[go: up one dir, main page]

JP2023152734A - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP2023152734A
JP2023152734A JP2023025293A JP2023025293A JP2023152734A JP 2023152734 A JP2023152734 A JP 2023152734A JP 2023025293 A JP2023025293 A JP 2023025293A JP 2023025293 A JP2023025293 A JP 2023025293A JP 2023152734 A JP2023152734 A JP 2023152734A
Authority
JP
Japan
Prior art keywords
wastewater
treatment
cod
wastewater treatment
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023025293A
Other languages
Japanese (ja)
Other versions
JP7582359B2 (en
Inventor
裕介 小池
Yusuke Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2023152734A publication Critical patent/JP2023152734A/en
Application granted granted Critical
Publication of JP7582359B2 publication Critical patent/JP7582359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

【課題】排水性状が大きく変化する場合でも、余分に注入している薬品の注入量を削減する排水処理方法を提案することを目的とする。【解決手段】排水処理前の排水のCODを計測し、前記COD又はCODの変化量にもとづいて、排水処理を凝集沈殿処理、又は酸化処理及び凝集沈殿処理とする排水処理方法である。また、前記凝集沈殿処理が、塩化第二鉄、硫酸第一鉄、及びポリ硫酸鉄を含む鉄系凝集剤を使用し、前記酸化処理が、過酸化水素水溶液と鉄系触媒によりヒドロキシラジカルを生成するフェントン反応を利用することができる。前記排水のCODが200~10000(mg/L)の範囲である。【選択図】図1An object of the present invention is to propose a wastewater treatment method that reduces the amount of unnecessary chemicals injected even when the properties of wastewater change significantly. The present invention is a wastewater treatment method in which the COD of wastewater before wastewater treatment is measured, and based on the COD or the amount of change in COD, the wastewater treatment is a coagulation-precipitation treatment, or an oxidation treatment and a coagulation-precipitation treatment. Further, the coagulation and precipitation treatment uses an iron-based flocculant containing ferric chloride, ferrous sulfate, and polyferrous sulfate, and the oxidation treatment generates hydroxyl radicals using an aqueous hydrogen peroxide solution and an iron-based catalyst. The Fenton reaction can be used. The COD of the wastewater is in the range of 200 to 10,000 (mg/L). [Selection diagram] Figure 1

Description

本発明は、工場の排水処理用の薬品使用量を低減する排水処理方法に関する。 The present invention relates to a wastewater treatment method for reducing the amount of chemicals used for wastewater treatment in factories.

産業上においては、多くの化学製品が使用され、発生した排水は、工場系排水として混合され処理されている。
工場系排水の処理方法として、希硫酸、消石灰等でpHを調整しながら塩化第二鉄を注入し、排水中の不純物が凝集し、比重で沈降することで排水処理を行う凝集沈殿処理と、酸性の状態で過酸化水素と塩化第二鉄を反応させ、ヒドロキシラジカルを生成するフェントン反応を起こし、排水中の有機物を酸化分解する、酸化処理としてのフェントン処理がある。
In industry, many chemical products are used, and the generated wastewater is mixed and treated as factory wastewater.
As a treatment method for industrial wastewater, ferric chloride is injected while adjusting the pH with dilute sulfuric acid, slaked lime, etc., and impurities in the wastewater coagulate and settle due to specific gravity, thereby treating the wastewater. Fenton treatment is an oxidation treatment in which hydrogen peroxide and ferric chloride are reacted in acidic conditions to cause the Fenton reaction that generates hydroxyl radicals, thereby oxidizing and decomposing organic matter in wastewater.

排水処理前の排水に含まれるCOD(Chemical Oxygen Demand化学的酸素要求量)が高いと想定される排水については、フェントン処理を行った後、さらに凝集沈殿処理によりCODを低減する処理を行う。一方、CODが低いと想定される排水については凝集沈殿処理によりCODを低減する。 For wastewater that is assumed to have a high COD (Chemical Oxygen Demand) contained in the wastewater before wastewater treatment, the wastewater is subjected to Fenton treatment and then further treated to reduce COD by coagulation sedimentation treatment. On the other hand, for wastewater that is assumed to have a low COD, the COD is reduced by coagulation and sedimentation treatment.

しかし、実際には、排水の性状は均一ではないため、一般的には、高負荷の排水を処理する場合を想定して薬品を注入するが、低負荷の排水を処理する場合、余分に薬品を注入していることになる。ここで、余分な薬品の注入による無駄をなくす方法として、排水成分のデータから演算して最適の薬品注入量を求める方法が提案されている。 However, in reality, the properties of wastewater are not uniform, so chemicals are generally injected assuming that high-load wastewater is to be treated, but when treating low-load wastewater, extra chemicals are injected. This means that you are injecting Here, as a method for eliminating waste caused by the injection of excess chemicals, a method has been proposed in which an optimum amount of chemicals to be injected is determined by calculating from data on wastewater components.

