[go: up one dir, main page]

JP7580206B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP7580206B2
JP7580206B2 JP2020090683A JP2020090683A JP7580206B2 JP 7580206 B2 JP7580206 B2 JP 7580206B2 JP 2020090683 A JP2020090683 A JP 2020090683A JP 2020090683 A JP2020090683 A JP 2020090683A JP 7580206 B2 JP7580206 B2 JP 7580206B2
Authority
JP
Japan
Prior art keywords
light
particles
emitting element
resin
covering member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020090683A
Other languages
Japanese (ja)
Other versions
JP2021190437A (en
Inventor
裕介 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2020090683A priority Critical patent/JP7580206B2/en
Publication of JP2021190437A publication Critical patent/JP2021190437A/en
Application granted granted Critical
Publication of JP7580206B2 publication Critical patent/JP7580206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

発光ダイオード(LED)等の半導体発光装置に関する。 Related to semiconductor light-emitting devices such as light-emitting diodes (LEDs).

半導体発光素子の出射面上に透光性の部材を配置し、当該半導体発光素子及び透光性の部材の側面を光反射性の部材で被覆した半導体発光装置が知られている(例えば特許文献1など)。当該光反射性の部材として、透光性の樹脂中に光散乱性の粒子を分散させたいわゆる白樹脂と呼ばれる部材を形成することが知られている。 A semiconductor light-emitting device is known in which a light-transmitting member is placed on the emission surface of a semiconductor light-emitting element, and the side surfaces of the semiconductor light-emitting element and the light-transmitting member are covered with a light-reflective member (for example, Patent Document 1, etc.). It is known that the light-reflective member is a member called a white resin, in which light-scattering particles are dispersed in a light-transmitting resin.

特許第5746335号公報Patent No. 5746335

上記したような半導体発光装置において、光取り出し効率が高いことに加えて、光を出射させる領域とそれ以外の領域との間で高いコントラストが得られることが期待される。 In the semiconductor light-emitting device described above, in addition to high light extraction efficiency, it is expected that high contrast will be obtained between the area from which light is emitted and other areas.

本発明は上記した点に鑑みてなされたものであり、光の取り出し効率が高く、コントラストが高い半導体発光装置を提供することを目的としている。 The present invention has been made in consideration of the above points, and aims to provide a semiconductor light-emitting device with high light extraction efficiency and high contrast.

上面に凹部を有する基板と、前記凹部の底面に配置された発光素子と、前記発光素子上に設けられ、前記発光素子が放射する放射光に対して透光性を有する透光部材と、樹脂を媒質とし、前記媒質中に光散乱性を有する散乱粒子及び樹脂からなる粒子である浮遊粒子が包含されており、前記発光素子及び前記透光部材の側面を覆うように前記凹部内に設けられた被覆部材と、を有することを特徴とする。 The device is characterized by having a substrate having a recess on its upper surface, a light-emitting element disposed on the bottom surface of the recess, a light-transmitting member disposed on the light-emitting element and having light-transmitting properties with respect to the light emitted by the light-emitting element, and a covering member disposed within the recess so as to cover the side surfaces of the light-emitting element and the light-transmitting member, the covering member being made of resin as a medium and containing suspended particles that are resin particles and scattering particles that have light-scattering properties in the medium.

実施例に係る半導体発光装置の上面図である。FIG. 2 is a top view of a semiconductor light emitting device according to an embodiment. 実施例に係る半導体発光装置の断面図である。1 is a cross-sectional view of a semiconductor light emitting device according to an embodiment. 図2の一部を拡大して示す模式図である。FIG. 3 is an enlarged schematic diagram showing a part of FIG. 2 . 製造工程における散乱粒子の動きを模式的に示す図である。1A to 1C are diagrams illustrating the movement of scattering particles during the manufacturing process. 実施例に係る半導体発光装置の製造工程の一例を示すフローチャートである。4 is a flowchart showing an example of a manufacturing process for a semiconductor light emitting device according to an embodiment. 比較例に係る図3に相当する部分の模式図である。FIG. 4 is a schematic diagram of a portion corresponding to FIG. 3 according to a comparative example. 実施例に係る半導体発光装置の輝度分布の一例を示すグラフである。4 is a graph showing an example of a luminance distribution of a semiconductor light emitting device according to an example. 比較例に係る半導体発光装置の輝度分布の一例を示すグラフである。11 is a graph showing an example of a luminance distribution of a semiconductor light emitting device according to a comparative example.

以下においては、本発明の好適な実施例について説明するが、これらを適宜改変し、組合せてもよい。また、以下の説明及び添付図面において、実質的に同一又は等価な部分には同一の参照符を付して説明する。 In the following, preferred embodiments of the present invention will be described, but these may be modified and combined as appropriate. In the following description and accompanying drawings, substantially the same or equivalent parts are denoted by the same reference numerals.

図1~図3を参照しつつ、本発明の実施例に係る半導体発光装置10の構成について説明する。図1は、本発明の実施例に係る半導体発光装置10を模式的に示す上面図である。図2は、図1に示した半導体発光装置10を2-2線で切断した面を模式的に示す断面図である。図3は、図2の点線で囲んだA部の拡大図である。 The configuration of a semiconductor light-emitting device 10 according to an embodiment of the present invention will be described with reference to Figures 1 to 3. Figure 1 is a top view that shows a semiconductor light-emitting device 10 according to an embodiment of the present invention. Figure 2 is a cross-sectional view that shows a schematic cross section of the semiconductor light-emitting device 10 shown in Figure 1 taken along line 2-2. Figure 3 is an enlarged view of part A surrounded by a dotted line in Figure 2.

[発光装置]
図1及び図2に示すように、本実施例に係る半導体発光装置10(以降、発光装置10とも称する)は、凹部11Cを有する基板11と、基板11の凹部11Cの底面11Sに載置された半導体発光素子13(以降、発光素子13とも称する)と、発光素子13の上方に載置された透光部材25と、発光素子13の上面と透光部材25の下面とを接着する接着部材37と、基板11の底面11Sと発光素子13及び透光部材25の側面とを被覆する被覆部材27を含んで構成されている。
[Light-emitting device]
As shown in Figures 1 and 2, the semiconductor light-emitting device 10 (hereinafter also referred to as the light-emitting device 10) of this embodiment is configured to include a substrate 11 having a recess 11C, a semiconductor light-emitting element 13 (hereinafter also referred to as the light-emitting element 13) mounted on a bottom surface 11S of the recess 11C of the substrate 11, a translucent member 25 mounted above the light-emitting element 13, an adhesive member 37 that bonds the upper surface of the light-emitting element 13 to the lower surface of the translucent member 25, and a covering member 27 that covers the bottom surface 11S of the substrate 11 and the side surfaces of the light-emitting element 13 and the translucent member 25.

[基板11]
基板11は、上面視において矩形状であり、上面に開口した凹部11Cを有する。凹部11Cは、平坦な底面11S及びその外周部を囲む枠部11Wによって画定されている。基板11の凹部11Cの底面11Sには、アノード配線21とカソード配線29とが設けられており、発光素子13を実装できるように構成されている。また底面11Sと反対側の面には、アノード実装電極33とカソード実装電極31が設けられており、発光装置10を回路基板に実装できる構成となっている。すなわち、基板11は発光素子13の実装面である底面11Sを含む基板基部11Aと枠部11Wからなる。
[Substrate 11]
The substrate 11 is rectangular in top view and has a recess 11C that opens to the top surface. The recess 11C is defined by a flat bottom surface 11S and a frame portion 11W that surrounds the outer periphery of the bottom surface 11S. An anode wiring 21 and a cathode wiring 29 are provided on the bottom surface 11S of the recess 11C of the substrate 11, so that the light emitting element 13 can be mounted. An anode mounting electrode 33 and a cathode mounting electrode 31 are provided on the surface opposite to the bottom surface 11S, so that the light emitting device 10 can be mounted on a circuit board. That is, the substrate 11 is composed of a substrate base 11A including the bottom surface 11S, which is the mounting surface for the light emitting element 13, and a frame portion 11W.

本実施例において、基板11の底面11Sを形成している基板基部11Aと枠部11Wを形成している部分は一体的に形成されている。すなわち、基板11は1の部材からなっている。例えば、基板11はアルミナ、窒化アルミ、窒化珪素等から成るセラミック製である。なお、基板11の底面11Sを含む基板基部11Aと枠部11Wは、別々の部材を接合して構成されていてもよい。例えば、基板11は、セラミック製の平板形状の基板基部11Aと、樹脂製又はセラミック製の枠部11Wが接合されて形成されていてもよい。 In this embodiment, the substrate base 11A forming the bottom surface 11S of the substrate 11 and the portion forming the frame 11W are integrally formed. That is, the substrate 11 is made of one member. For example, the substrate 11 is made of ceramics such as alumina, aluminum nitride, silicon nitride, etc. Note that the substrate base 11A including the bottom surface 11S of the substrate 11 and the frame 11W may be formed by joining separate members. For example, the substrate 11 may be formed by joining a ceramic flat-plate-shaped substrate base 11A to a resin or ceramic frame 11W.

底面11S上に設けられたカソード配線29とアノード配線21は、金属製の配線電極パターンである。同様に、底面11Sの反対側の面に設けられたカソード実装電極31とアノード実装電極33も金属製の電極パターンである。そして、カソード実装電極31は導通ビア31Hを介してカソード配線29に電気的に接続され、アノード実装電極33は導通ビア33Hを介してアノード配線21に電気的に接続されている。 The cathode wiring 29 and anode wiring 21 provided on the bottom surface 11S are metal wiring electrode patterns. Similarly, the cathode mounting electrode 31 and anode mounting electrode 33 provided on the surface opposite the bottom surface 11S are also metal electrode patterns. The cathode mounting electrode 31 is electrically connected to the cathode wiring 29 via the conductive via 31H, and the anode mounting electrode 33 is electrically connected to the anode wiring 21 via the conductive via 33H.

例えば、アノード配線21、カソード配線29、カソード実装電極31及びアノード実装電極33は銀合金であり、表面にニッケル/金(Ni/Au)のメッキが施されている。また導通ビア31H、33Hも銀合金である。 For example, the anode wiring 21, the cathode wiring 29, the cathode mounting electrode 31, and the anode mounting electrode 33 are made of a silver alloy, and their surfaces are plated with nickel/gold (Ni/Au). The conductive vias 31H and 33H are also made of a silver alloy.

[半導体発光素子]
半導体発光素子13は、例えば導電性の支持基板15と、支持基板15上に接合されたn型半導体層、発光層、及びp型半導体層からなる半導体積層体17とからなる。さらに、発光素子13は、支持基板15の半導体積層体17が接合された面と同一面に設けられたアノード素子電極19が設けられ、支持基板15の半導体積層体17が接合された面と反対側の面にカソード素子電極(図示せず)が設けられている。
[Semiconductor Light Emitting Device]
The semiconductor light emitting element 13 is composed of, for example, a conductive support substrate 15 and a semiconductor laminate 17 made of an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer bonded onto the support substrate 15. Furthermore, the light emitting element 13 is provided with an anode element electrode 19 provided on the same surface as the surface of the support substrate 15 to which the semiconductor laminate 17 is bonded, and a cathode element electrode (not shown) is provided on the surface of the support substrate 15 opposite to the surface to which the semiconductor laminate 17 is bonded.

