷蔵室22を冷却することができ、従来の冷蔵庫に比べて圧縮機8の運転時間が短縮され、静音性の高い冷蔵庫20とすることができる。なお、上記実施の形態では、蓄熱材27を冷蔵蒸発器26の入口パイプ28に熱的に接触させたが、冷蔵蒸発器26の出口パイプ26aに熱的に接触させるようにしても同様の効果が得られることは言うまでもない。 In addition, in the refrigerator compartment cold storage mode, the cold stored in the heat storage material 27 can cool the refrigerator compartment 22 without operating the compressor 8, shortening the operating time of the compressor 8 compared to conventional refrigerators, resulting in a quieter refrigerator 20. In the above embodiment, the heat storage material 27 is in thermal contact with the inlet pipe 28 of the refrigeration evaporator 26, but it goes without saying that the same effect can be obtained by thermally contacting the outlet pipe 26a of the refrigeration evaporator 26.

また、蓄熱材27の凝固点が冷蔵室22の温度より低く冷凍室23温度より高い構成としたので、冷蔵室22の蒸発温度を、より冷蔵室22の冷却に適した蒸発温度に上昇させることができる。 In addition, the freezing point of the heat storage material 27 is configured to be lower than the temperature of the refrigerator compartment 22 and higher than the temperature of the freezer compartment 23, so the evaporation temperature of the refrigerator compartment 22 can be raised to an evaporation temperature more suitable for cooling the refrigerator compartment 22.

尚、本実施の形態において、蓄熱材27の凝固点は、-5℃として説明したが、冷蔵室放冷モード時に冷蔵室22内を冷却できる温度であれば良く、例えば0℃とすることで、冷蔵蒸発器26の温度をさらに高くでき、圧縮機8の吸込ガスの圧力が高くなることにより、冷凍サイクル25の効率をさらに向上させることができる。 In this embodiment, the freezing point of the heat storage material 27 has been described as -5°C, but it can be any temperature that can cool the inside of the refrigerator compartment 22 in the refrigerator compartment cold release mode. For example, by setting it to 0°C, the temperature of the refrigerator evaporator 26 can be further increased, and the pressure of the intake gas of the compressor 8 can be increased, thereby further improving the efficiency of the refrigeration cycle 25.

また、圧縮機8の運転中でかつ冷蔵室22の冷却中に、蓄熱材27及び冷蔵室22内を冷却することにより蓄熱材27に熱エネルギーを蓄え、次回の冷蔵室22の冷却時に蓄熱材27に蓄えた熱エネルギーにより冷蔵室22内を冷却するようにしたので、蓄熱材27により蓄熱した冷熱を、冷蔵室22内を冷却する際に利用することができる。 In addition, while the compressor 8 is operating and the refrigerator compartment 22 is being cooled, the heat storage material 27 and the interior of the refrigerator compartment 22 are cooled to store thermal energy in the heat storage material 27, and the next time the refrigerator compartment 22 is cooled, the interior of the refrigerator compartment 22 is cooled using the thermal energy stored in the heat storage material 27. Therefore, the cold energy stored in the heat storage material 27 can be used to cool the interior of the refrigerator compartment 22.

また、本実施の形態において、冷却モードは、冷凍室冷却モードと冷蔵室蓄冷モードと冷蔵室放冷モードの3つのモードで説明したが、冷凍室冷却モード時に蓄熱材27により冷蔵室22を冷却することで、圧縮機8の停止中以外は常に冷蔵室22を冷却することで、冷蔵室22の温度変動を抑制することができ、冷蔵室22内の貯蔵物の保鮮性能を向上させることができる。 In addition, in this embodiment, the cooling modes have been described as three modes: freezer compartment cooling mode, refrigerator compartment cold storage mode, and refrigerator compartment cold release mode. However, by cooling the refrigerator compartment 22 with the heat storage material 27 during the freezer compartment cooling mode, the refrigerator compartment 22 is always cooled except when the compressor 8 is stopped, so that temperature fluctuations in the refrigerator compartment 22 can be suppressed and the freshness-keeping performance of the stored items in the refrigerator compartment 22 can be improved.

