JP7577509B2 - Method for purifying organic solvents - Google Patents
Method for purifying organic solvents Download PDFInfo
- Publication number
- JP7577509B2 JP7577509B2 JP2020179724A JP2020179724A JP7577509B2 JP 7577509 B2 JP7577509 B2 JP 7577509B2 JP 2020179724 A JP2020179724 A JP 2020179724A JP 2020179724 A JP2020179724 A JP 2020179724A JP 7577509 B2 JP7577509 B2 JP 7577509B2
- Authority
- JP
- Japan
- Prior art keywords
- exchanger
- type
- organic solvent
- treatment step
- ion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003960 organic solvent Substances 0.000 title claims description 151
- 238000000034 method Methods 0.000 title claims description 75
- 150000001450 anions Chemical class 0.000 claims description 131
- 230000002378 acidificating effect Effects 0.000 claims description 125
- 150000001768 cations Chemical class 0.000 claims description 123
- 238000005342 ion exchange Methods 0.000 claims description 101
- 239000013522 chelant Substances 0.000 claims description 74
- 229910052751 metal Inorganic materials 0.000 claims description 68
- 239000002184 metal Substances 0.000 claims description 68
- 239000007788 liquid Substances 0.000 claims description 49
- 239000012535 impurity Substances 0.000 claims description 46
- 238000004821 distillation Methods 0.000 claims description 39
- 150000002500 ions Chemical class 0.000 description 29
- 239000002253 acid Substances 0.000 description 24
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 20
- 239000003456 ion exchange resin Substances 0.000 description 20
- 229920003303 ion-exchange polymer Polymers 0.000 description 20
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 18
- 239000003729 cation exchange resin Substances 0.000 description 17
- 150000002739 metals Chemical class 0.000 description 17
- 238000005349 anion exchange Methods 0.000 description 15
- 229910052500 inorganic mineral Inorganic materials 0.000 description 15
- 239000011707 mineral Substances 0.000 description 15
- 238000000746 purification Methods 0.000 description 15
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 239000011148 porous material Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000003957 anion exchange resin Substances 0.000 description 12
- 238000005341 cation exchange Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 9
- 229910021645 metal ion Inorganic materials 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000009835 boiling Methods 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000011088 calibration curve Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 125000000962 organic group Chemical group 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000003495 polar organic solvent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 239000012490 blank solution Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- DUAWRLXHCUAWMK-UHFFFAOYSA-N 2-iminiopropionate Chemical group CC(=[NH2+])C([O-])=O DUAWRLXHCUAWMK-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- IAANMKMHMYZVOC-UHFFFAOYSA-N aminomethyl dihydrogen phosphate Chemical group NCOP(O)(O)=O IAANMKMHMYZVOC-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229940023913 cation exchange resins Drugs 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical group OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 2
- 229920013653 perfluoroalkoxyethylene Polymers 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 239000012492 regenerant Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 229910021654 trace metal Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- ZOKCNEIWFQCSCM-UHFFFAOYSA-N (2-methyl-4-phenylpent-4-en-2-yl)benzene Chemical compound C=1C=CC=CC=1C(C)(C)CC(=C)C1=CC=CC=C1 ZOKCNEIWFQCSCM-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 102100024452 DNA-directed RNA polymerase III subunit RPC1 Human genes 0.000 description 1
- 101000689002 Homo sapiens DNA-directed RNA polymerase III subunit RPC1 Proteins 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohex-2-enone Chemical compound O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 108010063993 lens intrinsic protein MP 64 Proteins 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229920000768 polyamine Chemical group 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/04—Processes using organic exchangers
- B01J39/05—Processes using organic exchangers in the strongly acidic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/04—Processes using organic exchangers
- B01J41/05—Processes using organic exchangers in the strongly basic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/04—Processes using organic exchangers
- B01J41/07—Processes using organic exchangers in the weakly basic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J45/00—Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/02—Column or bed processes
- B01J47/04—Mixed-bed processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/34—Separation; Purification; Stabilisation; Use of additives
- C07C41/36—Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/34—Separation; Purification; Stabilisation; Use of additives
- C07C41/40—Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
- C07C41/42—Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/03—Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
- C07C43/04—Saturated ethers
- C07C43/13—Saturated ethers containing hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B63/00—Purification; Separation; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B63/00—Purification; Separation; Stabilisation; Use of additives
- C07B63/02—Purification; Separation; Stabilisation; Use of additives by treatment giving rise to a chemical modification
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Description
本発明は、金属不純物含有量が低減された高純度の有機溶媒を得るための有機溶媒の精製方法に関する。 The present invention relates to a method for purifying an organic solvent to obtain a high-purity organic solvent with a reduced content of metal impurities.
有機溶媒中の微量金属分析には、ICP-MSが用いられる。ICP-MSで、測定対象の有機溶媒中の金属を分析する場合、金属が既知濃度で添加された標準液を、測定対象と同種の有機溶媒のブランク液で数段階に希釈し、検量線を作成する。このとき、測定対象の有機溶媒中の金属濃度が、検量線濃度範囲に含まれるように設定する。このような方法は、絶対検量線法と呼ばれ、ブランク液中に測定対象の金属が含まれないことが重要である。ブランク液中の金属濃度が高いと、バックグラウンド濃度が高くなってしまい、定量下限値が上がってしまうためである。 ICP-MS is used to analyze trace metals in organic solvents. When using ICP-MS to analyze metals in the organic solvent to be measured, a standard solution to which metals have been added at known concentrations is diluted in several stages with a blank solution of the same type of organic solvent as the material to be measured to create a calibration curve. At this time, the metal concentration in the organic solvent to be measured is set so that it falls within the calibration curve concentration range. This method is called the absolute calibration curve method, and it is important that the blank solution does not contain the metal to be measured. This is because if the metal concentration in the blank solution is high, the background concentration will be high, raising the lower limit of quantification.
このようなことから、ICP-MSによる有機溶媒中の微量金属分析に用いられるブランク液中の金属不純物含有量は、1ppt以下であることが求められる。 For this reason, the metal impurity content in blank solutions used in trace metal analysis of organic solvents by ICP-MS is required to be 1 ppt or less.
また、半導体製造工程では、洗浄に使用されるイソプロピルアルコール(IPA)に含まれている金属不純物は、ウェハー上で悪影響を及ぼす可能性が高いため、IPA中の不純物含有量をpptレベル又は1ppt以下まで低減する必要がある。 In addition, in the semiconductor manufacturing process, metal impurities contained in isopropyl alcohol (IPA) used for cleaning are likely to have adverse effects on the wafer, so the impurity content in IPA must be reduced to the ppt level or below 1 ppt.
有機溶媒を精製する方法としては、例えば、特許文献1に、加水分解性有機溶媒からイオン性汚染物質を除去するための方法であって、前記加水分解性有機溶媒を、陽イオン交換樹脂及び陰イオン交換樹脂を含むイオン交換樹脂の混床と接触させることを含み、前記陰イオン交換樹脂が、弱塩基性陰イオン交換樹脂から選択される方法が開示されている。 As a method for purifying an organic solvent, for example, Patent Document 1 discloses a method for removing ionic contaminants from a hydrolyzable organic solvent, which includes contacting the hydrolyzable organic solvent with a mixed bed of ion exchange resins including a cation exchange resin and an anion exchange resin, and the anion exchange resin is selected from weakly basic anion exchange resins.
また、特許文献2には、親水性有機溶媒からイオン性汚染物質を除去するための方法であって、前記方法が、前記親水性有機溶媒を、陽イオン性イオン交換樹脂及び陰イオン性イオン交換樹脂を含むイオン交換樹脂の混床と接触させることを含み、(a)前記陽イオン性イオン交換樹脂が、40~55重量%の保水力を有する水素(H)型強酸陽イオン性イオン交換樹脂であり、(b)前記陽イオン性イオン交換樹脂及び前記陰イオン性イオン交換樹脂の両方が、0.001~0.1cm3/gの多孔性、0.001~1.7nmの平均孔径、及び0.001~10m2/gのBET表面積を有する方法が開示されている。 Furthermore, Patent Document 2 discloses a method for removing ionic contaminants from a hydrophilic organic solvent, the method comprising contacting the hydrophilic organic solvent with a mixed bed of ion exchange resins containing a cationic ion exchange resin and an anionic ion exchange resin, in which (a) the cationic ion exchange resin is a hydrogen (H)-type strong acid cationic ion exchange resin having a water retention capacity of 40 to 55% by weight, and (b) both the cationic ion exchange resin and the anionic ion exchange resin have a porosity of 0.001 to 0.1 cm 3 /g, an average pore size of 0.001 to 1.7 nm, and a BET surface area of 0.001 to 10 m 2 /g.
特許文献1及び特許文献2では、有機溶媒を、陽イオン交換樹脂及び陰イオン交換樹脂を含むイオン交換樹脂の混床と接触させることにより、有機溶媒の精製が行われている。 In Patent Documents 1 and 2, the organic solvent is purified by contacting the organic solvent with a mixed bed of ion exchange resins containing a cation exchange resin and an anion exchange resin.
ところが、特許文献1及び特許文献2に記載の方法では、有機溶媒中の金属不純物の除去が行えるものの、更なる高純度が求められる場合がある。つまり、更に、金属不純物の除去性に優れる有機溶媒の精製方法が求められている。 However, although the methods described in Patent Documents 1 and 2 can remove metal impurities from organic solvents, there are cases where even higher purity is required. In other words, there is a demand for a method of purifying organic solvents that is even better at removing metal impurities.
また、イオン交換樹脂は、水分を含んでいるため、イオン交換樹脂を用いて、有機溶媒の精製を行っても、得られる処理液中に水分が混入してしまう。高純度の有機溶媒が求められる場合には、微量の水分でも、不純物としての混入の問題が生じる。 In addition, because ion exchange resins contain moisture, even if an organic solvent is purified using ion exchange resins, moisture will be mixed into the resulting treatment liquid. When a high-purity organic solvent is required, even a small amount of moisture can cause problems as it can be mixed in as an impurity.
また、不純物除去とは別に、有機溶媒中では金属不純物の拡散速度が小さく、またイオン交換樹脂とのイオン交換反応の反応速度も小さいため、有機溶媒中のイオン性金属不純物の除去を、イオン交換樹脂を用いて行う場合においては、水溶液中のイオン性金属不純物を除去する場合に比べ、イオン交換樹脂に対する通液速度を小さく設定する必要がある。例えば、強酸性カチオン交換樹脂を用いた処理の場合、水中と同じ流速で同じ金属除去率を得ることは難しい。 In addition to the removal of impurities, the diffusion rate of metal impurities is slow in organic solvents, and the reaction rate of the ion exchange reaction with ion exchange resins is also slow. Therefore, when removing ionic metal impurities from organic solvents using ion exchange resins, the flow rate through the ion exchange resin must be set lower than when removing ionic metal impurities from an aqueous solution. For example, when treating with a strongly acidic cation exchange resin, it is difficult to obtain the same metal removal rate at the same flow rate as in water.
そのため、有機溶媒中のイオン性金属不純物を、イオン交換樹脂を用いて精製するために、イオン交換樹脂への通液速度を小さく設定しなければならないため、精製効率が低いという問題があった。 As a result, in order to purify ionic metal impurities in organic solvents using ion exchange resins, the flow rate through the ion exchange resin must be set low, resulting in a problem of low purification efficiency.
従って、本発明の第一の目的は、有機溶媒中の金属不純物及び水分の除去性に優れる有機溶媒の精製方法を提供することにある。また、本発明の第二の目的は、有機溶媒中の金属不純物及び水分の除去性に優れ、且つ、精製効率が高い有機溶媒の精製方法を提供することにある。 Therefore, the first object of the present invention is to provide a method for purifying an organic solvent that is excellent in removing metal impurities and water from the organic solvent. The second object of the present invention is to provide a method for purifying an organic solvent that is excellent in removing metal impurities and water from the organic solvent and has high purification efficiency.