特許文献1に記載の技術では、酸化処理工程(フェントン処理)に先立って行う凝集処理工程で、被処理水に無機凝集剤と活性炭を添加し共存させ、さらに有機凝集剤を添加し処理する排水処理方法が開示されている。
また、特許文献2に記載の技術では、被処理水に対して適切な量の薬品を注入することが可能な水処理システム及び薬品注入制御装置が開示されている。
また、特許文献3に記載の技術では、排水のCOD又はTOCの値を計測し薬品の注入量等を制御する方法が開示されている。
In the technology described in Patent Document 1, in the coagulation treatment step performed prior to the oxidation treatment step (Fenton treatment), an inorganic flocculant and activated carbon are added to the water to be treated so that they coexist, and an organic flocculant is further added to the wastewater to be treated. A processing method is disclosed.
Moreover, the technique described in Patent Document 2 discloses a water treatment system and a chemical injection control device that can inject an appropriate amount of chemicals into water to be treated.
Moreover, the technique described in Patent Document 3 discloses a method of measuring the COD or TOC value of wastewater and controlling the amount of chemical injection, etc.

特開2019-214020号公報JP2019-214020A 特開2019-81140号公報JP2019-81140A 特開2010-179272号公報Japanese Patent Application Publication No. 2010-179272

上記従来技術には以下のような問題がある。
特許文献1に記載の技術では、酸化工程前段の凝集工程で、活性炭添加による活性炭吸着を行うことにより難分解性CODが効率よく吸着除去され、さらに、その後に行う酸化工程で酸化剤による酸化効率も向上する。しかし、酸化工程および活性炭吸着を含めた凝集工程を常に実施することが前提であり、プロセス省略による薬品の注入量を大幅に削減することにはならない。
The above conventional technology has the following problems.
In the technology described in Patent Document 1, in the aggregation step before the oxidation step, recalcitrant COD is efficiently adsorbed and removed by activated carbon adsorption by the addition of activated carbon, and the oxidation efficiency by the oxidizer is further improved in the subsequent oxidation step. It also improves. However, this method is based on the premise that the oxidation step and the aggregation step including activated carbon adsorption are always carried out, and omitting the process does not result in a significant reduction in the amount of chemicals injected.

また、特許文献2に記載の演算によって最適の薬品注入量を求める方法は、処理する排水の性状の変化が、ある程度予想できる場合には有効だが、工場排水などを扱う場合、排水の性状が大きく変化するため、最適の薬品注入量を演算によって導くことが困難という問題がある。
特許文献3に記載の方法であれば難しい演算を行わずに薬注量の制御が可能である。しかし、工場排水などを扱う場合、短時間で排水の性状が変化する可能性があり、排水性状の変化が大きすぎて薬注量の制御を追従させることができないという問題がある。
In addition, the method of determining the optimal amount of chemical injection using calculations described in Patent Document 2 is effective when changes in the properties of the wastewater to be treated can be predicted to some extent, but when dealing with industrial wastewater, etc., the properties of the wastewater vary greatly. Since the amount of chemicals varies, there is a problem in that it is difficult to derive the optimal amount of chemicals to be injected by calculation.
With the method described in Patent Document 3, it is possible to control the amount of medicine to be injected without performing difficult calculations. However, when dealing with industrial wastewater, etc., there is a problem that the properties of the wastewater may change in a short period of time, and the changes in the properties of the wastewater are so large that it is impossible to control the amount of chemical injection.

本発明は上記事情に鑑みてなされたもので、排水性状が大きく変化する場合でも、余分に注入している薬品の注入量を削減する排水処理方法を提案することを目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to propose a wastewater treatment method that reduces the amount of chemicals injected in excess even when the properties of the wastewater change significantly.

発明者らは、上記課題を解決すべく、鋭意、実験及び検討を行った。その結果、排水処理前の排水のCODにより、排水処理方法を選択できるシステムにより、凝集沈殿処理方法だけか、又は酸化処理も併用する凝集沈殿処理方法かを選別できるようになり、最適な薬品の注入量で排水処理できることを見出した。 The inventors conducted extensive experiments and studies in order to solve the above problems. As a result, a system that can select the wastewater treatment method based on the COD of the wastewater before wastewater treatment has made it possible to select between only the coagulation-sedimentation treatment method or the coagulation-sedimentation treatment method that also includes oxidation treatment, and select the most suitable chemical. It was discovered that wastewater treatment can be done by adjusting the amount of injection.

