[go: up one dir, main page]

JP2003207250A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2003207250A
JP2003207250A JP2002370369A JP2002370369A JP2003207250A JP 2003207250 A JP2003207250 A JP 2003207250A JP 2002370369 A JP2002370369 A JP 2002370369A JP 2002370369 A JP2002370369 A JP 2002370369A JP 2003207250 A JP2003207250 A JP 2003207250A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
cooling
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002370369A
Other languages
Japanese (ja)
Inventor
Yoshito Kimura
義人 木村
Nobuo Shimomura
信雄 下村
Yasuki Hamano
泰樹 浜野
Tetsuya Saito
哲哉 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002370369A priority Critical patent/JP2003207250A/en
Publication of JP2003207250A publication Critical patent/JP2003207250A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a refrigerant quantity, and to enhance efficiency in a cooling cycle using a combustible refrigerant. <P>SOLUTION: A closed loop is formed of a compressor 12, a condenser 2, a passage control means 13, a first pressure reducing means 7, and a first evaporator 3. A second pressure reducing means 8 and a second evaporator 5 are connected so as to become parallel to the first pressure reducing means 7 and the first evaporator 3. Since cooling is performed by alternately switching the two evaporators 3 and 5 by the cooling cycle for arranging the passage control means 13 on the inlet side of the first pressure reducing means V and the second pressure reducing means 8, pipe capacity of a cooling system and the refrigerant quantity can be reduced more than a cooling system for performing cooling by one evaporator and a cooling system for performing cooling by flowing the refrigerant in parallel to a plurality of evaporators. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、可燃性冷媒と能力
可変型圧縮機を用いて冷媒量削減と高効率化を図った冷
蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator that uses a flammable refrigerant and a variable capacity compressor to reduce the amount of refrigerant and improve efficiency.

【0002】[0002]

【従来の技術】図9に従来の冷却サイクル並びに冷蔵庫
の一例の概略図を示す。
2. Description of the Related Art FIG. 9 shows a schematic view of an example of a conventional cooling cycle and a refrigerator.

【0003】1は一定速圧縮機、2は凝縮器、3は冷蔵
室4内に配設された第一の蒸発器であり、5は冷凍室6
内に配設された第二の蒸発器である。
Reference numeral 1 is a constant speed compressor, 2 is a condenser, 3 is a first evaporator disposed in a refrigerating compartment 4, and 5 is a freezing compartment 6.
It is a second evaporator disposed inside.

【0004】7は冷蔵室冷却用である第一の蒸発器3の
冷媒回路上流側に配設された第一のキャピラリであり、
8は冷凍室冷却用である第二の蒸発器5の冷媒回路上流
側に配設された第二のキャピラリであり、9は冷凍室冷
却用である第二の蒸発器5の下流側に設けた逆止弁であ
る。
Reference numeral 7 denotes a first capillary disposed upstream of the refrigerant circuit of the first evaporator 3 for cooling the refrigerating chamber,
Reference numeral 8 is a second capillary arranged upstream of the refrigerant circuit of the second evaporator 5 for cooling the freezing compartment, and 9 is provided downstream of the second evaporator 5 for cooling the freezing compartment. It is a check valve.

【0005】10は第一の蒸発器3の冷媒回路下流側に
配設された第一の開閉弁であり、11は第二のキャピラ
リ8の冷媒回路上流側に設けられた第二の開閉弁であ
る。
Reference numeral 10 is a first on-off valve provided on the downstream side of the refrigerant circuit of the first evaporator 3, and 11 is a second on-off valve provided on the upstream side of the refrigerant circuit of the second capillary 8. Is.

【0006】以上のように構成された従来例の冷蔵庫に
ついて、以下その動作を説明する。
The operation of the conventional refrigerator constructed as described above will be described below.

【0007】冷凍サイクルの運転は以下のように行われ
る。まず圧縮機1により圧縮された冷媒が凝縮器2で凝
縮液化される。凝縮された冷媒は第一のキャピラリ7も
しくは第二のキャピラリ8で減圧されて、それぞれ第一
の蒸発器3、第二の蒸発器5へ流入、蒸発気化された
後、再び圧縮機1へと吸入される。
The operation of the refrigeration cycle is performed as follows. First, the refrigerant compressed by the compressor 1 is condensed and liquefied by the condenser 2. The condensed refrigerant is decompressed by the first capillary 7 or the second capillary 8, flows into the first evaporator 3 and the second evaporator 5, respectively, and is evaporated and vaporized, and then again flows into the compressor 1. Inhaled.

【0008】冷媒が蒸発気化することにより比較的低温
となった第一の蒸発器3、第二の蒸発器5と冷蔵室4、
冷凍室6の空気が熱交換することにより各室が冷却され
る。
The first evaporator 3, the second evaporator 5 and the refrigerating chamber 4, which have a relatively low temperature due to the evaporative evaporation of the refrigerant,
Each room is cooled by heat exchange of the air in the freezing room 6.

【0009】冷凍冷蔵庫の冷却運転は図示しない各室の
温度検知手段と制御手段により以下のように行われる。
The cooling operation of the freezer-refrigerator is performed as follows by the temperature detecting means and control means of each room (not shown).

【0010】冷蔵室4、冷凍室6の各温度検知手段が所
定値以上の温度上昇を検知すると圧縮機1が起動し、冷
凍サイクルの運転が行われる。冷蔵室4の温度検知手段
が所定値以下となるまで第一の開閉弁10が開放とな
り、第二の開閉弁11は閉止となる。
When each of the temperature detecting means in the refrigerating room 4 and the freezing room 6 detects a temperature increase of a predetermined value or more, the compressor 1 is started and the refrigerating cycle is operated. The first opening / closing valve 10 is opened and the second opening / closing valve 11 is closed until the temperature detecting means of the refrigerating chamber 4 becomes equal to or lower than a predetermined value.

【0011】これにより冷媒は第二の蒸発器5には流入
することなく、第一の蒸発器3へのみ流れる。このとき
の蒸発温度の設定は、冷蔵室4の温度設定が5℃程度に
対して0〜−5℃であり、通常の−25〜−30℃の蒸
発温度に対して2〜2.5倍の成績係数で圧縮機の運転
が可能である。
As a result, the refrigerant does not flow into the second evaporator 5 but flows only into the first evaporator 3. The setting of the evaporation temperature at this time is 0 to −5 ° C. for the temperature setting of the refrigerating chamber 4 of about 5 ° C., which is 2 to 2.5 times the normal evaporation temperature of −25 to −30 ° C. The compressor can be operated with the coefficient of performance of.

【0012】冷蔵室4が冷却されて温度が低下し、温度
検知手段が所定値以下を検知すると、第一の開閉弁10
が閉止し、第二の開閉弁11が開放となる。
When the refrigerating chamber 4 is cooled and the temperature drops, and the temperature detecting means detects a temperature below a predetermined value, the first opening / closing valve 10
Is closed and the second on-off valve 11 is opened.

【0013】これにより冷媒は第二の蒸発器5へと流入
し、冷凍室6の冷却が行われる。このときの冷凍サイク
ルの蒸発温度は冷凍室の温度設定が−18℃程度に対し
通常の蒸発温度で冷却される。
As a result, the refrigerant flows into the second evaporator 5, and the freezer compartment 6 is cooled. At this time, the evaporation temperature of the refrigerating cycle is cooled at a normal evaporation temperature when the temperature setting of the freezing chamber is about -18 ° C.

【0014】以上のように冷蔵室4と冷凍室6とを蒸発
器への冷媒供給時間を分配して、交互に繰り返し冷却す
るので、冷蔵室4冷却時は独立的に冷媒を第一の蒸発器
へと循環させることで低圧圧力調整弁が不要で高蒸発温
度(0〜−5℃)が可能であり、圧縮機1の圧縮比を小
さくでき、高い成績係数で運転を行い効率化を図るもの
である。
As described above, the refrigerating chamber 4 and the freezing chamber 6 are alternately cooled repeatedly by distributing the refrigerant supply time to the evaporator. Therefore, when the refrigerating chamber 4 is cooled, the first refrigerant is independently evaporated. By circulating it to the reactor, a low-pressure pressure regulating valve is not required and a high evaporation temperature (0 to -5 ° C) is possible, the compression ratio of the compressor 1 can be reduced, and operation is performed with a high coefficient of performance to improve efficiency. It is a thing.

【0015】さらに、逆止弁9は冷蔵室4冷却中の蒸発
温度が高いので、第二の蒸発器5に冷媒が流れ込むのを
防止するものである。
Further, since the check valve 9 has a high evaporation temperature during cooling of the refrigerating chamber 4, it prevents the refrigerant from flowing into the second evaporator 5.

【0016】また、冷凍室6の冷却を行う場合、冷蔵室
4の冷却中に比較して冷媒量が少なくてすむので、通常
は冷媒量過多となる。しかしながら第一の開閉弁10が
第一の蒸発器3の下流側に設けてあり、これを閉止する
ので第一の蒸発器3に冷媒を溜め込むことが可能であ
り、冷媒量調節ができる(例えば、特許文献1参
照。)。
Further, when the freezing chamber 6 is cooled, the amount of the refrigerant is smaller than that during the cooling of the refrigerating chamber 4, so that the amount of the refrigerant is usually excessive. However, since the first opening / closing valve 10 is provided on the downstream side of the first evaporator 3 and is closed, it is possible to store the refrigerant in the first evaporator 3 and to adjust the amount of the refrigerant (for example, , Patent Document 1.).

【0017】[0017]

【特許文献1】特公昭62−22396号公報[Patent Document 1] Japanese Patent Publication No. 62-22396

【0018】[0018]

【発明が解決しようとする課題】しかしながら上記のよ
うな冷蔵庫にあっては、冷蔵庫で通常使われているロー
タリータイプやレシプロタイプの圧縮機の特性を鑑みれ
ば、高蒸発温度で運転するほど圧縮比の低減により成績
係数は向上し、高効率な冷凍サイクルが期待できるが、
同時に高蒸発温度化による吸込み冷媒比体積の減少によ
り圧縮機1の冷凍能力が非常に増大することが問題であ
る。
However, in the refrigerator as described above, in view of the characteristics of the rotary type or reciprocating type compressors that are usually used in refrigerators, the compression ratio increases as the evaporation temperature increases. The coefficient of performance is improved by the reduction of
At the same time, there is a problem that the refrigerating capacity of the compressor 1 is greatly increased due to the decrease in the specific volume of the sucked refrigerant due to the higher evaporation temperature.