また、本実施の形態においては、冷蔵室放冷モード時及び圧縮機8停止時の三方弁10の動作には言及しなかったが、三方弁10を冷蔵キャピラリ11へと冷媒を流すモードと、冷凍キャピラリ12へと冷媒を流すモードと、冷蔵キャピラリ11、冷凍キャピラリ12どちらにも冷媒を流さない閉塞状態を選択できるようにし、冷蔵室放冷モード時及び圧縮機8停止時に閉塞状態とすることで、圧縮機8が動いていない時に冷凍サイクル25の高圧側の高温冷媒が低圧側の冷蔵蒸発器26または冷凍蒸発器15へと流れることによる室内昇温を防ぎ、冷凍サイクル25の効率を向上させることができる。 In addition, in this embodiment, the operation of the three-way valve 10 in the refrigerator compartment cold release mode and when the compressor 8 is stopped is not mentioned, but the three-way valve 10 can be selected between a mode in which the refrigerant flows to the refrigerator capillary 11, a mode in which the refrigerant flows to the freezer capillary 12, and a closed state in which the refrigerant does not flow to either the refrigerator capillary 11 or the freezer capillary 12. By closing the three-way valve 10 in the refrigerator compartment cold release mode and when the compressor 8 is stopped, it is possible to prevent the room temperature from rising due to the high-temperature refrigerant on the high-pressure side of the refrigeration cycle 25 flowing to the low-pressure side of the refrigeration evaporator 26 or the freezer evaporator 15 when the compressor 8 is not operating, and improve the efficiency of the refrigeration cycle 25.

本開示は、冷蔵室を冷却する際の冷凍サイクル効率を向上させ、消費電力量を低減することができるので、家庭用および業務用など様々な種類および大きさの冷蔵庫に適用することができる。 This disclosure improves the efficiency of the refrigeration cycle when cooling the refrigerator compartment and reduces power consumption, making it applicable to refrigerators of various types and sizes, including those for home and commercial use.

1、20 冷蔵庫
2 仕切り
3、21 断熱箱体
4、22 冷蔵室
5、23 冷凍室
6、7 断熱扉
8 圧縮機
8a 吐出配管
9 凝縮器(放熱器)
10 三方弁(切替弁)
11 冷蔵キャピラリ(冷蔵減圧手段)
12 冷凍キャピラリ(冷凍減圧手段)
13、25 冷凍サイクル
14、26 冷蔵蒸発器
15 冷凍蒸発器
15a、26a 出口パイプ
16 冷蔵ファン
17 冷凍ファン
18 冷蔵室センサ
19 冷凍室センサ
24 逆止弁
27 蓄熱材
28 入口パイプ
1, 20 Refrigerator 2 Partition 3, 21 Insulated box 4, 22 Refrigerating compartment 5, 23 Freezer compartment 6, 7 Insulated door 8 Compressor 8a Discharge pipe 9 Condenser (heat radiator)
10 Three-way valve (switching valve)
11 Refrigerated capillary (refrigerated pressure reducing means)
12 Refrigeration capillary (refrigeration pressure reducing means)
13, 25 Refrigeration cycle 14, 26 Refrigerating evaporator 15 Freezing evaporator 15a, 26a Outlet pipe 16 Refrigerating fan 17 Freezing fan 18 Refrigerating chamber sensor 19 Freezing chamber sensor 24 Check valve 27 Heat storage material 28 Inlet pipe

Claims (3)