上記課題を有利に解決する本発明にかかる排水処理方法は以下のように構成される。
[1]排水処理前の排水のCODを計測し、前記CODの値にもとづいて、凝集沈殿処理、および、酸化処理と凝集沈殿処理のいずれか一方の排水処理を選択する排水処理方法である。
[2]上記の[1]において、前記CODを原水槽で計測し、得られたCODの値について、1時間あたりの最大値と最小値の差であるCODの変化量ΔQにもとづいて、排水処理を選択する排水処理方法である。
[3]上記の[2]において、前記CODの変化量ΔQが1000mg/L以上増加したときに、排水処理として酸化処理と凝集沈殿処理を選択する排水処理方法である。
[4]上記の[1]から[3]のいずれかの1において、前記凝集沈殿処理が、塩化第二鉄、硫酸第一鉄、及びポリ硫酸鉄を含む鉄系凝集剤を使用する処理である排水処理方法である。
[5]上記の[1]から[3]のいずれかの1において、前記酸化処理が、過酸化水素水溶液と鉄系触媒によりヒドロキシラジカルを生成するフェントン反応を利用する処理である排水処理方法である。
[6]上記の[1]から[3]のいずれかの1において、前記排水のCODが200~10000mg/Lの範囲である排水処理方法である。
[7]上記の[4]において、前記排水のCODが200~10000mg/Lの範囲である排水処理方法である。
[8]上記の[5]において、前記排水のCODが200~10000mg/Lの範囲である排水処理方法である。
The wastewater treatment method according to the present invention that advantageously solves the above problems is configured as follows.
[1] A wastewater treatment method that measures the COD of wastewater before wastewater treatment, and selects coagulation-sedimentation treatment, and either one of oxidation treatment and coagulation-sedimentation treatment based on the COD value.
[2] In [1] above, the COD is measured in the raw water tank, and based on the COD change amount ΔQ, which is the difference between the maximum value and the minimum value per hour, for the obtained COD value, This is a wastewater treatment method that selects the treatment.
[3] In the above [2], the wastewater treatment method selects oxidation treatment and coagulation-sedimentation treatment as wastewater treatment when the amount of change ΔQ in COD increases by 1000 mg/L or more.
[4] In any one of [1] to [3] above, the coagulation and precipitation treatment is a treatment using an iron-based flocculant containing ferric chloride, ferrous sulfate, and polyferrous sulfate. This is a certain wastewater treatment method.
[5] In any one of [1] to [3] above, the oxidation treatment is a wastewater treatment method that uses a Fenton reaction that generates hydroxyl radicals with an aqueous hydrogen peroxide solution and an iron-based catalyst. be.
[6] The wastewater treatment method according to any one of [1] to [3] above, wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L.
[7] The wastewater treatment method according to [4] above, wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L.
[8] The wastewater treatment method according to [5] above, wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L.

本発明によれば、排水のCODの値にもとづいて処理方法を選択できるようになったので、排水のCODが低い場合に、従来使用されていたフェントン処理用薬品の使用を削減する排水処理方法が実現できる。また、排水性状が大きく変化する排水を処理する場合にも本願発明に係る排水処理方法が適用できる。さらに、本発明は、処理に伴うpH調整用薬品等の薬品の使用も削減することができる。 According to the present invention, it is now possible to select a treatment method based on the COD value of the wastewater, so when the COD of the wastewater is low, the wastewater treatment method reduces the use of conventionally used Fenton treatment chemicals. can be realized. Further, the wastewater treatment method according to the present invention can be applied to the case of treating wastewater whose properties change greatly. Furthermore, the present invention can also reduce the use of chemicals such as pH adjusting chemicals during processing.

本発明の一つの実施形態である排水処理フローの概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the wastewater treatment flow which is one embodiment of this invention. 本発明の排水処理のフローチャートである。It is a flow chart of wastewater treatment of the present invention.

以下、本発明の一実施形態である排水処理方法について詳細に説明する。 Hereinafter, a wastewater treatment method that is one embodiment of the present invention will be described in detail.

<排水処理設備>
図1に排水処理設備を示す。原水槽1は、複数の工場からの排水を貯める。原水槽の排水のCODを計測するCOD測定器2を設置する。この測定されたCODの値は、制御装置3に送信される。この制御装置3では、このCODにもとづく排水処理について、凝集沈殿処理5、又はフェントン処理4および凝集沈殿処理5の工程を決定し、排水フローの電磁弁31、電磁弁32を開閉する制御を行う。
<Wastewater treatment equipment>
Figure 1 shows the wastewater treatment equipment. The raw water tank 1 stores wastewater from multiple factories. A COD measuring device 2 is installed to measure the COD of wastewater from the raw water tank. This measured COD value is transmitted to the control device 3. This control device 3 determines the steps of the coagulation sedimentation treatment 5 or the Fenton treatment 4 and the coagulation sedimentation treatment 5 regarding the wastewater treatment based on this COD, and controls the opening and closing of the solenoid valve 31 and the solenoid valve 32 of the drainage flow. .