【0019】では冷凍能力が増大することによってどの
ような問題が生じるのか以下説明する。
Now, what kind of problems will occur when the refrigerating capacity is increased will be described below.

【0020】従来例において、通常の蒸発温度とされる
−25〜−30℃から0〜−5℃へと蒸発温度を引き上
げることで圧縮機の成績係数が2〜2.5倍程度となる
が、同時に圧縮機の冷凍能力は3〜5倍となる。
In the conventional example, the coefficient of performance of the compressor is increased by about 2 to 2.5 times by raising the evaporation temperature from -25 to -30 ° C, which is a normal evaporation temperature, to 0 to -5 ° C. At the same time, the refrigerating capacity of the compressor becomes 3 to 5 times.

【0021】この3〜5倍となる圧縮機の冷凍能力を効
果的に冷蔵室4の冷却に用いなければ高効率化はできな
いのである。
The efficiency cannot be improved unless the refrigerating capacity of the compressor, which is 3 to 5 times as large, is used effectively for cooling the refrigerating chamber 4.

【0022】圧縮機1の冷凍能力を冷蔵室4の冷却に効
果的に用いるためには第一の蒸発器3と冷蔵室4空気と
の熱交換能力を拡大する必要がある。
In order to effectively use the refrigerating capacity of the compressor 1 for cooling the refrigerating compartment 4, it is necessary to expand the heat exchange capacity between the first evaporator 3 and the air in the refrigerating compartment 4.

【0023】蒸発器の熱交換能力は熱貫流率と熱交換面
積と熱交換温度差(蒸発温度と空気温度との差)の積に
より表せられるが、比較的高蒸発温度とすること自体、
熱交換温度差の元となる蒸発温度と冷蔵室設定温度との
差が30〜35degから5〜10degと非常に減少
し第一の蒸発器3の熱交換能力が低下することとなる。
加えて圧縮機1の冷凍能力が3〜5倍増大することに対
処すると、9〜30倍程度の熱交換能力が要求される。
The heat exchange capacity of the evaporator is expressed by the product of the heat transmission coefficient, the heat exchange area and the heat exchange temperature difference (difference between the evaporation temperature and the air temperature).
The difference between the evaporation temperature that is the source of the heat exchange temperature difference and the refrigerating chamber set temperature is greatly reduced from 30 to 35 deg to 5 to 10 deg, and the heat exchange capacity of the first evaporator 3 is reduced.
In addition, to cope with the increase in the refrigerating capacity of the compressor 1 by 3 to 5 times, the heat exchange capacity of about 9 to 30 times is required.

【0024】このように非常に大きな熱交換器が必要と
なり冷蔵庫の収納スペースを減少させる無効容積の増大
となる。
As described above, a very large heat exchanger is required, which increases the ineffective volume which reduces the storage space of the refrigerator.

【0025】さらには、高能力で大きな熱交換器が必要
となれば、必要な冷媒量も増大し、可燃性冷媒を用いる
にあっては冷媒漏洩時の危険性が大きくなる問題があ
る。
Further, if a high capacity and large heat exchanger is required, the amount of required refrigerant also increases, and when using a flammable refrigerant, there is a problem that the danger at the time of refrigerant leakage increases.

【0026】また、冷凍室6冷却時には前述の理由から
冷蔵室4冷却時に比べて冷媒量が少なくてすむので、第
一の蒸発器3に冷媒を溜め込み冷媒余剰量を調節してい
るが、これも封入冷媒量が増大することとなる。
Further, when the freezer compartment 6 is cooled, the amount of the refrigerant is smaller than that when the refrigerating compartment 4 is cooled for the above-mentioned reason. Therefore, the refrigerant is reserved in the first evaporator 3 to adjust the surplus refrigerant quantity. Also, the amount of the enclosed refrigerant increases.

【0027】また、圧縮機1の起動時には冷媒が蒸発器
に安定的に供給されるまで圧縮機1の入力に見合った出
力が得られない運転ロスの大きい過渡期が生じる。さら
に、冷蔵室4と冷凍室6の冷却切り替え時にも同様の運
転ロスの大きい過渡期が生じる。
Further, when the compressor 1 is started, a transitional period with a large operating loss occurs in which an output corresponding to the input of the compressor 1 is not obtained until the refrigerant is stably supplied to the evaporator. Further, when the cooling of the refrigerating room 4 and the freezing room 6 is switched, a similar transitional period with a large operation loss occurs.

【0028】増大した圧縮機1の冷凍能力を切り替え時
間の分配率で調節すると、冷蔵室4の冷却時間が大幅に
短縮される。
When the increased refrigerating capacity of the compressor 1 is adjusted by the distribution ratio of the switching time, the cooling time of the refrigerating chamber 4 is greatly shortened.

【0029】このとき運転ロスの大きい過渡期が短縮さ
れることがないので結果として安定した冷却時間に対す
る過渡期の時間比率が高まることとなり、効率低下とな
る。
At this time, the transition period in which the operation loss is large is not shortened, and as a result, the time ratio of the transition period to the stable cooling time is increased, resulting in a decrease in efficiency.

【0030】さらに、一日あたりの圧縮機起動及び冷蔵
室4と冷凍室6の冷却運転切り替え回数が増加すること
になり効率低下となる。
Further, the number of times of starting the compressor and switching the cooling operation between the refrigerating room 4 and the freezing room 6 per day increases, resulting in a decrease in efficiency.

【0031】冷蔵室4の温度調節幅をより低い温度まで
広げることにより対応することも考えられるが、食品保
鮮上、温度の変動が大きいことは好ましくなく、さらに
は冷蔵室4においては温度低下しすぎると氷結し、収納
食品にダメージを与えることとなる。
It may be possible to cope with the problem by widening the temperature control range of the refrigerating compartment 4 to a lower temperature, but it is not preferable that the temperature fluctuates greatly in terms of keeping the food, and further, the temperature in the refrigerating compartment 4 decreases. If too much, it freezes and damages the stored food.

【0032】一方、圧縮機の小型化により、3〜5倍程
度の冷凍能力を抑制するためには、非常に小型の圧縮機
を用いる必要があり、冷蔵庫4冷却時に圧縮機の冷凍能
力は確保できるものの、冷凍室6冷却時には圧縮機の冷
凍能力が不足し温度が維持できなくなる問題がある。
On the other hand, in order to suppress the refrigerating capacity of 3 to 5 times by miniaturizing the compressor, it is necessary to use a very small compressor, and the refrigerating capacity of the compressor is secured when the refrigerator 4 is cooled. However, when the freezer compartment 6 is cooled, there is a problem that the refrigerating capacity of the compressor is insufficient and the temperature cannot be maintained.

【0033】また、冷媒回路の接続箇所が多くあるので
冷媒リークの可能性が比較的高いという問題がある。
Further, since there are many connection points of the refrigerant circuit, there is a problem that the possibility of refrigerant leakage is relatively high.

【0034】本発明は、以上のような従来の課題を解決
するもので、可燃性冷媒の冷媒量削減により可燃性冷媒
使用時の安全性を高める冷却サイクル及び冷蔵庫を提供
することを目的とする。
The present invention solves the above conventional problems, and an object of the present invention is to provide a cooling cycle and a refrigerator in which the safety of a flammable refrigerant is improved by reducing the amount of the flammable refrigerant. .

【0035】また、密閉空間内への配管接続箇所削減に
よる可燃性冷媒リーク時の安全性を高める冷却サイクル
及び冷蔵庫を提供することを目的とする。
It is another object of the present invention to provide a cooling cycle and a refrigerator in which safety is improved when flammable refrigerant leaks by reducing the number of connected pipes in a closed space.

【0036】また、成績係数の向上と過渡特性改善によ
る効率向上による省エネルギ化を図る冷却サイクル及び
冷蔵庫を提供することを目的とする。
It is another object of the present invention to provide a cooling cycle and a refrigerator which save energy by improving the coefficient of performance and improving the transient characteristics.

【0037】無効容積である冷却サイクルの容量を削減
することで収納スペースの拡大を図る冷却サイクル及び
冷蔵庫を提供することを目的とする。
It is an object of the present invention to provide a cooling cycle and a refrigerator in which the storage space is expanded by reducing the capacity of the cooling cycle which is an ineffective volume.