具体的には、アノード素子電極19は、支持基板15上に絶縁層を介して設けられ、p側接合部材(図示せず)を介して、半導体積層体17のp型半導体層に設けられたp側電極(図示せず)に接続されている。すなわち、アノード素子電極19は、半導体積層体17のp型半導体層に電気的に接合され且つ支持基板15から絶縁されている。 Specifically, the anode element electrode 19 is provided on the support substrate 15 via an insulating layer, and is connected to a p-side electrode (not shown) provided on the p-type semiconductor layer of the semiconductor laminate 17 via a p-side bonding member (not shown). That is, the anode element electrode 19 is electrically bonded to the p-type semiconductor layer of the semiconductor laminate 17 and is insulated from the support substrate 15.

カソード素子電極(図示せず)は、支持基板15の半導体積層体17が接合された面とは反対側の面、すなわち支持基板15の裏面(発光素子13の下面)に設けられた電極である。当該カソード素子電極は、支持基板15とn側接合部材(図示せず)を介してn型半導体層に設けられたn側電極に接続されている。すなわち、カソード素子電極は、半導体積層体17のn型半導体層に電気的に接続されている。 The cathode element electrode (not shown) is an electrode provided on the surface of the support substrate 15 opposite to the surface to which the semiconductor laminate 17 is bonded, i.e., on the back surface of the support substrate 15 (the underside of the light-emitting element 13). The cathode element electrode is connected to an n-side electrode provided on the n-type semiconductor layer via the support substrate 15 and an n-side bonding member (not shown). In other words, the cathode element electrode is electrically connected to the n-type semiconductor layer of the semiconductor laminate 17.

本実施例においては、支持基板15が導電性のシリコン(Si)であり、半導体積層体17に窒化インジウムガリウム系(InGaN系)の発光層を含み、ピーク波長(λp)430~460nmの光を放射する発光素子13を例にして説明する。 In this embodiment, the support substrate 15 is made of conductive silicon (Si), the semiconductor laminate 17 includes an indium gallium nitride (InGaN) light-emitting layer, and the light-emitting element 13 emits light with a peak wavelength (λp) of 430 to 460 nm.

本実施例において発光素子13は、支持基板15の下面に設けられているカソード素子電極と、基板11の凹部11Cの底面11Sに設けられたカソード配線29とが接合部材35を介して電気的に接続されている。また、支持基板15の上面に設けられたアノード素子電極19と、基板11の凹部11Cの底面11Sに設けられたアノード配線21とが、ボンディングワイヤ23を介して電気的に接続されている。 In this embodiment, the light-emitting element 13 is electrically connected via a bonding member 35 between the cathode element electrode provided on the lower surface of the support substrate 15 and the cathode wiring 29 provided on the bottom surface 11S of the recess 11C of the substrate 11. Also, the anode element electrode 19 provided on the upper surface of the support substrate 15 and the anode wiring 21 provided on the bottom surface 11S of the recess 11C of the substrate 11 are electrically connected via a bonding wire 23.

[透光部材]
透光部材25は、発光素子13の上方に配置され、上面視において半導体積層体17の輪郭(発光素子13の発光面)とほぼ重なる大きさの板状体である。また、透光部材25のサイズは、上面視において半導体積層体17の輪郭と同サイズ以上、発光素子13の輪郭と同サイズ以下が好ましい。本実施例の透光部材25は、上面視において発光素子13からアノード素子電極19を除くサイズとしている。
[Light-transmitting member]
The light-transmitting member 25 is disposed above the light-emitting element 13, and is a plate-like body having a size that almost overlaps the contour of the semiconductor laminate 17 (the light-emitting surface of the light-emitting element 13) when viewed from above. The size of the light-transmitting member 25 is preferably equal to or larger than the contour of the semiconductor laminate 17 and equal to or smaller than the contour of the light-emitting element 13 when viewed from above. The light-transmitting member 25 of this embodiment has a size that covers the light-emitting element 13 excluding the anode element electrode 19 when viewed from above.

透光部材25は、発光素子13から放射される光や、後述の波長変換材から放射される光に対して透光性を有する。透光部材25としてガラス、アルミナやイットリウム・アルミニウム・ガーネット(YAG)などの透光性セラミック、及びシリコーン樹脂、エポキシ樹脂、ポリカーボネイト樹脂、アクリル樹脂、ポリイミド樹脂などの透光性の樹脂を用いることができる。なお、本実施例の透光部材25にはガラスを用いている。 The light-transmitting member 25 is translucent to the light emitted from the light-emitting element 13 and the light emitted from the wavelength conversion material described below. The light-transmitting member 25 can be made of glass, translucent ceramics such as alumina and yttrium aluminum garnet (YAG), or translucent resins such as silicone resin, epoxy resin, polycarbonate resin, acrylic resin, and polyimide resin. Note that glass is used for the light-transmitting member 25 in this embodiment.

透光部材25には、発光素子13からの放射光を吸収して、より長波長の光を発する蛍光体等の波長変換材を含んでいてもよい。例えば、波長変換材として、イットリウム・アルミニウム・ガーネット結晶(YAG:YAl12)にセリウム(Ce)賦活剤を含んだYAG:Ce蛍光体粒子、αサイアロンやβサイアロンにユーロピウム(Eu)賦活材を含んだ蛍光体粒子、金属窒化物や金属硫化物のナノ粒子などを用いることができる。 The light-transmitting member 25 may contain a wavelength conversion material such as a phosphor that absorbs the radiation light from the light-emitting element 13 and emits light of a longer wavelength. For example, as the wavelength conversion material, YAG:Ce phosphor particles in which a cerium (Ce) activator is contained in yttrium aluminum garnet crystal (YAG:Y3Al5O12 ) , phosphor particles in which an europium (Eu) activator is contained in α-sialon or β- sialon , nanoparticles of metal nitride or metal sulfide, etc. can be used.

本実施例において、透光部材25は、上面25Tの反対側の面(下面)が、接着部材37によって、発光素子13の上面と接着されている。 In this embodiment, the surface (lower surface) of the translucent member 25 opposite the upper surface 25T is adhered to the upper surface of the light-emitting element 13 by an adhesive member 37.

[接着部材]
接着部材37は、発光素子13から放射される光や、波長変換材から放射される光に対して透光性を有し、発光素子13の上面(出射面)と透光部材25の下面(入射面)を接着する。そして、発光素子13の上面から出射された光を透光部材25の下面へ導く機能を有する。
[Adhesive member]
The adhesive member 37 is translucent to the light emitted from the light emitting element 13 and the light emitted from the wavelength conversion material, and bonds the upper surface (emission surface) of the light emitting element 13 to the lower surface (incident surface) of the light transmissive member 25. The adhesive member 37 has a function of guiding the light emitted from the upper surface of the light emitting element 13 to the lower surface of the light transmissive member 25.

接着部材37は、発光素子13の面上において(より詳細には支持基板15の上面において)半導体積層体17、及びアノード素子電極19の一部または全てを埋設する。例えば、接着部材37は、透光部材25の下面を画定する辺と、支持基板15の上面を画定する辺とを結ぶ側面を有することが好ましい。また、アノード素子電極19とボンディングワイヤ23との接続部が、接着部材37によって覆われていることが好ましい。接着部材37をこのように設けることによって、劣化し易い半導体積層体17を封止し、アノード素子電極19に接続されたボンディングワイヤ23の接続部を固着してワイヤ外れを防止できるからである。 The adhesive member 37 embeds part or all of the semiconductor laminate 17 and the anode element electrode 19 on the surface of the light-emitting element 13 (more specifically, on the upper surface of the support substrate 15). For example, it is preferable that the adhesive member 37 has a side that connects the edge that defines the lower surface of the translucent member 25 with the edge that defines the upper surface of the support substrate 15. It is also preferable that the connection between the anode element electrode 19 and the bonding wire 23 is covered with the adhesive member 37. By providing the adhesive member 37 in this manner, the semiconductor laminate 17, which is prone to deterioration, can be sealed and the connection portion of the bonding wire 23 connected to the anode element electrode 19 can be fixed to prevent the wire from coming loose.

なお、接着部材37が支持基板15の側面を覆ってしまうと半導体積層体17から放射された光が、支持基板15に吸収されるので好ましくない。 However, if the adhesive member 37 covers the side surface of the support substrate 15, the light emitted from the semiconductor laminate 17 will be absorbed by the support substrate 15, which is not preferable.

接着部材37には、シリコーン樹脂、エポキシ樹脂、アクリル樹脂等の樹脂を用いることができる。また、シリカポリマー、アルミナ・シリカジオポリマーを含む無機ポリマーを用いることもできる。本実施例では、接着部材37としてシリコーン樹脂を用いた。 For the adhesive member 37, resins such as silicone resin, epoxy resin, and acrylic resin can be used. Inorganic polymers including silica polymer and alumina-silica geopolymer can also be used. In this embodiment, silicone resin was used as the adhesive member 37.

また、接着部材37には、前述した発光素子13からの放射光を吸収して蛍光を発する蛍光体などの波長変換材を含んでいてもよい。なお、波長変換材は、透光部材25又は接着部材37の少なくとも一方に含まれていればよい。本実施例においては、接着部材37に波長変換材としてYAG:Ce蛍光体粒子を含んでいる。 The adhesive member 37 may also contain a wavelength conversion material such as a phosphor that absorbs the radiation from the light-emitting element 13 and emits fluorescence. The wavelength conversion material may be contained in at least one of the translucent member 25 or the adhesive member 37. In this embodiment, the adhesive member 37 contains YAG:Ce phosphor particles as the wavelength conversion material.

[被覆部材]
被覆部材27は、基板11の凹部11Cの底面11Sと、発光素子13の支持基板15と接着部材37と透光部材25の側面及びボンディングワイヤ23を覆い、透光部材25の上面25Tを露出するように基板11の凹部11Cに充填されている。
[Covering member]
The covering member 27 covers the bottom surface 11S of the recess 11C of the substrate 11, the supporting substrate 15 of the light-emitting element 13, the adhesive member 37, the side surface of the translucent member 25, and the bonding wires 23, and is filled into the recess 11C of the substrate 11 so as to expose the upper surface 25T of the translucent member 25.

被覆部材27は、発光素子13を封止するとともに発光素子13から放射された光や、波長変換材から放射された光を反射する機能を有する。 The covering member 27 seals the light-emitting element 13 and has the function of reflecting the light emitted from the light-emitting element 13 and the light emitted from the wavelength conversion material.