図1の上段から中段にかけてフェントン処理設備4を示す。COD中和槽41は、原水槽からの排水の中和処理を行う。pH調整に使用する薬品は希硫酸、消石灰、苛性ソーダが好ましい。この排水を撹拌するバッファー池42を有する。撹拌にはエアーを用いることが好ましい。中和槽43は、排水のpHを調整する。調整には希硫酸を用いることが好ましい。反応槽44で、塩化第二鉄と過酸化水素を排水に注入しフェントン反応を起こし有機物を分解する処理を行う。塩化第二鉄に代えて硫酸第一鉄等のフェントン反応を起こすことのできる薬品でもよい。分解槽45では、排水に残存する過酸化水素を除去するため、撹拌しpH調整を行う。pH調整には苛性ソーダを用いることが好ましく、撹拌にはエアーを用いることが好ましい。沈殿槽46で、排水処理の不純物が沈降する。 The Fenton processing equipment 4 is shown from the top to the middle of FIG. The COD neutralization tank 41 performs neutralization treatment of waste water from the raw water tank. The chemicals used for pH adjustment are preferably dilute sulfuric acid, slaked lime, or caustic soda. A buffer pond 42 is provided to stir this waste water. It is preferable to use air for stirring. Neutralization tank 43 adjusts the pH of wastewater. It is preferable to use dilute sulfuric acid for adjustment. In the reaction tank 44, ferric chloride and hydrogen peroxide are injected into the waste water to cause a Fenton reaction to decompose organic matter. In place of ferric chloride, a chemical capable of causing the Fenton reaction, such as ferrous sulfate, may be used. In the decomposition tank 45, the wastewater is stirred and pH adjusted to remove hydrogen peroxide remaining in the wastewater. It is preferable to use caustic soda for pH adjustment, and it is preferable to use air for stirring. In the settling tank 46, impurities from the wastewater treatment settle.

なお、電磁弁は、2方向電磁弁に限定されるものではなく、たとえば、3方向電磁弁を利用してもよい。 Note that the solenoid valve is not limited to a two-way solenoid valve, and for example, a three-way solenoid valve may be used.

図1の下段に凝集沈殿処理設備5を示す。分解槽51に希硫酸、塩化第二鉄を注入して排水のpHを調整する。pH調整には希硫酸を用いることが好ましい。中和槽52では排水のpHを調整する。沈殿槽53では、排水中の不純物が沈降分離する。 The coagulation and sedimentation treatment equipment 5 is shown in the lower part of FIG. Dilute sulfuric acid and ferric chloride are injected into the decomposition tank 51 to adjust the pH of the wastewater. It is preferable to use dilute sulfuric acid for pH adjustment. In the neutralization tank 52, the pH of the waste water is adjusted. In the sedimentation tank 53, impurities in the waste water are sedimented and separated.

<排水処理方法>
本発明の実施態様の排水処理フローを図2に示す。まず、原水槽1で排水のCODを測定し(ステップS1)、このCODの値は制御装置3へ送信され、制御装置3にあらかじめ設定した値と測定された排水のCOD値を制御装置で比較する(ステップS2)。ここで、原水槽1の排水のCODは、排水処理時間内で特定の時間又は特定の時間毎に測定する。
排水のCODが設定した値以上であった場合、原水槽1からフェントン処理設備4へ通じる電磁弁31を開にし、原水槽1から凝集沈殿処理設備5に通じる電磁弁32を閉にする(ステップS3)。同時に、フェントン処理設備4で使用される薬品を注入するポンプを起動させる信号を制御装置3から送る(ステップS3)。排水のCODが設定した値未満の場合は、原水槽1からフェントン処理設備4へ通じる電磁弁31を閉にし、原水槽1から凝集沈殿処理設備5に通じる電磁弁32を開にする(ステップS5)。同時に、フェントン処理設備4で使用される薬品を注入するポンプを停止させる信号を制御装置3から送る(ステップS5)。
<Wastewater treatment method>
FIG. 2 shows a wastewater treatment flow according to an embodiment of the present invention. First, the COD of the wastewater is measured in the raw water tank 1 (step S1), this COD value is sent to the control device 3, and the control device compares the value set in advance in the control device 3 with the measured COD value of the wastewater. (Step S2). Here, the COD of the waste water in the raw water tank 1 is measured at a specific time or every specific time within the waste water treatment time.
If the COD of the wastewater is equal to or higher than the set value, open the solenoid valve 31 leading from the raw water tank 1 to the Fenton treatment equipment 4, and close the solenoid valve 32 leading from the raw water tank 1 to the coagulation sedimentation treatment equipment 5 (step S3). At the same time, a signal is sent from the control device 3 to start a pump for injecting chemicals used in the Fenton processing equipment 4 (step S3). If the COD of the wastewater is less than the set value, the solenoid valve 31 leading from the raw water tank 1 to the Fenton treatment equipment 4 is closed, and the solenoid valve 32 leading from the raw water tank 1 to the coagulation sedimentation treatment equipment 5 is opened (step S5 ). At the same time, a signal is sent from the control device 3 to stop the pump for injecting the chemicals used in the Fenton processing equipment 4 (step S5).