【0038】[0038]

【課題を解決するための手段】本発明の請求項1に記載
の発明は、圧縮機と、凝縮器と、流路制御手段と、第一
の減圧手段と、第一の蒸発器と、第二の減圧手段と、第
二の蒸発器と、逆止弁と、可燃性冷媒を封入してなる冷
却サイクルと、冷蔵室と、冷凍室と、前記冷蔵室内の空
気を前記第一の蒸発器を通過させて循環させる第一の電
動ファンと、前記冷凍室内の空気を前記第二の蒸発器を
通過させて循環させる第二の電動ファンとを備えたもの
であって、前記冷蔵室に高温側の冷却器として前記第一
の蒸発器を設け、前記冷凍室に低温側の冷却器として前
記第二の蒸発器を設け、前記圧縮機と凝縮器と第一の減
圧手段と第一の蒸発器とで閉ループを形成するととも
に、前記第一の減圧手段と第一の蒸発器に並列となるよ
うに前記第二の減圧手段と第二の蒸発器と逆止弁とを接
続し、前記流路制御手段を第一の減圧手段と第二の減圧
手段の入口側に配設して前記第一の蒸発器と前記第二の
蒸発器への冷媒供給を交互に切り替えるとともに前記第
一の電動ファンと前記第二の電動ファンを交互に作動さ
せて前記冷蔵室と前記冷凍室を交互に冷却し、かつ前記
圧縮機を低圧容器型とすることで前記冷却サイクルへの
前記可燃性冷媒の封入量を少冷媒化したことを特徴とす
る。
According to a first aspect of the present invention, a compressor, a condenser, a flow path control means, a first pressure reducing means, a first evaporator, and a first evaporator are provided. A second decompression means, a second evaporator, a check valve, a cooling cycle in which a flammable refrigerant is sealed, a refrigerating compartment, a freezing compartment, and air in the refrigerating compartment to the first evaporator. And a second electric fan for circulating the air in the freezing chamber through the second evaporator, wherein the refrigerating chamber has a high temperature. The first evaporator is provided as a cooler on the side, the second evaporator is provided as a cooler on the low temperature side in the freezer, and the compressor, the condenser, the first pressure reducing means, and the first evaporator are provided. Form a closed loop with the second decompression so that it is parallel to the first decompression means and the first evaporator. The second evaporator and the check valve are connected to each other, and the flow path control means is disposed on the inlet side of the first pressure reducing means and the second pressure reducing means, and the first evaporator and the first pressure reducing means are connected to each other. The refrigerant supply to the two evaporators is alternately switched and the first electric fan and the second electric fan are alternately operated to alternately cool the refrigerating chamber and the freezing chamber, and the compressor is The low pressure container type is characterized in that the amount of the flammable refrigerant enclosed in the cooling cycle is reduced.

【0039】以上の構成により、可燃性冷媒を用いる冷
却サイクルにあって、圧縮機には低圧容器型を用いるの
で、圧縮機の運転中に容器内のガス冷媒比体積が大きく
なり容器内冷媒量を削減できる。
With the above construction, in the cooling cycle using the flammable refrigerant, the low pressure container type is used as the compressor, so that the gas refrigerant specific volume in the container increases during the operation of the compressor, and the amount of the refrigerant in the container increases. Can be reduced.

【0040】また、第一の蒸発器と第二の蒸発器を交互
に切り替えて冷却を行うので、一つの蒸発器で冷却を行
う冷凍システムや、複数の蒸発器に平行して冷媒を流し
て冷却を行う冷凍システムに比べて、冷却システムの配
管容量が削減でき、冷媒量が削減可能となる。
Further, since the cooling is performed by alternately switching the first evaporator and the second evaporator, a refrigerant is flown in parallel with a refrigeration system for cooling with one evaporator or a plurality of evaporators. The piping capacity of the cooling system can be reduced and the amount of refrigerant can be reduced as compared with a refrigeration system that performs cooling.

【0041】また、第一の蒸発器で冷却を行う場合の蒸
発温度と第二の蒸発器で冷却を行う場合の蒸発温度が異
なるので、各々の蒸発器で低圧縮比化による高効率な冷
凍サイクル運転が可能である。
Further, since the evaporation temperature in the case of cooling in the first evaporator and the evaporation temperature in the case of cooling in the second evaporator are different, high-efficiency refrigeration by reducing the compression ratio in each evaporator. Cycle operation is possible.

【0042】また、低温側の第二の蒸発器出口に冷媒逆
流防止手段を設けたので、各々の蒸発器に温度差が生じ
て低温側の蒸発器に冷媒が流入することがなく、高温側
の第一の蒸発器での冷却運転中に冷媒が低温側に寝込む
ことがないので冷媒量を低く押さえることができる。
Further, since the refrigerant backflow prevention means is provided at the outlet of the second evaporator on the low temperature side, there is no difference in temperature between the evaporators and the refrigerant does not flow into the evaporator on the low temperature side. Since the refrigerant does not lie on the low temperature side during the cooling operation in the first evaporator, the amount of the refrigerant can be kept low.

【0043】請求項2に記載の発明は、請求項1に記載
の発明において、可燃性冷媒としてイソブタンを用い、
圧縮機容器内の冷凍機油に前記イソブタンに対して相溶
性のある鉱油を用いることを特徴とするので、低温高圧
になると冷媒の溶解度が増加する相溶性のある冷凍機油
を用いる場合には、圧縮機運転中に容器内圧力が低くな
ることで冷凍機油への冷媒溶け込みを軽減することがで
き、冷媒量を削減することができる。
According to a second aspect of the invention, in the invention of the first aspect, isobutane is used as the flammable refrigerant,
Since a refrigerating machine oil in the compressor container is characterized by using a mineral oil compatible with the isobutane, when using a compatible refrigerating machine oil in which the solubility of the refrigerant increases at low temperature and high pressure, when using When the internal pressure of the container becomes low during the operation of the machine, it is possible to reduce the dissolution of the refrigerant in the refrigerating machine oil and reduce the amount of the refrigerant.

【0044】[0044]

【発明の実施の形態】以下、本発明の実施の形態につい
て図1〜図8を用いて説明する。従来例と同一構成につ
いてはその詳細な説明を省略し、同一符号を付す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. Detailed description of the same configurations as those of the conventional example will be omitted, and the same reference numerals will be given.

【0045】(実施の形態1)図1と図2は、本発明の
一実施の形態による冷却サイクル概略図である。
(Embodiment 1) FIGS. 1 and 2 are schematic views of a cooling cycle according to an embodiment of the present invention.

【0046】低圧容器型である能力可変型圧縮機12と
凝縮器2と流路制御手段である電動三方弁13と第一の
減圧手段であるキャピラリ7と第一の蒸発器3と第二の
減圧手段であるキャピラリ8と第二の蒸発器5とを備
え、能力可変型圧縮機12と凝縮器2と第一のキャピラ
リ7と第一の蒸発器3とで閉ループを形成するととも
に、第一のキャピラリ7と第一の蒸発器3に並列となる
ように第二のキャピラリ8と第二の蒸発器5とを接続し
てある。
A variable capacity compressor 12 which is a low pressure container type, a condenser 2, an electric three-way valve 13 which is a flow path control means, a capillary 7 which is a first pressure reducing means, a first evaporator 3 and a second evaporator 3. A capillary 8 as a pressure reducing means and a second evaporator 5 are provided, and a closed loop is formed by the variable capacity compressor 12, the condenser 2, the first capillary 7 and the first evaporator 3, and The second capillary 8 and the second evaporator 5 are connected so as to be in parallel with the capillary 7 and the first evaporator 3.

【0047】電動三方弁13は第一のキャピラリ7と第
二のキャピラリ8の入口側に設けられている。
The electric three-way valve 13 is provided on the inlet side of the first capillary 7 and the second capillary 8.

【0048】また、冷媒として例えば地球温暖化係数の
低いHC冷媒(プロパン、イソブタン)の可燃性冷媒を
封入している。
Further, a flammable refrigerant such as an HC refrigerant (propane, isobutane) having a low global warming potential is enclosed as the refrigerant.

【0049】以上の構成により、可燃性冷媒を用いる冷
却サイクルにあって、圧縮機12には低圧容器型を用い
るので、圧縮機12の運転中に容器内のガス冷媒比体積
が大きくなり容器内冷媒量を削減できる。
With the above construction, in a cooling cycle using a flammable refrigerant, a low-pressure container type is used for the compressor 12, so that the gas refrigerant specific volume in the container increases during the operation of the compressor 12 and The amount of refrigerant can be reduced.

【0050】さらに、例えばイソブタンと鉱油の組み合
わせのように、相溶性のある冷凍機油を用いる場合には
低温高圧になると冷媒の溶解度が増加する。圧縮機12
容器内には多量の冷凍機油が存在しており、圧縮機12
運転中に容器内圧力が低くなることで冷凍機油への冷媒
とけ込みを軽減することができ、冷媒量の削減となる。
非相溶の冷凍機油を用いるならばさらによい。
Further, when a compatible refrigerating machine oil such as a combination of isobutane and mineral oil is used, the solubility of the refrigerant increases at low temperature and high pressure. Compressor 12
A large amount of refrigerating machine oil is present in the container, and the compressor 12
By reducing the pressure in the container during operation, it is possible to reduce the amount of refrigerant flowing into the refrigerating machine oil and reduce the amount of refrigerant.
It is even better if an incompatible refrigerator oil is used.

【0051】また、例えば区画の異なる被冷却物に対し
て、ダクト及び送風装置で冷却を行うのではなく、各々
専用に蒸発器を配置し冷却を行うシステムであり、区画
が分離している場合など、熱搬送時のエネルギ損失が少
なく効率的である。
Also, for example, in a system in which an evaporator is arranged for cooling only an object to be cooled in different compartments by a duct and an air blower, and the compartments are separated. As a result, there is little energy loss during heat transfer, which is efficient.

【0052】以下この冷却サイクルの動作について説明
を行う。
The operation of this cooling cycle will be described below.

【0053】能力可変型圧縮機12を作動することによ
り高温高圧の冷媒が吐出され、凝縮器2により凝縮液化
する。
By operating the variable capacity compressor 12, a high temperature and high pressure refrigerant is discharged and condensed by the condenser 2 to be liquefied.

【0054】液化した冷媒は、第一のキャピラリ7と第
二のキャピラリ8のいずれかに流れ込むように電動三方
弁13により切り替えられる。
The liquefied refrigerant is switched by the electric three-way valve 13 so as to flow into either the first capillary 7 or the second capillary 8.

【0055】冷媒は第一のキャピラリ7もしくは第二の
キャピラリ8で減圧された後、第一の蒸発器3もしくは
第二の蒸発器5へと流入し、蒸発気化することで被冷却
物の温度を下げる。気化した冷媒は、再び、圧縮機12
に吸入される。
The refrigerant is decompressed by the first capillary 7 or the second capillary 8 and then flows into the first evaporator 3 or the second evaporator 5 to evaporate and vaporize, and thereby the temperature of the object to be cooled. Lower. The vaporized refrigerant is returned to the compressor 12 again.
Inhaled into.

【0056】第一の蒸発器3と第二の蒸発器5は冷却が
必要である間、電動三方弁13により交互に冷媒を供給
されて、交互に冷却を行う。
While the first evaporator 3 and the second evaporator 5 are required to be cooled, the electric three-way valve 13 alternately supplies the refrigerant to cool them alternately.

