[go: up one dir, main page]

JP7582359B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP7582359B2
JP7582359B2 JP2023025293A JP2023025293A JP7582359B2 JP 7582359 B2 JP7582359 B2 JP 7582359B2 JP 2023025293 A JP2023025293 A JP 2023025293A JP 2023025293 A JP2023025293 A JP 2023025293A JP 7582359 B2 JP7582359 B2 JP 7582359B2
Authority
JP
Japan
Prior art keywords
wastewater
treatment
cod
wastewater treatment
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023025293A
Other languages
Japanese (ja)
Other versions
JP2023152734A (en
Inventor
裕介 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2023152734A publication Critical patent/JP2023152734A/en
Application granted granted Critical
Publication of JP7582359B2 publication Critical patent/JP7582359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、工場の排水処理用の薬品使用量を低減する排水処理方法に関する。 The present invention relates to a wastewater treatment method that reduces the amount of chemicals used in factory wastewater treatment.

産業上においては、多くの化学製品が使用され、発生した排水は、工場系排水として混合され処理されている。
工場系排水の処理方法として、希硫酸、消石灰等でpHを調整しながら塩化第二鉄を注入し、排水中の不純物が凝集し、比重で沈降することで排水処理を行う凝集沈殿処理と、酸性の状態で過酸化水素と塩化第二鉄を反応させ、ヒドロキシラジカルを生成するフェントン反応を起こし、排水中の有機物を酸化分解する、酸化処理としてのフェントン処理がある。
In industry, many chemical products are used, and the wastewater generated is mixed with industrial wastewater and treated.
Methods for treating industrial wastewater include the coagulation and sedimentation process, in which ferric chloride is injected while adjusting the pH with dilute sulfuric acid, hydrated lime, etc., causing impurities in the wastewater to coagulate and settle due to their specific gravity, and the Fenton process, an oxidation process in which hydrogen peroxide and ferric chloride are reacted in an acidic state, causing the Fenton reaction which generates hydroxyl radicals, thereby oxidizing and decomposing organic matter in the wastewater.

排水処理前の排水に含まれるCOD(Chemical Oxygen Demand化学的酸素要求量)が高いと想定される排水については、フェントン処理を行った後、さらに凝集沈殿処理によりCODを低減する処理を行う。一方、CODが低いと想定される排水については凝集沈殿処理によりCODを低減する。 For wastewater that is expected to have a high COD (Chemical Oxygen Demand) before treatment, Fenton treatment is performed, followed by coagulation and sedimentation treatment to reduce the COD. On the other hand, for wastewater that is expected to have a low COD, coagulation and sedimentation treatment is used to reduce the COD.

しかし、実際には、排水の性状は均一ではないため、一般的には、高負荷の排水を処理する場合を想定して薬品を注入するが、低負荷の排水を処理する場合、余分に薬品を注入していることになる。ここで、余分な薬品の注入による無駄をなくす方法として、排水成分のデータから演算して最適の薬品注入量を求める方法が提案されている。 However, in reality, the properties of wastewater are not uniform, so chemicals are generally injected assuming that high-load wastewater is being treated, but when low-load wastewater is being treated, excess chemicals are injected. As a way to eliminate the waste caused by injecting excess chemicals, a method has been proposed in which the optimal amount of chemicals is calculated from data on the wastewater components.

特許文献1に記載の技術では、酸化処理工程(フェントン処理)に先立って行う凝集処理工程で、被処理水に無機凝集剤と活性炭を添加し共存させ、さらに有機凝集剤を添加し処理する排水処理方法が開示されている。
また、特許文献2に記載の技術では、被処理水に対して適切な量の薬品を注入することが可能な水処理システム及び薬品注入制御装置が開示されている。
また、特許文献3に記載の技術では、排水のCOD又はTOCの値を計測し薬品の注入量等を制御する方法が開示されている。
The technology described in Patent Document 1 discloses a wastewater treatment method in which an inorganic flocculant and activated carbon are added to the water to be treated so that they coexist in a flocculation treatment process carried out prior to an oxidation treatment process (Fenton treatment), and an organic flocculant is further added for treatment.
Furthermore, the technology described in Patent Document 2 discloses a water treatment system and a chemical injection control device capable of injecting an appropriate amount of chemical into water to be treated.
Furthermore, the technique described in Patent Document 3 discloses a method for measuring the COD or TOC value of wastewater and controlling the amount of chemicals injected, etc.