また、排水のCODの変化量ΔQにもとづいて、排水処理設備に通じる手段を制御して、凝集沈殿処理、および、酸化処理と凝集沈殿処理のいずれか一方の排水処理を選択し、選択した排水処理方法で排水処理条件を設定し排水処理することができる。ここで、CODの変化量ΔQとは、排水処理時間内で測定された原水槽のCODについて、1時間あたりの最大値と最小値の差をいう。
たとえば、排水処理前から排水処理時間内で、特定の時間又は特定の時間毎に原水槽のCODを測定し、その測定されたCODにおける1時間あたりの最大値と最小値の差を解析し変化量ΔQをアウトプットする。
In addition, based on the amount of change ΔQ in the COD of the wastewater, the means leading to the wastewater treatment equipment is controlled to select either coagulation-precipitation treatment, oxidation treatment, or coagulation-precipitation treatment, and select the selected wastewater treatment. You can set wastewater treatment conditions and treat wastewater using the treatment method. Here, the amount of change in COD ΔQ refers to the difference between the maximum value and minimum value per hour of the COD of the raw water tank measured within the wastewater treatment time.
For example, the COD of a raw water tank is measured at a specific time or every specific time period from before wastewater treatment to within the wastewater treatment time, and the difference between the maximum and minimum values per hour of the measured COD is analyzed and changes are made. Outputs the quantity ΔQ.

排水CODの変化量ΔQが設定した値以上であった場合、原水槽1からフェントン処理設備4へ通じる電磁弁31を開にし、原水槽1から凝集沈殿処理設備5に通じる電磁弁32を閉にする(ステップS3)。同時に、フェントン処理設備4で使用される薬品を注入するポンプを起動させる信号を制御装置3から送る(ステップS3)。排水のCODが設定した値未満の場合は、原水槽1からフェントン処理設備4へ通じる電磁弁31を閉にし、原水槽1から凝集沈殿処理設備5に通じる電磁弁32を開にする(ステップS5)。同時に、フェントン処理設備4で使用される薬品を注入するポンプを停止させる信号を制御装置3から送る(ステップS5)。
なお、排水処理の選択は、CODの変化量ΔQが1000mg/Lを基準として、1000mg/L以上であれば、酸化処理と凝集沈殿処理とすることが好ましい。
If the amount of change ΔQ in the wastewater COD is equal to or greater than the set value, the solenoid valve 31 leading from the raw water tank 1 to the Fenton treatment equipment 4 is opened, and the solenoid valve 32 leading from the raw water tank 1 to the coagulation sedimentation treatment equipment 5 is closed. (Step S3). At the same time, a signal is sent from the control device 3 to start a pump for injecting chemicals used in the Fenton processing equipment 4 (step S3). If the COD of the wastewater is less than the set value, the solenoid valve 31 leading from the raw water tank 1 to the Fenton treatment equipment 4 is closed, and the solenoid valve 32 leading from the raw water tank 1 to the coagulation sedimentation treatment equipment 5 is opened (step S5 ). At the same time, a signal is sent from the control device 3 to stop the pump for injecting the chemicals used in the Fenton processing equipment 4 (step S5).
In addition, when selecting the wastewater treatment, if the amount of change ΔQ in COD is 1000 mg/L or more based on 1000 mg/L, it is preferable to select oxidation treatment and coagulation sedimentation treatment.

この排水処理の制御システムにより、排水のCODの値にもとづく排水の処理方法、すなわち、所定の設定値以上又は変化量以上のCODの値ではフェントン処理(ステップS4)と凝集沈殿処理(ステップS6)を両方行ない、所定の設定値未満又は変化量未満のCODの値では、凝集沈殿処理(ステップS6)だけを選択して排水処理を実施することができる(ステップS7)。 With this wastewater treatment control system, the wastewater treatment method is based on the COD value of the wastewater, that is, if the COD value is above a predetermined set value or above a predetermined amount of change, Fenton treatment (Step S4) and coagulation sedimentation treatment (Step S6) are performed. Both are performed, and if the COD value is less than a predetermined set value or less than the amount of change, it is possible to select only the coagulation-sedimentation treatment (step S6) and implement the wastewater treatment (step S7).