【0057】冷却の停止は圧縮機12の停止により行わ
れる。
The cooling is stopped by stopping the compressor 12.

【0058】交互に冷却を行うために、被冷却物の冷却
負荷量が同等であるとすると、一つの蒸発器の冷却時間
の比率は最大でも50%となるので、一定速の圧縮機で
最大負荷を基準に冷却サイクルの設計を行うと通常負荷
の場合は冷凍能力が大きくなり運転時間が短くなり、従
来と同様の問題が生じるが、能力可変型圧縮機12を用
い、負荷に応じて圧縮機能力で冷却能力の調節を行うも
のである。
If the cooling loads of the objects to be cooled are equal in order to perform cooling alternately, the ratio of the cooling time of one evaporator is 50% at the maximum, so that it is the maximum at a constant speed compressor. When the cooling cycle is designed based on the load, the refrigerating capacity becomes large and the operating time becomes short in the case of the normal load, and the same problem as in the conventional case occurs, but the variable capacity compressor 12 is used to perform compression depending on the load. The cooling capacity is adjusted by the functional power.

【0059】圧縮能力可変はインバーター等の回転数制
御や、リニア圧縮機等のピストンストローク制御により
行われる。
The variable compression capacity is performed by controlling the number of revolutions of an inverter or the like and the piston stroke of a linear compressor or the like.

【0060】二つの蒸発器を交互に切り替えて冷却を行
い、負荷に応じて圧縮機能力で冷却能力の調節を行うの
で、一つの蒸発器で冷却を行う冷却システムや、複数の
蒸発器に平行して冷媒を流して冷却を行う冷却システム
に比べて、冷却システムの配管容量が削減でき、冷媒量
が削減可能となる。
Since two evaporators are alternately switched to perform cooling and the cooling capacity is adjusted by the compression functional force according to the load, a cooling system in which one evaporator is used for cooling and a plurality of evaporators are connected in parallel. The piping capacity of the cooling system can be reduced, and the amount of the refrigerant can be reduced, as compared with a cooling system in which the cooling medium is caused to flow for cooling.

【0061】なお、流路制御手段13は電動三方弁とし
たが、二つの二方弁を第一、第二のキャピラリの入口側
に設置しても同等の効果が得られる。
Although the flow path control means 13 is an electric three-way valve, the same effect can be obtained by installing two two-way valves on the inlet side of the first and second capillaries.

【0062】またなお、流路制御手段13は各々減圧手
段の入口側としたが、図2に示すように、第一の減圧手
段7と第二の減圧手段8とを一つにまとめて減圧手段1
4とし、減圧手段14の出口側に流路制御手段13を設
けるならば、冷媒減圧後の回路切り替えとなるので流路
制御手段13の作動圧力差が小さく、小トルクでよいの
で小型化が可能であり、消費電力量の低減にもなる。
Although the flow path control means 13 is located on the inlet side of the pressure reducing means, respectively, as shown in FIG. 2, the first pressure reducing means 7 and the second pressure reducing means 8 are collectively reduced in pressure. Means 1
4, if the flow path control means 13 is provided on the outlet side of the pressure reducing means 14, the circuit is switched after the pressure of the refrigerant is reduced, so that the operating pressure difference of the flow path controlling means 13 is small and a small torque is sufficient, so that the size can be reduced. Therefore, the power consumption can be reduced.

【0063】なお、第一の蒸発器3で冷却を行う場合の
蒸発温度と第二の蒸発器5で冷却を行う場合の蒸発温度
を異ならせることで、被冷却物の設定温度が異なる場合
や、特に冷却スピードが要求され蒸発温度を下げたい場
合など、各々の蒸発器で適正化を図ることができる。設
定温度が異なる場合には各々の温度に見合って蒸発温度
を上昇させて、低圧縮比化による高効率な冷却サイクル
運転を行い、冷却スピードが要求される場合には冷却を
行う蒸発温度を下げることで可能となる。
By changing the evaporation temperature when the first evaporator 3 is used for cooling and when the second evaporator 5 is used for cooling, the set temperature of the object to be cooled may be different. Especially, when a cooling speed is required and the evaporation temperature is desired to be lowered, it is possible to optimize each evaporator. When the set temperature is different, the evaporation temperature is raised in proportion to each temperature to perform a highly efficient cooling cycle operation by lowering the compression ratio, and when the cooling speed is required, the evaporation temperature for cooling is lowered. This is possible.

【0064】またなお、第一の蒸発器3が高温側で第二
の蒸発器5が低温側であり、第二の蒸発器5出口に冷媒
逆流防止手段である逆止弁9を設けたので、各々の蒸発
器に温度差が生じて第二の蒸発器5に冷媒が流入するこ
とがなく、第一の蒸発器3での冷却運転中に冷媒が第二
の蒸発器5に寝込むことがないので冷媒量を低く押さえ
ることができる。
Since the first evaporator 3 is on the high temperature side and the second evaporator 5 is on the low temperature side, and the check valve 9 serving as the refrigerant backflow preventing means is provided at the outlet of the second evaporator 5. , The refrigerant does not flow into the second evaporator 5 due to the temperature difference between the respective evaporators, and the refrigerant may lie in the second evaporator 5 during the cooling operation in the first evaporator 3. Since there is no refrigerant, the amount of refrigerant can be kept low.

【0065】さらになお、電動三方弁13を圧縮機12
停止中は第二の蒸発器5への冷媒回路を閉止させるなら
ば、圧縮機12停止中に凝縮器2にあった高温のガス冷
媒が第二の蒸発器5へ流入することがなく、熱負荷の流
入がない。
Furthermore, the electric three-way valve 13 is connected to the compressor 12
If the refrigerant circuit to the second evaporator 5 is closed during the stop, the high temperature gas refrigerant in the condenser 2 does not flow into the second evaporator 5 while the compressor 12 is stopped, and the heat of There is no load inflow.

【0066】また、停止中に冷却システムの圧力が低く
バランスするので圧縮機12起動時の圧力差が小さく、
圧縮機モーターの低トルク化による低コスト、小型化が
可能である。
Further, since the pressure of the cooling system is low and balanced during the stop, the pressure difference at the time of starting the compressor 12 is small,
It is possible to reduce the cost and size by reducing the torque of the compressor motor.

【0067】また、次回起動時に第一の蒸発器3から運
転する場合は、冷媒が使用しない第二の蒸発器5内には
ほとんどなく、使用する第一の蒸発器3内に存在してい
るので、すぐに使用する第一の蒸発器3の温度が低下
し、冷却ロスが少ない。
When operating from the first evaporator 3 at the next startup, the refrigerant hardly exists in the unused second evaporator 5 but exists in the used first evaporator 3. Therefore, the temperature of the first evaporator 3 used immediately is lowered, and the cooling loss is small.

【0068】さらに、電動三方弁13は二回路切替のた
めソレノイド作動タイプであり、通電されると第一の蒸
発器3へ冷媒を流す方向に回路を切り替え、通電されな
い時は第二の蒸発器5へと冷媒を流す方向に回路を切り
替えるものでありシンプルで低コストな構成が可能であ
る。また、停止時に通電停止とするので消費電力量低減
になる。
Further, the electric three-way valve 13 is a solenoid operated type for switching two circuits, and when energized, the circuit is switched in the direction of flowing the refrigerant to the first evaporator 3 and when not energized, the second evaporator 3 is switched. The circuit is switched in the direction in which the refrigerant flows to 5, and a simple and low-cost configuration is possible. Further, since the energization is stopped at the time of stop, the power consumption is reduced.

【0069】なお、電動三方弁13は構造と制御が簡易
であり低コストなソレノイド駆動タイプとしたが、自己
保持型の例えばパルスモータなどのモータ駆動タイプと
するならば、電力消費を流路切り替え動作時のみとし、
特に省エネルギ面で効果があり、プランジャの衝突音が
無いので低騒音である。
Although the electric three-way valve 13 is of a solenoid drive type which is simple in structure and control and is low in cost, if it is a self-holding motor drive type such as a pulse motor, power consumption is switched to a flow path. Only during operation,
It is particularly effective in terms of energy saving and has low noise because there is no collision noise of the plunger.

【0070】またなお、凝縮器は電動ファンにより強制
冷却されるものであるならば凝縮能力の向上がはかれ
て、凝縮器の配管容量削減できるので、冷媒量削減に効
果がある。
If the condenser is forcibly cooled by an electric fan, the condensing capacity can be improved and the capacity of the condenser can be reduced, which is effective in reducing the amount of refrigerant.

【0071】さらになお、蒸発器は電動ファンにより強
制的に空気を循環させて被冷却物を冷却しても同様の効
果が得られる。
Furthermore, the same effect can be obtained even if the evaporator is forced to circulate air by an electric fan to cool the object to be cooled.

【0072】(実施の形態2)図3は本発明の他の実施
の形態による流路制御弁の概略図である。
(Second Embodiment) FIG. 3 is a schematic view of a flow path control valve according to another embodiment of the present invention.

【0073】流路制御手段13が第一の蒸発器3への冷
媒回路を開放する第一の位置15と第二の蒸発器5への
冷媒回路を開放する第二の位置16と冷媒回路を遮断す
る第三の位置17とを備えている。
The flow path control means 13 connects the first position 15 for opening the refrigerant circuit to the first evaporator 3 and the second position 16 for opening the refrigerant circuit to the second evaporator 5 and the refrigerant circuit. And a third position 17 for blocking.

【0074】また、回転軸18に偏芯して固定されたシ
ール部材19がシリンダ20内を回転移動し、第一、第
二、第三の位置にそれぞれ停止することで各位置に接続
された配管を閉止するものである。回転は図示しない駆
動手段と伝達手段により行われる。各位置への位置決め
は、例えばパルスモーターの駆動パルス数により制御さ
れる。
Further, the seal member 19 eccentrically fixed to the rotary shaft 18 rotationally moves in the cylinder 20 and is stopped at each of the first, second and third positions to be connected to each position. The pipe is closed. The rotation is performed by drive means and transmission means (not shown). Positioning at each position is controlled by the number of drive pulses of the pulse motor, for example.