本実施例の被覆部材27は、発光素子13から放射される光や、波長変換材から放射される光に対して透光性を有する樹脂から成る媒質39と、媒質39と異なる屈折率を有して媒質39中を導波する光を散乱(Mie散乱)する(すなわち、光散乱性を有する)散乱粒子41を含有し、被覆部材27全体として光反射性を備えた部材となっている。さらに、被覆部材27は、媒質39と略同等な比重からなる浮遊粒子43を含んでいる。そして、散乱粒子41と浮遊粒子43は、図3に示すように、被覆部材27の媒質39中において、所定の濃度で均一に分散されている。 The covering member 27 of this embodiment contains a medium 39 made of a resin that is translucent to the light emitted from the light emitting element 13 and the light emitted from the wavelength conversion material, and scattering particles 41 that have a refractive index different from that of the medium 39 and scatter (Mie scattering) the light that is guided through the medium 39 (i.e., have light scattering properties), and the covering member 27 as a whole is a member with light reflectivity. Furthermore, the covering member 27 contains floating particles 43 that have approximately the same specific gravity as the medium 39. And, the scattering particles 41 and floating particles 43 are uniformly dispersed at a predetermined concentration in the medium 39 of the covering member 27, as shown in FIG. 3.

例えば、本実施例の被覆部材27は、媒質39となる硬化前の流動性を有する樹脂材料(以降、「硬化前の流動性を有する樹脂材料」を「前駆体樹脂材料」とも言う)に、散乱粒子41と浮遊粒子43を均一に分散させた後に硬化させることで形成できる。詳細は後述するが、浮遊粒子43は、被覆部材27を形成する過程において、媒質39の前駆体樹脂材料中に分散された散乱粒子41の沈降を防止する働きを有する。 For example, the covering member 27 in this embodiment can be formed by uniformly dispersing the scattering particles 41 and the floating particles 43 in a resin material having fluidity before hardening that becomes the medium 39 (hereinafter, the "resin material having fluidity before hardening" is also referred to as the "precursor resin material") and then hardening the material. As will be described in detail later, the floating particles 43 have the function of preventing the scattering particles 41 dispersed in the precursor resin material of the medium 39 from settling during the process of forming the covering member 27.

このように、浮遊粒子43を分散した被覆部材27は、散乱粒子41が均一に分散されている状態を維持するので、発光素子13の光出射面(半導体積層体17の上面)から出射されて透光部材25に入射した光のうち、透光部材25の側面から被覆部材27へ入射する光を、均一に反射して透光部材25へ戻すことができる。 In this way, the covering member 27 with the suspended particles 43 dispersed therein maintains a state in which the scattering particles 41 are uniformly dispersed, so that, of the light emitted from the light-emitting surface of the light-emitting element 13 (the upper surface of the semiconductor laminate 17) and incident on the translucent member 25, the light that enters the covering member 27 from the side of the translucent member 25 can be uniformly reflected back to the translucent member 25.

よって、発光素子13の光出射面から出射し透光部材25へ入射して上面25Tから出射する直接光と、透光部材25の側面を覆う被覆部材27で反射されて上面25Tから出射する間接光が合わさり、透光部材25の上面25Tから出射する光の光出力を高くすることができる。また透光部材25の上面25Tの周囲部分(例えば、被覆部材27の上面27T)に対して高いコントラストが得られる。 As a result, direct light that is emitted from the light emission surface of the light-emitting element 13, enters the translucent member 25, and is emitted from the top surface 25T is combined with indirect light that is reflected by the covering member 27 that covers the side surface of the translucent member 25 and is emitted from the top surface 25T, thereby increasing the optical output of the light that is emitted from the top surface 25T of the translucent member 25. In addition, a high contrast is obtained with respect to the surrounding area of the top surface 25T of the translucent member 25 (for example, the top surface 27T of the covering member 27).

被覆部材27の媒質39としては、例えば、シリコーン樹脂(比重0.99)、エポキシ樹脂(比重1.11~1.40)、アクリル樹脂(比重1.17~1.20)、ポリカーボネイト樹脂(比重1.1~1.6)、ポリイミド樹脂(比重1.33~1.43)等の熱硬化性樹脂又は光硬化性樹脂を用いることができる。散乱粒子41としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、アルミナ(Al)等の金属酸化物の粒子を用いることができる。浮遊粒子43としては、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ポリカーボネイト樹脂、ポリイミド樹脂等の硬化済みの樹脂粒子を用いることができる(媒質39の硬化温度において液化しない樹脂の粒子を用いることができる)。 The medium 39 of the covering member 27 may be, for example, a thermosetting resin or a photosetting resin such as silicone resin (specific gravity 0.99), epoxy resin (specific gravity 1.11 to 1.40), acrylic resin (specific gravity 1.17 to 1.20), polycarbonate resin (specific gravity 1.1 to 1.6), or polyimide resin (specific gravity 1.33 to 1.43). The scattering particles 41 may be, for example, particles of metal oxide such as titanium oxide (TiO 2 ), zinc oxide (ZnO), or alumina (Al 2 O 3 ). The floating particles 43 may be, for example, particles of cured resin such as silicone resin, epoxy resin, acrylic resin, polycarbonate resin, or polyimide resin (particles of resin that do not liquefy at the curing temperature of the medium 39 may be used).

本実施例においては、被覆部材27の媒質39として、比重0.99、屈折率1.41であって、発光素子13の青色光(波長430nm~460nm)に対して黄変等を起こさない耐光性のあるシリコーン樹脂を用いた。 In this embodiment, the medium 39 of the covering member 27 is a silicone resin with a specific gravity of 0.99, a refractive index of 1.41, and light resistance that does not yellow when exposed to the blue light (wavelength 430 nm to 460 nm) from the light-emitting element 13.

また、散乱粒子41として、比重4.0、屈折率2.52、粒径250nmである球状のアナターゼ型の酸化チタン(TiO)粒子を用いた。例えば、波長430nmの光は媒質39中において305nm(媒質中の波長=真空中の波長/媒質の屈折率:430nm/1.41)であり、散乱粒子の粒径は波長の0.82倍(250nm/305nm)となる。また、波長780nmの光は媒質39中において553nm(780nm/1.41)であり、散乱粒子の粒径は波長の0.45倍(250nm/553nm)となる。このように、散乱粒子41の粒径が媒質39中の波長の1/4~2倍の領域においては、Mie散乱領域であり、高い反射率が得られる。 In addition, spherical anatase-type titanium oxide (TiO 2 ) particles with a specific gravity of 4.0, a refractive index of 2.52, and a particle size of 250 nm were used as the scattering particles 41. For example, light with a wavelength of 430 nm is 305 nm in the medium 39 (wavelength in the medium=wavelength in vacuum/refractive index of the medium: 430 nm/1.41), and the particle size of the scattering particles is 0.82 times the wavelength (250 nm/305 nm). In addition, light with a wavelength of 780 nm is 553 nm (780 nm/1.41) in the medium 39, and the particle size of the scattering particles is 0.45 times the wavelength (250 nm/553 nm). In this way, in the region where the particle size of the scattering particles 41 is 1/4 to 2 times the wavelength in the medium 39, it is a Mie scattering region, and a high reflectance is obtained.

また、散乱粒子41の添加量は25wt%(重量パーセント濃度)とした。添加量は8wt%~40wt%とできるが、8wt%より小さいと反射率が低く、また40wt%超では被覆部材27に樹脂割れを起こすことがあるので好ましくない。 The amount of scattering particles 41 added was 25 wt% (weight percent concentration). The amount can be 8 wt% to 40 wt%, but if it is less than 8 wt%, the reflectance is low, and if it exceeds 40 wt%, resin cracks may occur in the coating member 27, so this is not recommended.

また、浮遊粒子43として、比重0.99、屈折率1.41、粒径800nmである球状の硬化済みシリコーン樹脂を用いた。浮遊粒子43の添加量は2wt%とした。浮遊粒子43の添加量は1wt%~6wt%が好ましいが、1wt%より小さいと散乱粒子41の沈降を防止する効果が弱く、また6wt%超では沈降を防止する効果が飽和する。浮遊粒子43を、6wt%を超えて添加しても良いが、硬化前の被覆部材27の液体量の減少による流動阻害が起きない程度の添加量に留めておくことが望ましい。例えば、浮遊粒子43の添加量は、18wt%以下が好ましい。尚、硬化前の被覆部材27の流動阻害を考慮するならば、浮遊粒子43の添加量は散乱粒子41の添加量より少ないことが好ましい(浮遊粒子43の添加量<散乱粒子41の添加量)。 As the floating particles 43, spherical cured silicone resin with a specific gravity of 0.99, a refractive index of 1.41, and a particle diameter of 800 nm was used. The amount of floating particles 43 added was 2 wt%. The amount of floating particles 43 added is preferably 1 wt% to 6 wt%, but if it is less than 1 wt%, the effect of preventing the scattering particles 41 from settling is weak, and if it exceeds 6 wt%, the effect of preventing the settling is saturated. The floating particles 43 may be added in an amount of more than 6 wt%, but it is desirable to keep the amount added to a level that does not cause flow obstruction due to a decrease in the liquid amount of the coating member 27 before curing. For example, the amount of floating particles 43 added is preferably 18 wt% or less. If the flow obstruction of the coating member 27 before curing is taken into consideration, it is preferable that the amount of floating particles 43 added is less than the amount of scattering particles 41 added (amount of floating particles 43 added < amount of scattering particles 41 added).

次に、図2及び図3に示すように被覆部材27の上面27Tは、発光装置10の断面視において、透光部材25の上面25Tよりも低くなっている。このような被覆部材27の形状は、媒質39の前駆体樹脂材料が硬化の際に若干収縮することで起きる。しかしながら、浮遊粒子43は予め硬化された樹脂粒子なので硬化における収縮を起こさない。よって、被覆部材27の上面27Tが低くなることを抑制できる。特に、透光部材25の上面25Tの周囲と被覆部材27の上面27Tの境界部のスロープを緩やかにできる。 2 and 3, the top surface 27T of the covering member 27 is lower than the top surface 25T of the translucent member 25 in a cross-sectional view of the light-emitting device 10. Such a shape of the covering member 27 occurs when the precursor resin material of the medium 39 shrinks slightly when cured. However, the suspended particles 43 are resin particles that have been cured in advance, so they do not shrink when cured. This makes it possible to prevent the top surface 27T of the covering member 27 from becoming lower. In particular, the slope of the boundary between the periphery of the top surface 25T of the translucent member 25 and the top surface 27T of the covering member 27 can be made gentler.

例えば、境界部のスロープが急峻な場合、透光部材25の上面25T付近の側面を覆う被覆部材27が薄くなりコントラストを低下させる。浮遊粒子43の添加は、境界部のスロープを緩やかにするのでコントラストの低下を防止することができる。 For example, if the slope of the boundary is steep, the coating member 27 covering the side surface near the upper surface 25T of the translucent member 25 becomes thin, reducing the contrast. Adding suspended particles 43 makes the slope of the boundary gentler, preventing the reduction in contrast.