また、CODが上昇する原因として、界面活性剤のような有機物に起因する場合と鉄分等の金属イオンに起因する場合とが考えられる。金属イオンが原因でCODが上昇する場合は、凝集沈殿処理のみで処理が可能であり、フェントン反応による処理を行ってもCODの低減効果はほとんどない。排水のCOD原因のうち、金属イオンが優位である場合の排水のCODは200~1500mg/Lである。ここで、本発明の実施形態におけるCODは、有機物由来と金属イオン由来とを考慮した値であり、200~10000mg/Lの範囲である。
そこで、あらかじめ設定する値は1500mg/Lとするのが好ましいが、実際に運用する時の排水基準を満たすように設定値を変更してもよい。
Further, the cause of the increase in COD is thought to be caused by organic substances such as surfactants and metal ions such as iron. If COD increases due to metal ions, it can be treated only by coagulation and precipitation treatment, and treatment by Fenton reaction has almost no effect in reducing COD. Among the COD causes of wastewater, when metal ions are dominant, the COD of wastewater is 200 to 1500 mg/L. Here, the COD in the embodiment of the present invention is a value that takes into account the origin of organic substances and the origin of metal ions, and is in the range of 200 to 10,000 mg/L.
Therefore, it is preferable that the preset value is 1500 mg/L, but the set value may be changed so as to meet the wastewater standard during actual operation.

上記の排水処理を実施して、処理された排水を排出する前に、処理された排水のCODを測定し、排出基準を満たす場合は排水を排出し、満たさない場合は、再度、本発明の排水処理を施す。 Before carrying out the above wastewater treatment and discharging the treated wastewater, the COD of the treated wastewater is measured, and if the discharge standards are met, the wastewater is discharged, and if it is not, the COD of the present invention is again carried out. Treat wastewater.

フェントン処理4は、原水槽1からの排水を、COD中和槽41で中和処理を行い、pHを7~9に調整する。次いで、バッファー池42で排水を撹拌する。撹拌された排水は、中和槽43で排水のpHを2~3に調整する。pH調整後、反応槽44でフェントン反応により有機物を分解する処理を行う。この分解処理を行った後に、分解槽45で、残存する過酸化水素を除去するために、pHを7~9に調整して撹拌を行ない、沈殿槽46で不純物を沈降させる。 In the Fenton treatment 4, the waste water from the raw water tank 1 is neutralized in the COD neutralization tank 41, and the pH is adjusted to 7 to 9. Next, the waste water is stirred in the buffer pond 42. The pH of the agitated wastewater is adjusted to 2 to 3 in a neutralization tank 43. After adjusting the pH, processing is performed in the reaction tank 44 to decompose organic matter by Fenton reaction. After this decomposition treatment, the pH is adjusted to 7 to 9 and stirred in a decomposition tank 45 to remove residual hydrogen peroxide, and impurities are precipitated in a precipitation tank 46.

凝集沈殿処理5は、分解槽51に希硫酸、塩化第二鉄を注入して排水のpHを調整する。次いで、中和槽52で、消石灰を投入し排水のpHを7~9に調整する。沈殿槽53で凝集剤を注入してフロックを形成することで排水中の不純物を沈降分離させる。 In the coagulation and precipitation treatment 5, dilute sulfuric acid and ferric chloride are injected into the decomposition tank 51 to adjust the pH of the wastewater. Next, in the neutralization tank 52, slaked lime is added to adjust the pH of the wastewater to 7 to 9. A flocculant is injected into the sedimentation tank 53 to form flocs, thereby sedimenting and separating impurities in the waste water.

また、フェントン処理が必要な排水は、常に排水のCODが高いものとして処理が行われてきたが、実際、排水収集のタイミングによっては、フェントン処理を必要としないほどCODが低い場合がある。その場合にも、本発明のCODの設定値にもとづく排水処理方法を用いて、フェントン処理を行わず凝集沈殿処理のみの処理とすることが可能である。 Further, wastewater that requires Fenton treatment has always been treated as having a high COD, but in reality, depending on the timing of wastewater collection, the COD may be so low that Fenton treatment is not required. Even in that case, using the wastewater treatment method based on the COD set value of the present invention, it is possible to perform only the coagulation and sedimentation treatment without performing the Fenton treatment.

凝集沈殿処理された処理水はCOD計測器でCOD濃度が基準値以下であることを確認したうえで、排水口から外部に放流される。このCOD計測器は、精確性を要求されることから、JIS K0102-1:2021に準拠した化学分析を用いることが好ましい。 The treated water that has undergone coagulation and sedimentation treatment is discharged outside from the drain after confirming that the COD concentration is below the standard value using a COD meter. Since this COD measuring instrument requires accuracy, it is preferable to use chemical analysis in accordance with JIS K0102-1:2021.

[実施例1]
複数の工場からの排水を原水槽に集めて、CODを測定した。排水処理方法の切り替えCODの設定値を1500mg/Lとし、CODが、1500mg/L以上ならば、フェントン処理と凝集沈殿処理を両方実施し、CODが、1500mg/L未満ならば、凝集沈殿処理のみ実施した。3か月間、本発明のCODの値による排水処理方法で排水処理を行った。なお、排水処理を終えて、排出する前にCODを測定し、全てのチャージにおいて、CODは排出基準以下になっていた。
[Example 1]
Wastewater from multiple factories was collected in a raw water tank and COD was measured. Switching of wastewater treatment method The set value of COD is 1500mg/L. If COD is 1500mg/L or more, both Fenton treatment and coagulation sedimentation treatment are performed, and if COD is less than 1500mg/L, only coagulation sedimentation treatment is performed. carried out. Wastewater treatment was carried out for three months using the wastewater treatment method according to the COD value of the present invention. The COD was measured after wastewater treatment and before discharge, and the COD was below the discharge standard for all charges.