【0075】なお、リミットスイッチ等の位置検出手段
によって位置決め図ってもよい。
Positioning may be performed by a position detecting means such as a limit switch.

【0076】以上のような流路制御手段13により、各
々蒸発器を切り替える場合は流路制御弁13の第一の位
置15と第二の位置16で行い、圧縮機12停止時は第
三の位置17で高低圧ガスカットを行うので、停止中に
いずれの蒸発器にも冷媒をため込まないので、次回圧縮
機12起動時に第一の蒸発器3、第二の蒸発器5のいず
れにもすぐに冷媒供給が可能であり、起動ロスが少な
い。
With the above-described flow path control means 13, when switching the evaporators, the flow path control valve 13 is operated at the first position 15 and the second position 16, and when the compressor 12 is stopped, the third position is set. Since the high and low pressure gas cut is performed at the position 17, the refrigerant is not accumulated in any of the evaporators during the stop, and therefore, when the compressor 12 is started next time, the first evaporator 3 and the second evaporator 5 are not charged. Refrigerant can be supplied immediately and there is little starting loss.

【0077】また、停止中に高温のガス冷媒がいずれの
蒸発器へも流入しないので熱負荷の流入を防止できる。
Further, since the high temperature gas refrigerant does not flow into any of the evaporators during stoppage, the heat load can be prevented from flowing in.

【0078】(実施の形態3)図4は、本発明の他の実
施の形態による冷蔵庫の概略図、図5は同実施の形態に
よるタイムチャートである。
(Third Embodiment) FIG. 4 is a schematic view of a refrigerator according to another embodiment of the present invention, and FIG. 5 is a time chart according to the same embodiment.

【0079】21は冷凍冷蔵庫箱体であり、上方部に比
較的高温の室である冷蔵室4を、下方部に比較的低温の
冷凍室6を配置してあり、例えばウレタンのような断熱
材で周囲と断熱して構成している。食品等の収納物の出
し入れは図示しない断熱ドアを介して行われる。
Reference numeral 21 denotes a freezer-refrigerator box, in which a refrigerating chamber 4 which is a relatively high temperature chamber is arranged in the upper part and a relatively low temperature freezing chamber 6 is arranged in the lower part. For example, a heat insulating material such as urethane. Insulated from the surroundings. Items such as foods are taken in and out via a heat insulating door (not shown).

【0080】冷蔵室4は冷蔵保存のために通常3〜5℃
で設定されているが、保鮮性向上のため若干低めの温
度、例えば0〜−3℃で設定されることもあり、収納物
によって、使用者が自由に上記のような温度設定を切り
替えることを可能としている場合もある。また、ワイン
や根野菜等の保鮮のために、例えば10℃前後の若干高
めの温度設定とする場合もある。
The refrigerator compartment 4 is usually 3 to 5 ° C. for refrigerated storage.
However, the temperature may be set at a slightly lower temperature, for example, 0 to -3 ° C to improve the freshness, and the user is free to switch the above temperature setting depending on the stored items. In some cases it is possible. Further, in order to keep wine, root vegetables and the like, the temperature may be set slightly higher, for example, around 10 ° C.

【0081】冷凍室6は冷蔵室4に比べて低い温度設定
としており、通常は冷凍保存のために−18〜−22℃
で設定されている。また、保鮮性向上のためより低温の
温度、例えば−25〜−30℃で設定されることもあ
る。
The freezing compartment 6 is set at a lower temperature than the refrigerating compartment 4, and is normally -18 to -22 ° C. for frozen storage.
Is set in. Further, in order to improve the freshness, it may be set at a lower temperature, for example, -25 to -30 ° C.

【0082】冷却サイクル22は能力可変型圧縮機12
と凝縮器2と第一の減圧手段であるキャピラリ7と第一
の蒸発器3とで閉ループを構成し、第二の減圧手段であ
るキャピラリ8と第二の蒸発器5と逆流防止手段である
逆止弁9を第一のキャピラリ7と第一の蒸発器3に並列
となるように接続してある。
The cooling cycle 22 is the variable capacity compressor 12
The condenser 2, the first pressure reducing means capillary 7 and the first evaporator 3 form a closed loop, and the second pressure reducing means capillary 8 and the second evaporator 5 and the backflow prevention means. A check valve 9 is connected to the first capillary 7 and the first evaporator 3 in parallel.

【0083】流路制御手段である電動三方弁13は第一
のキャピラリ7と第二のキャピラリ8の入口側に設けら
れている。
The electric three-way valve 13 which is the flow path control means is provided on the inlet side of the first capillary 7 and the second capillary 8.

【0084】電動三方弁13はソレノイド作動タイプで
あり、通電されると第一の蒸発器3へ冷媒を流す方向に
回路を切り替え、通電されない時は第二の蒸発器5へと
冷媒を流す方向に回路を切り替えるものである。
The electric three-way valve 13 is a solenoid operated type, and when energized, the circuit is switched to flow the refrigerant to the first evaporator 3, and when not energized, the refrigerant flows to the second evaporator 5. The circuit is switched to.

【0085】第一の蒸発器3は冷蔵室4内の、例えば冷
蔵室4奥面に配設されており、近傍には冷蔵室4の室内
空気を第一の蒸発器3に通過させて循環させる第一の電
動ファン23が設けてある。
The first evaporator 3 is disposed inside the refrigerating compartment 4, for example, at the inner surface of the refrigerating compartment 4, and the indoor air in the refrigerating compartment 4 is passed to the first evaporator 3 for circulation in the vicinity thereof. There is provided a first electric fan 23.

【0086】また、第二の蒸発器5は冷凍室6内の、例
えば冷凍室6奥面に配設されており、近傍には冷凍室6
の室内空気を第二の蒸発器5を通過させて循環させる第
二の電動ファン24が設けてある。
The second evaporator 5 is disposed inside the freezing compartment 6, for example, at the inner surface of the freezing compartment 6 and is adjacent to the freezing compartment 6.
A second electric fan 24 is provided to circulate the room air of (1) through the second evaporator 5 and circulate.

【0087】圧縮機12と凝縮器2と電動三方弁13と
逆止弁9とは可燃性冷媒使用での安全性向上の面から冷
凍冷蔵庫箱体21内での配管接続箇所削減のために機械
室25に配設されている。
The compressor 12, the condenser 2, the electric three-way valve 13, and the check valve 9 are mechanical parts for reducing the number of pipe connection points in the refrigerator / freezer box 21 from the viewpoint of improving safety when using a flammable refrigerant. It is arranged in the chamber 25.

【0088】圧縮機12は可燃性冷媒使用量削減のため
に低圧容器型とし、各蒸発器から戻ってくる冷媒は圧縮
機吸入管26を通って、圧縮機12内空間へと放出され
た後、圧縮機構部27に吸入され圧縮機吐出管28を通
じて吐出される構成である。
The compressor 12 is of a low pressure container type in order to reduce the amount of flammable refrigerant used, and the refrigerant returning from each evaporator passes through the compressor suction pipe 26 and is discharged into the internal space of the compressor 12. , And is sucked into the compression mechanism portion 27 and discharged through the compressor discharge pipe 28.

【0089】さらに圧縮機12は例えばインバーターに
よる回転数制御で冷媒循環量を制御し冷凍能力を変化さ
せることができる能力可変型としてある。
Further, the compressor 12 is of a variable capacity type which can change the refrigerating capacity by controlling the refrigerant circulation amount by controlling the rotation speed by an inverter, for example.

【0090】また、冷蔵室4と冷凍室6には図示しない
室内温度を検知する、例えばサーミスタである温度検知
手段を設けてあり、能力可変型圧縮機12と電動三方弁
13と第一の電動ファン23と第二の電動ファン24と
を制御する図示しない制御手段とを備えている。
Further, the refrigerating room 4 and the freezing room 6 are provided with temperature detecting means (not shown) for detecting a room temperature, for example, a thermistor, and the variable capacity compressor 12, the electric three-way valve 13 and the first electric motor are provided. A control means (not shown) for controlling the fan 23 and the second electric fan 24 is provided.

【0091】以上のように構成された冷蔵庫について、
その動作を説明する。
Regarding the refrigerator constructed as described above,
The operation will be described.

【0092】冷蔵室4の温度が上昇すると、冷蔵室の温
度検知手段が、所定の温度(t1u)を超えることを検
知する。制御手段はこの信号を受けて、圧縮機12と第
一の電動ファン23とを作動し、電動三方弁13の通電
を行う。
When the temperature of the refrigerating compartment 4 rises, the temperature detecting means of the refrigerating compartment detects that the temperature exceeds a predetermined temperature (t1u). Upon receiving this signal, the control means operates the compressor 12 and the first electric fan 23 to energize the electric three-way valve 13.

【0093】圧縮機12の動作により吐出された高温高
圧の冷媒は、凝縮器2により凝縮液化し、電動三方弁1
3により、第一のキャピラリ7で減圧されて第一の蒸発
器3へと流入する。
The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 12 is condensed and liquefied by the condenser 2, and the electric three-way valve 1
3, the pressure is reduced in the first capillary 7 and flows into the first evaporator 3.

【0094】このとき制御手段により圧縮機12は比較
的低い冷凍能力となる低回転運転(r1)となるようイ
ンバーター制御される。
At this time, the control means controls the compressor 12 by the inverter so as to perform the low rotation operation (r1) with a relatively low refrigerating capacity.

【0095】第一の電動ファン23の作動により冷蔵室
4内の空気が積極的に第一の蒸発器3と熱交換すること
で、冷媒は第一の蒸発器3内で蒸発気化する。気化した
冷媒は、再び、圧縮機12に吸入される。熱交換された
空気はより低温の空気となり、室内の温度を下げる。
The air in the refrigerating chamber 4 positively exchanges heat with the first evaporator 3 by the operation of the first electric fan 23, so that the refrigerant evaporates and vaporizes in the first evaporator 3. The vaporized refrigerant is sucked into the compressor 12 again. The heat-exchanged air becomes cooler air, lowering the temperature in the room.