このような技術背景のもと、本発明者らは、鋭意検討を重ねた結果、被処理有機溶媒を、イオン交換樹脂に接触させるイオン交換処理工程を行った後、イオン交換処理工程の処理液を、蒸留する蒸留工程を行うことにより、イオン性金属不純物の除去性が高まると共に、イオン交換樹脂では除去できなかった金属微粒子及び水分の除去も可能となることを見出し、本発明を完成させるに至った。 In light of this technical background, the inventors conducted extensive research and discovered that by carrying out an ion exchange treatment process in which the organic solvent to be treated is brought into contact with an ion exchange resin, followed by a distillation process in which the treatment liquid from the ion exchange treatment process is distilled, the removability of ionic metal impurities is improved and it is also possible to remove metal particles and moisture that could not be removed by the ion exchange resin, leading to the completion of the present invention.
すなわち、本発明(1)は、1価のイオン性金属不純物及び2価のイオン性金属不純物を含有する被処理有機溶媒を、H形キレート交換体(1)に、2~30h
-1
の通液速度(SV)で接触させる第一処理工程と、
該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、2~50h
-1
の通液速度(SV)で接触させる第二処理工程と、
を有するイオン交換処理工程と、
該イオン交換処理工程の処理液を、蒸留する蒸留工程と、
を有することを特徴とする有機溶媒の精製方法を提供するものである。
また、本発明(2)は、1価のイオン性金属不純物及び2価のイオン性金属不純物を含有する被処理有機溶媒を、H形キレート交換体とアニオン交換体とH形強酸性カチオン交換体の混床に、2~30h
-1
の通液速度(SV)で接触させるイオン交換処理工程と、
該イオン交換処理工程の処理液を、蒸留する蒸留工程と、
を有することを特徴とする有機溶媒の精製方法を提供するものである。
That is, the present invention (1) comprises a first treatment step of contacting an organic solvent containing monovalent ionic metal impurities and divalent ionic metal impurities with an H-type chelate exchanger (1) at a flow rate (SV) of 2 to 30 h -1 ;
a second treatment step in which the treated liquid from the first treatment step is contacted with an anion exchanger (2) and an H-type strongly acidic cation exchanger (3) at a liquid passage rate (SV) of 2 to 50 h ;
an ion exchange treatment step comprising :
a distillation step of distilling the treated liquid from the ion exchange treatment step;
The present invention provides a method for purifying an organic solvent, comprising the steps of:
The present invention (2) also provides an ion exchange treatment step in which an organic solvent containing monovalent ionic metal impurities and divalent ionic metal impurities is contacted with a mixed bed of an H-type chelate exchanger, an anion exchanger and an H-type strongly acidic cation exchanger at a flow rate (SV) of 2 to 30 h -1 ;
a distillation step of distilling the treated liquid from the ion exchange treatment step;
The present invention provides a method for purifying an organic solvent, comprising the steps of:
本発明によれば、有機溶媒中の金属不純物及び水分の除去性に優れる有機溶媒の精製方法を提供することができる。また、本発明によれば、有機溶媒中の金属不純物及び水分の除去性に優れ、且つ、精製効率が高い有機溶媒の精製方法を提供することができる。 According to the present invention, it is possible to provide a method for purifying an organic solvent that is excellent in removing metal impurities and water from the organic solvent. In addition, according to the present invention, it is possible to provide a method for purifying an organic solvent that is excellent in removing metal impurities and water from the organic solvent and has high purification efficiency.
本発明の有機溶媒の精製方法は、被処理有機溶媒を、イオン交換体に接触させるイオン交換処理工程と、
該イオン交換処理工程の処理液を、蒸留する蒸留工程と、
を有することを特徴とする有機溶媒の精製方法である。
The method for purifying an organic solvent of the present invention includes an ion exchange treatment step of contacting an organic solvent to be treated with an ion exchanger;
a distillation step of distilling the treated liquid from the ion exchange treatment step;
The method for purifying an organic solvent is characterized by comprising the steps of:
本発明の有機溶媒の精製方法は、少なくとも、イオン交換処理工程と、蒸留工程と、を有する。 The method for purifying an organic solvent of the present invention includes at least an ion exchange process and a distillation process.
イオン交換処理工程は、被処理有機溶媒をイオン交換体に接触させる工程である。 The ion exchange treatment process is a process in which the organic solvent to be treated is brought into contact with an ion exchanger.
本発明の有機溶媒の精製方法に係る被処理有機溶媒としては、特に制限されないが、例えば、イソプロピルアルコール、メタノール、エタノール等のアルコール類、シクロヘキサンノン、メチルイソブチルケトン、アセトン、メチルエチルケトン等のケトン類、2,4-ジフェニル-4-メチル-1-ペンテン、2-フェニル-1-プロペン等のアルケン系有機溶媒、N-メチルピロリドン及びこれらの混合有機溶媒が挙げられる。被処理有機溶媒としては、極性有機溶媒及び非極性有機溶媒のいずれであってもよく、極性有機溶媒が好ましい。また、極性有機溶媒としては、プロトン性の極性有機溶媒であっても、非プロトン性の極性有機溶媒であってもよい。 The organic solvent to be treated in the organic solvent purification method of the present invention is not particularly limited, but examples thereof include alcohols such as isopropyl alcohol, methanol, and ethanol, ketones such as cyclohexanenone, methyl isobutyl ketone, acetone, and methyl ethyl ketone, alkene-based organic solvents such as 2,4-diphenyl-4-methyl-1-pentene and 2-phenyl-1-propene, N-methylpyrrolidone, and mixed organic solvents thereof. The organic solvent to be treated may be either a polar organic solvent or a nonpolar organic solvent, with a polar organic solvent being preferred. In addition, the polar organic solvent may be either a protic polar organic solvent or an aprotic polar organic solvent.
被処理有機溶媒は、金属不純物として、Na、K、Li等の1価のイオン性金属不純物と、Cr、As、Ca、Cu、Fe、Mg、Mn、Ni、Pb、Zn等の2価以上のイオン性金属不純物と、を含有する。 The treated organic solvent contains, as metal impurities, monovalent ionic metal impurities such as Na, K, and Li, and divalent or higher ionic metal impurities such as Cr, As, Ca, Cu, Fe, Mg, Mn, Ni, Pb, and Zn.
被処理有機溶媒中の各金属不純物の含有量は、特に制限されないが、通常、100質量ppb~20質量ppt程度である。 The content of each metal impurity in the organic solvent to be treated is not particularly limited, but is usually about 100 ppb to 20 ppt by mass.
本発明の有機溶媒の精製方法に係るイオン交換体としては、H形カチオン交換体、アニオン交換体が挙げられる。H形カチオン交換体としては、H形キレート交換体、H形強酸性カチオン交換体が挙げられる。アニオン交換体としては、強塩基性アニオン交換体、弱塩基性アニオン交換体が挙げられる。 Ion exchangers used in the method for purifying an organic solvent of the present invention include H-type cation exchangers and anion exchangers. Examples of H-type cation exchangers include H-type chelate exchangers and H-type strongly acidic cation exchangers. Examples of anion exchangers include strongly basic anion exchangers and weakly basic anion exchangers.
H形キレート交換体は、Na形、Ca形、Mg形等の金属イオン形のキレート交換体を、鉱酸と接触させることにより、酸処理されて、H形に変換されたものである。つまり、H形キレート交換体は、金属イオン形のキレート交換体の鉱酸接触処理物である。 The H-type chelate exchanger is a chelate exchanger in the metal ion form, such as Na-type, Ca-type, or Mg-type, that is converted to the H-type by contacting it with a mineral acid and treating it with an acid. In other words, the H-type chelate exchanger is a mineral acid contact treatment product of a metal ion form chelate exchanger.
H形キレート交換体が有する官能基は、金属イオンに配位してキレートを形成することができるものであれば、特に制限されず、例えば、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基等のアミノ基を有する官能基、チオール基等が挙げられる。これらのうち、キレート交換体の官能基としては、多数の多価金属イオンの除去性が高くなる点で、アミノ基を有する官能基が好ましく、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基が特に好ましい。 The functional group of the H-type chelate exchanger is not particularly limited as long as it can coordinate to a metal ion to form a chelate, and examples of such functional groups include functional groups having an amino group, such as iminodiacetic acid groups, aminomethyl phosphate groups, and iminopropionic acid groups, and thiol groups. Of these, functional groups having an amino group are preferred as the functional group of the chelate exchanger, since they enhance the removal of many polyvalent metal ions, and iminodiacetic acid groups, aminomethyl phosphate groups, and iminopropionic acid groups are particularly preferred.
H形キレート交換体としては、粒状のH形キレート交換樹脂が挙げられる。H形キレート交換樹脂の基体としては、スチレン-ジビニルベンゼン共重合体が挙げられる。H形キレート交換樹脂は、ゲル形構造、マクロポーラス形構造、ポーラス形構造のいずれの構造でもよい。H形キレート交換樹脂の交換容量は、好ましくは0.5~2.5eq/L-R、特に好ましくは1.0~2.5eq/L-Rである。H形キレート交換樹脂の平均粒径(調和平均径)は、特に制限されないが、好ましくは300~1000μm、特に好ましくは500~800μmである。なお、H形キレート交換樹脂の平均粒径は、レーザ回折式粒度分布測定装置により測定される値である。 The H-type chelate exchanger may be a granular H-type chelate exchange resin. The substrate of the H-type chelate exchange resin may be a styrene-divinylbenzene copolymer. The H-type chelate exchange resin may have any of a gel structure, a macroporous structure, and a porous structure. The exchange capacity of the H-type chelate exchange resin is preferably 0.5 to 2.5 eq/L-R, and more preferably 1.0 to 2.5 eq/L-R. The average particle size (harmonic mean diameter) of the H-type chelate exchange resin is not particularly limited, but is preferably 300 to 1000 μm, and more preferably 500 to 800 μm. The average particle size of the H-type chelate exchange resin is a value measured by a laser diffraction particle size distribution measuring device.
また、H形キレート交換体としては、H形の有機多孔質キレート交換体が挙げられる。H形の有機多孔質キレート交換体は、キレート能有する官能基、例えば、上記に挙げられているキレート能を有する官能基が導入されている有機多孔質体である。H形の有機多孔質キレート交換体中の交換容量は、好ましくは0.3~2mg当量/mL(水湿潤状態)、特に好ましくは1~2mg当量/mL(水湿潤状態)である。 An example of an H-type chelate exchanger is an H-type organic porous chelate exchanger. An H-type organic porous chelate exchanger is an organic porous material into which a functional group having chelating ability, such as the functional groups having chelating ability listed above, has been introduced. The exchange capacity of the H-type organic porous chelate exchanger is preferably 0.3 to 2 mg equivalents/mL (in a water-wet state), and particularly preferably 1 to 2 mg equivalents/mL (in a water-wet state).
H形キレート交換体は、Na形、Ca形、Mg形等の金属イオン形のキレート交換体を鉱酸と接触させて酸処理することにより、得られる。金属イオン形のキレート交換体に接触させる鉱酸としては、塩酸、硫酸、硝酸が挙げられる。これらのうち、鉱酸としては、安全性の点で、塩酸、硫酸が好ましい。また、Ca形からの変換の場合は、硫酸カルシウムの析出の恐れがあるので塩酸が好ましい。鉱酸の濃度は、好ましくは0.1~6N、特に好ましくは1~4Nである。 The H-type chelate exchanger can be obtained by contacting a metal ion type chelate exchanger, such as a Na-type, Ca-type, or Mg-type, with a mineral acid for acid treatment. Examples of mineral acids that can be contacted with a metal ion type chelate exchanger include hydrochloric acid, sulfuric acid, and nitric acid. Of these, hydrochloric acid and sulfuric acid are preferred from the viewpoint of safety. In addition, in the case of conversion from a Ca-type, hydrochloric acid is preferred because there is a risk of calcium sulfate precipitation. The concentration of the mineral acid is preferably 0.1 to 6N, and particularly preferably 1 to 4N.