[実施例2]
複数の工場からの排水を原水槽に集めて、常時CODを測定した。さらに、CODの最大値と最小値の差は、COD測定開始から1時間あたりに換算したCODのデータから算出した。
排水処理方法の切り替えるタイミングを1時間あたりのCODの最大値と最小値の差を1200mg/Lと設定し、そのCODの差が、1200mg/L以上増加したならば、フェントン処理と凝集沈殿処理を両方実施し、CODの差が、1200mg/L未満ならば、凝集沈殿処理のみ実施した。処理時間はおよそ1~2時間である。3か月間、本発明のCOD変化量による排水処理方法で排水処理を行った。なお、排水処理を終えて、排出する前にCODを測定し、全てのチャージにおいて、CODは排出基準以下になっていた。
[Example 2]
Wastewater from multiple factories was collected in a raw water tank, and COD was constantly measured. Furthermore, the difference between the maximum value and the minimum value of COD was calculated from the COD data converted per hour from the start of COD measurement.
The timing for switching the wastewater treatment method is set as the difference between the maximum and minimum COD values per hour at 1200 mg/L, and if the difference in COD increases by 1200 mg/L or more, Fenton treatment and coagulation sedimentation treatment are performed. Both treatments were performed, and if the difference in COD was less than 1200 mg/L, only the coagulation and precipitation treatment was performed. Processing time is approximately 1-2 hours. For 3 months, wastewater treatment was carried out using the wastewater treatment method based on the amount of change in COD of the present invention. The COD was measured after wastewater treatment and before discharge, and the COD was below the discharge standard for all charges.

本発明の実施例では、排水のCODの値又はCODの変化量にもとづいて処理方法を選択できるようになったので、排水のCODが低い場合に、従来使用されていたフェントン処理用薬品を使用する必要がなくなったため、いずれの処理方法においてもフェントン処理用薬品の使用量を25%以上削減することができた。 In the embodiment of the present invention, it is now possible to select a treatment method based on the COD value of wastewater or the amount of change in COD, so when the COD of wastewater is low, the conventionally used Fenton treatment chemicals can be used. Because there was no need to do this, the amount of Fenton treatment chemicals used could be reduced by more than 25% in both treatment methods.

なお、上記の実施例では本発明の実施形態について説明したが、本発明はこれに限るものでない。 Note that although the embodiments of the present invention have been described in the above examples, the present invention is not limited thereto.

本発明によれば、新たな排水処理方法が開発された場合、排水処理方法が改善された場合など排水処理方法の選択肢が増えた場合にも、本排水処理制御システムを適用することが可能である。 According to the present invention, the present wastewater treatment control system can be applied even when the number of options for wastewater treatment increases, such as when a new wastewater treatment method is developed or when the wastewater treatment method is improved. be.

W 排水
1 原水槽
2 COD測定器
3 制御装置
31 フェントン処理設備に通じる電磁弁
32 凝集沈殿処理設備に通じる電磁弁
4 フェントン処理設備
41 COD中和槽
42 バッファー池
43 中和槽
44 反応槽
45 分解槽
46 沈殿槽
5 凝集沈殿処理設備
51 分解槽
52 中和槽
53 沈殿槽
W Waste water 1 Raw water tank 2 COD measuring device 3 Control device 31 Solenoid valve leading to Fenton treatment equipment 32 Solenoid valve leading to coagulation sedimentation treatment equipment 4 Fenton treatment equipment 41 COD neutralization tank 42 Buffer pond 43 Neutralization tank 44 Reaction tank 45 Decomposition Tank 46 Sedimentation tank 5 Coagulation sedimentation treatment equipment 51 Decomposition tank 52 Neutralization tank 53 Sedimentation tank

Claims (8)