【0096】冷蔵室4内の温度が低下し、温度検知手段
が所定の温度(t1l)より低くなることを検知すると
制御手段により圧縮機12と第一の電動ファン23とを
停止し、電動三方弁13を通電停止とする。
When the temperature inside the refrigerating chamber 4 is lowered and the temperature detecting means detects that the temperature is lower than the predetermined temperature (t1l), the control means stops the compressor 12 and the first electric fan 23, and the electric three-way system is operated. The valve 13 is de-energized.

【0097】例えば3℃の比較的高温に設定された冷蔵
室4をより高い成績係数で運転可能な高蒸発温度で冷却
を行うものであるが、圧縮機12の能力可変により適度
な冷凍能力での高蒸発温度化が可能である。
For example, the refrigerating chamber 4 set at a relatively high temperature of 3 ° C. is cooled at a high evaporation temperature that can be operated with a higher coefficient of performance. It is possible to raise the evaporation temperature of.

【0098】また、蒸発温度の設定は圧縮機12の能力
可変幅により決定し、可変幅が大きいほどより高蒸発温
度化が可能である。
The setting of the evaporation temperature is determined by the variable width of the capacity of the compressor 12, and the larger the variable width, the higher the evaporation temperature can be made.

【0099】従来例では0℃〜−5℃の蒸発温度で冷却
を行っているが、あまりに圧縮機12の可変幅が大きく
なるため、圧縮機可変幅全域で高効率を維持することが
難しく、また、コスト、信頼性の面でも不利である。
In the conventional example, the cooling is performed at the evaporation temperature of 0 ° C. to −5 ° C., but since the variable width of the compressor 12 becomes too large, it is difficult to maintain high efficiency over the entire variable width of the compressor. Also, it is disadvantageous in terms of cost and reliability.

【0100】そこで、圧縮機12の可変幅として2〜3
倍程度として、蒸発温度は低温側で−30℃程度、高温
側で−10℃〜−15℃程度の設定とする。
Therefore, the variable width of the compressor 12 is set to 2-3.
About twice, the evaporation temperature is set to about −30 ° C. on the low temperature side and about −10 ° C. to −15 ° C. on the high temperature side.

【0101】また、冷凍室6の温度が上昇すると、冷凍
室の温度検知手段が、所定の温度(t2u)を超えるこ
とを検知する。制御手段はこの信号を受けて、圧縮機1
2と第二の電動ファン24とを作動し、電動三方弁13
の通電停止を行う。
When the temperature of the freezing compartment 6 rises, the temperature detecting means of the freezing compartment detects that the temperature exceeds a predetermined temperature (t2u). Upon receipt of this signal, the control means receives the compressor 1
2 and the second electric fan 24 are operated, and the electric three-way valve 13
Turn off the power.

【0102】このとき制御手段により圧縮機12は比較
的高い冷凍能力となる高回転運転(r2)となるようイ
ンバーター制御される。
At this time, the control means carries out the inverter control of the compressor 12 so as to perform the high rotation operation (r2) which provides a relatively high refrigerating capacity.

【0103】冷媒は電動三方弁13により、第二のキャ
ピラリ8で減圧されて第二の蒸発器5へと流入する。
The refrigerant is decompressed by the second capillary 8 by the electric three-way valve 13 and flows into the second evaporator 5.

【0104】第二の電動ファン23の作動により冷凍室
6が冷却されて、温度検知手段が所定の温度(t2l)
より低くなることを検知すると制御手段により圧縮機1
2と第二の電動ファン24とを停止する。
The freezing compartment 6 is cooled by the operation of the second electric fan 23, and the temperature detecting means is set to a predetermined temperature (t2l).
When the lowering is detected, the control means causes the compressor 1
2 and the second electric fan 24 are stopped.

【0105】以上の動作を繰り返して温度調節を行うも
のである。
The above operation is repeated to adjust the temperature.

【0106】次に、冷蔵室4と冷凍室6との冷却タイミ
ングについて図3のタイムチャートを元に説明する。
Next, the cooling timing of the refrigerating room 4 and the freezing room 6 will be described with reference to the time chart of FIG.

【0107】冷蔵室の温度検知手段が冷蔵室の温度上昇
を検知し、前述のように冷却を開始する(T1)。
The refrigerating compartment temperature detecting means detects an increase in the refrigerating compartment temperature and starts cooling as described above (T1).

【0108】冷凍室の温度検知手段が冷凍室6の温度上
昇を検知しても、冷蔵室4が所定の温度(t1l)に達
するまで優先的に冷却を行う(T2)。
Even when the temperature detecting means of the freezer compartment detects the temperature rise of the freezer compartment 6, the refrigerating compartment 4 is preferentially cooled until it reaches a predetermined temperature (t1l) (T2).

【0109】冷蔵室の温度検知手段が所定の温度(t1
l)以下となったことを検知し、かつ、このとき冷凍室
の温度検知手段が所定の温度(t2u)以上であること
を検知したならば、制御手段により冷凍室6の冷却に切
り替える。
When the temperature detecting means in the refrigerating room is set to a predetermined temperature (t1
l) When it is detected that the temperature is equal to or lower than that, and when the temperature detecting means of the freezing compartment at this time detects that the temperature is equal to or higher than a predetermined temperature (t2u), the control means switches to cooling of the freezing compartment 6.

【0110】制御手段により、電動三方弁13が切り替
えられて、第二の蒸発器5に冷媒が供給され、第一の蒸
発器3への冷媒供給が停止される。同時に第一の電動フ
ァン23は停止し、第二の電動ファン24が作動する。
圧縮機12はインバーター制御により低回転数(r1)
から高回転数(r2)へと冷凍能力を変化させる(T
3)。
By the control means, the electric three-way valve 13 is switched, the refrigerant is supplied to the second evaporator 5, and the refrigerant supply to the first evaporator 3 is stopped. At the same time, the first electric fan 23 stops and the second electric fan 24 operates.
The compressor 12 has a low rotation speed (r1) by inverter control.
To a high rotation speed (r2) (T
3).

【0111】冷凍室6の冷却中に、再び冷蔵室4が昇温
し、冷蔵室の温度検知手段が所定の温度(t1u)以上
を検知すると、制御手段により電動三方弁13が通電さ
れ第一の蒸発器3に冷媒が供給され、第二の蒸発器5へ
の冷媒供給が停止される。同時に第二の電動ファン24
は停止し、第一の電動ファン23が作動する。圧縮機1
2はインバーター制御により高回転数(r2)から低回
転数(r1)へと冷凍能力を変化させる(T4)。
While the freezer compartment 6 is being cooled, the temperature of the refrigerating compartment 4 rises again, and when the temperature detecting means in the refrigerating compartment detects a predetermined temperature (t1u) or higher, the control means energizes the electric three-way valve 13. The refrigerant is supplied to the evaporator 3 and the refrigerant supply to the second evaporator 5 is stopped. At the same time, the second electric fan 24
Is stopped and the first electric fan 23 operates. Compressor 1
2 changes the refrigerating capacity from the high speed (r2) to the low speed (r1) by the inverter control (T4).

【0112】冷蔵室4が所定の温度(t1l)に達する
まで優先的に冷却を行い、冷蔵室の温度検知手段が所定
の温度(t1l)以下を検知したならば、前述のように
再度冷却の切り替えが行われ冷凍室6が冷却される(T
5)。
The refrigerating chamber 4 is preferentially cooled until it reaches a predetermined temperature (t1l), and if the temperature detecting means of the refrigerating chamber detects a temperature equal to or lower than the predetermined temperature (t1l), it is cooled again as described above. Switching is performed and the freezer compartment 6 is cooled (T
5).

【0113】冷凍室6が冷却されて温度検知手段が所定
の温度(t2l)以下を検知し、かつこのときの冷蔵室
の温度検知手段が所定の温度(t1u)以下であること
を検知したならば、制御手段により圧縮機12、第二の
電動ファン23を停止し、電動三方弁13を通電停止と
する(T6)。
If the freezing compartment 6 is cooled and the temperature detecting means detects a temperature equal to or lower than a predetermined temperature (t2l), and the temperature detecting means in the refrigerating compartment at this time detects that the temperature is equal to or lower than the predetermined temperature (t1u). For example, the compressor 12 and the second electric fan 23 are stopped by the control means, and the electric three-way valve 13 is deenergized (T6).

【0114】再び各室の温度が上昇し、所定の温度以上
(t1u、t2u)となると、同様に冷却が行われる。
When the temperature of each chamber rises again and becomes equal to or higher than a predetermined temperature (t1u, t2u), cooling is similarly performed.

【0115】以上のことから、可燃性冷媒を用いる場合
に、冷蔵室4と冷凍室6とを交互に冷却を行い、第一の
蒸発器3と第二の蒸発器5とに交互に冷媒を供給するの
で、冷蔵室4の冷却時に比較的高い蒸発温度として、圧
縮機12の成績係数を向上させることができる。さら
に、インバーター等の能力可変制御により、冷蔵室4の
比較的高い蒸発温度で冷却時の圧縮機冷凍能力を低減す
ることができるので、冷蔵室4冷却時に必要冷媒量が増
加することがなく、冷媒封入量を低減することができ
る。
From the above, when a flammable refrigerant is used, the refrigerating chamber 4 and the freezing chamber 6 are alternately cooled, and the refrigerant is alternately supplied to the first evaporator 3 and the second evaporator 5. Since it is supplied, the coefficient of performance of the compressor 12 can be improved by setting a relatively high evaporation temperature when the refrigerating chamber 4 is cooled. Further, the capacity variable control of the inverter or the like makes it possible to reduce the compressor refrigerating capacity at the time of cooling at a relatively high evaporation temperature of the refrigerating room 4, so that the amount of refrigerant required when cooling the refrigerating room 4 does not increase, The amount of refrigerant sealed can be reduced.