[浮遊粒子の機能]
次に、浮遊粒子43の機能について説明する。被覆部材27に添加する浮遊粒子43は、製造時において媒質39となる前駆体樹脂材料が硬化されるまでの間、散乱粒子41の沈降を防止する。換言すれば、媒質39中に散乱粒子41を均一に分散された状態を維持する機能を有する。
[Functions of suspended particles]
Next, the function of the suspended particles 43 will be described. The suspended particles 43 added to the covering member 27 prevent the scattering particles 41 from settling until the precursor resin material that becomes the medium 39 during manufacturing is cured. In other words, the suspended particles 43 have the function of maintaining the scattering particles 41 in a state where they are uniformly dispersed in the medium 39.

図4は、後述する発光装置10の製造工程における散乱粒子41と浮遊粒子43の動きを模式的に示す図である。具体的には、被覆部材27を形成する際に、媒質39となる前駆体樹脂材料が硬化されるまでの散乱粒子41と浮遊粒子43の動きについて示している。 Figure 4 is a diagram that shows a schematic of the movement of scattering particles 41 and floating particles 43 during the manufacturing process of the light-emitting device 10, which will be described later. Specifically, the figure shows the movement of scattering particles 41 and floating particles 43 until the precursor resin material that becomes the medium 39 is cured when forming the covering member 27.

図4に示す散乱粒子41に付した一点鎖線の矢印は、散乱粒子41の沈降する様子を示している。また、浮遊粒子43に付した破線の矢印は、散乱粒子41が浮遊粒子43の横を通過する前から通過中の浮遊粒子43の動きを示している。また、浮遊粒子43に付した実線の矢印は、散乱粒子41が浮遊粒子43の横を通過中から通過後の浮遊粒子の動きを示している。 The dashed arrows attached to the scattering particles 41 in FIG. 4 show the settling of the scattering particles 41. The dashed arrows attached to the floating particles 43 show the movement of the floating particles 43 from before the scattering particles 41 pass by them to while they are passing by them. The solid arrows attached to the floating particles 43 show the movement of the floating particles from while the scattering particles 41 pass by them to after they have passed by them.

本実施例において散乱粒子41としての酸化チタン粒子の比重は4.00で、媒質39としてのシリコーン樹脂の比重0.99より約4倍大きい。また媒質39となる前駆体樹脂材料であるシリコーン樹脂は、加熱硬化の際に、硬化以前の昇温過程において流動性が高くなる(粘度が低下する)。そのため、前駆体樹脂材料であるシリコーン樹脂中の散乱粒子41は、上面27Tから基板11の底面11S方向(図4中、上方から下方)へ沈降しようとする。 In this embodiment, the specific gravity of the titanium oxide particles serving as scattering particles 41 is 4.00, which is about four times the specific gravity of the silicone resin serving as medium 39, which is 0.99. Furthermore, when the silicone resin, which is the precursor resin material serving as medium 39, is heated and cured, it becomes more fluid (its viscosity decreases) during the temperature rise process prior to curing. Therefore, the scattering particles 41 in the silicone resin, which is the precursor resin material, tend to settle from the top surface 27T toward the bottom surface 11S of the substrate 11 (from top to bottom in FIG. 4).

一方、浮遊粒子43は、媒質39となる前駆体樹脂材料であるシリコーン樹脂と同じ樹脂を硬化した粒子なので比重が同じである。従って浮遊粒子43は、媒質39となる前駆体樹脂材料であるシリコーン樹脂の流動性が高い状態であっても沈降も浮上もしない。換言すれば、シリコーン樹脂中において浮遊している。 On the other hand, the floating particles 43 are particles made from the same hardened resin as the silicone resin, which is the precursor resin material that becomes the medium 39, and so have the same specific gravity. Therefore, the floating particles 43 do not sink or float even when the silicone resin, which is the precursor resin material that becomes the medium 39, is in a high fluidity state. In other words, they are suspended in the silicone resin.

まず図4に示すように、散乱粒子41が沈降するには媒質39となるシリコーン樹脂を押しのける必要がある。このとき、散乱粒子41の周囲においてシリコーン樹脂の流動をともなう。シリコーン樹脂の流動速度は散乱粒子41の近傍で速く、遠方で遅い。このような流動体の中において、固体の浮遊粒子43は速度差のあるシリコーン樹脂の流動を妨げる。その結果、散乱粒子41の沈降抵抗が大きくなり、散乱粒子41の沈降が抑制される。 First, as shown in FIG. 4, in order for the scattering particles 41 to settle, they need to push aside the silicone resin that serves as the medium 39. At this time, the silicone resin flows around the scattering particles 41. The flow speed of the silicone resin is fast near the scattering particles 41 and slow farther away. In such a fluid, the solid suspended particles 43 impede the flow of the silicone resin, which has a difference in speed. As a result, the settling resistance of the scattering particles 41 increases, and the settling of the scattering particles 41 is suppressed.

次に、浮遊粒子43は、図4中の破線の矢印で示すように、散乱粒子41によってシリコーン樹脂が押しのけられる際に横方向に移動する。例えば、回転しつつ横方向に移動することも考えられる。換言すれば、散乱粒子41が下方に向かって進むためにはシリコーン樹脂を押しのけつつ浮遊粒子43を移動させることが必要となる。この場合においても、固体の浮遊粒子43は速度差のあるシリコーン樹脂の流動を妨げる(速度差のある流れを妨げることで浮遊粒子は回転する)。その結果、散乱粒子41の沈降抵抗が大きくなり、散乱粒子41の沈降が抑制される。 Next, the suspended particles 43 move laterally as the silicone resin is pushed aside by the scattering particles 41, as shown by the dashed arrows in Figure 4. For example, it is possible for the suspended particles 43 to move laterally while rotating. In other words, in order for the scattering particles 41 to move downward, it is necessary to move the suspended particles 43 while pushing aside the silicone resin. Even in this case, the solid suspended particles 43 impede the flow of the silicone resin, which has a speed difference (the suspended particles rotate by impeding the flow with a speed difference). As a result, the settling resistance of the scattering particles 41 increases, and the settling of the scattering particles 41 is suppressed.

また、散乱粒子41が下方へ移動することで生じるスペースはシリコーン樹脂に置き換わる。この場合においても、前述と同様に、固体の浮遊粒子43は速度差のあるシリコーン樹脂の流動を妨げる。その結果、散乱粒子41の沈降抵抗が大きくなり、散乱粒子41の沈降が抑制される。 The space created by the scattering particles 41 moving downward is replaced by silicone resin. In this case, as in the case described above, the solid floating particles 43 impede the flow of the silicone resin, which has a difference in speed. As a result, the settling resistance of the scattering particles 41 increases, and the settling of the scattering particles 41 is suppressed.

このように、媒質39となる前駆体樹脂材料のシリコーン樹脂中に、散乱粒子41とともに浮遊粒子43を添加すると、散乱粒子41の沈降抵抗を大きくでき、散乱粒子41の沈降を抑制できる。 In this way, by adding the floating particles 43 together with the scattering particles 41 to the silicone resin precursor resin material that forms the medium 39, the settling resistance of the scattering particles 41 can be increased, and the settling of the scattering particles 41 can be suppressed.

換言すれば、媒質39となる前駆体樹脂材料のシリコーン樹脂中で固体粒状体であるとともに、沈降も浮上もしない浮遊粒子43は、シリコーン樹脂の流れを妨げ、散乱粒子41の沈降を抑制する。 In other words, the floating particles 43, which are solid granules in the silicone resin precursor resin material that forms the medium 39 and do not settle or rise, impede the flow of the silicone resin and suppress the settling of the scattering particles 41.

一方、浮遊粒子43が、媒質39となる前駆体樹脂材料中で沈降する場合、散乱粒子41は沈降する。また浮遊粒子43が、媒質39となる前駆体樹脂材料中で浮上する場合、散乱粒子41の沈降を助長する。しかるに、浮遊粒子43は媒質39となる前駆体樹脂材料のシリコーン樹脂中で浮遊していることが望ましい。 On the other hand, when the floating particles 43 settle in the precursor resin material that becomes the medium 39, the scattering particles 41 settle. When the floating particles 43 rise to the surface in the precursor resin material that becomes the medium 39, the settling of the scattering particles 41 is promoted. Therefore, it is desirable that the floating particles 43 are suspended in the silicone resin of the precursor resin material that becomes the medium 39.

本方法によれば、媒質39となるシリコーン樹脂の化学的特性を変えることがなく、被覆部材27としての封止性能や密着性を損なうことがない。 This method does not change the chemical properties of the silicone resin that forms the medium 39, and does not impair the sealing performance or adhesion of the coating member 27.

例えば、散乱粒子41の沈降を防止する方法として、媒質39に、水素結合や反応により無機ポリマーとなるシリカやアルミナ、又はゲル化剤や界面活性剤を加えて、増粘性やチクソトロピー性を付与させる方法がある。しかし、これらの方法は、被覆部材27の充填性、封止性能や密着性を損なうことがある。 For example, one method for preventing the scattering particles 41 from settling is to add silica or alumina, which become inorganic polymers through hydrogen bonding or reaction, or a gelling agent or surfactant to the medium 39 to impart viscosity and thixotropy. However, these methods may impair the filling properties, sealing performance, and adhesion of the coating member 27.

浮遊粒子43が、媒質39となる前駆体樹脂材料中で浮遊して散乱粒子41の沈降を防止できる比重の範囲は、媒質39がシリコーン樹脂やエポキシ樹脂などの樹脂材料においては比較的広い。 The range of specific gravity in which the suspended particles 43 can be suspended in the precursor resin material that forms the medium 39 and prevent the scattering particles 41 from settling is relatively wide when the medium 39 is a resin material such as silicone resin or epoxy resin.

浮遊粒子43による散乱粒子41の沈降を抑制する時間は、被覆部材27を発光装置10の凹部11Cに充填してから硬化するまでの約30分から2時間程度でよい。また、被覆部材27の媒質39であるシリコーン樹脂やエポキシ樹脂の比重は0.9~1.3程度と小さく(密度が低い)、対して、硬化前の粘度は0.5~10Pa・s(例えば、水の粘度は1mPa・sである)と比較的大きい。そのため、媒質39に対する浮遊粒子43の比重(浮遊粒子の密度/媒質の密度、又は、浮遊粒子の比重/媒質の比重)である相対比重が0.7以上1.3以下の範囲でよい。また、相対比重が0.9~1.1ならば、前述の硬化までの時間において、浮遊粒子43は実質的に沈降も浮上もしない(例えば、浮遊粒子の粒径程度の移動)ので更に好ましい。相対比重が約1ならば好適である。 The time required for suppressing the settling of the scattering particles 41 by the floating particles 43 may be about 30 minutes to 2 hours from when the covering member 27 is filled into the recess 11C of the light-emitting device 10 until it hardens. The specific gravity of the silicone resin or epoxy resin that is the medium 39 of the covering member 27 is small (low density) at about 0.9 to 1.3, whereas the viscosity before hardening is relatively large at 0.5 to 10 Pa·s (for example, the viscosity of water is 1 mPa·s). Therefore, the relative specific gravity, which is the specific gravity of the floating particles 43 to the medium 39 (density of the floating particles/density of the medium, or specific gravity of the floating particles/specific gravity of the medium), may be in the range of 0.7 to 1.3. If the relative specific gravity is 0.9 to 1.1, the floating particles 43 do not substantially settle or rise during the time until hardening (for example, movement of about the particle size of the floating particles), which is even more preferable. A relative specific gravity of about 1 is preferable.