金属イオン形のキレート交換体に鉱酸を接触させる方法としては、特に制限されず、接触様式、接触温度、接触時間等は適宜選択される。 There are no particular limitations on the method for contacting the mineral acid with the metal ion-type chelate exchanger, and the contact method, contact temperature, contact time, etc. may be appropriately selected.
金属イオン形のキレート交換体に鉱酸を接触させた後、H形に変換されたH形キレート交換体を水洗し、余分な鉱酸の除去を行うが、キレート交換体中の官能基が、鉱酸との水素結合等により結合しているため、水洗では余分な鉱酸を完全に除去することができない。そのため、H形キレート交換体中には、酸処理に用いた鉱酸が残留している。 After contacting the metal ion chelate exchanger with mineral acid, the H-type chelate exchanger that has been converted to H-type is washed with water to remove excess mineral acid. However, since the functional groups in the chelate exchanger are bonded to the mineral acid by hydrogen bonds, etc., the excess mineral acid cannot be completely removed by washing with water. Therefore, the mineral acid used in the acid treatment remains in the H-type chelate exchanger.
例えば、金属イオン形のキレート交換樹脂としては、三菱化学社製のCR-10、CR-11、住化ケムテックス社製のデュオライトC-467、住友化学社製のMC-700、ランクセス社製のレバチットTP207、レバチットTP208、レバチットTP260、ピュロライト社製のS930、S950、オルガノ製のDS-21、DS-22が挙げられる。 For example, metal ion type chelate exchange resins include CR-10 and CR-11 manufactured by Mitsubishi Chemical Corporation, Duolite C-467 manufactured by Sumika Chemtex Corporation, MC-700 manufactured by Sumitomo Chemical Co., Ltd., Lewatit TP207, Lewatit TP208, and Lewatit TP260 manufactured by Lanxess AG, S930 and S950 manufactured by Purolite Corporation, and DS-21 and DS-22 manufactured by Organo.
H形強酸性カチオン交換体は、スルホン酸基等の強酸性カチオン交換基がH形に変換されたものである。 H-type strongly acidic cation exchangers are those in which strongly acidic cation exchange groups such as sulfonic acid groups have been converted to the H-type.
H形強酸性カチオン交換体としては、粒状の強酸性カチオン交換樹脂が挙げられる。H形強酸性カチオン交換樹脂の基体は、スチレン-ジビニルベンゼン共重合体である。H形強酸性カチオン交換樹脂は、ゲル形構造、マクロポーラス形構造、ポーラス形構造のいずれの構造でもよい。H形強酸性カチオン交換樹脂の湿潤状態のイオン交換容量は、好ましくは0.5(eq/L-R)以上、特に好ましくは1.0(eq/L-R)以上である。また、H形強酸性カチオン交換樹脂の湿潤状態のイオン交換容量は、高いほど好ましく、適宜選択される。H形強酸性カチオン交換樹脂の調和平均径は、好ましくは200~900μm、特に好ましくは300~600μmである。H形強酸性カチオン交換樹脂としては、例えば、ダウケミカル社製のアンバーライトIR120B、IR124、200CT252、アンバージェット1020、1024、1060、1220、三菱ケミカル社製のダイヤイオンSK104、SK1B、SK110、SK112、PK208、PK212L、PK216、PK218、PK220、PK228、UBK08、UBK10、UBK12、オルガノ製のDS-1、DS-4、ピュロライト社製のC100、C100E、C120E、C100x10、C100x12MB、C150、C160、SGC650、レバチット社製のモノプラスS108H、SP112、S1668等が挙げられる。 Examples of H-type strongly acidic cation exchangers include granular strongly acidic cation exchange resins. The substrate of the H-type strongly acidic cation exchange resin is a styrene-divinylbenzene copolymer. The H-type strongly acidic cation exchange resin may have any of a gel structure, a macroporous structure, and a porous structure. The ion exchange capacity of the H-type strongly acidic cation exchange resin in a wet state is preferably 0.5 (eq/L-R) or more, and particularly preferably 1.0 (eq/L-R) or more. The ion exchange capacity of the H-type strongly acidic cation exchange resin in a wet state is preferably as high as possible, and is appropriately selected. The harmonic mean diameter of the H-type strongly acidic cation exchange resin is preferably 200 to 900 μm, and particularly preferably 300 to 600 μm. Examples of H-type strong acid cation exchange resins include Amberlite IR120B, IR124, 200CT252, Amberjet 1020, 1024, 1060, and 1220 manufactured by The Dow Chemical Company, and Diaion SK104, SK1B, SK110, SK112, PK208, PK212L, PK216, and PK220 manufactured by Mitsubishi Chemical Corporation. 18, PK220, PK228, UBK08, UBK10, UBK12, Organo's DS-1, DS-4, Purolite's C100, C100E, C120E, C100x10, C100x12MB, C150, C160, SGC650, Lewatit's Monoplus S108H, SP112, S1668, etc.
また、H形強酸性カチオン交換体としては、H形の有機多孔質強酸性カチオン交換体が挙げられる。H形の有機多孔質強酸性カチオン交換体は、強酸性カチオン交換基、例えば、上記で挙げられている強酸性カチオン交換基が導入されている有機多孔質体である。H形の有機多孔質強酸性カチオン交換体中の交換容量は、好ましくは1~3mg当量/mL(乾燥状態)、特に好ましくは1.5~3mg当量/mL(乾燥状態)である。 An example of an H-type strongly acidic cation exchanger is an H-type organic porous strongly acidic cation exchanger. An H-type organic porous strongly acidic cation exchanger is an organic porous material into which a strongly acidic cation exchange group, such as the strongly acidic cation exchange group listed above, has been introduced. The exchange capacity of the H-type organic porous strongly acidic cation exchanger is preferably 1 to 3 mg equivalents/mL (dry state), and particularly preferably 1.5 to 3 mg equivalents/mL (dry state).
アニオン交換体は、アニオン交換基として強塩基性アニオン交換基を有する強塩基性アニオン交換体と、アニオン交換基として弱塩基性アニオン交換基を有する弱塩基性アニオン交換体とがある。 Anion exchangers are classified into two types: strongly basic anion exchangers that have strongly basic anion exchange groups as anion exchange groups, and weakly basic anion exchangers that have weakly basic anion exchange groups as anion exchange groups.
強塩基性アニオン交換体に係る強塩基性アニオン交換基としては、OH形の四級アンモニウム基等が挙げられる。また、弱塩基性アニオン交換体に係る弱塩基性アニオン交換基としては、三級アミノ基、二級アミノ基、一級アミノ基、ポリアミン基等が挙げられる。他にも塩基度の高いOH形のアニオン交換体では、分解又は化学反応が起こるような溶媒には、塩基度が低い炭酸塩形又は重炭酸塩形のアニオン交換体を用いても良い。 Strongly basic anion exchange groups related to strongly basic anion exchangers include OH-type quaternary ammonium groups. Weakly basic anion exchange groups related to weakly basic anion exchangers include tertiary amino groups, secondary amino groups, primary amino groups, polyamine groups, etc. In addition, for highly basic OH-type anion exchangers, carbonate or bicarbonate anion exchangers with low basicity may be used in solvents where decomposition or chemical reactions may occur.
アニオン交換体としては、粒状のアニオン交換樹脂が挙げられる。アニオン交換樹脂の基体は、スチレン-ジビニルベンゼン共重合体である。アニオン交換樹脂は、ゲル形構造、マクロポーラス形構造、ポーラス形構造のいずれの構造でもよい。アニオン交換樹脂の湿潤状態のイオン交換容量は、好ましくは0.5~2(eq/L-R)、特に好ましくは0.9~2(eq/L-R)である。アニオン交換樹脂の調和平均径は、好ましくは200~900μm、特に好ましくは300~800μmである。アニオン交換樹脂としては、例えば、ダウケミカル社製のアンバーライトIRA900、402、96SB、98、アンバージェット4400、4002、4010、三菱ケミカル社製のダイヤイオンUBA120、PA306S、PA308、PA312、PA316、PA318L、WA21J、WA30、オルガノ社製のDS-2、DS-5、DS-6、ピュロライト社製のA400、A600、SGA550、A500、A501P、A502PS、A503、A100、A103S、A110、A111S、A133S、レバチット社製のモノプラスM500、M800、MP62WS、MP64等が挙げられる。 An example of an anion exchanger is a granular anion exchange resin. The substrate of the anion exchange resin is a styrene-divinylbenzene copolymer. The anion exchange resin may have any of a gel structure, a macroporous structure, and a porous structure. The ion exchange capacity of the anion exchange resin in a wet state is preferably 0.5 to 2 (eq/L-R), and more preferably 0.9 to 2 (eq/L-R). The harmonic mean diameter of the anion exchange resin is preferably 200 to 900 μm, and more preferably 300 to 800 μm. Examples of anion exchange resins include Amberlite IRA900, 402, 96SB, 98, Amberjet 4400, 4002, and 4010 manufactured by Dow Chemical Company; Diaion UBA120, PA306S, PA308, PA312, PA316, PA318L, WA21J, and WA30 manufactured by Mitsubishi Chemical Corporation; DS-2, DS-5, and DS-6 manufactured by Organo Corporation; A400, A600, SGA550, A500, A501P, A502PS, A503, A100, A103S, A110, A111S, and A133S manufactured by Purolite Corporation; and Monoplus M500, M800, MP62WS, and MP64 manufactured by Lewatit Corporation.
また、アニオン交換体としては、有機多孔質アニオン交換体が挙げられる。有機多孔質アニオン交換体は、アニオン交換基、例えば、上記に挙げられている強塩基性アニオン交換基や弱塩基性アニオン交換基が導入されている有機多孔質体である。有機多孔質アニオン交換体中の交換容量は、好ましくは1~6mg当量/mL(乾燥状態)、特に好ましくは2~5mg当量/mL(乾燥状態)である。 Another example of an anion exchanger is an organic porous anion exchanger. The organic porous anion exchanger is an organic porous material into which an anion exchange group, such as the strongly basic anion exchange group or the weakly basic anion exchange group listed above, has been introduced. The exchange capacity of the organic porous anion exchanger is preferably 1 to 6 mg equivalents/mL (dry state), and particularly preferably 2 to 5 mg equivalents/mL (dry state).
イオン交換処理工程では、被処理有機溶媒を、少なくともH形カチオン交換体、好ましくはH形強酸性カチオン交換体に接触させる。 In the ion exchange treatment process, the organic solvent to be treated is brought into contact with at least an H-type cation exchanger, preferably an H-type strongly acidic cation exchanger.
イオン交換処理工程に係るH形カチオン交換体、H形強酸性カチオン交換体は、上述したH形カチオン交換体、H形強酸性カチオン交換体である。 The H-type cation exchanger and H-type strongly acidic cation exchanger involved in the ion exchange treatment process are the H-type cation exchanger and H-type strongly acidic cation exchanger described above.
第一の形態のイオン交換処理工程(以下、イオン交換処理工程(1)とも記載する。)は、被処理有機溶媒を、H形強酸性カチオン交換体及びアニオン交換体に接触させる処理工程を有する。イオン交換処理工程(1)に係るアニオン交換体は、強塩基性アニオン交換体であってもよいし、弱塩基性アニオン交換体であってもよい。 The first type of ion exchange treatment step (hereinafter also referred to as ion exchange treatment step (1)) has a treatment step of contacting the organic solvent to be treated with an H-type strongly acidic cation exchanger and an anion exchanger. The anion exchanger in the ion exchange treatment step (1) may be a strongly basic anion exchanger or a weakly basic anion exchanger.