【0116】冷凍冷蔵庫箱体21を温度帯によって分割
し、各温度帯を冷却する蒸発器に交互に冷媒を供給して
冷却を行うので、従来の一つの蒸発器のみの冷却システ
ムや、複数の蒸発器に平行して冷媒を流して冷却を行う
冷却システムに比べて、小型冷凍庫と、小型冷蔵庫を併
せたようなものであるので冷媒量の削減が可能となる。
The freezer-refrigerator box 21 is divided by temperature zones, and the refrigerant is alternately supplied to the evaporators for cooling each temperature zone for cooling, so that the conventional cooling system with only one evaporator or a plurality of evaporators is used. Compared to a cooling system in which a refrigerant flows in parallel with an evaporator for cooling, it is like a small freezer and a small refrigerator, so the amount of refrigerant can be reduced.

【0117】さらには圧縮機12の能力可変により各室
の冷凍能力差を抑えることができるので大きな冷媒余剰
が発生することを抑制でき、余剰冷媒を蒸発器に貯留す
ることがないので、冷媒量が削減可能である。
Furthermore, since the difference in refrigerating capacity between the chambers can be suppressed by varying the capacity of the compressor 12, it is possible to suppress the generation of a large refrigerant surplus, and the surplus refrigerant is not stored in the evaporator. Can be reduced.

【0118】また、高蒸発温度化による冷凍能力の増大
を抑制できるので、第一の蒸発器3を極度に大型化する
ことなく冷凍システムを構成できる。
Further, since the increase in refrigerating capacity due to the higher evaporation temperature can be suppressed, the refrigerating system can be constructed without making the first evaporator 3 extremely large.

【0119】さらに、冷蔵室4の冷却に用いる冷凍能力
が抑制できるので冷蔵室4の冷却時間が非常に短くなる
ことがなく、圧縮機14の起動ロスや冷却切り替えロス
が比率的に低減でき効率低下を防止する。
Further, since the refrigerating capacity used for cooling the refrigerating compartment 4 can be suppressed, the cooling time of the refrigerating compartment 4 does not become very short, and the start-up loss of the compressor 14 and the cooling switching loss can be reduced in a ratio. Prevent decline.

【0120】なお、冷蔵室4と冷凍室6の冷却タイミン
グについての説明において冷蔵室4の冷却を優先した
が、冷凍室6の温度を優先して冷却しても同様の効果が
得られる。
Although the cooling of the refrigerating compartment 4 is prioritized in the description of the cooling timing of the refrigerating compartment 4 and the freezing compartment 6, the same effect can be obtained by prioritizing the cooling of the freezing compartment 6.

【0121】またなお、冷凍サイクルの冷媒に可燃性自
然冷媒R600aを用いることにより、通常使用されて
いる冷媒R134aと比べて同等冷凍サイクルにおける
圧縮機冷凍能力を抑制することが可能である。
Furthermore, by using the flammable natural refrigerant R600a as the refrigerant of the refrigeration cycle, it is possible to suppress the compressor refrigerating capacity in the same refrigeration cycle as compared with the normally used refrigerant R134a.

【0122】圧縮機12のインバーター能力可変制御に
おいて、可変幅を高回転側にシフトすることが可能であ
り、能力可変幅として極端に低能力域を使用することな
く、回転数低下による効率低下や、給油量の低下による
信頼性低下を防止できる。
In the variable inverter capacity control of the compressor 12, it is possible to shift the variable width to the high rotation side, and without lowering the extremely low capacity range as the variable capacity width, the efficiency decrease due to the decrease in the rotation speed or It is possible to prevent the reliability from being lowered due to the decrease in the amount of oil supply.

【0123】(実施の形態4)図6と図7に本発明の他
の実施の形態による冷蔵庫の断面概略図を示す。
(Fourth Embodiment) FIGS. 6 and 7 are schematic sectional views of a refrigerator according to another embodiment of the present invention.

【0124】図6に示すように、第一の蒸発器3と圧縮
機12との間に接続された第一のサクションパイプ29
と第一の減圧手段であるキャピラリ7とを熱交換可能に
断熱壁中に配設し、第二の蒸発器5と圧縮機12との間
に接続された第二のサクションパイプ30と第二の減圧
手段であるキャピラリ8とを熱交換可能に断熱壁中に配
設する。
As shown in FIG. 6, a first suction pipe 29 connected between the first evaporator 3 and the compressor 12.
And the capillary 7, which is the first depressurizing means, are arranged in the heat insulating wall so that heat can be exchanged, and the second suction pipe 30 and the second suction pipe 30 connected between the second evaporator 5 and the compressor 12 are provided. The capillary 8 which is the depressurizing means is disposed in the heat insulating wall so that heat can be exchanged.

【0125】逆流防止手段9は第二のサクションパイプ
30下流側に設けてあり、断熱材中に配置することがな
いので冷媒リーク時の安全性を向上させる。さらに、メ
ンテナンス性についても向上させることができる。
Since the backflow preventing means 9 is provided on the downstream side of the second suction pipe 30 and is not arranged in the heat insulating material, the safety at the time of refrigerant leakage is improved. Furthermore, maintainability can also be improved.

【0126】熱交換部は束ねてテープ等により密接させ
て断熱材が回り込まないようにしても良いが、半田付け
により熱伝達を向上させることが望ましい。
The heat exchanging portions may be bundled and brought into close contact with each other by a tape or the like so that the heat insulating material does not wrap around, but it is desirable to improve heat transfer by soldering.

【0127】また、十分に熱交換を行わさせるために熱
交換距離を長くとるほうが有利であるが、長すぎるとサ
クションパイプ21の圧損が大きくなり効率低下となる
ので1000mmから2000mmとする。
Further, it is advantageous to make the heat exchange distance long in order to sufficiently perform the heat exchange, but if it is too long, the pressure loss of the suction pipe 21 will be large and the efficiency will be lowered, so it is made 1000 mm to 2000 mm.

【0128】これにより、第一の蒸発器3を出た冷媒が
第一のサクションパイプ29を通って圧縮機12へと戻
るまでに、冷媒が通過している第一のキャピラリ7と熱
交換を行って、圧縮機吸い込み接続配管の温度を上昇さ
せるので結露を防止でき、水たれ、錆を防止できる。
As a result, by the time the refrigerant exiting the first evaporator 3 returns to the compressor 12 through the first suction pipe 29, heat exchange with the first capillary 7 through which the refrigerant passes. By doing so, the temperature of the compressor suction connection pipe is raised, so that dew condensation can be prevented, and water dripping and rust can be prevented.

【0129】また、第二の蒸発器5を出た冷媒も同様に
第二のキャピラリ8と第二のサクションパイプ30が熱
交換を行うので圧縮機吸い込み接続配管の温度を上昇さ
せる。
Similarly, the refrigerant discharged from the second evaporator 5 also exchanges heat between the second capillary 8 and the second suction pipe 30, so that the temperature of the compressor suction connection pipe is increased.

【0130】また、キャピラリを冷却することから、凝
縮器2で過冷却をとらなくても冷却サイクル22の冷凍
効果を増加させて冷却性能の向上を図ることが可能であ
り、過冷却をとる場合に比べて冷媒量の削減につなが
る。
Further, since the capillaries are cooled, it is possible to increase the refrigerating effect of the cooling cycle 22 and improve the cooling performance without supercooling the condenser 2. This leads to a reduction in the amount of refrigerant compared to.

【0131】なお、図7に示す用に第一、第二のサクシ
ョンパイプを一つにまとめたサクションパイプ31が第
一の蒸発器と第二の蒸発器の出口側合流後に位置してお
り、第一の減圧手段であるキャピラリ7と第二の減圧手
段であるキャピラリ8とを熱交換可能に断熱壁中に配設
してある。また、逆流防止手段9はサクションパイプ3
1上流側に設けて断熱材中に配置してある。
As shown in FIG. 7, the suction pipe 31 in which the first and second suction pipes are combined is located after the outlet side of the first evaporator and the second evaporator are joined, The capillary 7 which is the first depressurizing means and the capillary 8 which is the second depressurizing means are arranged in the heat insulating wall so that heat exchange is possible. Further, the backflow preventing means 9 is the suction pipe 3
1 Provided on the upstream side and arranged in the heat insulating material.

【0132】これにより、サクションパイプ31とキャ
ピラリの断熱材中の配管配設取り回しが簡易であり低コ
ストとなる。
As a result, the piping arrangement in the heat insulating material of the suction pipe 31 and the capillaries is easy and the cost is low.

【0133】また、常に閉止している回路側のキャピラ
リも予冷しているので、冷蔵室4と冷凍室6の冷却切り
替え時にキャピラリの流量を確保でき切り替え性がよ
く、効率を向上させることができる。
Further, since the capillaries on the circuit side, which are always closed, are also pre-cooled, the flow rate of the capillaries can be secured at the time of switching the cooling between the refrigerating chamber 4 and the freezing chamber 6, and the switchability is good, and the efficiency can be improved. .

【0134】[0134]

【発明の効果】以上のように本発明によれば、可燃性冷
媒の冷媒量削減により可燃性冷媒使用時の安全性を高め
ることが可能な冷却サイクル及び冷蔵庫を提供すること
ができる。
As described above, according to the present invention, it is possible to provide a refrigerating cycle and a refrigerator which can enhance the safety when a flammable refrigerant is used by reducing the amount of the flammable refrigerant.

【0135】また、密閉空間内への配管接続箇所削減に
よる可燃性冷媒リーク時の安全性を高めることが可能な
冷却サイクル及び冷蔵庫を提供することができる。
Further, it is possible to provide a cooling cycle and a refrigerator which can enhance the safety at the time of flammable refrigerant leakage by reducing the number of pipe connections to the closed space.

【0136】また、成績係数の向上と過渡特性改善によ
る効率向上による省エネルギ化を図ることが可能な冷却
サイクル及び冷蔵庫を提供することができる。
It is also possible to provide a cooling cycle and a refrigerator that can save energy by improving the coefficient of performance and improving the transient characteristics to improve efficiency.