特開2019-214020号公報JP 2019-214020 A 特開2019-81140号公報JP 2019-81140 A 特開2010-179272号公報JP 2010-179272 A

上記従来技術には以下のような問題がある。
特許文献1に記載の技術では、酸化工程前段の凝集工程で、活性炭添加による活性炭吸着を行うことにより難分解性CODが効率よく吸着除去され、さらに、その後に行う酸化工程で酸化剤による酸化効率も向上する。しかし、酸化工程および活性炭吸着を含めた凝集工程を常に実施することが前提であり、プロセス省略による薬品の注入量を大幅に削減することにはならない。
The above-mentioned conventional techniques have the following problems.
In the technology described in Patent Document 1, the persistent COD is efficiently adsorbed and removed by adding activated carbon to perform activated carbon adsorption in the coagulation step prior to the oxidation step, and the oxidation efficiency by the oxidizing agent in the subsequent oxidation step is also improved. However, this is based on the premise that the oxidation step and the coagulation step including activated carbon adsorption are always performed, and the amount of chemicals injected by omitting the process is not significantly reduced.

また、特許文献2に記載の演算によって最適の薬品注入量を求める方法は、処理する排水の性状の変化が、ある程度予想できる場合には有効だが、工場排水などを扱う場合、排水の性状が大きく変化するため、最適の薬品注入量を演算によって導くことが困難という問題がある。
特許文献3に記載の方法であれば難しい演算を行わずに薬注量の制御が可能である。しかし、工場排水などを扱う場合、短時間で排水の性状が変化する可能性があり、排水性状の変化が大きすぎて薬注量の制御を追従させることができないという問題がある。
Furthermore, the method of determining the optimum amount of chemical to be injected by calculation, which is described in Patent Document 2, is effective when changes in the properties of the wastewater to be treated can be predicted to some extent, but when treating industrial wastewater, etc., the properties of the wastewater change significantly, so there is a problem that it is difficult to derive the optimum amount of chemical to be injected by calculation.
The method described in Patent Document 3 makes it possible to control the amount of chemicals to be injected without performing complicated calculations. However, when handling industrial wastewater, the properties of the wastewater may change in a short time, and the change in the wastewater properties may be too large to control the amount of chemicals to be injected.

本発明は上記事情に鑑みてなされたもので、排水性状が大きく変化する場合でも、余分に注入している薬品の注入量を削減する排水処理方法を提案することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to propose a wastewater treatment method that reduces the amount of excess chemicals injected even when the wastewater properties change significantly.

発明者らは、上記課題を解決すべく、鋭意、実験及び検討を行った。その結果、排水処理前の排水のCODにより、排水処理方法を選択できるシステムにより、凝集沈殿処理方法だけか、又は酸化処理も併用する凝集沈殿処理方法かを選別できるようになり、最適な薬品の注入量で排水処理できることを見出した。 The inventors conducted intensive experiments and studies to solve the above problems. As a result, they discovered that a system that can select a wastewater treatment method based on the COD of the wastewater before treatment can select between coagulation sedimentation treatment method alone or a coagulation sedimentation treatment method that also combines oxidation treatment, and that wastewater can be treated with the optimal amount of chemicals injected.

上記課題を有利に解決する本発明にかかる排水処理方法は以下のように構成される。
[1]排水処理前の排水のCODを計測し、前記CODの値にもとづいて、凝集沈殿処理、および、酸化処理と凝集沈殿処理のいずれか一方の排水処理を選択する排水処理方法である。
[2]上記の[1]において、前記CODを原水槽で計測し、得られたCODの値について、1時間あたりの最大値と最小値の差であるCODの変化量ΔQにもとづいて、排水処理を選択する排水処理方法である。
[3]上記の[2]において、前記CODの変化量ΔQが1000mg/L以上増加したときに、排水処理として酸化処理と凝集沈殿処理を選択する排水処理方法である。
[4]上記の[1]から[3]のいずれかの1において、前記凝集沈殿処理が、塩化第二鉄、硫酸第一鉄、及びポリ硫酸鉄を含む鉄系凝集剤を使用する処理である排水処理方法である。
[5]上記の[1]から[3]のいずれかの1において、前記酸化処理が、過酸化水素水溶液と鉄系触媒によりヒドロキシラジカルを生成するフェントン反応を利用する処理である排水処理方法である。
[6]上記の[1]から[3]のいずれかの1において、前記排水のCODが200~10000mg/Lの範囲である排水処理方法である。
[7]上記の[4]において、前記排水のCODが200~10000mg/Lの範囲である排水処理方法である。
[8]上記の[5]において、前記排水のCODが200~10000mg/Lの範囲である排水処理方法である。
The wastewater treatment method according to the present invention, which advantageously solves the above problems, is configured as follows.
[1] A wastewater treatment method comprising measuring the COD of wastewater before wastewater treatment and selecting either coagulation-sedimentation treatment or one of oxidation treatment and coagulation-sedimentation treatment based on the COD value.
[2] In the above-mentioned [1], the COD is measured in a raw water tank, and a wastewater treatment method is selected based on the amount of change in COD, ΔQ, which is the difference between the maximum and minimum values per hour for the obtained COD value.
[3] The wastewater treatment method according to the above [2], wherein when the amount of change in COD, ΔQ, increases by 1000 mg/L or more, oxidation treatment or coagulation sedimentation treatment is selected as the wastewater treatment.
[4] In any one of the above [1] to [3], the coagulation and sedimentation treatment is a treatment using an iron-based coagulant containing ferric chloride, ferrous sulfate, and polyferric sulfate.
[5] In any one of the above [1] to [3], the wastewater treatment method is a treatment utilizing the Fenton reaction that generates hydroxyl radicals using an aqueous hydrogen peroxide solution and an iron-based catalyst.
[6] The wastewater treatment method according to any one of the above items [1] to [3], wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L.
[7] The wastewater treatment method according to the above [4], wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L.
[8] The wastewater treatment method according to the above [5], wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L.