イオン交換処理工程(1)に係るH形強酸性カチオン交換体、アニオン交換体、強塩基性アニオン交換体、弱塩基性アニオン交換体は、上述したH形強酸性カチオン交換体、アニオン交換体、強塩基性アニオン交換体、弱塩基性アニオン交換体である。 The H-type strongly acidic cation exchanger, anion exchanger, strongly basic anion exchanger, and weakly basic anion exchanger in the ion exchange treatment step (1) are the H-type strongly acidic cation exchanger, anion exchanger, strongly basic anion exchanger, and weakly basic anion exchanger described above.
イオン交換処理工程(1)において、被処理有機溶媒を、H形強酸性カチオン交換体及びアニオン交換体に接触させる方法としては、特に制限されず、例えば、(i)被処理有機溶媒を、H形強酸性カチオン交換体とアニオン交換体の混床に通液する方法、(ii)被処理有機溶媒を、前段側のH形強酸性カチオン交換体層と後段側のアニオン交換体層とからなる複床に通液する方法、(iii)先ず、被処理有機溶媒を、前段のH形強酸性カチオン交換体の単床に通液し、次いで、その処理液を、後段のアニオン交換体の単床に通液する方法、(iv)先ず、被処理有機溶媒を、前段のアニオン交換体の単床に通液し、次いで、その処理液を、後段のH形強酸性カチオン交換体の単床に通液する方法、(v)被処理有機溶媒を、前段のH形強酸性カチオン交換体の単床及び後段のアニオン交換体の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法、(vi)被処理有機溶媒を、前段のアニオン交換体の単床及び後段のH形強酸性カチオン交換体の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法が挙げられる。H形強酸性カチオン交換体とアニオン交換体の混床は、H形強酸性カチオン交換体とアニオン交換体の混合物からなる。H形強酸性カチオン交換体がH形強酸性有機多孔質カチオン交換体の場合任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体のH形強酸性有機多孔質カチオン交換体を用いる。また、アニオン交換体が有機多孔質強酸性アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。 In the ion exchange treatment step (1), the method of contacting the organic solvent to be treated with the H-type strongly acidic cation exchanger and the anion exchanger is not particularly limited, and examples thereof include (i) a method of passing the organic solvent to be treated through a mixed bed of an H-type strongly acidic cation exchanger and an anion exchanger, (ii) a method of passing the organic solvent to be treated through a double bed consisting of an H-type strongly acidic cation exchanger layer in the front stage and an anion exchanger layer in the rear stage, and (iii) a method of first passing the organic solvent to be treated through a single bed of the H-type strongly acidic cation exchanger in the front stage, and then passing the treated liquid through a single bed of the anion exchanger in the rear stage. (iv) first, the organic solvent to be treated is passed through a single bed of an anion exchanger in the first stage, and then the treated liquid is passed through a single bed of an H-type strongly acidic cation exchanger in the second stage; (v) the organic solvent to be treated is passed through a multiple bed in which the repeating units of the single bed of an anion exchanger in the first stage and the single bed of an anion exchanger in the second stage are repeated in two or more sets; (vi) the organic solvent to be treated is passed through a multiple bed in which the repeating units of the single bed of an anion exchanger in the first stage and the single bed of an H-type strongly acidic cation exchanger in the second stage are repeated in two or more sets. The mixed bed of an H-type strongly acidic cation exchanger and anion exchanger is composed of a mixture of an H-type strongly acidic cation exchanger and an anion exchanger. When the H-type strongly acidic cation exchanger is an H-type strongly acidic organic porous cation exchanger, a shape cut to an arbitrary size, for example, a cube with one side of about 3 mm to about 10 mm, is used. In addition, when the anion exchanger is an organic porous strongly acidic anion exchanger, an organic porous anion exchanger cut to any size is used, for example, a cube with one side of about 3 mm to about 10 mm.
イオン交換処理工程(1)において、H形強酸性カチオン交換体及びアニオン交換体に被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~50h-1、特に好ましくは2~30h-1、更に好ましくは4~25h-1である。 In the ion exchange treatment step (1), the flow rate (SV) when the organic solvent to be treated is passed through the H-type strongly acidic cation exchanger and the anion exchanger is not particularly limited and may be appropriately selected, but is preferably 0.1 to 50 h -1 , particularly preferably 2 to 30 h -1 , and further preferably 4 to 25 h -1 .
イオン交換処理工程(1)において、H形強酸性カチオン交換体及びアニオン交換体に被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。 In the ion exchange treatment step (1), the temperature at which the organic solvent to be treated is passed through the H-type strongly acidic cation exchanger and the anion exchanger is not particularly limited and may be appropriately selected, but is usually 0 to 50°C.
第二の形態のイオン交換処理工程(以下、イオン交換処理工程(2)とも記載する。)は、被処理有機溶媒を、H形キレート交換体(1a)に接触させる第一処理工程と、
該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
を有する。
The second type of ion exchange treatment step (hereinafter also referred to as ion exchange treatment step (2)) comprises a first treatment step of contacting the organic solvent to be treated with an H-type chelate exchanger (1a);
a second treatment step in which the treatment liquid from the first treatment step is contacted with an anion exchanger (2) and an H-type strongly acidic cation exchanger (3);
has.
イオン交換処理工程(2)に係るH形キレート交換体、アニオン交換体、H形強酸性カチオン交換体は、上述したH形キレート交換体、アニオン交換体、H形強酸性カチオン交換体である。 The H-type chelate exchanger, anion exchanger, and H-type strongly acidic cation exchanger involved in the ion exchange treatment step (2) are the H-type chelate exchanger, anion exchanger, and H-type strongly acidic cation exchanger described above.
イオン交換処理工程(2)に係る第一処理工程は、被処理有機溶媒を、H形キレート交換体(1a)に接触させる工程である。 The first treatment step in the ion exchange treatment step (2) is to contact the organic solvent to be treated with an H-type chelate exchanger (1a).
イオン交換処理工程(2)に係る第一処理工程では、被処理有機溶媒を、H形キレート交換体(1a)に接触させることにより、被処理有機溶媒を、H形キレート交換体(1a)で処理し、被処理有機溶媒中の主に2価以上の金属と、1価の金属の一部を除去する。 In the first treatment step related to the ion exchange treatment step (2), the organic solvent to be treated is treated with the H-type chelate exchanger (1a) by contacting the organic solvent to be treated with the H-type chelate exchanger (1a), and mainly divalent or higher metals and some of the monovalent metals in the organic solvent to be treated are removed.
イオン交換処理工程(2)に係る第一処理工程において、H形キレート交換体(1a)に被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~50h-1、特に好ましくは2~30h-1、更に好ましくは4~25h-1である。 In the first treatment step relating to the ion exchange treatment step (2), the flow rate (SV) when the organic solvent to be treated is passed through the H-type chelate exchanger (1a) is not particularly limited and may be appropriately selected, but is preferably 0.1 to 50 h -1 , particularly preferably 2 to 30 h -1 , and further preferably 4 to 25 h -1 .
イオン交換処理工程(2)に係る第一処理工程において、H形キレート交換体(1a)に被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第一処理工程において、0~80℃で、H形キレート交換体(1a)に被処理有機溶媒を通液することもある。 In the first treatment step related to the ion exchange treatment step (2), the temperature at which the organic solvent to be treated is passed through the H-type chelate exchanger (1a) is not particularly limited and may be selected as appropriate, but is usually 0 to 50°C. Depending on the type of organic solvent to be treated, the organic solvent to be treated may be passed through the H-type chelate exchanger (1a) at 0 to 80°C in the first treatment step.
イオン交換処理工程(2)に係る第二処理工程は、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる工程である。 The second treatment step related to the ion exchange treatment step (2) is a step in which the treatment liquid from the first treatment step is brought into contact with an anion exchanger (2) and an H-type strongly acidic cation exchanger (3).
イオン交換処理工程(2)に係る第二処理工程では、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させることにより、被処理有機溶媒を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)で処理し、第一処理工程で、H形キレート交換体(1a)で除去しきれなかった1価の金属の残部と、H形キレート交換体(1a)から放出される鉱酸と、を除去する。また、アニオン交換体の再生には、再生剤としてNaOHが用いられるが、再生後十分に洗浄すれば、アニオン交換体中に、NaOHが残留するようなことはほとんどない。第二処理工程では、もし、アニオン交換体(2)の再生後の洗浄が悪く、再生剤に使用したNaOHの残留物が、アニオン交換体(2)から溶出するようなことがあったとしても、第二処理工程におけるH形強酸性カチオン交換体(3)が、Naを除去することができる。 In the second treatment step related to the ion exchange treatment step (2), the treatment liquid from the first treatment step is brought into contact with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), thereby treating the organic solvent to be treated with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), and removing the remaining monovalent metals that could not be removed by the H-type chelate exchanger (1a) in the first treatment step and the mineral acid released from the H-type chelate exchanger (1a). In addition, NaOH is used as a regenerant to regenerate the anion exchanger, but if it is thoroughly washed after regeneration, there is almost no chance of NaOH remaining in the anion exchanger. In the second treatment step, even if the washing after regeneration of the anion exchanger (2) is poor and the residue of NaOH used as the regenerant is eluted from the anion exchanger (2), the H-type strongly acidic cation exchanger (3) in the second treatment step can remove Na.
イオン交換処理工程(2)に係る第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~50h-1である。 In the second treatment step related to the ion exchange treatment step (2), the liquid passage speed (SV) when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited and may be appropriately selected, but is preferably 0.1 to 100 h -1 , particularly preferably 2 to 50 h -1 .
イオン交換処理工程(2)に係る第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第二処理工程において、0~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液することもある。第二処理工程において、60~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液する場合は、アニオン交換体(2)として、強塩基性アニオン交換体(2a)を用いると、強塩基性アニオン交換体(2a)が分解し易いため、アニオン交換体(2)として、弱塩基性アニオン交換体(2b)を用いる。 In the second treatment step related to the ion exchange treatment step (2), the temperature at which the treatment liquid from the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited and may be appropriately selected, but is usually 0 to 50°C. Depending on the type of organic solvent to be treated, the treatment liquid from the first treatment step may be passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) at 0 to 80°C in the second treatment step. When the treatment liquid from the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) at 60 to 80°C in the second treatment step, if a strongly basic anion exchanger (2a) is used as the anion exchanger (2), the strongly basic anion exchanger (2a) is easily decomposed, so a weakly basic anion exchanger (2b) is used as the anion exchanger (2).
イオン交換処理工程(2)において、第一工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる方法としては、特に制限されず、例えば、(i)被処理有機溶媒を、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に通液する方法、(ii)被処理有機溶媒を、前段側のアニオン交換体(2)層と後段側のH形強酸性カチオン交換体(3)層とからなる複床に通液する方法、(iii)先ず、被処理有機溶媒を、前段のアニオン交換体(2)の単床に通液し、次いで、その処理液を、後段のH形強酸性カチオン交換体(3)の単床に通液する方法、(iv)先ず、被処理有機溶媒を、前段のH形強酸性カチオン交換体(3)の単床に通液し、次いで、その処理液を、後段のアニオン交換体(2)の単床に通液する方法、(v)被処理有機溶媒を、前段のアニオン交換体(2)の単床及び後段のH形強酸性カチオン交換体(3)の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法、(vi)被処理有機溶媒を、前段のH形強酸性カチオン交換体(3)の単床及び後段のアニオン交換体(2)の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法が挙げられる。アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床は、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混合物からなる。アニオン交換体(2)が有機多孔質アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。また、H形強酸性カチオン交換体(3)が有機多孔質強酸性カチオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質強酸性カチオン交換体を用いる。 In the ion exchange treatment step (2), the method of contacting the treatment liquid from the first step with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited, and examples thereof include (i) a method of passing the organic solvent to be treated through a mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), (ii) a method of passing the organic solvent to be treated through a double bed consisting of a layer of the anion exchanger (2) on the front side and a layer of the H-type strongly acidic cation exchanger (3) on the rear side, and (iii) a method of first passing the organic solvent to be treated through a single bed of the anion exchanger (2) on the front side and then passing the treatment liquid through a layer of the H-type strongly acidic cation exchanger (3) on the rear side. (iv) a method of first passing the organic solvent to be treated through a single bed of the H-type strongly acidic cation exchanger (3) in the front stage and then passing the treated liquid through a single bed of the anion exchanger (2) in the rear stage, (v) a method of passing the organic solvent to be treated through a multiple bed in which the repeating units of the single bed of the anion exchanger (2) in the front stage and the single bed of the H-type strongly acidic cation exchanger (3) in the rear stage are repeated in two or more sets, and (vi) a method of passing the organic solvent to be treated through a multiple bed in which the repeating units of the single bed of the H-type strongly acidic cation exchanger (3) in the front stage and the single bed of the anion exchanger (2) in the rear stage are repeated in two or more sets. The mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) consists of a mixture of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3). When the anion exchanger (2) is an organic porous anion exchanger, an organic porous anion exchanger cut to any size, for example, a cubic shape with a side of about 3 mm to about 10 mm, is used. When the H-type strongly acidic cation exchanger (3) is an organic porous strongly acidic cation exchanger, an organic porous strongly acidic cation exchanger cut to any size, for example, a cubic shape with a side of about 3 mm to about 10 mm, is used.