【0137】無効容積である冷却サイクルの容量を削減
することで収納スペースの拡大を図ることが可能な冷却
サイクル及び冷蔵庫を提供することができる。
By reducing the capacity of the cooling cycle which is an ineffective volume, it is possible to provide a cooling cycle and a refrigerator that can expand the storage space.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態による冷却サイクル概略
FIG. 1 is a schematic diagram of a cooling cycle according to an embodiment of the present invention.

【図2】同実施の形態による冷却サイクル概略図FIG. 2 is a schematic diagram of a cooling cycle according to the same embodiment.

【図3】他の実施の形態による流路制御手段の概略図FIG. 3 is a schematic view of flow path control means according to another embodiment.

【図4】他の実施の形態による冷蔵庫の概略図FIG. 4 is a schematic view of a refrigerator according to another embodiment.

【図5】他の実施の形態による冷蔵庫の運転タイムチャ
ート
FIG. 5 is an operation time chart of a refrigerator according to another embodiment.

【図6】他の実施の形態による冷蔵庫の断面概略図FIG. 6 is a schematic sectional view of a refrigerator according to another embodiment.

【図7】同実施の形態による冷蔵庫の断面概略図FIG. 7 is a schematic cross-sectional view of the refrigerator according to the same embodiment.

【図8】従来の冷凍冷蔵庫の断面概略図FIG. 8 is a schematic sectional view of a conventional refrigerator-freezer.

【符号の説明】[Explanation of symbols]

2 凝縮器 3 第一の蒸発器 4 冷蔵室 5 第二の蒸発器 6 冷凍室 7 第一の減圧手段 8 第二の減圧手段 9 逆流防止手段 12 低圧容器型の能力可変型圧縮機 13 流路制御手段 14 減圧手段 15 第一の位置 16 第二の位置 17 第三の位置 25 機械室 29 第一のサクションパイプ 30 第二のサクションパイプ 31 サクションパイプ 2 condenser 3 first evaporator 4 Refrigerator 5 Second evaporator 6 freezer 7 First decompression means 8 Second decompression means 9 Backflow prevention means 12 Low-pressure container type variable capacity compressor 13 Flow path control means 14 Decompression means 15 First position 16 Second position 17 Third position 25 Machine room 29 First suction pipe 30 Second suction pipe 31 Suction pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜野 泰樹 滋賀県草津市野路東2丁目3番1−2号 松下冷機株式会社内 (72)発明者 斎藤 哲哉 滋賀県草津市野路東2丁目3番1−2号 松下冷機株式会社内 Fターム(参考) 3L045 AA01 AA03 BA01 CA02 DA02 EA01 GA07 HA02 HA07 JA11 JA15 JA16 LA09 NA03 PA01 PA04 PA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuki Hamano             2-3-3 Nojihigashi, Kusatsu City, Shiga Prefecture             Within Matsushita Cold Machinery Co., Ltd. (72) Inventor Tetsuya Saito             2-3-3 Nojihigashi, Kusatsu City, Shiga Prefecture             Within Matsushita Cold Machinery Co., Ltd. F term (reference) 3L045 AA01 AA03 BA01 CA02 DA02                       EA01 GA07 HA02 HA07 JA11                       JA15 JA16 LA09 NA03 PA01                       PA04 PA05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、凝縮器と、流路制御手段と、
第一の減圧手段と、第一の蒸発器と、第二の減圧手段
と、第二の蒸発器と、逆止弁と、可燃性冷媒を封入して
なる冷却サイクルと、冷蔵室と、冷凍室と、前記冷蔵室
内の空気を前記第一の蒸発器を通過させて循環させる第
一の電動ファンと、前記冷凍室内の空気を前記第二の蒸
発器を通過させて循環させる第二の電動ファンとを備え
たものであって、前記冷蔵室に高温側の冷却器として前
記第一の蒸発器を設け、前記冷凍室に低温側の冷却器と
して前記第二の蒸発器を設け、前記圧縮機と凝縮器と第
一の減圧手段と第一の蒸発器とで閉ループを形成すると
ともに、前記第一の減圧手段と第一の蒸発器に並列とな
るように前記第二の減圧手段と第二の蒸発器と逆止弁と
を接続し、前記流路制御手段を第一の減圧手段と第二の
減圧手段の入口側に配設して前記第一の蒸発器と前記第
二の蒸発器への冷媒供給を交互に切り替えるとともに前
記第一の電動ファンと前記第二の電動ファンを交互に作
動させて前記冷蔵室と前記冷凍室を交互に冷却し、かつ
前記圧縮機を低圧容器型とすることで前記冷却サイクル
への前記可燃性冷媒の封入量を少冷媒化したことを特徴
とする冷蔵庫。
1. A compressor, a condenser, a flow path control means,
A first decompression means, a first evaporator, a second decompression means, a second evaporator, a check valve, a cooling cycle in which a flammable refrigerant is sealed, a refrigerating chamber, and a freezer. Chamber, a first electric fan that circulates air in the refrigerating chamber through the first evaporator, and a second electric fan that circulates air in the freezing chamber through the second evaporator And a fan, wherein the refrigerating compartment is provided with the first evaporator as a high temperature side cooler, and the freezing compartment is provided with the second evaporator as a low temperature side cooler. Forming a closed loop with the machine, the condenser, the first depressurizing means and the first evaporator, and the second depressurizing means and the second evaporator so as to be in parallel with the first depressurizing means and the first evaporator. The second evaporator and the check valve are connected, and the flow path control means is provided on the inlet side of the first pressure reducing means and the second pressure reducing means. The cooling chamber and the freezer are installed by alternately switching the refrigerant supply to the first evaporator and the second evaporator and operating the first electric fan and the second electric fan alternately. A refrigerator characterized in that the amount of the flammable refrigerant enclosed in the cooling cycle is reduced by cooling the chambers alternately and making the compressor a low-pressure container type.
【請求項2】 可燃性冷媒としてイソブタンを用い、圧
縮機容器内の冷凍機油に前記イソブタンに対して相溶性
のある鉱油を用いることを特徴とする請求項1記載の冷
蔵庫。
2. The refrigerator according to claim 1, wherein isobutane is used as the flammable refrigerant, and mineral oil compatible with the isobutane is used as refrigerating machine oil in the compressor container.
JP2002370369A 2002-12-20 2002-12-20 Refrigerator Pending JP2003207250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370369A JP2003207250A (en) 2002-12-20 2002-12-20 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370369A JP2003207250A (en) 2002-12-20 2002-12-20 Refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29350698A Division JP3461736B2 (en) 1998-10-15 1998-10-15 refrigerator

Publications (1)

Publication Number Publication Date
JP2003207250A true JP2003207250A (en) 2003-07-25

Family

ID=27655983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370369A Pending JP2003207250A (en) 2002-12-20 2002-12-20 Refrigerator

Country Status (1)

Country Link
JP (1) JP2003207250A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111519A1 (en) * 2004-05-18 2005-11-24 Matsushita Electric Industrial Co., Ltd. Refrigerator
CN100462654C (en) * 2004-05-18 2009-02-18 松下电器产业株式会社 Refrigerator
EP2019275A4 (en) * 2006-05-15 2010-07-28 Hoshizaki Electric Co Ltd Cooling storage compartment and its operating method
DE102010015165A1 (en) * 2010-04-16 2011-10-20 Liebherr-Hausgeräte Ochsenhausen GmbH Cooling and refrigerating device has refrigerant circuit with multiple dampers that are used for cooling different compartments, where coolant is supplied to dampers through compressor, and dampers are charged with coolant
JP2012007799A (en) * 2010-06-24 2012-01-12 Sanyo Electric Co Ltd Cooling storage
JP2019109040A (en) * 2019-02-14 2019-07-04 三菱電機株式会社 refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111519A1 (en) * 2004-05-18 2005-11-24 Matsushita Electric Industrial Co., Ltd. Refrigerator
CN100462654C (en) * 2004-05-18 2009-02-18 松下电器产业株式会社 Refrigerator
EP2019275A4 (en) * 2006-05-15 2010-07-28 Hoshizaki Electric Co Ltd Cooling storage compartment and its operating method
US9080805B2 (en) 2006-05-15 2015-07-14 Hoshizaki Denki Kabushiki Kaisha Cooling storage cabinet with dual evaporators and an inverter compressor
DE102010015165A1 (en) * 2010-04-16 2011-10-20 Liebherr-Hausgeräte Ochsenhausen GmbH Cooling and refrigerating device has refrigerant circuit with multiple dampers that are used for cooling different compartments, where coolant is supplied to dampers through compressor, and dampers are charged with coolant
JP2012007799A (en) * 2010-06-24 2012-01-12 Sanyo Electric Co Ltd Cooling storage
JP2019109040A (en) * 2019-02-14 2019-07-04 三菱電機株式会社 refrigerator

Similar Documents

Publication Publication Date Title
CN1289033B (en) Refrigerator
US10539357B2 (en) Refrigerator and method of controlling the same
JP3461736B2 (en) refrigerator
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
JP2000230766A (en) Cooling cycle and refrigerator
JP4178646B2 (en) refrigerator
JP3906637B2 (en) Freezer refrigerator
JP3576040B2 (en) Cooling systems and refrigerators
JP3847499B2 (en) Two-stage compression refrigeration system
JP4608790B2 (en) refrigerator
JP2003207250A (en) Refrigerator
JP2008138979A (en) Refrigeration system
JP2006125843A (en) Cooling cycle and refrigerator
JP5901775B2 (en) Refrigeration equipment
JP4169080B2 (en) Freezer refrigerator
JP3404313B2 (en) refrigerator
JP2003207247A (en) Refrigerator
JP4284789B2 (en) refrigerator
JP2005098605A (en) Refrigerator
JP4104519B2 (en) Refrigeration system
JP2001355955A (en) Refrigerator
KR101672625B1 (en) A Reverse cyclic defrosting apparatus and showcase refrigerator
JP7583981B2 (en) refrigerator
JP4286106B2 (en) Freezer refrigerator
JPH07269983A (en) Air conditioner for shop

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214