本発明によれば、排水のCODの値にもとづいて処理方法を選択できるようになったので、排水のCODが低い場合に、従来使用されていたフェントン処理用薬品の使用を削減する排水処理方法が実現できる。また、排水性状が大きく変化する排水を処理する場合にも本願発明に係る排水処理方法が適用できる。さらに、本発明は、処理に伴うpH調整用薬品等の薬品の使用も削減することができる。 According to the present invention, since it is now possible to select a treatment method based on the COD value of the wastewater, it is possible to realize a wastewater treatment method that reduces the use of Fenton treatment chemicals that have been used conventionally when the COD of the wastewater is low. The wastewater treatment method according to the present invention can also be applied when treating wastewater whose wastewater properties change significantly. Furthermore, the present invention can also reduce the use of chemicals such as pH adjustment chemicals that accompany the treatment.

本発明の一つの実施形態である排水処理フローの概略図である。FIG. 1 is a schematic diagram of a wastewater treatment flow according to one embodiment of the present invention. 本発明の排水処理のフローチャートである。1 is a flow chart of wastewater treatment according to the present invention.

以下、本発明の一実施形態である排水処理方法について詳細に説明する。 The wastewater treatment method according to one embodiment of the present invention is described in detail below.

<排水処理設備>
図1に排水処理設備を示す。原水槽1は、複数の工場からの排水を貯める。原水槽の排水のCODを計測するCOD測定器2を設置する。この測定されたCODの値は、制御装置3に送信される。この制御装置3では、このCODにもとづく排水処理について、凝集沈殿処理5、又はフェントン処理4および凝集沈殿処理5の工程を決定し、排水フローの電磁弁31、電磁弁32を開閉する制御を行う。
<Wastewater treatment equipment>
Figure 1 shows a wastewater treatment facility. A raw water tank 1 stores wastewater from multiple factories. A COD meter 2 is installed to measure the COD of the wastewater in the raw water tank. The measured COD value is transmitted to a control device 3. This control device 3 determines the process of coagulation sedimentation treatment 5, or Fenton treatment 4 and coagulation sedimentation treatment 5, for wastewater treatment based on the COD, and controls the opening and closing of solenoid valves 31 and 32 in the wastewater flow.

図1の上段から中段にかけてフェントン処理設備4を示す。COD中和槽41は、原水槽からの排水の中和処理を行う。pH調整に使用する薬品は希硫酸、消石灰、苛性ソーダが好ましい。この排水を撹拌するバッファー池42を有する。撹拌にはエアーを用いることが好ましい。中和槽43は、排水のpHを調整する。調整には希硫酸を用いることが好ましい。反応槽44で、塩化第二鉄と過酸化水素を排水に注入しフェントン反応を起こし有機物を分解する処理を行う。塩化第二鉄に代えて硫酸第一鉄等のフェントン反応を起こすことのできる薬品でもよい。分解槽45では、排水に残存する過酸化水素を除去するため、撹拌しpH調整を行う。pH調整には苛性ソーダを用いることが好ましく、撹拌にはエアーを用いることが好ましい。沈殿槽46で、排水処理の不純物が沈降する。 The Fenton treatment equipment 4 is shown from the top to the middle of Figure 1. The COD neutralization tank 41 neutralizes the wastewater from the raw water tank. The chemicals used for pH adjustment are preferably dilute sulfuric acid, hydrated lime, and caustic soda. The tank has a buffer pond 42 for stirring the wastewater. Air is preferably used for stirring. The neutralization tank 43 adjusts the pH of the wastewater. Dilute sulfuric acid is preferably used for the adjustment. In the reaction tank 44, ferric chloride and hydrogen peroxide are injected into the wastewater to cause a Fenton reaction and decompose the organic matter. Chemicals that can cause a Fenton reaction, such as ferrous sulfate, may be used instead of ferric chloride. In the decomposition tank 45, the wastewater is stirred and the pH is adjusted to remove hydrogen peroxide remaining in the wastewater. Caustic soda is preferably used for pH adjustment, and air is preferably used for stirring. In the sedimentation tank 46, impurities from the wastewater are settled.