冷蔵室と、冷凍室と、冷蔵蒸発器と、冷凍蒸発器と、前記冷蔵蒸発器と直列に接続された冷蔵減圧手段と、前記冷凍蒸発器と直列に接続された冷凍減圧手段と、前記冷蔵蒸発器の出口パイプと前記冷凍蒸発器の出口パイプと接続される圧縮機と、前記圧縮機の吐出配管と直列に接続される放熱器と、前記冷蔵蒸発器ならびに前記冷凍蒸発器への冷媒の流れを切り替える切替弁と、前記冷蔵室内の冷気を循環させる冷蔵ファンと、を備え、
前記冷蔵蒸発器の入口パイプまたは前記出口パイプのいずれかと熱的に接触する蓄熱材を備えたことを特徴とし、
前記冷蔵室は、少なくとも、前記圧縮機を運転して前記冷蔵室を冷却する状態と、前記圧縮機を運転せずに前記冷蔵ファンを運転して前記冷蔵室を冷却する状態と、前記冷蔵室の冷却運転を行わない状態と、を切り替えて運転され、
前記圧縮機を運転して前記冷蔵室を冷却することで、前記蓄熱材及び前記冷蔵室内を冷却することにより前記蓄熱材に熱エネルギーを蓄え、次回の前記冷蔵室の冷却時に前記圧縮機を運転せずに前記冷蔵ファンを運転して前記冷蔵室を冷却することで、前記蓄熱材に蓄えた熱エネルギーにより前記冷蔵室内を冷却すると同時に前記蓄熱材を融解させ、
前記圧縮機を運転して前記冷蔵室を冷却する際には、前記蓄熱材の少なくとも一部が融解した状態であるようにすることで、前記冷蔵室の冷却で使い切れなかった前記冷蔵蒸発器の能力を、前記蓄熱材を凝固させる際の凝固潜熱として利用する冷蔵庫。
the refrigerator comprises a refrigerator compartment, a freezer compartment, a refrigerator evaporator, a freezer evaporator, refrigerator pressure reducing means connected in series to the refrigerator evaporator, freezer pressure reducing means connected in series to the freezer evaporator, a compressor connected to an outlet pipe of the refrigerator evaporator and an outlet pipe of the freezer evaporator, a radiator connected in series to a discharge pipe of the compressor, a changeover valve for switching a flow of a refrigerant to the refrigerator evaporator and the freezer evaporator, and a refrigerator fan for circulating cold air within the refrigerator compartment;
The present invention is characterized in that a heat storage material is provided in thermal contact with either the inlet pipe or the outlet pipe of the refrigeration evaporator,
The refrigerator compartment is operated by switching at least among a state in which the compressor is operated to cool the refrigerator compartment, a state in which the compressor is not operated and the refrigerator fan is operated to cool the refrigerator compartment, and a state in which the refrigerator compartment is not cooled;
By operating the compressor to cool the refrigerator compartment, the heat storage material and the interior of the refrigerator compartment are cooled, and thermal energy is stored in the heat storage material. When the refrigerator compartment is next cooled, the compressor is not operated and the refrigerator fan is operated to cool the refrigerator compartment, thereby cooling the interior of the refrigerator compartment using the thermal energy stored in the heat storage material and melting the heat storage material at the same time.
When the compressor is operated to cool the refrigerator compartment, at least a part of the heat storage material is in a melted state, so that the capacity of the refrigeration evaporator that is not fully used in cooling the refrigerator compartment is utilized as latent heat of solidification when solidifying the heat storage material .
前記蓄熱材の凝固点が前記冷蔵室の温度より低く前記冷凍室の温度より高いことを特徴とした請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, characterized in that the freezing point of the heat storage material is lower than the temperature of the refrigerator compartment and higher than the temperature of the freezer compartment. 前記冷蔵室の冷却運転を行わない状態は、圧縮機を運転しない状態と、圧縮機を運転して前記冷凍室を冷却する状態とを含み、前記冷凍室を冷却する状態の後に前記圧縮機を運転して前記冷蔵室を冷却する状態、又は前記圧縮機を運転せずに前記冷蔵ファンを運転して前記冷蔵室を冷却する状態へ切り替えて運転される、請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the state in which the refrigerator compartment is not cooled includes a state in which the compressor is not operated and a state in which the compressor is operated to cool the freezer compartment, and the refrigerator is operated by switching to a state in which the compressor is operated to cool the refrigerator compartment after the state in which the freezer compartment is cooled, or a state in which the refrigerator fan is operated without operating the compressor to cool the refrigerator compartment.
JP2020084831A 2020-05-14 2020-05-14 refrigerator Active JP7583981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020084831A JP7583981B2 (en) 2020-05-14 2020-05-14 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020084831A JP7583981B2 (en) 2020-05-14 2020-05-14 refrigerator

Publications (2)

Publication Number Publication Date
JP2021179278A JP2021179278A (en) 2021-11-18
JP7583981B2 true JP7583981B2 (en) 2024-11-15

Family

ID=78511390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020084831A Active JP7583981B2 (en) 2020-05-14 2020-05-14 refrigerator

Country Status (1)

Country Link
JP (1) JP7583981B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283626A (en) 1999-03-30 2000-10-13 Hitachi Ltd refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231377A (en) * 1985-04-04 1986-10-15 株式会社デンソー Cold accumulation type refrigerator
JP2021139591A (en) * 2020-03-09 2021-09-16 日立グローバルライフソリューションズ株式会社 refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283626A (en) 1999-03-30 2000-10-13 Hitachi Ltd refrigerator

Also Published As

Publication number Publication date
JP2021179278A (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US6327871B1 (en) Refrigerator with thermal storage
KR920000452B1 (en) Refrigerating cycle utilizing cold accumulation material
WO2017179500A1 (en) Refrigerator and cooling system
JP5261066B2 (en) Refrigerator and refrigerator
KR100691587B1 (en) Refrigerator
JP2009300000A (en) Refrigerator-freezer and cooling storage
JP3461736B2 (en) refrigerator
JP6872689B2 (en) refrigerator
JP4178646B2 (en) refrigerator
JP3906637B2 (en) Freezer refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP6101926B2 (en) refrigerator
JP4608790B2 (en) refrigerator
JP7583981B2 (en) refrigerator
JP5862867B2 (en) refrigerator
CN214620257U (en) An energy-saving device for commercial supermarkets with cold storage and condensation heat storage
US20140284024A1 (en) Method for controlling refrigerator
JP2006125843A (en) Cooling cycle and refrigerator
JP7507338B2 (en) refrigerator
JP2003207250A (en) Refrigerator
JP2012087952A (en) Refrigerator freezer
JP4284789B2 (en) refrigerator
JP5517333B2 (en) Refrigeration apparatus and operation method thereof
JP2005016777A (en) Refrigerator
JPH0571808A (en) Heat storage type refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240702

TRDD Decision of grant or rejection written
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20240918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241007

R150 Certificate of patent or registration of utility model

Ref document number: 7583981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150