第三の形態のイオン交換処理工程(以下、イオン交換処理工程(3)とも記載する。)は、被処理有機溶媒を、H形強酸性カチオン交換体(1b)に接触させる第一処理工程と、
該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
を有する。
The third embodiment of the ion exchange treatment step (hereinafter also referred to as ion exchange treatment step (3)) comprises a first treatment step of contacting the organic solvent to be treated with an H-type strongly acidic cation exchanger (1b);
a second treatment step in which the treatment liquid from the first treatment step is contacted with an anion exchanger (2) and an H-type strongly acidic cation exchanger (3);
has.
イオン交換処理工程(3)に係るH形強酸性カチオン交換体、アニオン交換体は、上述したH形強酸性カチオン交換体、アニオン交換体である。 The H-type strongly acidic cation exchanger and anion exchanger involved in the ion exchange treatment step (3) are the H-type strongly acidic cation exchanger and anion exchanger described above.
イオン交換処理工程(3)に係る第一処理工程は、被処理有機溶媒を、H形強酸性カチオン交換体(1b)に接触させる工程である。 The first treatment step in the ion exchange treatment step (3) is a step in which the organic solvent to be treated is brought into contact with an H-type strongly acidic cation exchanger (1b).
イオン交換処理工程(3)に係る第一処理工程では、被処理有機溶媒を、H形強酸性カチオン交換体(1b)に接触させることにより、被処理有機溶媒を、H形強酸性カチオン交換体(1b)で処理し、被処理有機溶媒中の2価以上の金属の一部と、1価の金属の一部を除去する。 In the first treatment step related to the ion exchange treatment step (3), the organic solvent to be treated is treated with the H-type strongly acidic cation exchanger (1b) by contacting the organic solvent to be treated with the H-type strongly acidic cation exchanger (1b), and a portion of the divalent or higher metals and a portion of the monovalent metals in the organic solvent to be treated are removed.
イオン交換処理工程(3)に係る第一処理工程において、H形強酸性カチオン交換体(1b)に被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~50h-1である。 In the first treatment step relating to the ion exchange treatment step (3), the flow rate (SV) when the organic solvent to be treated is passed through the H-type strongly acidic cation exchanger (1b) is not particularly limited and may be appropriately selected, but is preferably 0.1 to 100 h -1 , particularly preferably 2 to 50 h -1 .
イオン交換処理工程(3)に係る第一処理工程において、H形強酸性カチオン交換体(1b)に被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第一処理工程において、0~80℃で、H形強酸性カチオン交換体(1b)に被処理有機溶媒を通液することもある。 In the first treatment step related to the ion exchange treatment step (3), the temperature at which the organic solvent to be treated is passed through the H-type strongly acidic cation exchanger (1b) is not particularly limited and may be selected as appropriate, but is usually 0 to 50°C. Depending on the type of organic solvent to be treated, the organic solvent to be treated may be passed through the H-type strongly acidic cation exchanger (1b) at 0 to 80°C in the first treatment step.
イオン交換処理工程(3)に係る第二処理工程は、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる工程である。 The second treatment step related to the ion exchange treatment step (3) is a step in which the treatment liquid from the first treatment step is brought into contact with an anion exchanger (2) and an H-type strongly acidic cation exchanger (3).
イオン交換処理工程(3)では、第一処理工程で用いるH形強酸性カチオン交換体(1b)と、第二処理工程で用いるH形強酸性カチオン交換体(3)は、同じ種類のH形強酸性カチオン交換体であってもよいし、異なる種類のH形強酸性カチオン交換体であってもよい。 In the ion exchange treatment step (3), the H-type strongly acidic cation exchanger (1b) used in the first treatment step and the H-type strongly acidic cation exchanger (3) used in the second treatment step may be the same type of H-type strongly acidic cation exchanger or different types of H-type strongly acidic cation exchangers.
イオン交換処理工程(3)に係る第二処理工程では、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させることにより、被処理有機溶媒を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)で処理し、第一処理工程で、H形強酸性カチオン交換体(1b)で除去しきれなかった2価以上の金属の残部と1価の金属の残部とを除去する。また、第二処理工程において、アニオン交換体は、CrやAsなどのアニオン形態の金属イオンを有する可能性のある金属や、鉱酸や有機酸などの酸を除去する。 In the second treatment step related to the ion exchange treatment step (3), the treatment liquid from the first treatment step is brought into contact with an anion exchanger (2) and an H-type strongly acidic cation exchanger (3), thereby treating the organic solvent to be treated with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), and removing the remainder of divalent or higher metals and monovalent metals that could not be completely removed by the H-type strongly acidic cation exchanger (1b) in the first treatment step. In addition, in the second treatment step, the anion exchanger removes metals that may have metal ions in the anionic form, such as Cr and As, and acids such as mineral acids and organic acids.
そして、イオン交換処理工程(3)では、被処理有機溶媒を、一旦、H形強酸性カチオン交換体に接触させた後、再度、H形強酸性カチオン交換体に接触させるという2段階以上の接触を行うことにより、被処理有機溶媒を、同じ量のH形強酸性カチオン交換体に接触させた場合に比べ、2価以上の金属の除去率が高くなる。 In the ion exchange treatment step (3), the organic solvent to be treated is first contacted with an H-type strongly acidic cation exchanger, and then contacted again with an H-type strongly acidic cation exchanger, thus performing two or more contact steps, thereby increasing the removal rate of divalent or higher metals compared to the case where the organic solvent to be treated is contacted with the same amount of an H-type strongly acidic cation exchanger.
イオン交換処理工程(3)に係る第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~50h-1である。 In the second treatment step relating to the ion exchange treatment step (3), the liquid passage speed (SV) when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited and may be appropriately selected, but is preferably 0.1 to 100 h -1 , particularly preferably 2 to 50 h -1 .
イオン交換処理工程(3)に係る第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第二処理工程において、0~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液することもある。第二処理工程において、0~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液する場合は、アニオン交換体(2)として、強塩基性アニオン交換体(2a)を用いると、強塩基性アニオン交換体(2a)が分解し易いため、アニオン交換体(2)として、弱塩基性アニオン交換体(2b)を用いる。 In the second treatment step related to the ion exchange treatment step (3), the temperature at which the treatment liquid from the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited and may be appropriately selected, but is usually 0 to 50°C. Depending on the type of organic solvent to be treated, the treatment liquid from the first treatment step may be passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) at 0 to 80°C in the second treatment step. When the treatment liquid from the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) at 0 to 80°C in the second treatment step, if a strongly basic anion exchanger (2a) is used as the anion exchanger (2), the strongly basic anion exchanger (2a) is easily decomposed, so a weakly basic anion exchanger (2b) is used as the anion exchanger (2).
イオン交換処理工程(3)において、第一工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる方法としては、特に制限されず、例えば、(i)被処理有機溶媒を、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に通液する方法、(ii)被処理有機溶媒を、前段側のアニオン交換体(2)層と後段側のH形強酸性カチオン交換体(3)層とからなる複床に通液する方法、(iii)先ず、被処理有機溶媒を、前段のアニオン交換体(2)の単床に通液し、次いで、その処理液を、後段のH形強酸性カチオン交換体(3)の単床に通液する方法、(iv)先ず、被処理有機溶媒を、前段のH形強酸性カチオン交換体(3)の単床に通液し、次いで、その処理液を、後段のアニオン交換体(2)の単床に通液する方法、(v)被処理有機溶媒を、前段のアニオン交換体(2)の単床及び後段のH形強酸性カチオン交換体(3)の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法、(vi)被処理有機溶媒を、前段のH形強酸性カチオン交換体(3)の単床及び後段のアニオン交換体(2)の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法が挙げられる。アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床は、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混合物からなる。アニオン交換体(2)が有機多孔質アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。また、H形強酸性カチオン交換体(3)が有機多孔質強酸性カチオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質強酸性カチオン交換体を用いる。 In the ion exchange treatment step (3), the method of contacting the treatment liquid from the first step with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited, and examples thereof include (i) a method of passing the organic solvent to be treated through a mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), (ii) a method of passing the organic solvent to be treated through a double bed consisting of a layer of the anion exchanger (2) on the front side and a layer of the H-type strongly acidic cation exchanger (3) on the rear side, and (iii) a method of first passing the organic solvent to be treated through a single bed of the anion exchanger (2) on the front side and then passing the treatment liquid through a layer of the H-type strongly acidic cation exchanger (3) on the rear side. (iv) a method of first passing the organic solvent to be treated through a single bed of the H-type strongly acidic cation exchanger (3) in the front stage and then passing the treated liquid through a single bed of the anion exchanger (2) in the rear stage, (v) a method of passing the organic solvent to be treated through a multiple bed in which the repeating units of the single bed of the anion exchanger (2) in the front stage and the single bed of the H-type strongly acidic cation exchanger (3) in the rear stage are repeated in two or more sets, and (vi) a method of passing the organic solvent to be treated through a multiple bed in which the repeating units of the single bed of the H-type strongly acidic cation exchanger (3) in the front stage and the single bed of the anion exchanger (2) in the rear stage are repeated in two or more sets. The mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) consists of a mixture of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3). When the anion exchanger (2) is an organic porous anion exchanger, an organic porous anion exchanger cut to any size, for example, a cubic shape with a side of about 3 mm to about 10 mm, is used. When the H-type strongly acidic cation exchanger (3) is an organic porous strongly acidic cation exchanger, an organic porous strongly acidic cation exchanger cut to any size, for example, a cubic shape with a side of about 3 mm to about 10 mm, is used.
第四の形態のイオン交換処理工程(以下、イオン交換処理工程(4)とも記載する。)は、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる処理工程(3)を有する。 The fourth form of the ion exchange treatment step (hereinafter also referred to as ion exchange treatment step (4)) has a treatment step (3) in which the organic solvent to be treated is brought into contact with a mixed bed of an H-type chelate exchanger (1a), an anion exchanger (2), and an H-type strongly acidic cation exchanger (3).
イオン交換処理工程(4)に係るH形キレート交換体、アニオン交換体、H形強酸性カチオン交換体は、上述したH形キレート交換体、アニオン交換体、H形強酸性カチオン交換体である。 The H-type chelate exchanger, anion exchanger, and H-type strongly acidic cation exchanger involved in the ion exchange treatment step (4) are the H-type chelate exchanger, anion exchanger, and H-type strongly acidic cation exchanger described above.
イオン交換処理工程(4)は、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる工程である。 The ion exchange treatment step (4) is a step in which the organic solvent to be treated is brought into contact with a mixed bed of an H-type chelate exchanger (1a), an anion exchanger (2), and an H-type strongly acidic cation exchanger (3).