本明細書において、媒質39及び浮遊粒子43に用いる樹脂は、その樹脂を構成する主骨格(樹脂の種別を決定する分子骨格)、及び置換基(同一樹脂種別において特性を変化させる基)が同じである場合を同一の樹脂と称し、主骨格が同じで置換基が異なる場合を同種の樹脂と称する。 In this specification, the resins used for the medium 39 and the suspended particles 43 are referred to as the same resin if they have the same main skeleton (the molecular skeleton that determines the type of resin) and the same substituents (groups that change the characteristics of the same resin type), and are referred to as the same type of resin if they have the same main skeleton but different substituents.

本発明においては、媒質39と浮遊粒子43が同種の樹脂であることが好ましく、好適には同一の樹脂であることが良い。例えば、同一又は同種の樹脂である場合、浮遊粒子43が媒質39中で凝集せずに分散するからである。また、硬化後は媒質39と同化するので浮遊粒子43の添加による被覆部材27の特性変化が起こらないからである。 In the present invention, it is preferable that the medium 39 and the floating particles 43 are made of the same type of resin, and preferably the same resin. For example, if they are the same or the same type of resin, the floating particles 43 will disperse in the medium 39 without agglomerating. In addition, after hardening, the floating particles 43 will assimilate with the medium 39, so the addition of the floating particles 43 will not cause a change in the characteristics of the covering member 27.

対して、異種の樹脂である場合、浮遊粒子43が媒質39中で凝集することがある。このような場合、浮遊粒子43の表面に媒質39と親液性の良い被覆膜を被覆することで解消できる。 On the other hand, if the resin is a different type, the floating particles 43 may aggregate in the medium 39. In such a case, this can be resolved by coating the surface of the floating particles 43 with a coating film that has good lyophilicity with the medium 39.

浮遊粒子43のサイズは、散乱粒子41の沈降(移動)によって発生する媒質39となる流動性を有する樹脂の流れを阻害できるサイズが好ましい。概ね、浮遊粒子43の粒径が散乱粒子41の粒径の1/2倍~4倍が好ましい。ここで、浮遊粒子43の粒径と散乱粒子41の粒径とを比較する際には、例えば、レーザ回折・散乱法によって測定した粒径分布から算出した体積平均粒子径によって比較してもよく、メディアン径(50%径)によって比較してもよい。浮遊粒子43の粒径が1/2倍より小さいと、浮遊粒子43は散乱粒子41が起こす速い流れと遅い流れの各々に同化して動き、大きな抵抗を発生しない。また4倍を超えると、浮遊粒子43は静置物として働き、散乱粒子41は浮遊粒子43の縁に沿って沈降(移動)するだけで、大きな抵抗を発生しないからである。特に好ましい、浮遊粒子43の粒径は、浮遊粒子43の重量が散乱粒子41の重量と同等程度となる粒径である。 The size of the floating particles 43 is preferably a size that can block the flow of the resin having fluidity that becomes the medium 39 generated by the settling (movement) of the scattering particles 41. In general, the particle size of the floating particles 43 is preferably 1/2 to 4 times the particle size of the scattering particles 41. Here, when comparing the particle size of the floating particles 43 with the particle size of the scattering particles 41, for example, they may be compared by the volume average particle size calculated from the particle size distribution measured by the laser diffraction/scattering method, or may be compared by the median diameter (50% diameter). If the particle size of the floating particles 43 is smaller than 1/2, the floating particles 43 move by assimilating with each of the fast and slow flows caused by the scattering particles 41, and do not generate a large resistance. Also, if it exceeds 4 times, the floating particles 43 act as a stationary object, and the scattering particles 41 simply settle (move) along the edge of the floating particles 43, and do not generate a large resistance. A particularly preferred particle size for the suspended particles 43 is one in which the weight of the suspended particles 43 is approximately equal to the weight of the scattering particles 41.

例えば、散乱粒子41の粒径が250nmならば、浮遊粒子43の好ましい粒径は125nm~1000nmである。特に好ましい粒径は、散乱粒子41の比重が4、浮遊粒子43の比重が1の場合、浮遊粒子43の体積が散乱粒子41の体積の4倍になる粒径400nm程度である。 For example, if the particle size of the scattering particles 41 is 250 nm, the preferred particle size of the suspended particles 43 is 125 nm to 1000 nm. A particularly preferred particle size is about 400 nm, which means that if the specific gravity of the scattering particles 41 is 4 and the specific gravity of the suspended particles 43 is 1, the volume of the suspended particles 43 is four times the volume of the scattering particles 41.

浮遊粒子43の形状は、散乱粒子41の沈降(移動)によって発生する媒質39となる流動性のある樹脂の流れを阻害できる形状ならばよい。例えば、球形、楕円形、円盤状、円柱状など、さまざまな形状とすることができる。 The shape of the floating particles 43 may be any shape that can block the flow of the fluid resin that forms the medium 39 caused by the settling (movement) of the scattering particles 41. For example, the floating particles 43 may be of various shapes, such as spherical, elliptical, disc-shaped, or cylindrical.

本実施例の発光装置10は、発光素子13から放射する青色光と、接着部材37に添加した蛍光体が青色光の一部を吸収して放射する橙色光とが、透光部材25で混色されて上面25Tから白色光を出射する。なお、発光装置10の発光色は、波長変換材の添加の有無、また添加量を調整することで、発光素子13の放射光色から、波長変換材の放射光色まで任意に調整可能である。 In the light-emitting device 10 of this embodiment, the blue light emitted from the light-emitting element 13 and the orange light emitted by the phosphor added to the adhesive member 37 after absorbing part of the blue light are mixed in the translucent member 25, and white light is emitted from the top surface 25T. The light emission color of the light-emitting device 10 can be adjusted to any color, from the color of light emitted by the light-emitting element 13 to the color of light emitted by the wavelength conversion material, by adjusting the presence or absence of the wavelength conversion material and the amount of the material added.

以上より、本実施例の発光装置10は、媒質39に散乱粒子41に加え浮遊粒子43を添加した被覆部材27を用いることにより、媒質39中の散乱粒子41を沈降させることなく所定の濃度に均一に分散させることができ、透光部材25側から被覆部材27へ入射する光を、均一に反射できるので、透光部材25の上面25Tから放射される光出力(発光輝度)を高くでき、また上面25Tから放射される光のコントラストを高くできる。 As described above, the light emitting device 10 of this embodiment uses a covering member 27 in which floating particles 43 are added in addition to scattering particles 41 in the medium 39, and thereby the scattering particles 41 in the medium 39 can be uniformly dispersed at a predetermined concentration without settling, and the light incident on the covering member 27 from the translucent member 25 side can be uniformly reflected, so that the light output (light emission brightness) emitted from the upper surface 25T of the translucent member 25 can be increased, and the contrast of the light emitted from the upper surface 25T can be increased.

[実施例の発光装置の製造方法]
次に、本実施例の発光装置10の製造方法について図5を参照して説明する。図5は、発光装置10の製造工程を記載したフローチャートである。なお、図5に示した製造方法は、発光装置10の1つの製造方法にすぎず、これに限定されるものではない。
[Manufacturing method of light emitting device according to the embodiment]
Next, a method for manufacturing the light emitting device 10 of this embodiment will be described with reference to Fig. 5. Fig. 5 is a flow chart showing the manufacturing process of the light emitting device 10. Note that the manufacturing method shown in Fig. 5 is merely one method for manufacturing the light emitting device 10, and is not limited thereto.

[部材準備工程]
部材準備工程S11は、予め配線及び電極形成済みの基板11及び発光素子13を準備する工程である。例えば、図2に示すようなアノード配線21、カソード配線29、カソード実装電極31及びアノード実装電極33が形成されたアルミナ製の基板11と、シリコン(Si)製の支持基板15を備えた発光素子13を準備する。
[Component preparation process]
The member preparation step S11 is a step of preparing the substrate 11 on which wiring and electrodes have been formed in advance, and the light emitting element 13. For example, the substrate 11 made of alumina on which the anode wiring 21, the cathode wiring 29, the cathode mounting electrode 31, and the anode mounting electrode 33 are formed, as shown in Fig. 2, and the light emitting element 13 including the support substrate 15 made of silicon (Si) are prepared.

[ダイボンディング工程]
ダイボンディング工程S12は、基板11の底面11Sに備えた配線上に発光素子13を実装する工程である。
[Die bonding process]
The die bonding step S12 is a step of mounting the light emitting element 13 on the wiring provided on the bottom surface 11S of the substrate 11.

まず、カソード配線29上に金錫(AuSn)合金からなる粉末を含むゾルダーペーストを塗布する。次に、当該ゾルダーペースト上に発光素子13のカソード素子電極面を接するように載置する。その後、リフロー装置で約300℃まで加熱して、AuSn合金からなる接合部材35を形成しつつ、発光素子13をカソード配線29上に接合して、固定及び電気的に接続する。なお、ソルダーペーストに含まれるフラックスは接合の際に揮発する。 First, a solder paste containing powder made of a gold-tin (AuSn) alloy is applied onto the cathode wiring 29. Next, the cathode element electrode surface of the light-emitting element 13 is placed on the solder paste so that it is in contact with the solder paste. After that, the light-emitting element 13 is joined to the cathode wiring 29 by heating to approximately 300°C in a reflow device, while forming a joining member 35 made of an AuSn alloy, and the light-emitting element 13 is fixed and electrically connected. Note that the flux contained in the solder paste evaporates during joining.

[ワイヤボンディング工程]
ワイヤボンディング工程S13は、発光素子13のアノード素子電極19とアノード配線21をボンディングワイヤ23で接続する工程である。
[Wire bonding process]
The wire bonding step S 13 is a step of connecting the anode electrode 19 of the light emitting element 13 and the anode wiring 21 with a bonding wire 23 .

まず、ワイヤボンディング装置にダイボンディング工程S12を終えた基板11をセットする。次に、金(Au)製のボンディングワイヤ23の一端をアノード配線21に接合(ファーストボンディング)し、続けてボンディングワイヤ23の他端を発光素子13のアノード素子電極19に接合(セカンドボンディング)して電気的に接続する。 First, the substrate 11 that has been subjected to the die bonding process S12 is set in the wire bonding device. Next, one end of a gold (Au) bonding wire 23 is bonded (first bonding) to the anode wiring 21, and then the other end of the bonding wire 23 is bonded (second bonding) to the anode element electrode 19 of the light emitting element 13 to establish an electrical connection.

[透光部材接着工程]
透光部材接着工程S14は、基板11に接合した発光素子13の半導体積層体17上に、接着部材37を介して透光部材25を接着する工程である。
[Transparent member adhesion process]
The light-transmitting member bonding step S14 is a step of bonding the light-transmitting member 25 via an adhesive member 37 onto the semiconductor laminate 17 of the light-emitting element 13 bonded to the substrate 11.