なお、電磁弁は、2方向電磁弁に限定されるものではなく、たとえば、3方向電磁弁を利用してもよい。 The solenoid valve is not limited to a two-way solenoid valve, but may be, for example, a three-way solenoid valve.

図1の下段に凝集沈殿処理設備5を示す。分解槽51に希硫酸、塩化第二鉄を注入して排水のpHを調整する。pH調整には希硫酸を用いることが好ましい。中和槽52では排水のpHを調整する。沈殿槽53では、排水中の不純物が沈降分離する。 The lower part of Figure 1 shows the coagulation and sedimentation treatment equipment 5. Dilute sulfuric acid and ferric chloride are injected into the decomposition tank 51 to adjust the pH of the wastewater. It is preferable to use dilute sulfuric acid for pH adjustment. The pH of the wastewater is adjusted in the neutralization tank 52. Impurities in the wastewater are separated by settling in the sedimentation tank 53.

<排水処理方法>
本発明の実施態様の排水処理フローを図2に示す。まず、原水槽1で排水のCODを測定し(ステップS1)、このCODの値は制御装置3へ送信され、制御装置3にあらかじめ設定した値と測定された排水のCOD値を制御装置で比較する(ステップS2)。ここで、原水槽1の排水のCODは、排水処理時間内で特定の時間又は特定の時間毎に測定する。
排水のCODが設定した値以上であった場合、原水槽1からフェントン処理設備4へ通じる電磁弁31を開にし、原水槽1から凝集沈殿処理設備5に通じる電磁弁32を閉にする(ステップS3)。同時に、フェントン処理設備4で使用される薬品を注入するポンプを起動させる信号を制御装置3から送る(ステップS3)。排水のCODが設定した値未満の場合は、原水槽1からフェントン処理設備4へ通じる電磁弁31を閉にし、原水槽1から凝集沈殿処理設備5に通じる電磁弁32を開にする(ステップS5)。同時に、フェントン処理設備4で使用される薬品を注入するポンプを停止させる信号を制御装置3から送る(ステップS5)。
<Wastewater treatment method>
A wastewater treatment flow according to an embodiment of the present invention is shown in Fig. 2. First, the COD of the wastewater is measured in the raw water tank 1 (step S1), and this COD value is sent to the control device 3, which compares the measured COD value of the wastewater with a value preset in the control device 3 (step S2). Here, the COD of the wastewater in the raw water tank 1 is measured at a specific time or at specific intervals within the wastewater treatment time.
When the COD of the wastewater is equal to or higher than the set value, the solenoid valve 31 leading from the raw water tank 1 to the Fenton treatment facility 4 is opened, and the solenoid valve 32 leading from the raw water tank 1 to the coagulation sedimentation treatment facility 5 is closed (step S3). At the same time, the control device 3 sends a signal to start the pump that injects the chemicals used in the Fenton treatment facility 4 (step S3). When the COD of the wastewater is lower than the set value, the solenoid valve 31 leading from the raw water tank 1 to the Fenton treatment facility 4 is closed, and the solenoid valve 32 leading from the raw water tank 1 to the coagulation sedimentation treatment facility 5 is opened (step S5). At the same time, the control device 3 sends a signal to stop the pump that injects the chemicals used in the Fenton treatment facility 4 (step S5).

また、排水のCODの変化量ΔQにもとづいて、排水処理設備に通じる手段を制御して、凝集沈殿処理、および、酸化処理と凝集沈殿処理のいずれか一方の排水処理を選択し、選択した排水処理方法で排水処理条件を設定し排水処理することができる。ここで、CODの変化量ΔQとは、排水処理時間内で測定された原水槽のCODについて、1時間あたりの最大値と最小値の差をいう。
たとえば、排水処理前から排水処理時間内で、特定の時間又は特定の時間毎に原水槽のCODを測定し、その測定されたCODにおける1時間あたりの最大値と最小値の差を解析し変化量ΔQをアウトプットする。
In addition, based on the change amount ΔQ of the COD of the wastewater, the means connected to the wastewater treatment facility can be controlled to select either one of the wastewater treatment methods, i.e., coagulation sedimentation treatment, or oxidation treatment and coagulation sedimentation treatment, and the wastewater treatment conditions can be set for the selected wastewater treatment method to treat the wastewater. Here, the change amount ΔQ of the COD refers to the difference between the maximum and minimum values per hour of the COD of the raw water tank measured within the wastewater treatment time.
For example, the COD of the raw water tank is measured at a specific time or at specific intervals during the wastewater treatment time from before the wastewater treatment, and the difference between the maximum and minimum values per hour in the measured COD is analyzed to output the amount of change ΔQ.

排水CODの変化量ΔQが設定した値以上であった場合、原水槽1からフェントン処理設備4へ通じる電磁弁31を開にし、原水槽1から凝集沈殿処理設備5に通じる電磁弁32を閉にする(ステップS3)。同時に、フェントン処理設備4で使用される薬品を注入するポンプを起動させる信号を制御装置3から送る(ステップS3)。排水のCODが設定した値未満の場合は、原水槽1からフェントン処理設備4へ通じる電磁弁31を閉にし、原水槽1から凝集沈殿処理設備5に通じる電磁弁32を開にする(ステップS5)。同時に、フェントン処理設備4で使用される薬品を注入するポンプを停止させる信号を制御装置3から送る(ステップS5)。
なお、排水処理の選択は、CODの変化量ΔQが1000mg/Lを基準として、1000mg/L以上であれば、酸化処理と凝集沈殿処理とすることが好ましい。
When the change amount ΔQ of the wastewater COD is equal to or greater than the set value, the solenoid valve 31 leading from the raw water tank 1 to the Fenton treatment facility 4 is opened, and the solenoid valve 32 leading from the raw water tank 1 to the coagulation sedimentation treatment facility 5 is closed (step S3). At the same time, the control device 3 sends a signal to start the pump that injects the chemicals used in the Fenton treatment facility 4 (step S3). When the COD of the wastewater is less than the set value, the solenoid valve 31 leading from the raw water tank 1 to the Fenton treatment facility 4 is closed, and the solenoid valve 32 leading from the raw water tank 1 to the coagulation sedimentation treatment facility 5 is opened (step S5). At the same time, the control device 3 sends a signal to stop the pump that injects the chemicals used in the Fenton treatment facility 4 (step S5).
In addition, the selection of the wastewater treatment is preferably made based on the COD change amount ΔQ of 1000 mg/L, and if the amount is 1000 mg/L or more, the oxidation treatment and the coagulation sedimentation treatment are preferably performed.

この排水処理の制御システムにより、排水のCODの値にもとづく排水の処理方法、すなわち、所定の設定値以上又は変化量以上のCODの値ではフェントン処理(ステップS4)と凝集沈殿処理(ステップS6)を両方行ない、所定の設定値未満又は変化量未満のCODの値では、凝集沈殿処理(ステップS6)だけを選択して排水処理を実施することができる(ステップS7)。 This wastewater treatment control system can select a wastewater treatment method based on the wastewater's COD value, i.e., when the COD value is equal to or greater than a predetermined set value or change amount, both Fenton treatment (step S4) and coagulation sedimentation treatment (step S6) are performed, and when the COD value is less than the predetermined set value or change amount, only coagulation sedimentation treatment (step S6) is performed to perform wastewater treatment (step S7).

また、CODが上昇する原因として、界面活性剤のような有機物に起因する場合と鉄分等の金属イオンに起因する場合とが考えられる。金属イオンが原因でCODが上昇する場合は、凝集沈殿処理のみで処理が可能であり、フェントン反応による処理を行ってもCODの低減効果はほとんどない。排水のCOD原因のうち、金属イオンが優位である場合の排水のCODは200~1500mg/Lである。ここで、本発明の実施形態におけるCODは、有機物由来と金属イオン由来とを考慮した値であり、200~10000mg/Lの範囲である。
そこで、あらかじめ設定する値は1500mg/Lとするのが好ましいが、実際に運用する時の排水基準を満たすように設定値を変更してもよい。
In addition, the cause of the increase in COD may be organic matter such as surfactants or metal ions such as iron. When the COD increases due to metal ions, the increase can be treated only by coagulation and precipitation treatment, and treatment by the Fenton reaction has almost no effect on reducing the COD. When metal ions are predominant among the causes of COD in wastewater, the COD of the wastewater is 200 to 1500 mg/L. Here, the COD in the embodiment of the present invention is a value that takes into account organic matter and metal ion origins, and is in the range of 200 to 10000 mg/L.
Therefore, it is preferable to set the value in advance to 1500 mg/L, but the set value may be changed so as to meet the wastewater standards in actual operation.

上記の排水処理を実施して、処理された排水を排出する前に、処理された排水のCODを測定し、排出基準を満たす場合は排水を排出し、満たさない場合は、再度、本発明の排水処理を施す。 After carrying out the above wastewater treatment, the COD of the treated wastewater is measured before discharging it. If the discharge standards are met, the wastewater is discharged. If the standards are not met, the wastewater is treated again with the wastewater treatment method of the present invention.

フェントン処理4は、原水槽1からの排水を、COD中和槽41で中和処理を行い、pHを7~9に調整する。次いで、バッファー池42で排水を撹拌する。撹拌された排水は、中和槽43で排水のpHを2~3に調整する。pH調整後、反応槽44でフェントン反応により有機物を分解する処理を行う。この分解処理を行った後に、分解槽45で、残存する過酸化水素を除去するために、pHを7~9に調整して撹拌を行ない、沈殿槽46で不純物を沈降させる。 In the Fenton process 4, the wastewater from the raw water tank 1 is neutralized in a COD neutralization tank 41, and the pH is adjusted to 7-9. The wastewater is then agitated in a buffer pond 42. The pH of the agitated wastewater is adjusted to 2-3 in a neutralization tank 43. After the pH adjustment, the organic matter is decomposed by the Fenton reaction in a reaction tank 44. After this decomposition process, the pH is adjusted to 7-9 in a decomposition tank 45 and agitation is performed to remove any remaining hydrogen peroxide, and impurities are allowed to settle in a settling tank 46.

凝集沈殿処理5は、分解槽51に希硫酸、塩化第二鉄を注入して排水のpHを調整する。次いで、中和槽52で、消石灰を投入し排水のpHを7~9に調整する。沈殿槽53で凝集剤を注入してフロックを形成することで排水中の不純物を沈降分離させる。 In the coagulation and sedimentation process 5, dilute sulfuric acid and ferric chloride are injected into the decomposition tank 51 to adjust the pH of the wastewater. Next, slaked lime is added to the neutralization tank 52 to adjust the pH of the wastewater to 7 to 9. A coagulant is injected into the sedimentation tank 53 to form flocs, allowing impurities in the wastewater to settle and be separated.

また、フェントン処理が必要な排水は、常に排水のCODが高いものとして処理が行われてきたが、実際、排水収集のタイミングによっては、フェントン処理を必要としないほどCODが低い場合がある。その場合にも、本発明のCODの設定値にもとづく排水処理方法を用いて、フェントン処理を行わず凝集沈殿処理のみの処理とすることが可能である。 In addition, wastewater that requires Fenton treatment has always been treated assuming that the COD of the wastewater is high, but in reality, depending on the timing of wastewater collection, the COD may be so low that Fenton treatment is not required. Even in such cases, it is possible to use the wastewater treatment method based on the COD setting value of the present invention to treat the wastewater using only coagulation and sedimentation treatment without Fenton treatment.

凝集沈殿処理された処理水はCOD計測器でCOD濃度が基準値以下であることを確認したうえで、排水口から外部に放流される。このCOD計測器は、精確性を要求されることから、JIS K0102-1:2021に準拠した化学分析を用いることが好ましい。 The treated water that has undergone coagulation and sedimentation treatment is discharged from the drain after a COD meter has confirmed that the COD concentration is below the standard value. Since this COD meter must be highly accurate, it is preferable to use chemical analysis that complies with JIS K0102-1:2021.

[実施例1]
複数の工場からの排水を原水槽に集めて、CODを測定した。排水処理方法の切り替えCODの設定値を1500mg/Lとし、CODが、1500mg/L以上ならば、フェントン処理と凝集沈殿処理を両方実施し、CODが、1500mg/L未満ならば、凝集沈殿処理のみ実施した。3か月間、本発明のCODの値による排水処理方法で排水処理を行った。なお、排水処理を終えて、排出する前にCODを測定し、全てのチャージにおいて、CODは排出基準以下になっていた。
[Example 1]
Wastewater from multiple factories was collected in a raw water tank and the COD was measured. The set value of COD for switching the wastewater treatment method was set to 1500 mg/L, and if the COD was 1500 mg/L or more, both the Fenton treatment and the coagulation precipitation treatment were performed, and if the COD was less than 1500 mg/L, only the coagulation precipitation treatment was performed. Wastewater treatment was performed for three months using the wastewater treatment method according to the COD value of the present invention. After the wastewater treatment was completed, the COD was measured before discharge, and the COD was below the discharge standard in all charges.

[実施例2]
複数の工場からの排水を原水槽に集めて、常時CODを測定した。さらに、CODの最大値と最小値の差は、COD測定開始から1時間あたりに換算したCODのデータから算出した。
排水処理方法の切り替えるタイミングを1時間あたりのCODの最大値と最小値の差を1200mg/Lと設定し、そのCODの差が、1200mg/L以上増加したならば、フェントン処理と凝集沈殿処理を両方実施し、CODの差が、1200mg/L未満ならば、凝集沈殿処理のみ実施した。処理時間はおよそ1~2時間である。3か月間、本発明のCOD変化量による排水処理方法で排水処理を行った。なお、排水処理を終えて、排出する前にCODを測定し、全てのチャージにおいて、CODは排出基準以下になっていた。
[Example 2]
Wastewater from multiple factories was collected in a raw water tank and the COD was constantly measured. Furthermore, the difference between the maximum and minimum COD values was calculated from the COD data converted to one hour from the start of the COD measurement.
The timing for switching the wastewater treatment method was set to 1200 mg/L, where the difference between the maximum and minimum COD values per hour was set. If the difference in COD increased by 1200 mg/L or more, both the Fenton treatment and the coagulation and sedimentation treatment were performed, and if the difference in COD was less than 1200 mg/L, only the coagulation and sedimentation treatment was performed. The treatment time was about 1 to 2 hours. Wastewater treatment was performed for three months using the wastewater treatment method based on the COD change amount of the present invention. After the wastewater treatment was completed, the COD was measured before discharge, and the COD was below the discharge standard in all charges.

本発明の実施例では、排水のCODの値又はCODの変化量にもとづいて処理方法を選択できるようになったので、排水のCODが低い場合に、従来使用されていたフェントン処理用薬品を使用する必要がなくなったため、いずれの処理方法においてもフェントン処理用薬品の使用量を25%以上削減することができた。 In the embodiment of the present invention, it became possible to select a treatment method based on the COD value or change in COD of the wastewater, so when the COD of the wastewater is low, it became unnecessary to use the Fenton treatment chemicals that were conventionally used, and it was possible to reduce the amount of Fenton treatment chemicals used by 25% or more in both treatment methods.

なお、上記の実施例では本発明の実施形態について説明したが、本発明はこれに限るものでない。 Although the above examples are illustrative of the present invention, the present invention is not limited to these.

本発明によれば、新たな排水処理方法が開発された場合、排水処理方法が改善された場合など排水処理方法の選択肢が増えた場合にも、本排水処理制御システムを適用することが可能である。 According to the present invention, this wastewater treatment control system can be applied even when new wastewater treatment methods are developed, when wastewater treatment methods are improved, or when the options for wastewater treatment methods increase.

W 排水
1 原水槽
2 COD測定器
3 制御装置
31 フェントン処理設備に通じる電磁弁
32 凝集沈殿処理設備に通じる電磁弁
4 フェントン処理設備
41 COD中和槽
42 バッファー池
43 中和槽
44 反応槽
45 分解槽
46 沈殿槽
5 凝集沈殿処理設備
51 分解槽
52 中和槽
53 沈殿槽
W wastewater 1 raw water tank 2 COD measuring device 3 control device 31 solenoid valve connected to Fenton treatment equipment 32 solenoid valve connected to coagulation sedimentation treatment equipment 4 Fenton treatment equipment 41 COD neutralization tank 42 buffer pond 43 neutralization tank 44 reaction tank 45 decomposition tank 46 sedimentation tank 5 coagulation sedimentation treatment equipment 51 decomposition tank 52 neutralization tank 53 sedimentation tank

Claims (7)

排水処理前の排水のCODを原水槽で計測し、得られたCODの値について、1時間あたりの最大値と最小値の差であるCODの変化量ΔQにもとづいて、凝集沈殿処理、および、酸化処理と凝集沈殿処理のいずれか一方の排水処理を選択することを特徴とする排水処理方法。 A wastewater treatment method characterized in that the COD of wastewater before treatment is measured in a raw water tank , and based on the amount of change in COD, ΔQ, which is the difference between the maximum and minimum values per hour, from the obtained COD value, a coagulation sedimentation treatment or one of the two wastewater treatment methods, an oxidation treatment and a coagulation sedimentation treatment, is selected. 前記CODの変化量ΔQが1000mg/L以上増加したときに、排水処理として酸化処理と凝集沈殿処理を選択することを特徴とする請求項に記載の排水処理方法。 2. The wastewater treatment method according to claim 1 , wherein when the amount of change in COD, ΔQ, increases by 1000 mg/L or more, oxidation treatment and coagulation sedimentation treatment are selected as the wastewater treatment. 前記凝集沈殿処理が、塩化第二鉄、硫酸第一鉄、及びポリ硫酸鉄を含む鉄系凝集剤を使用する処理である請求項1又は2に記載の排水処理方法。 3. The wastewater treatment method according to claim 1, wherein the coagulation and sedimentation treatment is a treatment using an iron-based coagulant containing ferric chloride, ferrous sulfate, and polyferric sulfate. 前記酸化処理が、過酸化水素水溶液と鉄系触媒によりヒドロキシラジカルを生成するフェントン反応を利用する処理である請求項1又は2に記載の排水処理方法。 3. The wastewater treatment method according to claim 1 , wherein the oxidation treatment is a treatment utilizing the Fenton reaction, which produces hydroxyl radicals by the action of an aqueous hydrogen peroxide solution and an iron-based catalyst. 前記排水のCODが200~10000mg/Lの範囲である請求項1又は2に記載の排水処理方法。 The wastewater treatment method according to claim 1 or 2 , wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L. 前記排水のCODが200~10000mg/Lの範囲である請求項に記載の排水処理方法。 The wastewater treatment method according to claim 3 , wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L. 前記排水のCODが200~10000mg/Lの範囲である請求項に記載の排水処理方法。 The wastewater treatment method according to claim 4 , wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L.
JP2023025293A 2022-03-31 2023-02-21 Wastewater treatment method Active JP7582359B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059060 2022-03-31
JP2022059060 2022-03-31

Publications (2)

Publication Number Publication Date
JP2023152734A JP2023152734A (en) 2023-10-17
JP7582359B2 true JP7582359B2 (en) 2024-11-13

Family

ID=88349295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023025293A Active JP7582359B2 (en) 2022-03-31 2023-02-21 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP7582359B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118125660B (en) * 2024-04-09 2024-09-20 天津大唐国际盘山发电有限责任公司 Fenton magnetic coagulation oxidation reactor suitable for thermal power factory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148580A1 (en) 2013-03-22 2014-09-25 東レ株式会社 Fresh water production process
JP2020006332A (en) 2018-07-10 2020-01-16 王子ホールディングス株式会社 Water treatment apparatus and water treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148580A1 (en) 2013-03-22 2014-09-25 東レ株式会社 Fresh water production process
JP2020006332A (en) 2018-07-10 2020-01-16 王子ホールディングス株式会社 Water treatment apparatus and water treatment method

Also Published As

Publication number Publication date
JP2023152734A (en) 2023-10-17

Similar Documents

Publication Publication Date Title
CN107857426B (en) Comprehensive treatment method for phosphorus-containing wastewater
JP7582359B2 (en) Wastewater treatment method
CN111498960A (en) Defluorination medicament and application thereof
CN112158941A (en) Fenton optimization oxidation treatment method for wastewater
CN109110981B (en) Method for removing thallium from waste water containing high-halogen waste acid
CN109987749B (en) Control method for promoting Fenton oxidation mediated by calcium and organic acid complex
KR20030053498A (en) The method and equipment of wastewater treatment contained organic compound of high concentration
KR20010068172A (en) Advanced Electric Oxidaition Process
JP2009531159A (en) Excess sludge digestion method and equipment
CN111533350A (en) Method for reducing salt content in wastewater after Fenton oxidation
CN114291858A (en) High-fluorine-content wastewater treatment system and method
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
KR100208477B1 (en) Treatment method of industrial wastewater by flocculation and chemical oxidation
KR20100034816A (en) Manufacturing methods for clearing to non-dissolable organic matter
KR930010763B1 (en) Fluorine and cianide removing method from waste water
KR100315434B1 (en) Wastewater Disposal Process
CN219010069U (en) High fluorine-containing inorganic chemical wastewater treatment device
US10800688B2 (en) Controlling digester biosolids and wastewater activated sludge systems
KR100461913B1 (en) A method for treatment of sewage and wastewater
JP2001129560A (en) Method and apparatus for treating phosphorus-containing water
JPS59162995A (en) Treatment of waste water containing cod component
KR960002271B1 (en) Treatment method of dye wastewater
KR100473849B1 (en) Wastewater with iron and heavy metal disposal plant using magnetic force and disposal method
JPS63302998A (en) Treatment of concentrated organic waste water
JPH03254889A (en) Treatment of chromium-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241014

R150 Certificate of patent or registration of utility model

Ref document number: 7582359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150