イオン交換処理工程(4)に係るH形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床は、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混合物からなる。なお、H形キレート交換体(1a)がH形の有機多孔質キレート交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体のH形の有機多孔質強酸性キレート交換体を用いる。アニオン交換体(2)が有機多孔質アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。また、H形強酸性カチオン交換体(3)が有機多孔質強酸性カチオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質強酸性カチオン交換体を用いる。 The mixed bed of the H-type chelate exchanger (1a), anion exchanger (2) and H-type strongly acidic cation exchanger (3) in the ion exchange treatment step (4) is composed of a mixture of the H-type chelate exchanger (1a), anion exchanger (2) and H-type strongly acidic cation exchanger (3). When the H-type chelate exchanger (1a) is an H-type organic porous chelate exchanger, an H-type organic porous strongly acidic chelate exchanger cut into any size, for example, a cubic H-type chelate exchanger with a side length of about 3 mm to about 10 mm, is used. When the anion exchanger (2) is an organic porous anion exchanger, an organic porous anion exchanger cut into any size, for example, a cubic H-type cation exchanger with a side length of about 3 mm to about 10 mm, is used. When the H-type strongly acidic cation exchanger (3) is an organic porous strongly acidic cation exchanger, an organic porous strongly acidic cation exchanger cut into any size, for example, a cubic H-type cation exchanger with a side length of about 3 mm to about 10 mm, is used.
イオン交換処理工程(4)では、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させることにより、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床で処理し、被処理有機溶媒中の2価以上の金属と、1価の金属と、を除去する。また、処理工程(3)では、被処理有機溶媒に、H形キレート交換体(1a)から放出される鉱酸を、アニオン交換体(2)が除去する。 In the ion exchange treatment step (4), the organic solvent to be treated is treated with a mixed bed of H-type chelate exchanger (1a), anion exchanger (2), and H-type strongly acidic cation exchanger (3) by contacting the organic solvent to be treated with the mixed bed of H-type chelate exchanger (1a), anion exchanger (2), and H-type strongly acidic cation exchanger (3), and divalent or higher metals and monovalent metals in the organic solvent to be treated are removed. In the treatment step (3), the anion exchanger (2) removes mineral acids released from the H-type chelate exchanger (1a) into the organic solvent to be treated.
イオン交換処理工程(4)において、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に、被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~50h-1、特に好ましくは2~30h-1、更に好ましくは4~25h-1である。 In the ion exchange treatment step (4), the flow rate (SV) at which the organic solvent to be treated is passed through the mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited and may be appropriately selected, but is preferably 0.1 to 50 h -1 , particularly preferably 2 to 30 h -1 , and further preferably 4 to 25 h -1 .
イオン交換処理工程(4)において、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床(3)に、被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、イオン交換処理工程(4)において、0~80℃で、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に、被処理有機溶媒を通液することもある。イオン交換処理工程(4)において、0~80℃で、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に、被処理有機溶媒を通液する場合は、アニオン交換体(2)として、強塩基性アニオン交換体(2a)を用いると、強塩基性アニオン交換体(2a)が分解し易いため、アニオン交換体(2)として、弱塩基性アニオン交換体(2b)を用いる。 In the ion exchange treatment step (4), the temperature at which the organic solvent to be treated is passed through the mixed bed (3) of the H-type chelate exchanger (1a), the anion exchanger (2), and the H-type strongly acidic cation exchanger (3) is not particularly limited and may be appropriately selected, but is usually 0 to 50°C. Depending on the type of organic solvent to be treated, the organic solvent to be treated may be passed through the mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2), and the H-type strongly acidic cation exchanger (3) at 0 to 80°C in the ion exchange treatment step (4). In the ion exchange treatment step (4), when the organic solvent to be treated is passed through a mixed bed of H-type chelate exchanger (1a), anion exchanger (2), and H-type strongly acidic cation exchanger (3) at 0 to 80°C, if a strongly basic anion exchanger (2a) is used as the anion exchanger (2), the strongly basic anion exchanger (2a) is easily decomposed, so a weakly basic anion exchanger (2b) is used as the anion exchanger (2).
イオン交換処理工程(2)又はイオン交換処理工程(4)では、H形キレート交換体(1a)の体積に対するアニオン交換体(2)の体積の割合((アニオン交換体(2)の体積/H形キレート交換体(1a)の体積)×100)は、好ましくは0.1~99.0体積%、より好ましくは0.1~70.0体積%、特に好ましくは0.1~50.0体積%である。 In the ion exchange treatment step (2) or the ion exchange treatment step (4), the ratio of the volume of the anion exchanger (2) to the volume of the H-type chelate exchanger (1a) ((volume of anion exchanger (2)/volume of H-type chelate exchanger (1a)) x 100) is preferably 0.1 to 99.0 vol%, more preferably 0.1 to 70.0 vol%, and particularly preferably 0.1 to 50.0 vol%.
イオン交換処理工程(2)又はイオン交換処理工程(4)では、H形キレート交換体(1a)の体積に対する強酸性カチオン交換体(3)の体積の割合((強酸性カチオン交換体(3)の体積/H形キレート交換体(1a)の体積)×100)は、好ましくは0.1~99.0体積%、より好ましくは0.1~70.0体積%、特に好ましくは0.1~50.0体積%である。 In the ion exchange treatment step (2) or the ion exchange treatment step (4), the ratio of the volume of the strongly acidic cation exchanger (3) to the volume of the H-type chelate exchanger (1a) ((volume of strongly acidic cation exchanger (3)/volume of H-type chelate exchanger (1a)) x 100) is preferably 0.1 to 99.0 vol%, more preferably 0.1 to 70.0 vol%, and particularly preferably 0.1 to 50.0 vol%.
H形カチオン交換体(H形キレート交換体(1a)、強酸性カチオン交換体(1b))、アニオン交換体(2)及びH形強酸性カチオン交換体(3)としては、イオン交換基が導入される基体が、有機多孔質体であってもよい。本発明に係る有機多孔質体を以下に説明する。 For the H-type cation exchangers (H-type chelate exchanger (1a), strongly acidic cation exchanger (1b)), anion exchanger (2) and H-type strongly acidic cation exchanger (3), the substrate into which the ion exchange groups are introduced may be an organic porous material. The organic porous material according to the present invention is described below.
有機多孔質イオン交換体には、H形キレート交換基、強酸性カチオン基又はアニオン交換基が導入されている。つまり、有機多孔質体にH形キレート交換基が導入されているものは、H形の有機多孔質キレート交換体(1a)であり、また、有機多孔質体にH形の強酸性カチオン交換基が導入されているものは、H形の有機多孔質強酸性カチオン交換体(1b)又は(3)であり、また、有機多孔質体にアニオン交換基が導入されているものは、有機多孔質アニオン交換体である。なお、有機多孔質イオン交換体に導入されている官能基は、上述したH形カチオン交換体(H形キレート交換体(1a)、強酸性カチオン交換体(1b))、アニオン交換体(2)又はH形強酸性カチオン交換体(3)に導入されている官能基と同様である。 The organic porous ion exchanger has an H-type chelate exchange group, a strong acid cation group, or an anion exchange group introduced therein. That is, an organic porous ion exchanger having an H-type chelate exchange group introduced therein is an H-type organic porous chelate exchanger (1a), an organic porous ion exchanger having an H-type strong acid cation exchange group introduced therein is an H-type organic porous strong acid cation exchanger (1b) or (3), and an organic porous ion exchanger having an anion exchange group introduced therein is an organic porous anion exchanger. The functional groups introduced into the organic porous ion exchanger are the same as those introduced into the above-mentioned H-type cation exchanger (H-type chelate exchanger (1a), strong acid cation exchanger (1b)), anion exchanger (2), or H-type strong acid cation exchanger (3).
有機多孔質イオン交換体としては、例えば、連続骨格相と連続空孔相からなり、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50mL/gであり、イオン交換基(キレート交換基、H形強酸性カチオン交換基又はアニオン交換基)が導入されており、乾燥状態での重量当たりのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体(以下、第一の形態の有機多孔質イオン交換体とも記載する。)が挙げられる。 The organic porous ion exchanger may be, for example, an organic porous ion exchanger (hereinafter also referred to as a first form of organic porous ion exchanger) that is composed of a continuous skeleton phase and a continuous pore phase, the thickness of the continuous skeleton being 1 to 100 μm, the average diameter of the continuous pores being 1 to 1000 μm, the total pore volume being 0.5 to 50 mL/g, and that has ion exchange groups (chelate exchange groups, H-type strongly acidic cation exchange groups, or anion exchange groups) introduced therein, has an ion exchange capacity per weight in a dry state of 1 to 6 mg equivalents/g, and the ion exchange groups are uniformly distributed throughout the organic porous ion exchanger.
第一の形態の有機多孔質イオン交換体としては、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径1~1000μmの開口となる連続気泡構造を有し、全細孔容積が1~50mL/gであり、イオン交換基が導入されており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体が挙げられる。 The first type of organic porous ion exchanger is an organic porous ion exchanger having an open cell structure in which bubble-like macropores overlap each other and the overlapping portions form openings with an average diameter of 1 to 1000 μm, a total pore volume of 1 to 50 mL/g, ion exchange groups introduced therein, an ion exchange capacity per weight in a dry state of 1 to 6 mg equivalents/g, and ion exchange groups uniformly distributed throughout the organic porous ion exchanger.
また、第一の形態の有機多孔質イオン交換体としては、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径30~300μmの開口となる連続マクロポア構造体であり、全細孔容積が0.5~10ml/g、カチオン交換基又はアニオン交換基が導入されており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しており、且つ、連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25~50%である有機多孔質イオン交換体が挙げられる。 The first type of organic porous ion exchanger may be an organic porous ion exchanger having a continuous macropore structure in which bubble-like macropores overlap each other and the overlapping portions form openings with an average diameter of 30 to 300 μm, a total pore volume of 0.5 to 10 ml/g, cation exchange groups or anion exchange groups introduced, an ion exchange capacity per weight in a dry state of 1 to 6 mg equivalents/g, ion exchange groups uniformly distributed in the organic porous ion exchanger, and in an SEM image of a cut surface of the continuous macropore structure (dried body), the area of the skeleton portion appearing in the cross section is 25 to 50% of the image area.
また、第一の形態の有機多孔質イオン交換体としては、前記有機多孔質イオン交換体が、イオン交換基(キレート交換基、H形強酸性カチオン交換基又はアニオン交換基)が導入された全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が10~200μmの三次元的に連続した空孔とからなる共連続構造体であり、全細孔容積が0.5~10mL/gであり、カチオン交換基が導入されており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体が挙げられる。 In addition, the organic porous ion exchanger of the first embodiment is an organic porous ion exchanger in which the organic porous ion exchanger is a bicontinuous structure consisting of a three-dimensionally continuous skeleton with an average thickness of 1 to 60 μm made of an aromatic vinyl polymer containing 0.1 to 5.0 mol % of crosslinked structural units among all structural units into which ion exchange groups (chelate exchange groups, H-type strongly acidic cation exchange groups, or anion exchange groups) have been introduced, and three-dimensionally continuous pores with an average diameter of 10 to 200 μm are formed between the skeletons, the total pore volume is 0.5 to 10 mL/g, cation exchange groups have been introduced, the ion exchange capacity per weight in a dry state is 1 to 6 mg equivalents/g, and the ion exchange groups are uniformly distributed in the organic porous ion exchanger.
蒸留工程は、イオン交換処理工程を行い得られるイオン交換処理工程の処理液を、蒸留する工程である。 The distillation process is a process of distilling the treated liquid obtained by carrying out the ion exchange process.