まず、接着部材37となる液状のシリコーン樹脂を半導体積層体17面上に適量滴下する。次に、透光部材25を液状のシリコーン樹脂上に載置し、押圧して支持基板15の上面と透光部材25の下面がシリコーン樹脂で覆われるように仮接着する。最後に、150℃で3分加熱してシリコーン樹脂を硬化して発光素子13と透光部材25を接着する。また同時に接着部材37を形成する。 First, an appropriate amount of liquid silicone resin that will become the adhesive member 37 is dropped onto the surface of the semiconductor laminate 17. Next, the translucent member 25 is placed on the liquid silicone resin and pressed to temporarily bond the upper surface of the support substrate 15 and the lower surface of the translucent member 25 so that they are covered with silicone resin. Finally, the silicone resin is hardened by heating at 150°C for 3 minutes, and the light emitting element 13 and the translucent member 25 are bonded together. At the same time, the adhesive member 37 is formed.

本実施例においては、接着部材37に粒径15nm~30nmの黄色蛍光体(YAG:Ce)を50wt%添加している。また透光部材25は、アノード素子電極19を除く支持基板15の上面と略同等な形状とした厚さ200μmのガラス板を用いた。 In this embodiment, 50 wt% of yellow phosphor (YAG:Ce) with a particle size of 15 nm to 30 nm is added to the adhesive member 37. The light-transmitting member 25 is a glass plate with a thickness of 200 μm and has a shape roughly equivalent to the upper surface of the support substrate 15 excluding the anode element electrode 19.

[被覆部材充填工程]
被覆部材充填工程S15は、透光部材接着工程S14の実行後に、基板11の凹部11Cと発光素子13と接着部材37と透光部材25の側面で画定された隙間を被覆部材27で充填する工程である。
[Coating member filling process]
The covering member filling step S15 is a step of filling the gap defined by the recess 11C of the substrate 11, the light emitting element 13, the adhesive member 37, and the side surface of the light transmissive member 25 with the covering member 27 after the light transmissive member bonding step S14 is performed.

まず、媒質39となる前駆体樹脂材料のシリコーン樹脂に、散乱粒子41として粒径250nmの酸化チタン(TiO)粒子を25wt%と、浮遊粒子43として粒径800nmの硬化済シリコーン樹脂粒子2wt%を加えて均一に分散(混合)する。続いて、脱気処理を行い被覆部材27となる前駆体を用意する。次に、基板11の凹部11Cと発光素子13と接着部材37と透光部材25の側面で画定された隙間に被覆部材27の前駆体を充填する。被覆部材27の前駆体は、透光部材25の上面25Tの高さと略同一となる高さに充填する。 First, 25 wt % of titanium oxide (TiO 2 ) particles having a particle diameter of 250 nm as scattering particles 41 and 2 wt % of cured silicone resin particles having a particle diameter of 800 nm as suspended particles 43 are added to the silicone resin precursor resin material to be the medium 39, and uniformly dispersed (mixed). Next, a degassing process is performed to prepare a precursor to be the covering member 27. Next, the gap defined by the recess 11C of the substrate 11, the light emitting element 13, the adhesive member 37, and the side surface of the translucent member 25 is filled with the precursor of the covering member 27. The precursor of the covering member 27 is filled to a height approximately equal to the height of the upper surface 25T of the translucent member 25.

[被覆部材硬化工程]
被覆部材硬化工程S16は、基板11の凹部11Cと発光素子13と接着部材37と透光部材25の側面に充填した被覆部材27の前駆体を加熱および硬化して密着封止する工程である。
[Covering member curing process]
The covering member hardening step S16 is a step of heating and hardening the precursor of covering member 27 filled in recess 11C of substrate 11, light emitting element 13, adhesive member 37, and the side surface of light-transmitting member 25 to tightly seal them.

まず、被覆部材充填工程S15後の被覆部材27の前駆体が充填された基板11を熱硬化炉に入れ、30分静置して媒質39となるシリコーン樹脂を基板11の底面11Sと、発光素子13と接着部材37と透光部材25の側面に馴染ませる。次に、90分を掛けて180℃まで加熱して被覆部材27の前駆体を硬化して被覆部材27を形成する。 First, the substrate 11 filled with the precursor of the coating member 27 after the coating member filling step S15 is placed in a heat curing furnace and left to stand for 30 minutes to allow the silicone resin that will become the medium 39 to blend with the bottom surface 11S of the substrate 11, the light-emitting element 13, the adhesive member 37, and the side surfaces of the translucent member 25. Next, the precursor of the coating member 27 is cured by heating to 180°C over 90 minutes to form the coating member 27.

このとき、媒質39となるシリコーン樹脂が硬化に至るまでの間、浮遊粒子43が散乱粒子41の沈降を防ぐ。特に、シリコーン樹脂の硬化直前における流動性が高くなる(粘度が低くなる)温度域では、散乱粒子41である酸化チタン粒子の比重が大きく沈降し易い。本実施例においては、シリコーン樹脂中に浮遊粒子43として硬化済のシリコーン樹脂粒子を添加してあるので、散乱粒子41の沈降が抑制され、媒質39中に散乱粒子41が所定の濃度で均一に分散された被覆部材27が形成される。 At this time, the floating particles 43 prevent the scattering particles 41 from settling until the silicone resin that becomes the medium 39 hardens. In particular, in the temperature range where the fluidity of the silicone resin is high (viscosity is low) just before hardening, the titanium oxide particles that are the scattering particles 41 have a large specific gravity and are prone to settling. In this embodiment, hardened silicone resin particles are added to the silicone resin as the floating particles 43, so that the settling of the scattering particles 41 is suppressed, and a coating member 27 is formed in which the scattering particles 41 are uniformly dispersed in the medium 39 at a predetermined concentration.

以上の工程によって、本実施例の発光装置10は製造される。このように製造された発光装置10の透光部材25の上面25Tからの出射する光の光出力は高く、また周囲の被覆部材27の上面27Tに対して高いコントラストを有する。 The light emitting device 10 of this embodiment is manufactured by the above process. The light output of the light emitted from the upper surface 25T of the light-transmitting member 25 of the light emitting device 10 manufactured in this manner is high, and has a high contrast with the upper surface 27T of the surrounding covering member 27.

比較例Comparative Example

次に、比較例の半導体発光装置について説明する。 Next, we will explain a semiconductor light-emitting device as a comparative example.

比較例の半導体発光装置50(以降、発光装置50とも称す)は、被覆部材27に代えて被覆部材51を有する他は発光装置10と同様に構成されている。図6は、比較例の発光装置50について、図2の点線で囲んだA部に相当する部分を模式的に示した図である。 The semiconductor light-emitting device 50 (hereinafter also referred to as light-emitting device 50) of the comparative example is configured similarly to the light-emitting device 10, except that it has a covering member 51 instead of the covering member 27. Figure 6 is a schematic diagram of the light-emitting device 50 of the comparative example, showing a portion corresponding to part A surrounded by a dotted line in Figure 2.

被覆部材51は、浮遊粒子43を含まず、媒質39中に散乱粒子41が分散されて構成されている。そのため、被覆部材51中において散乱粒子41は沈降し、散乱粒子41の濃度は、上面51T付近で薄く、基板11の底面11S方向で濃くなる。具体的に言えば、散乱粒子41の濃度は、透光部材25の側面で薄く、発光素子13の側面で濃くなる。従って、透光部材25側から被覆部材51側へ入射する光の反射率が所定の反射率より低下する。 The covering member 51 does not contain suspended particles 43, and is configured with scattering particles 41 dispersed in the medium 39. Therefore, the scattering particles 41 settle in the covering member 51, and the concentration of the scattering particles 41 is low near the top surface 51T and high toward the bottom surface 11S of the substrate 11. Specifically, the concentration of the scattering particles 41 is low on the side surface of the translucent member 25 and high on the side surface of the light-emitting element 13. Therefore, the reflectance of light incident on the covering member 51 side from the translucent member 25 side is lower than a predetermined reflectance.

更に、図6に示すように、被覆部材51の上面51T付近において、特に散乱粒子41の濃度が薄い部分が形成される。具体的には、図6中の破線で囲んだ散乱粒子41の濃度が低い領域Bが形成される。 Furthermore, as shown in FIG. 6, a portion in which the concentration of scattering particles 41 is particularly low is formed near the upper surface 51T of the covering member 51. Specifically, a region B in which the concentration of scattering particles 41 is low is formed, which is surrounded by a dashed line in FIG. 6.

この領域Bにおいて、透光部材25から被覆部材51に入射した光は、透光部材25側へ反射されることなく、領域Bを伝搬しつつ被覆部材51内で減衰する。又は、領域Bにおいて、透光部材25から被覆部材51に入射した光は、当該領域の下方の散乱粒子41よって反射されて上面51Tへ向かい出射する。 In this region B, the light incident on the covering member 51 from the light-transmitting member 25 is not reflected toward the light-transmitting member 25, but is attenuated within the covering member 51 while propagating through region B. Alternatively, in region B, the light incident on the covering member 51 from the light-transmitting member 25 is reflected by the scattering particles 41 below the region and exits toward the upper surface 51T.

以上によって、半導体発光装置50の透光部材25の上面25Tから出射する光の光出力は低下する。また、透光部材25の上面25Tから出射する光の被覆部材51に対するコントラストも低下する。同時に、被覆部材51に入射した光が上面51Tから出射することで迷光も発生する。 As a result of the above, the optical output of the light emitted from the upper surface 25T of the light-transmitting member 25 of the semiconductor light-emitting device 50 decreases. In addition, the contrast of the light emitted from the upper surface 25T of the light-transmitting member 25 with respect to the covering member 51 also decreases. At the same time, stray light is also generated when the light that entered the covering member 51 exits from the upper surface 51T.

[比較例の発光装置の製造方法]
比較例の発光装置50の製造方法は、本実施例の発光装置10の製造方法に対して、被覆部材27に浮遊粒子43が添加されてない、被覆部材51を用いた点が異なるだけで、それ以外の製造工程は全て同じなので、異なる部分だけを説明する。
[Comparative Example: Manufacturing Method of Light-Emitting Device]
The manufacturing method of the light emitting device 50 of the comparative example differs from the manufacturing method of the light emitting device 10 of the present embodiment only in that the covering member 27 does not contain suspended particles 43 and a covering member 51 is used. All other manufacturing steps are the same, so only the differences will be explained.

比較例の発光装置50の被覆部材51は、被覆部材充填工程S15において、基板11の凹部11Cに被覆部材51の前駆体を充填した時点から、被覆部材51中で散乱粒子41の沈降が始まり、被覆部材硬化工程S16で被覆部材51の前駆体が硬化するまで散乱粒子41は沈降する。従って、被覆部材51の媒質39中において、散乱粒子41の密度(濃度)は、上面51T近傍で低くなり、基板11の底面11Sで高くなる。すなわち、散乱粒子41の密度は不均化する。 In the covering member 51 of the light emitting device 50 of the comparative example, the scattering particles 41 start to settle in the covering member 51 from the time when the precursor of the covering member 51 is filled in the recess 11C of the substrate 11 in the covering member filling step S15, and the scattering particles 41 continue to settle until the precursor of the covering member 51 is hardened in the covering member hardening step S16. Therefore, in the medium 39 of the covering member 51, the density (concentration) of the scattering particles 41 is low near the top surface 51T and high at the bottom surface 11S of the substrate 11. In other words, the density of the scattering particles 41 becomes non-uniform.