排水処理前の排水のCODを計測し、前記CODの値にもとづいて、凝集沈殿処理、および、酸化処理と凝集沈殿処理のいずれか一方の排水処理を選択することを特徴とする排水処理方法。 A wastewater treatment method comprising: measuring the COD of wastewater before wastewater treatment; and selecting one of coagulation and sedimentation treatment, oxidation treatment, and coagulation and sedimentation treatment based on the COD value. 前記CODを原水槽で計測し、得られたCODの値について、1時間あたりの最大値と最小値の差であるCODの変化量ΔQにもとづいて、排水処理を選択することを特徴とする請求項1に記載の排水処理方法。 A claim characterized in that the COD is measured in the raw water tank and the wastewater treatment is selected based on the amount of change ΔQ in the COD, which is the difference between the maximum value and the minimum value per hour, for the obtained COD value. The wastewater treatment method according to item 1. 前記CODの変化量ΔQが1000mg/L以上増加したときに、排水処理として酸化処理と凝集沈殿処理を選択することを特徴とする請求項2に記載の排水処理方法。 The wastewater treatment method according to claim 2, characterized in that when the amount of change ΔQ in COD increases by 1000 mg/L or more, oxidation treatment and coagulation-sedimentation treatment are selected as the wastewater treatment. 前記凝集沈殿処理が、塩化第二鉄、硫酸第一鉄、及びポリ硫酸鉄を含む鉄系凝集剤を使用する処理である請求項1から3のいずれか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 3, wherein the coagulation and precipitation treatment is a treatment using an iron-based flocculant containing ferric chloride, ferrous sulfate, and polyferrous sulfate. 前記酸化処理が、過酸化水素水溶液と鉄系触媒によりヒドロキシラジカルを生成するフェントン反応を利用する処理である請求項1から3のいずれか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 3, wherein the oxidation treatment is a treatment that utilizes a Fenton reaction that generates hydroxyl radicals using an aqueous hydrogen peroxide solution and an iron-based catalyst. 前記排水のCODが200~10000mg/Lの範囲である請求項1から3のいずれか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 3, wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L. 前記排水のCODが200~10000mg/Lの範囲である請求項4に記載の排水処理方法。 The wastewater treatment method according to claim 4, wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L. 前記排水のCODが200~10000mg/Lの範囲である請求項5に記載の排水処理方法。 The wastewater treatment method according to claim 5, wherein the COD of the wastewater is in the range of 200 to 10,000 mg/L.
JP2023025293A 2022-03-31 2023-02-21 Wastewater treatment method Active JP7582359B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059060 2022-03-31
JP2022059060 2022-03-31

Publications (2)

Publication Number Publication Date
JP2023152734A true JP2023152734A (en) 2023-10-17
JP7582359B2 JP7582359B2 (en) 2024-11-13

Family

ID=88349295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023025293A Active JP7582359B2 (en) 2022-03-31 2023-02-21 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP7582359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118125660A (en) * 2024-04-09 2024-06-04 天津大唐国际盘山发电有限责任公司 Fenton magnetic coagulation oxidation reactor suitable for thermal power factory

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073652A (en) 2013-03-22 2015-11-18 东丽株式会社 Fresh water production process
JP2020006332A (en) 2018-07-10 2020-01-16 王子ホールディングス株式会社 Water treatment apparatus and water treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118125660A (en) * 2024-04-09 2024-06-04 天津大唐国际盘山发电有限责任公司 Fenton magnetic coagulation oxidation reactor suitable for thermal power factory

Also Published As

Publication number Publication date
JP7582359B2 (en) 2024-11-13

Similar Documents

Publication Publication Date Title
CN107857426B (en) A kind of comprehensive treatment method of phosphorus-containing wastewater
CN103183421A (en) Treatment method for waste water containing complex copper
CN109019945A (en) Method for treating cyanide-containing wastewater
CN112158941A (en) Fenton optimization oxidation treatment method for wastewater
CN109110981B (en) Method for removing thallium from waste water containing high-halogen waste acid
JP7582359B2 (en) Wastewater treatment method
Hu et al. Effective treatment of cadmium–cyanide complex by a reagent with combined function of oxidation and coagulation
KR20010068172A (en) Advanced Electric Oxidaition Process
KR20030053498A (en) The method and equipment of wastewater treatment contained organic compound of high concentration
CN109987749B (en) Control method for promoting Fenton oxidation mediated by calcium and organic acid complex
CN112520913A (en) Pretreatment process for treating refractory organic wastewater by electric flocculation
CN110790419B (en) Method for treating electroless copper plating wastewater containing no hydroxyl-containing organic amine
CN117509983A (en) Advanced treatment system for papermaking wastewater
CN217780902U (en) High salt effluent disposal system
CN111170506A (en) Fenton oxidation treatment method for wastewater
CN111995103A (en) Method for treating complex cyanide-containing wastewater generated by emergency environmental event
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
CN114291858A (en) High-fluorine-content wastewater treatment system and method
CN202297317U (en) System for treating acid washing heavy metal waste water of steel wire ropes
CN111533350A (en) Method for reducing salt content in wastewater after Fenton oxidation
CN219010069U (en) High fluorine-containing inorganic chemical wastewater treatment device
KR930010763B1 (en) Fluorine and cianide removing method from waste water
KR100461913B1 (en) A method for treatment of sewage and wastewater
US10800688B2 (en) Controlling digester biosolids and wastewater activated sludge systems
JPS59162995A (en) Treatment of waste water containing cod component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241014

R150 Certificate of patent or registration of utility model

Ref document number: 7582359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150