蒸留工程において、イオン交換処理工程の処理液を蒸留する方法としては、特に制限されず、単蒸留であれば、沸騰型の蒸留装置を用いてイオン交換処理工程の処理液を蒸留する方法、非沸騰型の蒸留装置を用いてイオン交換処理工程の処理液を蒸留する方法が挙げられる。蒸留方法として、精密蒸留や減圧または真空蒸留を用いても良い。蒸留方法としては、分離精製の性能の高さから、精密蒸留が好ましい。 In the distillation process, the method of distilling the treated liquid of the ion exchange treatment process is not particularly limited, and examples of simple distillation include a method of distilling the treated liquid of the ion exchange treatment process using a boiling distillation apparatus and a method of distilling the treated liquid of the ion exchange treatment process using a non-boiling distillation apparatus. As a distillation method, precision distillation or reduced pressure or vacuum distillation may be used. As a distillation method, precision distillation is preferred because of its high performance in separation and purification.
蒸留装置の接液部は、金属溶出がない点で、テトラフルオロエチレンとパーフルオロアルコキシエチレンとの共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂で形成又はコーティングされていることが好ましい。除去又は測定対象への金属溶出が無ければ、接液部の材質は石英等の鉱物で形成又はコーティングされても良い。 The liquid-contacting parts of the distillation apparatus are preferably made of or coated with a fluororesin such as a copolymer of tetrafluoroethylene and perfluoroalkoxyethylene (PFA) or polytetrafluoroethylene (PTFE) in order to prevent metal elution. If there is no metal elution into the object to be removed or measured, the liquid-contacting parts may be made of or coated with a mineral such as quartz.
蒸留工程における蒸留条件は、有機溶媒の種類、沸点、蒸留前の不純物濃度や蒸留後の不純物低減目標濃度等により、適宜選択される。 The distillation conditions in the distillation process are appropriately selected depending on the type of organic solvent, boiling point, impurity concentration before distillation, and target impurity reduction concentration after distillation.
熱による分解や変性が起きる可能性がある有機溶媒を用いる場合は、非沸騰型蒸留装置を用いて有機溶媒の沸点以下の低い温度で時間をかけて蒸留を行うことが望ましい。減圧蒸留を用いて、溶媒の沸点を下げて蒸留しても良い。 When using an organic solvent that may decompose or denature due to heat, it is preferable to use a non-boiling distillation apparatus and perform distillation over a long period of time at a low temperature below the boiling point of the organic solvent. Distillation can also be performed by lowering the boiling point of the solvent using reduced pressure distillation.
本発明の有機溶媒の精製方法は、イオン交換処理工程の後に、蒸留工程を行うことにより、金属不純物の除去性が高くなる。また、本発明の有機溶媒の精製方法では、例え、イオン交換処理工程で用いたイオン交換体から、水が有機溶媒に混入したとしても、蒸留工程で、水を除去することができるので、水分の除去性に優れる。 The method for purifying an organic solvent of the present invention has a high ability to remove metal impurities by performing a distillation process after the ion exchange process. In addition, even if water is mixed into the organic solvent from the ion exchanger used in the ion exchange process, the method for purifying an organic solvent of the present invention has excellent water removal properties because the water can be removed in the distillation process.
加えて、金属微粒子は、イオンではないために、イオン交換樹脂のみで精製を行う場合には、金属微粒子を除去することができない。それに対して、本発明の有機溶媒の精製方法では、蒸留工程で、金属微粒子を除去することができるので、金属不純物の除去性が高くなる。 In addition, because metal particles are not ions, they cannot be removed when purification is performed using only ion exchange resins. In contrast, the method for purifying organic solvents of the present invention can remove metal particles in the distillation process, which increases the removability of metal impurities.
また、有機溶媒中には、その製造工程で生成又は残留した副生成物、例えば、プロピレングリコールモノメチルエーテル(PGME)の製造におけるプロピレングリコールモノメチルエーテルアセテート(PGMEA)や、イソプロピルアルコール(IPA)の製造におけるアセトン等の副生成物、有機溶媒の製造装置又は精製装置で用いられている樹脂部材からの溶出物のような有機不純物が含まれることがある。本発明の有機溶媒の精製方法では、蒸留工程で、そのような有機不純物を除去することができるので、有機不純物の除去性が高くなる。 In addition, organic solvents may contain organic impurities such as by-products generated or remaining in the manufacturing process, for example, propylene glycol monomethyl ether acetate (PGMEA) in the manufacture of propylene glycol monomethyl ether (PGME) and acetone in the manufacture of isopropyl alcohol (IPA), and eluates from resin components used in the organic solvent manufacturing or refining equipment. In the organic solvent purification method of the present invention, such organic impurities can be removed in the distillation process, thereby increasing the removability of organic impurities.
また、有機溶媒中では金属不純物の拡散速度が小さく、イオン交換樹脂とのイオン交換反応の反応速度も小さいため、イオン交換樹脂のみで有機溶媒の精製を行う場合には、イオン性金属不純物の除去率を高くするには、イオン交換樹脂への有機溶媒の通液速度を遅くする必要がある。それに対して、本発明の有機溶媒の精製方法では、イオン交換処理工程の後に蒸留工程があるので、イオン交換処理工程で、イオン交換体への有機溶媒の通液速度を高くすることにより、イオン性金属不純物の除去性が低くなったとしても、イオン交換処理工程でイオン性金属不純物の除去量が低くなった分を、後の蒸留工程での蒸留で、イオン性金属不純物を除去することにより、イオン交換処理工程で、イオン交換体への有機溶媒の通液速度を高くしたために、イオン性金属不純物の除去性が低くなった分を、蒸留工程でカバーすることができる。そのため、本発明の有機溶媒の精製方法では、イオン交換体への有機溶媒の通液速度を高くすることにより、イオン性金属不純物の除去性が低くなった分を、蒸留工程でカバーできる範囲で、イオン交換処理工程におけるイオン交換体への有機溶媒の通液速度を高くすることができるため、本発明の有機溶媒の精製方法は、高純度の有機溶媒を高い精製効率で得ることができる。 In addition, since the diffusion rate of metal impurities in organic solvents is low, and the reaction rate of the ion exchange reaction with ion exchange resins is also low, when purifying organic solvents using only ion exchange resins, it is necessary to slow down the flow rate of the organic solvent through the ion exchange resin in order to increase the removal rate of ionic metal impurities. In contrast, in the method for purifying organic solvents of the present invention, since a distillation process is performed after the ion exchange process, even if the removal rate of ionic metal impurities is reduced by increasing the flow rate of the organic solvent through the ion exchanger in the ion exchange process, the amount of ionic metal impurities removed in the ion exchange process can be covered by the distillation process by removing the ionic metal impurities in the subsequent distillation process. Therefore, in the method for purifying an organic solvent of the present invention, the rate at which the organic solvent is passed through the ion exchanger in the ion exchange treatment step can be increased to the extent that the distillation step can cover the reduced ability to remove ionic metal impurities by increasing the rate at which the organic solvent is passed through the ion exchanger in the ion exchange treatment step. Therefore, the method for purifying an organic solvent of the present invention can produce a high-purity organic solvent with high purification efficiency.
本発明の有機溶媒の精製方法のうち、イオン交換処理工程が、イオン交換処理工程(2)及び(4)の形態は、H形カチオン交換体として、H形キレート交換体を用いている。このH形キレート交換体は、強酸性カチオン交換樹脂では除去率が悪く、更に、一部は有機溶媒中で陰イオン形態を有している可能性があるCr等の2価以上の金属の除去性が高い。そのため、本発明の有機溶媒の精製方法のうち、イオン交換処理工程が、イオン交換処理工程(2)及び(4)の形態は、Cr等の2価以上の金属の除去性が高くなる。 In the ion exchange treatment step of the method for purifying an organic solvent of the present invention, the ion exchange treatment steps (2) and (4) use an H-type chelate exchanger as the H-type cation exchanger. This H-type chelate exchanger has a low removal rate with a strongly acidic cation exchange resin, and is highly capable of removing divalent or higher metals such as Cr, some of which may be in an anionic form in the organic solvent. Therefore, in the ion exchange treatment step of the method for purifying an organic solvent of the present invention, the ion exchange treatment steps (2) and (4) have a high removal rate of divalent or higher metals such as Cr.
本発明の有機溶媒の精製方法を行い得られる精製有機溶媒中の各金属含有量は、精製後の有機溶媒の用途により適宜選択され、好ましくはいずれも10ng/L以下である。つまり、本発明の有機溶媒の精製方法を行い得られる精製有機溶媒中の2価以上の各金属の含有量は、精製後の有機溶媒の用途により適宜選択され、好ましくはいずれも10ng/L以下であり、且つ、1価の金属の含有量は、精製後の有機溶媒の用途により適宜選択され、好ましくはいずれも10ng/L以下である。 The content of each metal in the purified organic solvent obtained by carrying out the method for purifying an organic solvent of the present invention is appropriately selected depending on the use of the organic solvent after purification, and is preferably 10 ng/L or less in each case. In other words, the content of each divalent or higher metal in the purified organic solvent obtained by carrying out the method for purifying an organic solvent of the present invention is appropriately selected depending on the use of the organic solvent after purification, and is preferably 10 ng/L or less in each case, and the content of monovalent metals is appropriately selected depending on the use of the organic solvent after purification, and is preferably 10 ng/L or less in each case.
更に、本発明の有機溶媒の精製方法によれば、1ng/L以下の不純物レベルの精製が可能となるので、本発明の有機溶媒の精製方法を行い得られる精製有機溶媒は、微量金属分析のための検量線調製のために用いる標準液の希釈用溶媒(検量線用ブランク液)、サンプルの希釈用溶媒、器具や分析装置の洗浄用溶媒として、好適に用いられる。本発明の有機溶媒の精製方法のうち、イオン交換処理工程が、イオン交換処理工程(1)、(2)、(3)及び(4)の形態は、カチオン交換体とアニオン交換体の組み合わせなので、イオン性金属不純物に加え、酸及びアニオン類を除去できるので、イオンクロマトグラフ法に用いられる検量線用ブランク液としても、好適に用いられる。本発明の有機溶媒の精製方法を行い得られる精製有機溶媒の用途としては、半導体製造工程における希釈用溶媒、溶解用溶媒、洗浄用溶媒、乾燥用溶媒などが挙げられる。 Furthermore, according to the method for purifying an organic solvent of the present invention, purification to an impurity level of 1 ng/L or less is possible, so the purified organic solvent obtained by carrying out the method for purifying an organic solvent of the present invention is preferably used as a dilution solvent for a standard solution used for preparing a calibration curve for trace metal analysis (calibration curve blank liquid), a dilution solvent for a sample, and a cleaning solvent for instruments and analytical equipment. In the method for purifying an organic solvent of the present invention, the ion exchange treatment steps (1), (2), (3), and (4) are a combination of a cation exchanger and an anion exchanger, so that in addition to ionic metal impurities, acids and anions can be removed, and therefore the method is preferably used as a calibration curve blank liquid used in ion chromatography. The uses of the purified organic solvent obtained by carrying out the method for purifying an organic solvent of the present invention include a dilution solvent, a dissolution solvent, a cleaning solvent, and a drying solvent in the semiconductor manufacturing process.
以下、本発明を実施例に基づき詳細に説明する。ただし、本発明は、以下の実施例に制限されるものではない。 The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples.
<被処理有機溶媒1>
被処理有機溶媒1として、市販のプロピレングリコールモノメチルエーテル(PGME ELグレード、昭和電工製)を金属製容器に密閉保管し、金属濃度を増加させたサンプルを用いた。各金属不純物含有量を表1に示す。
<Organic solvent 1 to be treated>
A sample in which commercially available propylene glycol monomethyl ether (PGME EL grade, manufactured by Showa Denko) was hermetically stored in a metal container to increase the metal concentration was used as the treated organic solvent 1. The contents of each metal impurity are shown in Table 1.