[発光装置の発光特性]
本実施例の発光装置10と比較例の発光装置50の発光特性について、図7及び図8を参照しつつ以下に説明する。
[Light Emitting Characteristics of Light Emitting Device]
The light emitting characteristics of the light emitting device 10 of this embodiment and the light emitting device 50 of the comparative example will be described below with reference to FIGS.

図7は、図1の2-2線に沿って半導体発光装置10の輝度を測定した輝度分布を示したグラフである。図7に示すグラフの横軸は、透光部材25の上面25Tの中心を0mmとして図2-2線に沿った位置を示している。図7に示すグラフの縦軸は、最大輝度を1とした規格化輝度を示している。また、図7に示すグラフ中の「R1」は、半導体発光装置10の発光面、すなわち透光部材25の上面25Tに対応する領域を示している。 Figure 7 is a graph showing the luminance distribution obtained by measuring the luminance of the semiconductor light-emitting device 10 along line 2-2 in Figure 1. The horizontal axis of the graph shown in Figure 7 indicates the position along line 2-2 in Figure 2, with the center of the upper surface 25T of the light-transmitting member 25 being 0 mm. The vertical axis of the graph shown in Figure 7 indicates normalized luminance, with the maximum luminance set to 1. Furthermore, "R1" in the graph shown in Figure 7 indicates the light-emitting surface of the semiconductor light-emitting device 10, i.e., the area corresponding to the upper surface 25T of the light-transmitting member 25.

図7に示すように、半導体発光装置10の規格化輝度は、発光面R1内において高い輝度を保つ高輝度領域を形成している。また、発光面R1の外側の両領域において、中心から離れるに従い急峻に輝度減衰する輝度減衰領域を形成している。このように発光装置10の輝度分布は、明瞭に高輝度領域と輝度減衰領域になっており、高いコントラストが得られている。 As shown in FIG. 7, the normalized luminance of the semiconductor light-emitting device 10 forms a high-luminance region that maintains high luminance within the light-emitting surface R1. In addition, in both regions outside the light-emitting surface R1, a luminance attenuation region is formed in which the luminance attenuates sharply with increasing distance from the center. In this way, the luminance distribution of the light-emitting device 10 clearly has high-luminance regions and luminance attenuation regions, and high contrast is obtained.

図8は、図7と同様に測定した、比較例の半導体発光装置50の輝度分布を示したグラフである。 Figure 8 is a graph showing the luminance distribution of a semiconductor light-emitting device 50 of a comparative example, measured in the same manner as Figure 7.

図8に示すように、半導体発光装置50の規格化輝度は、発光面R1内において輝度の窪みはあるものの高輝度領域を形成している。また、発光面R1の外側の両領域において、中心から離れるに従い急峻に輝度減衰する輝度減衰領域を形成している。しかし、減衰領域の端に(図中、一点鎖線で囲まれた部分)に、規格化輝度の減衰が鈍化する、又は上昇する迷光部を生じている。このように、浮遊粒子43を含まない発光装置50のコントラストは迷光によって低下することがある。また、透光部材25の上面25Tから放射する光出力は迷光として損失した分だけ低下する。 As shown in FIG. 8, the normalized luminance of the semiconductor light-emitting device 50 forms high-luminance regions within the light-emitting surface R1, although there are luminance depressions. In addition, in both regions outside the light-emitting surface R1, a luminance attenuation region is formed in which the luminance attenuates sharply with distance from the center. However, at the edge of the attenuation region (the portion surrounded by the dashed line in the figure), a stray light portion is generated where the attenuation of the normalized luminance slows down or increases. In this way, the contrast of the light-emitting device 50 that does not contain suspended particles 43 may be reduced by stray light. In addition, the light output radiated from the upper surface 25T of the translucent member 25 is reduced by the amount lost as stray light.

このように、浮遊粒子43を含んだ被覆部材27を用いた半導体発光装置10は、透光部材25の上面25Tから放射する光出力が高く、また透光部材25の上面25Tを囲む被覆部材27の上面27Tに対して高いコントラストを有している。これは、透光部材25の側面を覆う被覆部材27に含まれる散乱粒子41が均一に分散しているからである。 In this way, the semiconductor light-emitting device 10 using the covering member 27 containing suspended particles 43 has a high light output radiated from the upper surface 25T of the light-transmitting member 25, and has a high contrast with the upper surface 27T of the covering member 27 surrounding the upper surface 25T of the light-transmitting member 25. This is because the scattering particles 41 contained in the covering member 27 covering the side surface of the light-transmitting member 25 are uniformly dispersed.

一方、浮遊粒子43を含まない被覆部材51を用いた半導体発光装置50は、透光部材25の上面25Tから放射する光出力は高いが、被覆部材51の上面51Tから迷光を出射している。換言すれば、透光部材25の側面から被覆部材51へ光が漏れているに他ならない。また、この迷光によりコントラストも低下している。これは、透光部材25の側面を覆う被覆部材51に含まれる散乱粒子41が沈降して不均化しているからである。特に、図6の領域Bに示すように、被覆部材51の上面51Tにおいて散乱粒子41の濃度が薄くなることによる。 On the other hand, a semiconductor light-emitting device 50 using a covering member 51 that does not contain suspended particles 43 emits high light output from the upper surface 25T of the light-transmitting member 25, but emits stray light from the upper surface 51T of the covering member 51. In other words, light is leaking from the side of the light-transmitting member 25 to the covering member 51. This stray light also reduces the contrast. This is because the scattering particles 41 contained in the covering member 51 that covers the side of the light-transmitting member 25 settle and become disproportionate. In particular, this is due to the concentration of scattering particles 41 becoming thinner on the upper surface 51T of the covering member 51, as shown in region B of Figure 6.

以上で説明したように、本発明の半導体発光装置は、発光素子と、発光素子の発光面上に設けられ、発光素子が放射する放射光に対して透光性を有する透光部材と、発光素子及び透光部材の側面を覆うように設けられた被覆部材を有している。そして被覆部材は、樹脂を媒質とし、樹脂とは屈折率が異なり、光散乱性を有する散乱粒子と、同樹脂からなる浮遊粒子とを含んでいる。 As described above, the semiconductor light-emitting device of the present invention comprises a light-emitting element, a light-transmitting member disposed on the light-emitting surface of the light-emitting element and translucent for the light emitted by the light-emitting element, and a covering member disposed to cover the side surfaces of the light-emitting element and the light-transmitting member. The covering member uses resin as a medium, has a refractive index different from that of the resin, and contains scattering particles with light-scattering properties and suspended particles made of the same resin.

被覆部材に浮遊粒子が添加されていることで、媒質の前駆体である流動性を有する樹脂中において、散乱粒子が沈降することなく均一に分散している。従って、発光素子から出射された光が透光部材を通って被覆部材に入射しても、所定の反射率で反射されて透光部材に戻される。従って、透光部材の上面から出射する光出力が高く、また高いコントラストが得られる半導体発光装置を提供することができる。 By adding suspended particles to the covering member, the scattering particles are uniformly dispersed without settling in the fluid resin that is the precursor of the medium. Therefore, even if the light emitted from the light-emitting element passes through the translucent member and enters the covering member, it is reflected with a predetermined reflectance and returned to the translucent member. Therefore, it is possible to provide a semiconductor light-emitting device that has a high light output emitted from the upper surface of the translucent member and has a high contrast.

また、本発明による半導体発光装置は、被覆部材中で散乱粒子が沈降して生じる被覆部材の上面付近に形成される散乱粒子の濃度が薄い領域が生じ難い。従って、発光素子から放射された光が、透光部材から被覆部材へ導波することによる光出力の低下、及びコントラストの低下も防止することができる。 In addition, the semiconductor light-emitting device according to the present invention is less likely to have regions with low concentration of scattering particles formed near the upper surface of the covering member due to the scattering particles settling in the covering member. Therefore, it is possible to prevent a decrease in optical output and a decrease in contrast caused by the light emitted from the light-emitting element being guided from the translucent member to the covering member.

なお、上記実施例において、発光素子13が支持基板15を有する発光素子である場合について説明したが、これに限られることはない。発光素子13は、基板11の底面11Sと反対側の面である上面を発光面とする半導体発光素子であればよい。例えば、発光素子13として、透光性の成長基板を備えたフリップチップ型の発光素子を用いてもよい。 In the above embodiment, the light-emitting element 13 is a light-emitting element having a support substrate 15, but the present invention is not limited to this. The light-emitting element 13 may be a semiconductor light-emitting element whose light-emitting surface is the top surface, which is the surface opposite to the bottom surface 11S of the substrate 11. For example, a flip-chip type light-emitting element having a translucent growth substrate may be used as the light-emitting element 13.

また、本発明による半導体発光装置は、複数の発光素子を含んで構成されてもよい。例えば、上記実施例の発光素子13、透光部材25及び接着部材37を含む単位を発光構造体とし、基板11の底面11S上に、複数の発光構造体を、所定の間隔をおいてマトリクス状に配列してもよい。この場合、基板11の凹部11C、発光素子13の各々の側面、接着部材37の各々の側面及び透光部材25の各々側面によって画定された隙間に被覆部材27の前駆体を充填して加熱硬化し、被覆部材27を形成する。 The semiconductor light-emitting device according to the present invention may also be configured to include a plurality of light-emitting elements. For example, a unit including the light-emitting element 13, the light-transmitting member 25, and the adhesive member 37 of the above embodiment may be used as a light-emitting structure, and a plurality of light-emitting structures may be arranged in a matrix shape at predetermined intervals on the bottom surface 11S of the substrate 11. In this case, the gaps defined by the recess 11C of the substrate 11, the side surfaces of the light-emitting elements 13, the side surfaces of the adhesive members 37, and the side surfaces of the light-transmitting members 25 are filled with a precursor of the covering member 27, which is then heated and cured to form the covering member 27.

このような構成により、各々の透光部材25と隣接する透光部材25との間には、散乱粒子41が均一に分散した被覆部材27が存在する。これによって、各々の発光構造体から隣接する発光構造体への光漏れが防止され、クロストークを防止することができる。従って、例えば複数の発光構造体の配列によって文字や数字を表す場合に、鮮明に表示することができる。また、例えば、接着部材37への波長変換材の添加量を増減させることによって、複数の発光構造体の各々の発光色を互いに異ならせることができる。この場合にも、発光構造体の各々について高いコントラストが得られ、隣接する発光構造体間での色の混合も防止することができ、設計通りの色分けを実現することができる。 With this configuration, a covering member 27 with scattering particles 41 uniformly dispersed therein is present between each translucent member 25 and the adjacent translucent member 25. This prevents light leakage from each light-emitting structure to the adjacent light-emitting structure, and prevents crosstalk. Therefore, for example, when letters or numbers are represented by an arrangement of multiple light-emitting structures, they can be displayed clearly. In addition, for example, the emission colors of the multiple light-emitting structures can be made different from each other by increasing or decreasing the amount of wavelength conversion material added to the adhesive member 37. In this case, too, a high contrast can be obtained for each light-emitting structure, and color mixing between adjacent light-emitting structures can be prevented, making it possible to achieve color coding as designed.

また上述した実施例及び製造方法における構成は例示に過ぎず、用途等に応じて適宜変更可能である。 The configurations in the above-mentioned embodiments and manufacturing methods are merely examples and can be modified as appropriate depending on the application, etc.

10 半導体発光装置
11 基板
11S 底面
13 発光素子
15 支持基板
17 半導体積層体
19 アノード素子電極
21 アノード配線
23 ボンディングワイヤ
25 透光部材
25T 上面
27、51 被覆部材
31 カソード実装電極
33 アノード実装電極
35 接合部材
37 接着部材
39 媒質
41 散乱粒子
43 浮遊粒子
REFERENCE SIGNS LIST 10 Semiconductor light emitting device 11 Substrate 11S Bottom surface 13 Light emitting element 15 Support substrate 17 Semiconductor laminate 19 Anode element electrode 21 Anode wiring 23 Bonding wire 25 Light-transmitting member 25T Top surface 27, 51 Covering member 31 Cathode mounting electrode 33 Anode mounting electrode 35 Bonding member 37 Adhesive member 39 Medium 41 Scattering particles 43 Suspended particles

Claims (6)

上面に凹部を有する基板と、
前記凹部の底面に配置された発光素子と、
前記発光素子上に設けられ、前記発光素子が放射する放射光に対して透光性を有する透光部材と、
樹脂材を母材とし、前記母材中に光散乱性を有する散乱粒子及び透光性樹脂からなる粒子である浮遊粒子が分散されており、前記発光素子及び前記透光部材の側面を覆うように前記凹部内に設けられた被覆部材と、を有し、
前記散乱粒子は、金属酸化物からなる粒子であり、
前記浮遊粒子は、熱硬化された熱硬化性又は光硬化された光硬化性の樹脂粒子であり、
前記浮遊粒子の粒径は、前記散乱粒子の粒径の1/2倍以上4倍以下であり、
前記浮遊粒子の比重は、前記母材の比重の0.9倍~1.1倍であり、
前記母材は、硬化時の最小粘度が0.5~10Pa・sであるという物性を有することを特徴とする半導体発光装置。
A substrate having a recess on an upper surface thereof;
A light emitting element disposed on a bottom surface of the recess;
a light-transmitting member provided on the light-emitting element and having a light-transmitting property with respect to light emitted by the light-emitting element;
a covering member provided in the recess so as to cover side surfaces of the light-emitting element and the light-transmitting member, the covering member having a resin material as a base material, scattering particles having light scattering properties and suspended particles made of a light-transmitting resin dispersed in the base material;
the scattering particles are particles made of a metal oxide,
the floating particles are thermosetting or photocurable resin particles,
The particle size of the floating particles is between 1/2 and 4 times the particle size of the scattering particles,
The specific gravity of the suspended particles is 0.9 to 1.1 times the specific gravity of the base material;
The base material has a physical property that the minimum viscosity when hardened is 0.5 to 10 Pa·s .
上面に凹部を有する基板と、A substrate having a recess on an upper surface thereof;
前記凹部の底面に配置された発光素子と、A light emitting element disposed on a bottom surface of the recess;
前記発光素子上に設けられ、前記発光素子が放射する放射光に対して透光性を有する透光部材と、a light-transmitting member provided on the light-emitting element and having a light-transmitting property with respect to light emitted by the light-emitting element;
樹脂材を母材とし、前記母材中に光散乱性を有する散乱粒子及び透光性樹脂からなる粒子である浮遊粒子が分散されており、前記発光素子及び前記透光部材の側面を覆うように前記凹部内に設けられた被覆部材と、を有し、a covering member provided in the recess so as to cover side surfaces of the light-emitting element and the light-transmitting member, the covering member having a resin material as a base material, scattering particles having light scattering properties and suspended particles made of a light-transmitting resin dispersed in the base material;
前記散乱粒子は、金属酸化物からなる粒子であり、the scattering particles are particles made of a metal oxide,
前記浮遊粒子は、熱硬化された熱硬化性又は光硬化された光硬化性の樹脂粒子であり、the suspended particles are thermosetting or photocurable resin particles,
前記浮遊粒子の粒径は、前記散乱粒子の粒径の1/2倍以上4倍以下であり、The particle size of the floating particles is between 1/2 and 4 times the particle size of the scattering particles,
前記母材は、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ポリカーボネイト樹脂、及びポリイミド樹脂のうちの少なくとも1つを含み、the base material includes at least one of a silicone resin, an epoxy resin, an acrylic resin, a polycarbonate resin, and a polyimide resin;
前記浮遊粒子は、前記母材と同一又は同種の樹脂からなることを特徴とする半導体発光装置。The semiconductor light emitting device is characterized in that the suspended particles are made of the same or the same type of resin as the base material.
前記透光部材の上面は前記被覆部材から露出し、
前記被覆部材は、前記透光部材の側面全体を被覆し、
前記被覆部材の上面は、前記透光部材の側面近傍の領域において、前記透光部材の上面との境界部から離れるにつれて下方に向かうように傾いている、
ことを特徴とする請求項1又は2に記載の半導体発光装置。
an upper surface of the light-transmitting member is exposed from the covering member;
the covering member covers the entire side surface of the light-transmitting member,
the upper surface of the covering member is inclined downward in a region near the side surface of the translucent member as it moves away from the boundary with the upper surface of the translucent member;
3. The semiconductor light emitting device according to claim 1, wherein the first insulating layer is a semiconductor light emitting device.
前記被覆部材は、前記発光素子からの光を遮光する遮光部材であることを特徴とする請求項1乃至のいずれか1つに記載の半導体発光装置。 4. The semiconductor light emitting device according to claim 1 , wherein the covering member is a light blocking member that blocks light from the light emitting element. 前記透光部材は蛍光体を含むことを特徴とする請求項1乃至のいずれか1つに記載の半導体発光装置。 5. The semiconductor light emitting device according to claim 1, wherein the light transmitting member contains a phosphor. 前記発光素子と前記透光部材との間に設けられて前記発光素子と前記透光部材とを接着する接着部材をさらに有し、
前記透光部材又は前記接着部材の少なくとも一方に蛍光体を含むことを特徴とする請求項1乃至のいずれか1つに記載の半導体発光装置。
an adhesive member provided between the light emitting element and the translucent member to bond the light emitting element and the translucent member;
5. The semiconductor light emitting device according to claim 1, wherein at least one of the light transmissive member and the adhesive member contains a phosphor.
JP2020090683A 2020-05-25 2020-05-25 Semiconductor light emitting device Active JP7580206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020090683A JP7580206B2 (en) 2020-05-25 2020-05-25 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090683A JP7580206B2 (en) 2020-05-25 2020-05-25 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2021190437A JP2021190437A (en) 2021-12-13
JP7580206B2 true JP7580206B2 (en) 2024-11-11

Family

ID=78848459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090683A Active JP7580206B2 (en) 2020-05-25 2020-05-25 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP7580206B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339581A (en) 2005-06-06 2006-12-14 Shin Etsu Chem Co Ltd Fluorescent substance-containing led
JP2011129661A (en) 2009-12-17 2011-06-30 Nichia Corp Light emitting device
JP2012516026A (en) 2008-09-02 2012-07-12 ブリッジラックス インコーポレイテッド Phosphor conversion LED
US20120329184A1 (en) 2009-12-30 2012-12-27 Ralf Petry Casting composition as diffusion barrier for water molecules
WO2014103330A1 (en) 2012-12-27 2014-07-03 コニカミノルタ株式会社 Phosphor dispersion, led device and method for manufacturing same
JP2014158011A (en) 2013-01-16 2014-08-28 Konica Minolta Inc Method for manufacturing led device
JP2015026753A (en) 2013-07-29 2015-02-05 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2016048764A (en) 2014-08-28 2016-04-07 日東電工株式会社 Optical semiconductor element sealing composition, optical semiconductor element sealing mold, optical semiconductor element sealing sheet, optical semiconductor device and sealed optical semiconductor element
JP2016162850A (en) 2015-02-27 2016-09-05 豊田合成株式会社 Light-emitting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339581A (en) 2005-06-06 2006-12-14 Shin Etsu Chem Co Ltd Fluorescent substance-containing led
JP2012516026A (en) 2008-09-02 2012-07-12 ブリッジラックス インコーポレイテッド Phosphor conversion LED
JP2011129661A (en) 2009-12-17 2011-06-30 Nichia Corp Light emitting device
US20120329184A1 (en) 2009-12-30 2012-12-27 Ralf Petry Casting composition as diffusion barrier for water molecules
WO2014103330A1 (en) 2012-12-27 2014-07-03 コニカミノルタ株式会社 Phosphor dispersion, led device and method for manufacturing same
JP2014158011A (en) 2013-01-16 2014-08-28 Konica Minolta Inc Method for manufacturing led device
JP2015026753A (en) 2013-07-29 2015-02-05 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2016048764A (en) 2014-08-28 2016-04-07 日東電工株式会社 Optical semiconductor element sealing composition, optical semiconductor element sealing mold, optical semiconductor element sealing sheet, optical semiconductor device and sealed optical semiconductor element
JP2016162850A (en) 2015-02-27 2016-09-05 豊田合成株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP2021190437A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
JP4873963B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
CN109860381B (en) Light emitting device and method of manufacturing the same
TWI433344B (en) Light-emitting device and lighting device
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
CN102468410B (en) Light-emitting device and manufacture method thereof
JP6337859B2 (en) Light emitting device
JP2016029720A (en) Light emitting device and manufacturing method thereof
JP2007266356A (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JPWO2013001687A1 (en) Light emitting device
JP2018078188A (en) Light emitting device
WO2020137855A1 (en) Light-emitting device, and method for manufacturing light-emitting device
JP2014093311A (en) Light-emitting device and manufacturing method thereof
JP2016171227A (en) Light-emitting device and manufacturing method of the same
US11996504B2 (en) Light-emitting device and method of manufacturing the same
JP6777105B2 (en) Manufacturing method of light emitting device
JP5750538B1 (en) LED light emitting device
JP7620249B2 (en) Light emitting device and method for manufacturing the same
JP6326830B2 (en) Light emitting device and lighting device including the same
JP7580206B2 (en) Semiconductor light emitting device
US11990573B2 (en) Method of manufacturing light emitting device having hollow particles
JP2021027312A (en) Light-emitting device
JP6905171B2 (en) A package for semiconductor devices and semiconductor devices using them.
JP7181489B2 (en) Light emitting device and manufacturing method thereof
JP7627624B2 (en) Semiconductor light emitting device and method for manufacturing the same
JP2018088554A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240924

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20241001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241029

R150 Certificate of patent or registration of utility model

Ref document number: 7580206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150