(実施例1)
(イオン交換処理工程)
H形キレート交換樹脂(DS-21)と、OH形強塩基性アニオン交換樹脂(DS-2)と、H形強酸性カチオン交換樹脂(DS-1)を、体積割合で3:1:1で混合した混合物50mLを、内径16mm、高さ300mmのカラムに充填した(H形C/OH形A/H型K混床1)。
次いで、H形C/OH形A/H型K混床1に被処理有機溶媒1をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液を1000mL得た。
・H形キレート交換樹脂:H形のアミノリン酸形キレート樹脂、オルガノ社製、オルライトDS-21、カチオン交換容量1.8eq/L-樹脂、調和平均径500μm
・OH形強塩基性アニオン交換樹脂(DS-2):オルガノ社製、アニオン交換容量1.0eq/L-樹脂
・H形強酸性カチオン交換樹脂(DS-1):オルガノ社製、カチオン交換容量2.0eq/L-樹脂
Example 1
(Ion exchange treatment process)
A 50 mL mixture of H-form chelate exchange resin (DS-21), OH-form strongly basic anion exchange resin (DS-2), and H-form strongly acidic cation exchange resin (DS-1) in a volume ratio of 3:1:1 was packed into a column having an inner diameter of 16 mm and a height of 300 mm (H-form C/OH-form A/H-form K mixed bed 1).
Next, the organic solvent 1 to be treated was passed through the H-form C/OH-form A/H-form K mixed bed 1 at SV5 h −1 , and when 20 BV (20 times the resin volume) had been passed, 1000 mL of treated liquid was obtained.
H-type chelating exchange resin: H-type aminophosphate chelating resin, manufactured by Organo Corporation, Orlite DS-21, cation exchange capacity 1.8 eq/L-resin, harmonic mean diameter 500 μm
OH-type strongly basic anion exchange resin (DS-2): manufactured by Organo Corporation, anion exchange capacity 1.0 eq/L-resin H-type strongly acidic cation exchange resin (DS-1): manufactured by Organo Corporation, cation exchange capacity 2.0 eq/L-resin
(蒸留工程)
次いで、イオン交換処理工程の処理液を、非沸騰型蒸留装置(Evapoclean、株式会社イアス社製)を用いて、70℃、18時間の条件で蒸留を行い、処理液を100mL得た。
(Distillation process)
Next, the treated liquid from the ion exchange treatment step was distilled using a non-boiling distillation apparatus (Evapoclean, manufactured by Eas Corporation) at 70° C. for 18 hours to obtain 100 mL of treated liquid.
(分析)
次いで、得られた処理液の金属含有量を測定した。その結果を表1に示す。また、水分含有量を測定したところ、水分含有量は300ppmであった。
<水分測定>
Aquacounter AQ-2200(平沼産業株式会社製)を用いて、水分含有量を測定した。
(analysis)
The metal content of the resulting treatment liquid was then measured, and the results are shown in Table 1. The water content was also measured, and was found to be 300 ppm.
<Moisture measurement>
The moisture content was measured using an Aquacounter AQ-2200 (manufactured by Hiranuma Sangyo Co., Ltd.).
(比較例1)
実施例1と同様にして、イオン交換処理工程を行い、処理液を1000mL得た。
次いで、得られた処理液の金属含有量を測定した。その結果を表1に示す。また、水分含有量を測定したところ、水分含有量は320質量ppmであった。
つまり、比較例1では、イオン交換処理工程を行い、蒸留工程を行わなかった。
(Comparative Example 1)
An ion exchange treatment step was carried out in the same manner as in Example 1 to obtain 1000 mL of a treated liquid.
The metal content of the resulting treatment liquid was then measured, and the results are shown in Table 1. The water content was also measured, and was found to be 320 ppm by mass.
That is, in Comparative Example 1, the ion exchange treatment step was carried out, but the distillation step was not carried out.
(比較例2)
被処理有機溶媒1を、非沸騰型蒸留装置(Evapoclean、株式会社イアス社製)を用いて、80℃、18時間の条件で蒸留を行い、処理液を100mL得た。
次いで、得られた処理液の金属含有量を測定した。その結果を表1に示す。また、水分含有量を測定したところ、水分含有量は280ppmであった。
つまり、比較例2では、蒸留工程を行い、イオン交換処理工程を行わなかった。
(Comparative Example 2)
The organic solvent 1 to be treated was distilled using a non-boiling distillation apparatus (Evapoclean, manufactured by Eas Corporation) at 80° C. for 18 hours to obtain 100 mL of a treated liquid.
The metal content of the resulting treatment liquid was then measured, and the results are shown in Table 1. The water content was also measured, and was found to be 280 ppm.
That is, in Comparative Example 2, the distillation step was carried out, but the ion exchange treatment step was not carried out.
実施例1、比較例1及び2の結果から、イオン交換樹脂精製と蒸留を組み合わせることで、イオン交換樹脂精製、蒸留精製のそれぞれ単独の精製よりも、金属不純物濃度をより低濃度まで低減することができた。 The results of Example 1 and Comparative Examples 1 and 2 show that by combining ion exchange resin purification and distillation, the metal impurity concentration can be reduced to a lower level than by either ion exchange resin purification or distillation purification alone.
Claims (2)
該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、2~50h -1 の通液速度(SV)で接触させる第二処理工程と、
を有するイオン交換処理工程と、
該イオン交換処理工程の処理液を、蒸留する蒸留工程と、
を有することを特徴とする有機溶媒の精製方法。 A first treatment step in which an organic solvent containing monovalent ionic metal impurities and divalent ionic metal impurities is contacted with an H-type chelate exchanger (1) at a flow rate (SV) of 2 to 30 h -1 ;
a second treatment step in which the treated liquid from the first treatment step is contacted with an anion exchanger (2) and an H-type strongly acidic cation exchanger (3) at a liquid passage rate (SV) of 2 to 50 h ;
an ion exchange treatment step comprising :
a distillation step of distilling the treated liquid from the ion exchange treatment step;
1. A method for purifying an organic solvent, comprising the steps of:
該イオン交換処理工程の処理液を、蒸留する蒸留工程と、
を有することを特徴とする有機溶媒の精製方法。 an ion exchange treatment step in which an organic solvent containing monovalent ionic metal impurities and divalent ionic metal impurities is contacted with a mixed bed of an H-type chelate exchanger, an anion exchanger and an H-type strongly acidic cation exchanger at a flow rate (SV) of 2 to 30 h -1 ;
a distillation step of distilling the treated liquid from the ion exchange treatment step;
1. A method for purifying an organic solvent, comprising the steps of:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020179724A JP7577509B2 (en) | 2020-10-27 | 2020-10-27 | Method for purifying organic solvents |
PCT/JP2021/033511 WO2022091605A1 (en) | 2020-10-27 | 2021-09-13 | Method for purifying organic solvent |
TW110138990A TW202225131A (en) | 2020-10-27 | 2021-10-21 | Method for purifying organic solvent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020179724A JP7577509B2 (en) | 2020-10-27 | 2020-10-27 | Method for purifying organic solvents |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022070585A JP2022070585A (en) | 2022-05-13 |
JP7577509B2 true JP7577509B2 (en) | 2024-11-05 |
Family
ID=81382312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020179724A Active JP7577509B2 (en) | 2020-10-27 | 2020-10-27 | Method for purifying organic solvents |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7577509B2 (en) |
TW (1) | TW202225131A (en) |
WO (1) | WO2022091605A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4340994A4 (en) * | 2021-05-19 | 2025-05-21 | Dow Global Technologies LLC | PROCESSES FOR PURIFYING GLYCOL ETHERS |
KR20250077574A (en) * | 2022-10-06 | 2025-05-30 | 오르가노 코포레이션 | Method for manufacturing cation exchange resin and method for purifying organic acid solution |
WO2024075406A1 (en) * | 2022-10-06 | 2024-04-11 | オルガノ株式会社 | Method for producing cation exchange resin and method for refining organic acid solution |
JP7498530B1 (en) | 2023-09-21 | 2024-06-12 | 室町ケミカル株式会社 | Organic solvent purification method, method for producing purified organic solvent, and organic solvent purification system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005232093A (en) | 2004-02-20 | 2005-09-02 | Ever Clean Kk | Method for recovering high-purity ethylene glycol |
JP2014055120A (en) | 2012-09-13 | 2014-03-27 | Japan Organo Co Ltd | Method and apparatus for purifying alcohol |
JP2016036038A (en) | 2010-06-07 | 2016-03-17 | セントラル硝子株式会社 | Chemical solution for protective film formation |
JP2019141800A (en) | 2018-02-22 | 2019-08-29 | オルガノ株式会社 | Method and apparatus for producing chelate resin, and method for purifying liquid to be treated |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5413495A (en) * | 1977-07-01 | 1979-01-31 | Mitsubishi Heavy Ind Ltd | Continuously recovering equipment for heat of molten slag |
JPS54133495A (en) * | 1978-04-10 | 1979-10-17 | Asahi Chem Ind Co Ltd | Recovering method for liquid phase oxidation catalyst |
JPH07208166A (en) * | 1994-01-11 | 1995-08-08 | Tokyo Kaken:Kk | Regenerating method of engine cooling waste liquid |
JPH0957069A (en) * | 1995-08-30 | 1997-03-04 | Mitsubishi Chem Eng Corp | Method for purifying organic liquid by pervaporation method, apparatus used therefor, and steam drying using the same |
JPH11171508A (en) * | 1997-12-11 | 1999-06-29 | Sumitomo Chem Co Ltd | Purification method of hydrogen peroxide solution |
-
2020
- 2020-10-27 JP JP2020179724A patent/JP7577509B2/en active Active
-
2021
- 2021-09-13 WO PCT/JP2021/033511 patent/WO2022091605A1/en active Application Filing
- 2021-10-21 TW TW110138990A patent/TW202225131A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005232093A (en) | 2004-02-20 | 2005-09-02 | Ever Clean Kk | Method for recovering high-purity ethylene glycol |
JP2016036038A (en) | 2010-06-07 | 2016-03-17 | セントラル硝子株式会社 | Chemical solution for protective film formation |
JP2014055120A (en) | 2012-09-13 | 2014-03-27 | Japan Organo Co Ltd | Method and apparatus for purifying alcohol |
JP2019141800A (en) | 2018-02-22 | 2019-08-29 | オルガノ株式会社 | Method and apparatus for producing chelate resin, and method for purifying liquid to be treated |
Also Published As
Publication number | Publication date |
---|---|
JP2022070585A (en) | 2022-05-13 |
TW202225131A (en) | 2022-07-01 |
WO2022091605A1 (en) | 2022-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7577509B2 (en) | Method for purifying organic solvents | |
JP7606451B2 (en) | Method for purifying organic solvents | |
US11759774B2 (en) | Purification process for hydrophilic organic solvent | |
JP7219174B2 (en) | Method for purifying non-aqueous solvent | |
EP3397386B1 (en) | Purification process for hydrolysable organic solvent | |
TWI827592B (en) | Method for removing metals in liquid, and anion exchange resin-mixed h-type chelating resin | |
JP2020001955A (en) | Production method of purified hydrochloric acid | |
JP7645269B2 (en) | Method for purifying polar organic solvent, apparatus for purifying polar organic solvent, analysis method, and method for producing purified polar organic solvent | |
TW202311217A (en) | Processes for purifying glycol ethers | |
JP3248205B2 (en) | Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same | |
KR102772653B1 (en) | Method for purifying organic solvents | |
JP2021109833A (en) | Non-aqueous solvent purification method and ion exchange resin pretreatment method for non-aqueous solvent purification | |
JP2007064646A (en) | Condensate demineralization method and condensate demineralization apparatus | |
JP7696502B2 (en) | Method and apparatus for purifying organic solvents | |
JP7633380B2 (en) | Method for purifying hydrolyzable organic solvents and method for producing resins for purifying hydrolyzable organic solvents | |
KR20230163544A (en) | Purification method and purification device for nasal sap, and manufacturing method and pretreatment device for ion exchange resin | |
JP2023009490A (en) | Adjustment method of cation exchange resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240611 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241022 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241023 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7577509 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |