JP7561140B2 - 転移を検出するための骨スキャン画像の自動化された対話型の分析のためのシステムおよび方法 - Google Patents
転移を検出するための骨スキャン画像の自動化された対話型の分析のためのシステムおよび方法 Download PDFInfo
- Publication number
- JP7561140B2 JP7561140B2 JP2021562965A JP2021562965A JP7561140B2 JP 7561140 B2 JP7561140 B2 JP 7561140B2 JP 2021562965 A JP2021562965 A JP 2021562965A JP 2021562965 A JP2021562965 A JP 2021562965A JP 7561140 B2 JP7561140 B2 JP 7561140B2
- Authority
- JP
- Japan
- Prior art keywords
- hotspots
- hotspot
- image
- human subject
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007469 bone scintigraphy Methods 0.000 title claims description 298
- 238000000034 method Methods 0.000 title claims description 196
- 206010027476 Metastases Diseases 0.000 title description 65
- 238000004458 analytical method Methods 0.000 title description 25
- 230000002452 interceptive effect Effects 0.000 title 1
- 210000002758 humerus Anatomy 0.000 claims description 90
- 210000000689 upper leg Anatomy 0.000 claims description 89
- 230000003902 lesion Effects 0.000 claims description 69
- 238000009206 nuclear medicine Methods 0.000 claims description 49
- 238000001514 detection method Methods 0.000 claims description 47
- 230000001419 dependent effect Effects 0.000 claims description 45
- 230000015654 memory Effects 0.000 claims description 44
- 208000037819 metastatic cancer Diseases 0.000 claims description 41
- 208000011575 metastatic malignant neoplasm Diseases 0.000 claims description 41
- 230000007704 transition Effects 0.000 claims description 38
- 238000010606 normalization Methods 0.000 claims description 37
- 238000004445 quantitative analysis Methods 0.000 claims description 37
- 238000004891 communication Methods 0.000 claims description 33
- 210000001519 tissue Anatomy 0.000 claims description 33
- 208000010658 metastatic prostate carcinoma Diseases 0.000 claims description 32
- 239000003795 chemical substances by application Substances 0.000 claims description 25
- 210000003484 anatomy Anatomy 0.000 claims description 24
- 210000003127 knee Anatomy 0.000 claims description 19
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 17
- 238000010191 image analysis Methods 0.000 claims description 17
- 206010060862 Prostate cancer Diseases 0.000 claims description 16
- 230000035945 sensitivity Effects 0.000 claims description 15
- 239000008177 pharmaceutical agent Substances 0.000 claims description 14
- GKLVYJBZJHMRIY-OUBTZVSYSA-N Technetium-99 Chemical compound [99Tc] GKLVYJBZJHMRIY-OUBTZVSYSA-N 0.000 claims description 12
- MBKDYNNUVRNNRF-UHFFFAOYSA-N medronic acid Chemical compound OP(O)(=O)CP(O)(O)=O MBKDYNNUVRNNRF-UHFFFAOYSA-N 0.000 claims description 12
- 229940056501 technetium 99m Drugs 0.000 claims description 12
- 229940102859 methylene diphosphonate Drugs 0.000 claims description 11
- 230000036541 health Effects 0.000 claims description 6
- 238000009877 rendering Methods 0.000 claims description 6
- 210000001217 buttock Anatomy 0.000 claims description 4
- 210000000988 bone and bone Anatomy 0.000 description 73
- 230000009401 metastasis Effects 0.000 description 56
- 239000012217 radiopharmaceutical Substances 0.000 description 51
- 229940121896 radiopharmaceutical Drugs 0.000 description 50
- 230000002799 radiopharmaceutical effect Effects 0.000 description 50
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 42
- 201000010099 disease Diseases 0.000 description 41
- 230000008569 process Effects 0.000 description 38
- 238000012937 correction Methods 0.000 description 35
- 238000003384 imaging method Methods 0.000 description 34
- 238000013459 approach Methods 0.000 description 30
- 206010028980 Neoplasm Diseases 0.000 description 28
- 238000010801 machine learning Methods 0.000 description 28
- 238000013528 artificial neural network Methods 0.000 description 27
- 230000009545 invasion Effects 0.000 description 27
- 206010061289 metastatic neoplasm Diseases 0.000 description 26
- 210000004197 pelvis Anatomy 0.000 description 26
- 230000001394 metastastic effect Effects 0.000 description 25
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 24
- 230000011218 segmentation Effects 0.000 description 24
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 23
- 238000004364 calculation method Methods 0.000 description 23
- 230000006870 function Effects 0.000 description 23
- 230000008595 infiltration Effects 0.000 description 22
- 238000001764 infiltration Methods 0.000 description 22
- 201000011510 cancer Diseases 0.000 description 21
- 206010005949 Bone cancer Diseases 0.000 description 19
- 208000018084 Bone neoplasm Diseases 0.000 description 19
- 210000000954 sacrococcygeal region Anatomy 0.000 description 19
- 206010055113 Breast cancer metastatic Diseases 0.000 description 18
- 206010050017 Lung cancer metastatic Diseases 0.000 description 18
- 238000012552 review Methods 0.000 description 16
- 230000000007 visual effect Effects 0.000 description 16
- 238000012545 processing Methods 0.000 description 15
- 239000011230 binding agent Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 14
- 230000006872 improvement Effects 0.000 description 14
- 210000004705 lumbosacral region Anatomy 0.000 description 14
- 238000003908 quality control method Methods 0.000 description 13
- 238000004422 calculation algorithm Methods 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 238000006073 displacement reaction Methods 0.000 description 10
- 210000000614 rib Anatomy 0.000 description 10
- 230000004807 localization Effects 0.000 description 9
- 238000002603 single-photon emission computed tomography Methods 0.000 description 9
- 210000003109 clavicle Anatomy 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000011002 quantification Methods 0.000 description 8
- 210000001991 scapula Anatomy 0.000 description 8
- 210000003625 skull Anatomy 0.000 description 8
- 238000004088 simulation Methods 0.000 description 7
- 210000001562 sternum Anatomy 0.000 description 7
- 210000000115 thoracic cavity Anatomy 0.000 description 7
- 238000012549 training Methods 0.000 description 7
- 206010061728 Bone lesion Diseases 0.000 description 6
- 238000012879 PET imaging Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 238000003702 image correction Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 238000002600 positron emission tomography Methods 0.000 description 5
- 210000002307 prostate Anatomy 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 206010061818 Disease progression Diseases 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 230000005750 disease progression Effects 0.000 description 4
- 238000003709 image segmentation Methods 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 230000011164 ossification Effects 0.000 description 4
- 238000010200 validation analysis Methods 0.000 description 4
- 238000010989 Bland-Altman Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000012216 imaging agent Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 210000002414 leg Anatomy 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 101150071882 US17 gene Proteins 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000007321 biological mechanism Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000007427 paired t-test Methods 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- OLWVRJUNLXQDSP-RYUDHWBXSA-N (2s)-2-[[(1s)-1-carboxy-5-[(6-fluoropyridine-3-carbonyl)amino]pentyl]carbamoylamino]pentanedioic acid Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)N[C@H](C(O)=O)CCCCNC(=O)C1=CC=C(F)N=C1 OLWVRJUNLXQDSP-RYUDHWBXSA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- 102000036365 BRCA1 Human genes 0.000 description 1
- 108700020463 BRCA1 Proteins 0.000 description 1
- 101150072950 BRCA1 gene Proteins 0.000 description 1
- 102000052609 BRCA2 Human genes 0.000 description 1
- 108700020462 BRCA2 Proteins 0.000 description 1
- 208000012503 Bathing suit ichthyosis Diseases 0.000 description 1
- 101150008921 Brca2 gene Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 238000011869 Shapiro-Wilk test Methods 0.000 description 1
- 101710173693 Short transient receptor potential channel 1 Proteins 0.000 description 1
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 201000010989 colorectal carcinoma Diseases 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000004195 computer-aided diagnosis Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 102000046689 human FOLH1 Human genes 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000012633 nuclear imaging Methods 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/467—Arrangements for interfacing with the operator or the patient characterised by special input means
- A61B6/469—Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/465—Displaying means of special interest adapted to display user selection data, e.g. graphical user interface, icons or menus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/505—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5258—Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/56—Details of data transmission or power supply, e.g. use of slip rings
- A61B6/563—Details of data transmission or power supply, e.g. use of slip rings involving image data transmission via a network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/0489—Phosphates or phosphonates, e.g. bone-seeking phosphonates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H15/00—ICT specially adapted for medical reports, e.g. generation or transmission thereof
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H70/00—ICT specially adapted for the handling or processing of medical references
- G16H70/60—ICT specially adapted for the handling or processing of medical references relating to pathologies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/24—Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
- G06T2207/10128—Scintigraphy
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20004—Adaptive image processing
- G06T2207/20012—Locally adaptive
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20128—Atlas-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30008—Bone
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Primary Health Care (AREA)
- High Energy & Nuclear Physics (AREA)
- Surgery (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Human Computer Interaction (AREA)
- Chemical & Material Sciences (AREA)
- Quality & Reliability (AREA)
- Biochemistry (AREA)
- Physiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pharmacology & Pharmacy (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Computer Networks & Wireless Communication (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Description
本出願は、2019年4月24日に出願された米国仮出願第62/837,955号に基づく優先権および利益を主張し、同出願の内容は参照によりその全体が組み込まれる。
本発明は、概して、医用画像データの作成、分析、および/または提示のためのシステムおよび方法に関する。より詳細には、ある特定の実施形態では、本発明は、核医学画像の改良されたコンピュータ支援表示および分析のためのシステムおよび方法に関する。
核医学イメージングは、放射性医薬品と呼ばれる放射標識された化合物の使用を伴う。放射性医薬品は、患者に投与され、身体内の様々な領域に蓄積するが、そのとき、がんなどの疾患の存在および/または状態によって影響される性質などの、内部組織の生物物理学的および/または生物化学的性質に依存し、したがってそれらを示すような形で蓄積する。例えば、ある特定の放射性医薬品は、患者への投与後に、転移を示す、悪性の骨病変に関連する異常な骨形成の領域に蓄積する。他の放射性医薬品は、疾患の進展中に変質を受ける体内の特定の受容体、酵素、およびタンパク質に結合することがある。患者への投与後、それらの分子は、その意図される標的を見つけるまで血液中を循環する。結合した放射性医薬品は疾患の部位に留まり、一方、薬剤の残りは身体の外に出る。
本明細書に提示されるのは、核医学画像の改良されたコンピュータ支援の表示および分析を可能にするシステムおよび方法である。具体的には、ある特定の実施形態では、本明細書に記載されるシステムおよび方法は、患者のがんステータスを査定するための骨スキャン画像の自動化された分析で使用されるいくつかの画像処理ステップに対する改良を提供する。
特許権が請求される本発明のシステム、デバイス、方法、およびプロセスは、本明細書に記載される実施形態からの情報を使用して開発される変形および適合を包含することが企図される。本明細書に記載されるシステム、デバイス、方法、およびプロセスの適合および/または変更が、当業者によってなされ得る。
A.核医学画像
B.画像分析のための骨スキャンイメージングデバイス
C.骨スキャン画像の分析および骨スキャン指数値の算出
D.例示的なaBSIプラットフォームのデバイス説明
i.サービスへのアクセス
ii.システム要件
・インターネットアクセスと共にWindowまたはOS Xを備えるコンピュータ、
・Chromeブラウザ、
・利用可能な個人の携帯電話(多要素認証のためのみ)。
・Chromeブラウザ
a.少なくともバージョン54
b.JavaScript(登録商標)が許可されなければならない
c.HTML5が必須
d.ローカルストレージおよびセッションストレージへの書き込みが必要とされる
・ディスプレイ解像度が少なくとも1280×960
iii.画像要件
・画像はDICOM3形式で解凍されなければならない。
・モダリティ(0008、0060)は「NM」でなければならない
・画像タイプ(0008、0008)は、「ORIGINAL\PRIMARY\WHOLE BODY\EMISSION」でなければならない
・調査日(0008、0020)は、有効な日付を含んでいなければならない
・フレーム数(0028、0008)は1または2でなければならない
・スライス数(0054、0081)は1または2でなければならない
・画素間隔(0028、0030)は、≧1.8mm/画素および≦2.8mm/画素でなければならない
・画像は、行の数≧列の数となるような形状でなければならない
・患者の性別(0010、0040)はMでなければならない
・腹側画像および背側画像は、2つの異なるシリーズ(異なるシリーズインスタンスUIDを有する2つのファイル)として、または2つのフレームを含んでいる1つのマルチフレームシリーズ(1つのファイル)として記憶されてよい。
・画像画素データは、16ビット範囲内であるべきである。0~255(8ビット)の範囲の画素を有する画像は十分でない。
・腹側画像および背側画像は、少なくとも頭皮から脛骨の上部および各腕の前腕の上部までのエリアをカバーすべきである。
・画像にフィルタリングも他の事後処理技術も適用されてはならない。
iv.ワークフロー
v.画像処理
・同じパターンの縁部および稜線を表示する、および
・画像を整列させるために必要とされる(弾性)変換は、分析される画像間の予期される解剖学的ばらつきのセットにわたって概して最小化される。
強度の正規化およびホットスポットの検出
(1)すべての骨組織が健康である(ホットスポットがない)と仮定して正規化を推定する。
(2)現在の正規化に鑑みてホットスポットを検出する。
(3)現在のホットスポットのセットに鑑みて正規化を推定する。
(4)収束するまでステップ(2)および(3)を反復する。
ホットスポットの事前選択
E.グラフィカルユーザインターフェースおよび画像ディスプレイ
F.改良された画像処理手法
i.骨格セグメント化
ii.ホットスポット検出閾値
iii.ホットスポットの事前選択
iv.アトラス重量
この実施例では、算出されるBSI値の線形性、精密度、および再現性を実証する。
i.線形性および精度
表1. 0.10から13.0の事前に定義されたBSI範囲での50個のファントムからなる第1のセットにおける線形回帰モデルのパラメータ
表2. 5種の事前に定義された腫瘍負荷の各々における自動化されたBSI値の変動および標準偏差の係数
表3. 異なるカメラを使用したシミュレーションに対して計算されたBSI値
表4. 50個のシミュレーションされたファントムからの自動化されたBSI計算の再現性を示す記述統計
表5. 35人の転移性患者の反復骨スキャンからの自動化されたBSI計算の再現性を示す記述統計
表6A. 本明細書に記載される手法を用いた自動化されたBSI(ソフトウェアバージョン3.4)で計算された BSI値の記述統計
表6B. 既承認ソフトウェア(EXINI 1.7)で計算されたBSI値の記述統計
H.コンピュータシステムおよびネットワーク環境
本発明は、例えば、以下の項目を提供する。
(項目1)
ヒト対象の核医学画像の病変マーキングおよび定量分析のための方法であって、
(a)コンピューティングデバイスのプロセッサにより、前記ヒト対象の骨スキャン画像セットにアクセスするステップであって、前記骨スキャン画像セットは、前記ヒト対象への薬剤の投与後に得られたものである、ステップと、
(b)前記プロセッサにより、前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得るステップであって、前記1つまたは複数の骨格関心領域は、
(i)前記ヒト対象の大腿骨の一部分に対応する大腿骨領域であって、前記大腿骨の一部分は、前記大腿骨の長さに沿って前記大腿骨の少なくとも4分の3を包含する大腿骨領域、および
(ii)前記ヒト対象の上腕骨の一部分に対応する上腕骨領域であって、前記上腕骨の一部分は、前記上腕骨の長さに沿って前記上腕骨の少なくとも4分の3を包含する上腕骨領域、
のうち少なくとも一方を含む、ステップと、
(c)前記プロセッサにより、1つまたは複数のホットスポットの初期のセットを自動的に検出するステップであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応し、前記自動的に検出することは、前記アノテーションされた画像のセット内の画素の強度を使用して、かつ1つまたは複数の領域依存閾値を使用して、前記1つまたは複数のホットスポットを特定することを含み、前記1つまたは複数の領域依存閾値は、当該領域内での前記薬剤の取り込みの低下を補償するために前記大腿骨領域および/または前記上腕骨領域内で高められたホットスポット検出感度を提供する、前記大腿骨領域および/または前記上腕骨領域に関連付けられた1つまたは複数の値を含む、ステップと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連するホットスポット特徴のセットを抽出するステップと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する転移見込み値を計算するステップと、
(f)前記プロセッサにより、前記ホットスポットの初期のセットの少なくとも一部分のグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせるステップと、を含む方法。
(項目2)
ステップ(b)が、
前記骨スキャン画像セットの各メンバを、アトラス画像セットのうちの対応するアトラス画像と比較するステップであって、各アトラス画像が、前記1つまたは複数の骨格関心領域の1つまたは複数の特定を含み、前記骨格関心領域は、前記大腿骨領域および/または前記上腕骨領域を含む、ステップと、
前記骨スキャン画像セットの各画像について、前記アトラス画像の前記1つまたは複数の骨格関心領域の前記特定が前記骨スキャン画像セットの前記画像に適用されるように、前記対応するアトラス画像を、前記骨スキャン画像セットの前記画像と位置合わせするステップと、を含む、項目1に記載の方法。
(項目3)
各アトラス画像が、(i)前記ヒト対象の膝領域の少なくとも一部分を含む前記大腿骨領域、および/または(ii)前記ヒト対象の肘領域の少なくとも一部分を含む前記上腕骨領域、の特定を含み、前記骨スキャン画像セットの各画像について、前記骨スキャン画像への前記対応するアトラス画像の前記位置合わせが、前記特定された膝領域および/または前記特定された肘領域を、前記画像内でランドマークとして使用することを含む、項目2に記載の方法。
(項目4)
前記初期のホットスポットセットのうち少なくとも1つの検出されたホットスポットの場所が、前記ヒト対象の殿部の方を向いた大腿骨の端部から前記ヒト対象の膝の方を向いた前記大腿骨の端部までの前記大腿骨に沿った距離の4分の3超のところにある、前記大腿骨の中または上の物理的場所に対応する、前記項目のいずれか一項に記載の方法。
(項目5)
前記初期のホットスポットセットのうち少なくとも1つの検出されたホットスポットの場所が、前記ヒト対象の肩の方を向いた上腕骨の端部から前記ヒト対象の肘の方を向いた前記上腕骨の端部までの前記上腕骨に沿った距離の4分の3超のところにある、前記上腕骨の中または上の物理的場所に対応する、前記項目のいずれか一項に記載の方法。
(項目6)
ステップ(c)が、
前記プロセッサにより、前記骨スキャン画像セットのうちホットスポットを全く含まないと判定された画像内で健康な組織領域を特定するステップと、
前記プロセッサにより、正規化係数を、前記正規化係数と前記特定された健康な組織領域の平均強度との積が事前に定められた強度レベルになるように計算するステップと、
前記プロセッサにより、前記正規化係数によって前記骨スキャン画像セットの前記画像を正規化するステップと、を含む、前記項目のいずれか一項に記載の方法。
(項目7)
(g)前記プロセッサにより、前記ホットスポットの初期のセットによって占められている前記ヒト対象の前記骨格の算出された割合に少なくとも部分的に基づいて、前記ヒト対象についての1つまたは複数のリスク指標値を計算するステップ、をさらに含む、前記項目のいずれか一項に記載の方法。
(項目8)
(h)前記プロセッサにより、前記転移見込み値に少なくとも部分的に基づいて、前記ホットスポットの初期のセットの第1のサブセットを選択するステップと、
(i)前記プロセッサにより、前記第1のサブセットのグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせるステップと、
を含む、前記項目のいずれか一項に記載の方法。
(項目9)
(j)前記プロセッサにより、ホットスポットの前記第1のサブセットによって占められる前記ヒト対象の前記骨格の算出された割合に少なくとも部分的に基づいて、前記ヒト対象についての1つまたは複数のリスク指標値を計算するステップ、をさらに含む、項目8に記載の方法。
(項目10)
(k)前記プロセッサにより、前記GUIを介して、前記ホットスポットの初期のセットの第2のサブセットのユーザ選択を受け取るステップと、
(l)前記プロセッサにより、ホットスポットの前記第2のサブセットによって占められる前記ヒト対象の前記骨格の算出された割合に少なくとも部分的に基づいて、前記ヒト対象についての1つまたは複数のリスク指標値を計算するステップ、
を含む、前記項目のいずれか一項に記載の方法。
(項目11)
前記リスク指標値の少なくとも1つが、前記ヒト対象が転移性がんを有するおよび/または発症するリスクを示す、項目7から10のいずれか一項に記載の方法。
(項目12)
前記転移性がんが転移性前立腺がんである、項目11に記載の方法。
(項目13)
前記リスク指標値の少なくとも1つが、前記ヒト対象が特定の状態の転移性がんを有することを示す、項目7から10のいずれか一項に記載の方法。
(項目14)
前記プロセッサが、クラウドベースのシステムのプロセッサである、前記項目のいずれか一項に記載の方法。
(項目15)
前記GUIが、一般的な写真保管および通信システム(PACS)の一部である、前記項目のいずれか一項に記載の方法。
(項目16)
前記薬剤が、メチレンジホスホン酸テクネチウム99m( 99m Tc-MDP)を含む、前記項目のいずれか一項に記載の方法。
(項目17)
ヒト対象の核医学画像の病変マーキングおよび定量分析のための方法であって、
(a)コンピューティングデバイスのプロセッサにより、前記ヒト対象の骨スキャン画像セットにアクセスするステップであって、前記骨スキャン画像セットは、前記ヒト対象への薬剤の投与後に得られたものである、ステップと、
(b)前記プロセッサにより、前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得るステップと、
(c)前記プロセッサにより、1つまたは複数のホットスポットの初期のセットを自動的に検出するステップであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応し、前記自動的に検出することは、
(i)前記アノテーションされた画像のセット内の画素の強度、および(ii)複数の事前閾値、を使用して、潜在的なホットスポットのセットを検出すること、
前記潜在的なホットスポットのセットを使用してグローバル閾値スケーリング率を算出すること、
前記グローバル閾値スケーリング率を使用して前記複数の事前閾値を調節し、それにより複数の調節済みの閾値を得ること、および
(i)前記アノテーションされた画像のセット内の画素の強度、および(ii)前記複数の調節済みの閾値、を使用して、前記ホットスポットの初期のセットを特定すること、を含む、ステップと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連するホットスポット特徴のセットを抽出するステップと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する転移見込み値を計算するステップと、
(f)前記プロセッサにより、前記ホットスポットの初期のセットの少なくとも一部分のグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせるステップと、を含む方法。
(項目18)
前記グローバル閾値スケーリング率が、前記ヒト対象の疾病負荷の測度の関数であり、ステップ(c)で行われる前記複数の事前閾値を前記調節することが、増大する疾病負荷に伴って発生するホットスポット面積の過小推定を補償するために、疾病負荷が増大するのに従って前記調節済みの閾値を低減させることを含む、項目17に記載の方法。
(項目19)
前記グローバル閾値スケーリング率が、前記特定された骨格領域のうち前記潜在的なホットスポットのセットによって占められる割合の関数である、項目17または18に記載の方法。
(項目20)
前記グローバル閾値スケーリング率が、前記潜在的なホットスポットのセットを使用して計算されたリスク指標値に基づく、項目17から19のいずれか一項に記載の方法。
(項目21)
ヒト対象の核医学画像の病変マーキングおよび定量分析のための方法であって、
(a)コンピューティングデバイスのプロセッサにより、前記ヒト対象の骨スキャン画像セットにアクセスするステップであって、前記骨スキャン画像セットは、前記ヒト対象への薬剤の投与後に得られたものである、ステップと、
(b)前記プロセッサにより、前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得るステップと、
(c)前記プロセッサにより、1つまたは複数のホットスポットの初期のセットを自動的に検出するステップであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応する、ステップと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連するホットスポット特徴のセットを抽出するステップと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する転移見込み値を計算するステップと、
(f)前記プロセッサにより、前記ホットスポットの初期のセットの第1のサブセットを選択するステップであって、前記第1のサブセットに含める特定のホットスポットの選択が、
(i)前記特定のホットスポットについて計算された前記転移見込み値、および
(ii)1つまたは複数のグローバルホットスポット特徴であって、各々が前記ホットスポットの初期のセット内の複数のホットスポットを使用して決定される、グローバルホットスポット特徴、
に少なくとも部分的に基づく、ステップと、
(g)前記プロセッサにより、ホットスポットの前記第1のサブセットの少なくとも一部分のグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせるステップと、を含む方法。
(項目22)
前記1つまたは複数のグローバルホットスポット特徴が、前記初期のホットスポットセット内のホットスポットの総数を含む、項目21に記載の方法。
(項目23)
ステップ(f)が、前記初期のホットスポットセット内の前記ホットスポットの総数に基づいて、前記第1のサブセットに含めるホットスポットの選択の基準を調節することを含む、項目22に記載の方法。
(項目24)
ステップ(f)が、機械学習モジュールを使用して前記第1のサブセットを選択することを含む、項目21から23のいずれか一項に記載の方法。
(項目25)
ヒト対象の核医学画像の病変マーキングおよび定量分析のための方法であって、
(a)コンピューティングデバイスのプロセッサにより、前記ヒト対象の骨スキャン画像セットにアクセスするステップと、
(b)前記プロセッサにより、前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得るステップと、
(c)前記プロセッサにより、1つまたは複数のホットスポットの初期のセットを自動的に検出するステップであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応する、ステップと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連するホットスポット特徴のセットを抽出するステップと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する見込み値を計算するステップと、
(f)前記プロセッサにより、前記ホットスポットの初期のセットの各ホットスポットについて計算された前記見込み値に少なくとも部分的に基づいて、前記ホットスポットの初期のセットの前記ホットスポットのうち第1のサブセットを選択するステップと、
(g)前記プロセッサにより、ホットスポットの前記第1のサブセットの少なくとも一部分を使用して1つまたは複数のリスク指標値を計算するステップと、を含み、前記計算することが、
第1のサブセットの前記一部分の各特定のホットスポットについて、(ii)前記特定のホットスポットが前記アノテーションされた画像のセット内における自身の場所に基づいて割り当てられた特定の骨格領域のサイズに対する、(i)前記特定のホットスポットのサイズ(例えば面積)、の比に基づいて骨浸潤率を算出し、それにより1つまたは複数の骨浸潤率を決定するステップ、
1つまたは複数の領域依存補正率を使用して前記骨浸潤率を調節し、それにより1つまたは複数の調節済みの骨浸潤率を得るステップ、および
前記調節済みの骨浸潤率を合計して、前記1つまたは複数のリスク指標値を決定するステップ、を含む、方法。
(項目26)
各特定のホットスポットについて、前記算出された骨浸潤率が、総骨格質量のうち前記特定のホットスポットに関連する物理的体積によって占められる比率を推定する、項目25に記載の方法。
(項目27)
前記骨浸潤率を前記算出するステップが、
前記プロセッサにより、前記対応する骨格関心領域の面積に対する前記特定のホットスポットの面積の比を計算し、それにより前記特定のホットスポットの面積割合を算出することと、
前記特定のホットスポットが割り当てられている前記骨格関心領域に関連付けられた密度係数で前記面積割合をスケーリングし、それにより前記特定のホットスポットの前記骨浸潤率を算出することと、を含む、項目26に記載の方法。
(項目28)
前記第1のサブセットの前記ホットスポットの少なくとも一部分が、骨盤領域、腰領域、および仙骨領域からなる群から選択されるメンバである骨格関心領域に割り当てられる、項目25から27のいずれか一項に記載の方法。
(項目29)
前記1つまたは複数の領域依存補正率が、仙骨領域内に位置するとして特定されたホットスポットの骨浸潤率を調節するために使用される、前記仙骨領域に関連付けられた仙骨領域補正率を含み、前記仙骨領域補正率は1未満の値を有する、項目25から28のいずれか一項に記載の方法。
(項目30)
前記1つまたは複数の領域依存補正率が、1つまたは複数の補正率ペアを含み、各補正率ペアは、特定の骨格関心領域に関連付けられ、(前記ペアの)第1のメンバおよび第2のメンバを含み、
前記ペアの前記第1のメンバは、腹側画像補正率であり、前記アノテーションされた画像セットのアノテーションされた腹側骨スキャン画像内で検出されたホットスポットについて算出された骨浸潤率を調節するために使用され、
前記ペアの前記第2のメンバは、背側画像補正率であり、前記アノテーションされた画像セットのアノテーションされた背側骨スキャン画像内で検出されたホットスポットについて算出された骨浸潤率を調節するために使用される、項目25から29のいずれか一項に記載の方法。
(項目31)
ヒト対象の核医学画像の病変マーキングおよび定量分析のためのシステムであって、
プロセッサと、
命令を有しているメモリと、を備え、前記命令は、前記プロセッサによって実行されたときに、前記プロセッサに、
(a)前記ヒト対象の骨スキャン画像セットにアクセスすることであって、前記骨スキャン画像セットは、前記ヒト対象への薬剤の投与後に得られたものである、ことと、
(b)前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得ることであって、前記1つまたは複数の骨格関心領域は、
(i)前記ヒト対象の大腿骨の一部分に対応する大腿骨領域であって、前記大腿骨の一部分は、前記大腿骨の長さに沿って前記大腿骨の少なくとも4分の3を包含する大腿骨領域、および
(ii)前記ヒト対象の上腕骨の一部分に対応する上腕骨領域であって、前記上腕骨の一部分は、前記上腕骨の長さに沿って前記上腕骨の少なくとも4分の3を包含する上腕骨領域、
のうち少なくとも一方を含む、ことと、
(c)1つまたは複数のホットスポットの初期のセットを自動的に検出することであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応し、前記自動的に検出することは、前記アノテーションされた画像のセット内の画素の強度を使用して、かつ1つまたは複数の領域依存閾値を使用して、前記1つまたは複数のホットスポットを特定することを含み、前記1つまたは複数の領域依存閾値は、当該領域内での前記薬剤の取り込みの低下を補償するために前記大腿骨領域および/または前記上腕骨領域内で高められたホットスポット検出感度を提供する、前記大腿骨領域および/または前記上腕骨領域に関連付けられた1つまたは複数の値を含む、ことと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連するホットスポット特徴のセットを抽出することと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する転移見込み値を計算することと、
(f)前記ホットスポットの初期のセットの少なくとも一部分のグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせることと、を行わせる、システム。
(項目32)
ヒト対象の核医学画像の病変マーキングおよび定量分析のためのシステムであって、
プロセッサと、
命令を有しているメモリと、を備え、前記命令は、前記プロセッサによって実行されたときに、前記プロセッサに、
(a)コンピューティングデバイスのプロセッサにより、前記ヒト対象の骨スキャン画像セットにアクセスすることであって、前記骨スキャン画像セットは、前記ヒト対象への薬剤の投与後に得られたものである、ことと、
(b)前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得ることと、
(c)1つまたは複数のホットスポットの初期のセットを自動的に検出することであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応し、前記自動的に検出することは、
(i)前記アノテーションされた画像のセット内の画素の強度、および(ii)複数の事前閾値、を使用して、潜在的なホットスポットのセットを検出すること、
前記潜在的なホットスポットのセットを使用してグローバル閾値スケーリング率を算出すること、
前記グローバル閾値スケーリング率を使用して前記複数の事前閾値を調節し、それにより複数の調節済みの閾値を得ること、および
(i)前記アノテーションされた画像のセット内の画素の強度、および(ii)前記複数の調節済みの閾値、を使用して、前記ホットスポットの初期のセットを特定すること、を含む、ことと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連するホットスポット特徴のセットを抽出することと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する転移見込み値を計算することと、
(f)前記ホットスポットの初期のセットの少なくとも一部分のグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせることと、を行わせる、システム。
(項目33)
ヒト対象の核医学画像の病変マーキングおよび定量分析のためのシステムであって、
プロセッサと、
命令を有しているメモリと、を備え、前記命令は、前記プロセッサによって実行されたときに、前記プロセッサに、
(a)前記ヒト対象の骨スキャン画像セットにアクセスすることであって、前記骨スキャン画像セットは、前記ヒト対象への薬剤の投与後に得られたものである、ことと、
(b)前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得ることと、
(c)1つまたは複数のホットスポットの初期のセットを自動的に検出することであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応する、ことと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連するホットスポット特徴のセットを抽出することと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する転移見込み値を計算することと、
(f)前記ホットスポットの初期のセットの第1のサブセットを自動的に選択することであって、前記第1のサブセットに含める特定のホットスポットの選択が、
(i)前記特定のホットスポットについて計算された前記転移見込み値、および
(ii)1つまたは複数のグローバルホットスポット特徴であって、各々が前記ホットスポットの初期のセット内の複数のホットスポットを使用して決定される、グローバルホットスポット特徴、
に少なくとも部分的に基づく、ことと、
(g)ホットスポットの前記第1のサブセットの少なくとも一部分のグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせることと、を行わせる、システム。
(項目34)
ヒト対象の核医学画像の病変マーキングおよび定量分析のためのシステムであって、
プロセッサと、
命令を有しているメモリと、を備え、前記命令は、前記プロセッサによって実行されたときに、前記プロセッサに、
(a)前記ヒト対象の骨スキャン画像セットにアクセスすることと、
(b)前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得ることと、
(c)1つまたは複数のホットスポットの初期のセットを自動的に検出することであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応する、ことと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連するホットスポット特徴のセットを抽出することと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する見込み値を計算することと、
(f)前記ホットスポットの初期のセットの各ホットスポットについて計算された前記見込み値に少なくとも部分的に基づいて、前記ホットスポットの初期のセットの前記ホットスポットのうち第1のサブセットを選択することと、
(g)ホットスポットの前記第1のサブセットの少なくとも一部分を使用して1つまたは複数のリスク指標値を計算することと、を行わせ、前記計算することが、
第1のサブセットの前記一部分の各特定のホットスポットについて、(ii)前記特定のホットスポットが前記アノテーションされた画像のセット内における自身の場所に基づいて割り当てられた特定の骨格領域のサイズに対する、(i)前記特定のホットスポットのサイズ、の比に基づいて骨浸潤率を算出し、それにより1つまたは複数の骨浸潤率を決定すること、
1つまたは複数の領域依存補正率を使用して前記骨浸潤率を調節し、それにより1つまたは複数の調節済みの骨浸潤率を得ること、および
前記調節済みの骨浸潤率を合計して、前記1つまたは複数のリスク指標値を決定すること、を含む、システム。
(項目35)
項目31から34のいずれか一項のシステムを備える、コンピュータ支援画像分析デバイス。
(項目36)
前記デバイスが、訓練された健康管理の専門家および/または研究者によって使用されるためにプログラムされる、項目35に記載のデバイス。
(項目37)
前記デバイスが、転移性がんの評価および/または検出を行うための骨スキャン画像の分析に使用されるためにプログラムされる、項目36に記載のデバイス。
(項目38)
前記デバイスが、前立腺がんの評価および/または検出を行うための骨スキャン画像の分析に使用されるためにプログラムされる、項目36または37に記載のデバイス。
(項目39)
前記デバイスが訓練された健康管理の専門家および/または研究者によって使用されることを意図されることを指定するラベルを備える、項目35から38のいずれか一項に記載のデバイス。
(項目40)
前記ラベルは、前記デバイスが転移性がんの評価および/または検出を行うための骨スキャン画像の分析に使用されることを意図されることをさらに指定する、項目39に記載のデバイス。
(項目41)
前記ラベルは、前記デバイスが前立腺がんの評価および/または検出を行うための骨スキャン画像の分析に使用されることを意図されることをさらに指定する、項目39または40に記載のデバイス。
Claims (26)
- ヒト対象の核医学画像の病変マーキングおよび定量分析のための方法であって、
(a)コンピューティングデバイスのプロセッサにより、前記ヒト対象の骨スキャン画像セットにアクセスするステップであって、前記骨スキャン画像セットは、前記ヒト対象への薬剤の投与後に得られたものである、ステップと、
(b)前記プロセッサにより、前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得るステップであって、前記1つまたは複数の骨格関心領域は、
(i)前記ヒト対象の大腿骨の一部分に対応する大腿骨領域、および
(ii)前記ヒト対象の上腕骨の一部分に対応する上腕骨領域、
のうち少なくとも一方を含む、ステップと、
(c)前記プロセッサにより、1つまたは複数のホットスポットの初期のセットを自動的に検出するステップであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応し、前記自動的に検出するステップは、前記アノテーションされた画像のセット内の画素の強度を使用して、かつ1つまたは複数の領域依存閾値を使用して、前記1つまたは複数のホットスポットを特定することを含み、前記1つまたは複数の領域依存閾値は、当該領域内での前記薬剤の取り込みの低下を補償するために前記大腿骨領域および/または前記上腕骨領域内で高められたホットスポット検出感度を提供する、前記大腿骨領域および/または前記上腕骨領域に関連付けられた1つまたは複数の値を含む、ステップと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連するホットスポット特徴のセットを抽出するステップと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記プロセッサにより、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する転移見込み値を計算するステップと、
(f)前記プロセッサにより、前記ホットスポットの初期のセットの少なくとも一部分のグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせるステップと、
を含み、
ステップ(b)が、
前記骨スキャン画像セットの各メンバを、アトラス画像セットのうちの対応するアトラス画像と比較するステップであって、各アトラス画像が、前記1つまたは複数の骨格関心領域の1つまたは複数の特定を含み、前記骨格関心領域は、(i)前記ヒト対象の膝領域の少なくとも一部分を含む前記大腿骨領域、および/または、(ii)前記ヒト対象の肘領域の少なくとも一部分を含む前記上腕骨領域を含む、ステップと、
前記骨スキャン画像セットの各画像について、前記アトラス画像の前記1つまたは複数の骨格関心領域の前記特定が前記骨スキャン画像セットの前記画像に適用されるように、前記画像内でランドマークとして前記特定された膝領域および/または前記特定された肘領域を使用して、前記対応するアトラス画像を、前記骨スキャン画像セットの前記画像と位置合わせするステップと
を含む、方法。 - 前記初期のホットスポットセットのうち少なくとも1つの検出されたホットスポットの場所が、前記ヒト対象の殿部の方を向いた大腿骨の端部から前記ヒト対象の膝の方を向いた前記大腿骨の端部までの前記大腿骨に沿った距離の4分の3超のところにある、前記大腿骨の中または上の物理的場所に対応する、請求項1に記載の方法。
- 前記初期のホットスポットセットのうち少なくとも1つの検出されたホットスポットの場所が、前記ヒト対象の肩の方を向いた上腕骨の端部から前記ヒト対象の肘の方を向いた前記上腕骨の端部までの前記上腕骨に沿った距離の4分の3超のところにある、前記上腕骨の中または上の物理的場所に対応する、請求項1または2に記載の方法。
- ステップ(c)が、
前記プロセッサにより、前記骨スキャン画像セットのうちホットスポットを全く含まないと判定された画像内で健康な組織領域を特定するステップと、
前記プロセッサにより、正規化係数を、前記正規化係数と前記特定された健康な組織領域の平均強度との積が事前に定められた強度レベルになるように計算するステップと、
前記プロセッサにより、前記正規化係数によって前記骨スキャン画像セットの前記画像を正規化するステップと、を含む、請求項1から3のいずれか一項に記載の方法。 - (g)前記プロセッサにより、前記ホットスポットの初期のセットによって占められている前記ヒト対象の前記骨格の算出された割合に少なくとも部分的に基づいて、前記ヒト対象についての1つまたは複数のリスク指標値を計算するステップ、をさらに含む、請求項1から4のいずれか一項に記載の方法。
- (h)前記プロセッサにより、前記転移見込み値に少なくとも部分的に基づいて、前記ホットスポットの初期のセットの第1のサブセットを選択するステップと、
(i)前記プロセッサにより、前記第1のサブセットのグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせるステップと、
を含む、請求項1から5のいずれか一項に記載の方法。 - (j)前記プロセッサにより、ホットスポットの前記第1のサブセットによって占められる前記ヒト対象の前記骨格の算出された割合に少なくとも部分的に基づいて、前記ヒト対象についての1つまたは複数のリスク指標値を計算するステップ、をさらに含む、請求項6に記載の方法。
- (k)前記プロセッサにより、前記GUIを介して、前記ホットスポットの初期のセットの第2のサブセットのユーザ選択を受け取るステップと、
(l)前記プロセッサにより、ホットスポットの前記第2のサブセットによって占められる前記ヒト対象の前記骨格の算出された割合に少なくとも部分的に基づいて、前記ヒト対象についての1つまたは複数のリスク指標値を計算するステップ、
を含む、請求項1から7のいずれか一項に記載の方法。 - 前記リスク指標値の少なくとも1つが、前記ヒト対象が転移性がんを有するおよび/または発症するリスクを示す、請求項5、7および8のいずれか一項に記載の方法。
- 前記転移性がんが転移性前立腺がんである、請求項9に記載の方法。
- 前記リスク指標値の少なくとも1つが、前記ヒト対象が特定の状態の転移性がんを有することを示す、請求項5、7および8のいずれか一項に記載の方法。
- 前記プロセッサが、クラウドベースのシステムのプロセッサである、請求項1から11のいずれか一項に記載の方法。
- 前記GUIが、一般的な写真保管および通信システム(PACS)の一部である、請求項1から12のいずれか一項に記載の方法。
- 前記薬剤が、メチレンジホスホン酸テクネチウム99m(99mTc-MDP)を含む、請求項1から13のいずれか一項に記載の方法。
- ヒト対象の核医学画像の病変マーキングおよび定量分析のためのシステムであって、
プロセッサと、
命令を有しているメモリと、を備え、前記命令は、前記プロセッサによって実行されたときに、前記プロセッサに、
(a)前記ヒト対象の骨スキャン画像セットにアクセスすることであって、前記骨スキャン画像セットは、前記ヒト対象への薬剤の投与後に得られたものである、ことと、
(b)前記骨スキャン画像セット内の各画像を自動的にセグメント化して、前記ヒト対象の骨格の特定の解剖学的領域に各々が対応する1つまたは複数の骨格関心領域を特定し、それによりアノテーションされた画像のセットを得ることであって、前記1つまたは複数の骨格関心領域は、
(i)前記ヒト対象の大腿骨の一部分に対応する大腿骨領域、および
(ii)前記ヒト対象の上腕骨の一部分に対応する上腕骨領域、
のうち少なくとも一方を含む、ことと、
(c)1つまたは複数のホットスポットの初期のセットを自動的に検出することであって、各ホットスポットは、前記アノテーションされた画像のセット内の高い強度のエリアに対応し、前記自動的に検出することは、前記アノテーションされた画像のセット内の画素の強度を使用して、かつ1つまたは複数の領域依存閾値を使用して、前記1つまたは複数のホットスポットを特定することを含み、前記1つまたは複数の領域依存閾値は、当該領域内での前記薬剤の取り込みの低下を補償するために前記大腿骨領域および/または前記上腕骨領域内で高められたホットスポット検出感度を提供する、前記大腿骨領域および/または前記上腕骨領域に関連付けられた1つまたは複数の値を含む、ことと、
(d)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連するホットスポット特徴のセットを抽出することと、
(e)前記ホットスポットの初期のセット内の各ホットスポットについて、前記ホットスポットに関連する前記ホットスポット特徴のセットに基づいて、前記ホットスポットが転移を表す見込みに対応する転移見込み値を計算することと、
(f)前記ホットスポットの初期のセットの少なくとも一部分のグラフィック表現を、グラフィカルユーザインターフェース(GUI)内に表示するためにレンダリングさせることと、を行わせ、
ステップ(b)において、前記命令は、前記プロセッサに、
前記骨スキャン画像セットの各メンバを、アトラス画像セットのうちの対応するアトラス画像と比較することであって、各アトラス画像が、前記1つまたは複数の骨格関心領域の1つまたは複数の特定を含み、前記骨格関心領域は、(i)前記ヒト対象の膝領域の少なくとも一部分を含む前記大腿骨領域、および/または、(ii)前記ヒト対象の肘領域の少なくとも一部分を含む前記上腕骨領域を含む、ことと、
前記骨スキャン画像セットの各画像について、前記アトラス画像の前記1つまたは複数の骨格関心領域の前記特定が前記骨スキャン画像セットの前記画像に適用されるように、前記画像内でランドマークとして前記特定された膝領域および/または前記特定された肘領域を使用して、前記対応するアトラス画像を、前記骨スキャン画像セットの前記画像と位置合わせすることと
を行わせる、システム。 - 請求項15に記載のシステムを備える、コンピュータ支援画像分析デバイス。
- 前記デバイスが、訓練された健康管理の専門家および/または研究者によって使用されるためにプログラムされる、請求項16に記載のデバイス。
- 前記デバイスが、転移性がんの評価および/または検出を行うための骨スキャン画像の分析に使用されるためにプログラムされる、請求項17に記載のデバイス。
- 前記デバイスが、前立腺がんの評価および/または検出を行うための骨スキャン画像の分析に使用されるためにプログラムされる、請求項17または18のいずれかに記載のデバイス。
- 前記デバイスが訓練された健康管理の専門家および/または研究者によって使用されることを意図されることを指定するラベルを備える、請求項16から19のいずれか一項に記載のデバイス。
- 前記ラベルは、前記デバイスが転移性がんの評価および/または検出を行うための骨スキャン画像の分析に使用されることを意図されることをさらに指定する、請求項20に記載のデバイス。
- 前記ラベルは、前記デバイスが前立腺がんの評価および/または検出を行うための骨スキャン画像の分析に使用されることを意図されることをさらに指定する、請求項20または21のいずれかに記載のデバイス。
- (i)前記大腿骨領域は、前記大腿骨の長さに沿って前記大腿骨の少なくとも4分の3を包含する、および/または
(ii)前記上腕骨領域は、前記上腕骨の長さに沿って前記上腕骨の少なくとも4分の3を包含する、請求項1に記載の方法。 - 前記1つまたは複数の領域依存閾値が異なる骨格領域ごとに変動し、前記大腿骨および/または上腕骨領域では、それらの領域における検出感度を上げるために、より低い値を有する、請求項1に記載の方法。
- (i)前記大腿骨領域は、前記大腿骨の長さに沿って前記大腿骨の少なくとも4分の3を包含する、および/または
(ii)前記上腕骨領域は、前記上腕骨の長さに沿って前記上腕骨の少なくとも4分の3を包含する、請求項15に記載のシステム。 - 前記1つまたは複数の領域依存閾値が異なる骨格領域ごとに変動し、前記大腿骨および/または上腕骨領域では、それらの領域における検出感度を上げるために、より低い値を有する、請求項15に記載のシステム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024163842A JP2025000721A (ja) | 2019-04-24 | 2024-09-20 | 転移を検出するための骨スキャン画像の自動化された対話型の分析のためのシステムおよび方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962837955P | 2019-04-24 | 2019-04-24 | |
US62/837,955 | 2019-04-24 | ||
PCT/US2020/029435 WO2020219620A1 (en) | 2019-04-24 | 2020-04-23 | Systems and methods for automated and interactive analysis of bone scan images for detection of metastases |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024163842A Division JP2025000721A (ja) | 2019-04-24 | 2024-09-20 | 転移を検出するための骨スキャン画像の自動化された対話型の分析のためのシステムおよび方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022530039A JP2022530039A (ja) | 2022-06-27 |
JPWO2020219620A5 JPWO2020219620A5 (ja) | 2023-05-01 |
JP7561140B2 true JP7561140B2 (ja) | 2024-10-03 |
Family
ID=70617271
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021562965A Active JP7561140B2 (ja) | 2019-04-24 | 2020-04-23 | 転移を検出するための骨スキャン画像の自動化された対話型の分析のためのシステムおよび方法 |
JP2024163842A Pending JP2025000721A (ja) | 2019-04-24 | 2024-09-20 | 転移を検出するための骨スキャン画像の自動化された対話型の分析のためのシステムおよび方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024163842A Pending JP2025000721A (ja) | 2019-04-24 | 2024-09-20 | 転移を検出するための骨スキャン画像の自動化された対話型の分析のためのシステムおよび方法 |
Country Status (8)
Country | Link |
---|---|
US (3) | US11534125B2 (ja) |
EP (1) | EP3959684A1 (ja) |
JP (2) | JP7561140B2 (ja) |
CN (1) | CN113710159A (ja) |
AU (1) | AU2020261370A1 (ja) |
BR (1) | BR112021021011A2 (ja) |
CA (1) | CA3136127A1 (ja) |
WO (1) | WO2020219620A1 (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3036754A1 (en) | 2016-10-27 | 2018-05-03 | Progenics Pharmaceuticals, Inc. | Network for medical image analysis, decision support system, and related graphical user interface (gui) applications |
US10973486B2 (en) | 2018-01-08 | 2021-04-13 | Progenics Pharmaceuticals, Inc. | Systems and methods for rapid neural network-based image segmentation and radiopharmaceutical uptake determination |
WO2020144134A1 (en) | 2019-01-07 | 2020-07-16 | Exini Diagnostics Ab | Systems and methods for platform agnostic whole body image segmentation |
CN113748443A (zh) * | 2019-04-24 | 2021-12-03 | 普罗热尼奇制药公司 | 用于交互式调整核医学图像中的强度窗口设定的系统和方法 |
CN113710159A (zh) | 2019-04-24 | 2021-11-26 | 普罗热尼奇制药公司 | 用于对骨扫描图像进行自动化及交互式分析以检测转移的系统及方法 |
US11564621B2 (en) | 2019-09-27 | 2023-01-31 | Progenies Pharmacenticals, Inc. | Systems and methods for artificial intelligence-based image analysis for cancer assessment |
US11900597B2 (en) | 2019-09-27 | 2024-02-13 | Progenics Pharmaceuticals, Inc. | Systems and methods for artificial intelligence-based image analysis for cancer assessment |
US11544407B1 (en) | 2019-09-27 | 2023-01-03 | Progenics Pharmaceuticals, Inc. | Systems and methods for secure cloud-based medical image upload and processing |
US11594001B2 (en) * | 2020-01-20 | 2023-02-28 | Rapiscan Systems, Inc. | Methods and systems for generating three-dimensional images that enable improved visualization and interaction with objects in the three-dimensional images |
US11321844B2 (en) | 2020-04-23 | 2022-05-03 | Exini Diagnostics Ab | Systems and methods for deep-learning-based segmentation of composite images |
US11386988B2 (en) | 2020-04-23 | 2022-07-12 | Exini Diagnostics Ab | Systems and methods for deep-learning-based segmentation of composite images |
US11721428B2 (en) | 2020-07-06 | 2023-08-08 | Exini Diagnostics Ab | Systems and methods for artificial intelligence-based image analysis for detection and characterization of lesions |
KR102283673B1 (ko) * | 2020-11-30 | 2021-08-03 | 주식회사 코어라인소프트 | 병변 추적 검사에 기반하여 진단 보조 정보의 임계치를 조정하는 의료 영상 판독 지원 장치 및 방법 |
US12169934B2 (en) * | 2021-09-16 | 2024-12-17 | University of Pittsburgh—of the Commonwealth System of Higher Education | Real-time, artificial intelligence-enabled analysis device and method for use in nuclear medicine imaging |
CN114496177B (zh) * | 2022-01-24 | 2022-09-16 | 佳木斯大学 | 一种基于大数据的感染科临床感染源的检测方法及系统 |
CN114577122B (zh) * | 2022-02-28 | 2023-08-18 | 长三角先进材料研究院 | 一种基于图像处理的自冲铆接剖面几何参数自动测量方法 |
KR102686815B1 (ko) * | 2022-12-06 | 2024-07-19 | 사회복지법인 삼성생명공익재단 | 흉부 엑스레이 영상을 이용한 상완골의 골종양 시각화 방법 및 분석장치 |
WO2024211651A1 (en) * | 2023-04-07 | 2024-10-10 | Progenics Pharmaceuticals, Inc. | Systems and methods for facilitating lesion inspection and analysis |
US12086990B1 (en) * | 2024-04-23 | 2024-09-10 | MultiFunctional Imaging LLC | Systems and methods for simultaneous imaging of multiple positron emission tomography (PET) tracers |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160275674A1 (en) | 2015-12-29 | 2016-09-22 | Laboratoires Bodycad Inc. | Method and system for performing multi-bone segmentation in imaging data |
JP2017500537A (ja) | 2013-10-18 | 2017-01-05 | モレキュラ インサイト ファーマシューティカルズ インコーポレイテッド | 癌の病期を決定するためにspect/ct分析を使用する方法 |
JP2017198697A (ja) | 2017-06-30 | 2017-11-02 | 富士フイルムRiファーマ株式会社 | 画像処理プログラム、記録媒体、画像処理装置、及び画像処理方法 |
Family Cites Families (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5165410A (en) * | 1987-05-15 | 1992-11-24 | Medical & Scientific Enterprises, Inc. | Position indicating system for a multidiagnostic scanner |
CN1111823C (zh) | 1997-05-27 | 2003-06-18 | 力捷电脑股份有限公司 | 使用分段加权校正的影像处理装置及其处理方法 |
US6058322A (en) | 1997-07-25 | 2000-05-02 | Arch Development Corporation | Methods for improving the accuracy in differential diagnosis on radiologic examinations |
ATE539681T1 (de) | 2001-01-30 | 2012-01-15 | R Christopher Decharms | Methoden für die physiologische überwachung, schulung und regulierung |
US7295691B2 (en) | 2002-05-15 | 2007-11-13 | Ge Medical Systems Global Technology Company, Llc | Computer aided diagnosis of an image set |
US7450747B2 (en) | 2002-07-12 | 2008-11-11 | Ge Medical Systems Global Technology Company, Llc | System and method for efficiently customizing an imaging system |
SE524500C2 (sv) | 2002-09-16 | 2004-08-17 | Weaidu In Europ Ab | Förfarande och anordning för bestämning av en tredimensionell kontur av ett organ i en patients kropp |
EP1508872A1 (en) | 2003-08-22 | 2005-02-23 | Semeion | An algorithm for recognising relationships between data of a database and a method for image pattern recognition based on the said algorithm |
US7935055B2 (en) | 2003-09-19 | 2011-05-03 | Siemens Medical Solutions Usa, Inc. | System and method of measuring disease severity of a patient before, during and after treatment |
DE10356272B4 (de) | 2003-11-28 | 2006-02-23 | Siemens Ag | Verfahren zur Navigation in 3-dimensionalen Bilddaten |
US20090311182A1 (en) * | 2004-03-31 | 2009-12-17 | Dong Wang | Macromolecular Delivery Systems for Non-Invasive Imaging, Evaluation and Treatment of Arthritis and Other Inflammatory Diseases |
EP1751550B1 (en) | 2004-04-14 | 2020-05-13 | Edda Technology, Inc. | Liver disease diagnosis system, method and graphical user interface |
DE102004027710A1 (de) | 2004-06-07 | 2006-01-26 | Siemens Ag | Verfahren zur automatischen Detektion einer Struktur bei bildgebenden medizinischen Verfahren, Computertomografiegerät, Arbeitsstation und Comupterprogrammprodukt |
US7397475B2 (en) | 2004-09-02 | 2008-07-08 | Siemens Medical Solutions Usa, Inc. | Interactive atlas extracted from volume data |
US20140193336A1 (en) * | 2005-07-19 | 2014-07-10 | Biosensors International Group, Ltd. | Imaging protocols |
US7668342B2 (en) | 2005-09-09 | 2010-02-23 | Carl Zeiss Meditec, Inc. | Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues |
US7876938B2 (en) | 2005-10-06 | 2011-01-25 | Siemens Medical Solutions Usa, Inc. | System and method for whole body landmark detection, segmentation and change quantification in digital images |
US7920730B2 (en) | 2005-10-07 | 2011-04-05 | Siemens Medical Solutions Usa, Inc. | Automatic bone detection in MRI images |
DE102005048853A1 (de) | 2005-10-12 | 2007-04-26 | Siemens Ag | Bildgebende medizinische Modalität |
WO2007062135A2 (en) | 2005-11-23 | 2007-05-31 | Junji Shiraishi | Computer-aided method for detection of interval changes in successive whole-body bone scans and related computer program product and system |
DE102005059209B4 (de) | 2005-12-12 | 2010-11-25 | Siemens Ag | Verfahren und Vorrichtung zur Visualisierung einer Folge von tomographischen Bilddatensätzen |
DE602007008390D1 (de) | 2006-03-24 | 2010-09-23 | Exini Diagnostics Ab | Automatische interpretation von medizinischen 3d-bildern des hirns und verfahren zum produzieren von zwischenergebnissen |
JP5127276B2 (ja) | 2006-05-26 | 2013-01-23 | 株式会社東芝 | 画像処理装置および磁気共鳴イメージング装置 |
US20080027315A1 (en) | 2006-07-31 | 2008-01-31 | Icad, Inc. | Processing and presentation of electronic subtraction for tagged colonic fluid and rectal tube in computed colonography |
EP2076292A2 (en) | 2006-10-25 | 2009-07-08 | Koninklijke Philips Electronics N.V. | Contrast agents for detecting prostate cancer |
EP2618102A2 (en) | 2006-11-21 | 2013-07-24 | Mantisvision Ltd. | 3d geometric modeling and 3d video content creation |
EP2227784B1 (en) | 2007-12-28 | 2014-07-16 | Exini Diagnostics AB | System for detecting bone cancer metastases |
GB0803064D0 (en) | 2008-02-20 | 2008-03-26 | Siemens Medical Solutions | System for defining volumes of interest with reference to anatomical features |
US20090309874A1 (en) | 2008-06-11 | 2009-12-17 | Siemens Medical Solutions Usa, Inc. | Method for Display of Pre-Rendered Computer Aided Diagnosis Results |
JP2010029481A (ja) | 2008-07-29 | 2010-02-12 | Univ Of Tsukuba | 腫瘍の経過観察レポート自動作成診断支援システム |
CN102171187B (zh) | 2008-08-01 | 2017-07-28 | 约翰.霍普金斯大学 | Psma‑结合剂及其用途 |
US8705887B2 (en) | 2008-08-22 | 2014-04-22 | Weyerhaeuser Nr Company | Method and apparatus for filling in or replacing image pixel data |
TW201034691A (en) | 2008-12-05 | 2010-10-01 | Molecular Insight Pharm Inc | Technetium-and rhenium-bis(heteroaryl) complexes and methods of use thereof |
EP2706057B1 (en) | 2008-12-05 | 2016-04-20 | Molecular Insight Pharmaceuticals, Inc. | Bis(imidazolyl)compounds and radionuclide complexes |
EP2410919A2 (en) | 2009-03-26 | 2012-02-01 | Koninklijke Philips Electronics N.V. | Pet/ct based therapy monitoring system supported by a clinical guideline navigator |
US8073220B2 (en) | 2009-04-20 | 2011-12-06 | Siemens Aktiengesellschaft | Methods and systems for fully automatic segmentation of medical images |
US8588486B2 (en) | 2009-06-18 | 2013-11-19 | General Electric Company | Apparatus and method for isolating a region in an image |
US8467856B2 (en) | 2009-07-17 | 2013-06-18 | Koninklijke Philips Electronics N.V. | Anatomy modeling for tumor region of interest definition |
JP2011067594A (ja) | 2009-08-25 | 2011-04-07 | Fujifilm Corp | 肝機能造影像を用いた医用画像診断装置および方法、並びにプログラム |
US20110063288A1 (en) | 2009-09-11 | 2011-03-17 | Siemens Medical Solutions Usa, Inc. | Transfer function for volume rendering |
WO2011077303A1 (en) | 2009-12-23 | 2011-06-30 | Koninklijke Philips Electronics N.V. | Methods and apparatuses for prostate cancer detection, staging, and therapy response assessment |
CN102947840A (zh) | 2010-01-22 | 2013-02-27 | 纽约州立大学研究基金会 | 前列腺可视化和癌症检测的系统和方法 |
EP2533816A1 (en) | 2010-02-08 | 2012-12-19 | Piramal Imaging SA | F18-tyrosine derivatives for imaging bone metastases |
US9401047B2 (en) | 2010-04-15 | 2016-07-26 | Siemens Medical Solutions, Usa, Inc. | Enhanced visualization of medical image data |
WO2012168813A1 (en) * | 2011-06-10 | 2012-12-13 | Koninklijke Philips Electronics N.V. | Dose-optimized protocol for ac and localization on hybrid scanners |
US9123155B2 (en) | 2011-08-09 | 2015-09-01 | Covidien Lp | Apparatus and method for using augmented reality vision system in surgical procedures |
US9002081B2 (en) | 2011-10-18 | 2015-04-07 | Matthew Sherman Brown | Computer-aided bone scan assessment with automated lesion detection and quantitative assessment of bone disease burden changes |
US9053534B2 (en) | 2011-11-23 | 2015-06-09 | The Regents Of The University Of Michigan | Voxel-based approach for disease detection and evolution |
US20130211231A1 (en) | 2012-02-14 | 2013-08-15 | Manivannan Sundarapandian | Method and system for visualization of treatment volumes |
US8682049B2 (en) | 2012-02-14 | 2014-03-25 | Terarecon, Inc. | Cloud-based medical image processing system with access control |
CA2865282A1 (en) | 2012-02-24 | 2013-08-29 | Cornell University | Elevated psma identifies lethal prostate cancers |
EP3647822A3 (en) * | 2012-05-08 | 2020-08-12 | Spectrum Dynamics Medical Limited | Nuclear medicine tomography systems, detectors and methods |
JP6170284B2 (ja) | 2012-06-22 | 2017-07-26 | 富士フイルムRiファーマ株式会社 | 画像処理プログラム、記録媒体、画像処理装置、及び画像処理方法 |
JP6013042B2 (ja) | 2012-06-27 | 2016-10-25 | 富士フイルムRiファーマ株式会社 | 画像処理プログラム、記録媒体、画像処理装置、及び画像処理方法 |
WO2015023732A1 (en) | 2013-08-13 | 2015-02-19 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Systems, methods and devices for analyzing quantitative information obtained from radiological images |
US20150331995A1 (en) | 2014-05-14 | 2015-11-19 | Tiecheng Zhao | Evolving contextual clinical data engine for medical data processing |
WO2015176011A1 (en) | 2014-05-15 | 2015-11-19 | The Johns Hopkins University | Method, system and computer-readable media for treatment plan risk analysis |
GB2528249B (en) | 2014-07-11 | 2019-03-06 | Siemens Medical Solutions Usa Inc | Automatic background region selection for lesion delineation in medical images |
US10061003B2 (en) | 2014-09-01 | 2018-08-28 | bioProtonics, L.L.C. | Selective sampling for assessing structural spatial frequencies with specific contrast mechanisms |
US20160203263A1 (en) | 2015-01-08 | 2016-07-14 | Imbio | Systems and methods for analyzing medical images and creating a report |
JP6545591B2 (ja) | 2015-09-28 | 2019-07-17 | 富士フイルム富山化学株式会社 | 診断支援装置、方法及びコンピュータプログラム |
US10058393B2 (en) * | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
EP3380859A4 (en) | 2015-11-29 | 2019-07-31 | Arterys Inc. | AUTOMATED SEGMENTATION OF CARDIAC VOLUME |
EP3389497B1 (en) | 2015-12-17 | 2020-12-09 | Koninklijke Philips N.V. | Method and device for a medical image analysis |
EP3488417B1 (en) | 2016-07-20 | 2020-09-16 | Tel Hashomer Medical Research Infrastructure and Services Ltd. | A system and method for automated characterization of solid tumors using medical imaging |
US10210634B2 (en) | 2016-07-20 | 2019-02-19 | Shanghai United Imaging Healthcare Co., Ltd. | System and method for segmenting medical image |
CN106558045B (zh) | 2016-10-20 | 2019-07-19 | 上海联影医疗科技有限公司 | 一种肺组织分割方法、装置,医学图像处理系统 |
CA3036754A1 (en) * | 2016-10-27 | 2018-05-03 | Progenics Pharmaceuticals, Inc. | Network for medical image analysis, decision support system, and related graphical user interface (gui) applications |
WO2018140596A2 (en) | 2017-01-27 | 2018-08-02 | Arterys Inc. | Automated segmentation utilizing fully convolutional networks |
US10492723B2 (en) | 2017-02-27 | 2019-12-03 | Case Western Reserve University | Predicting immunotherapy response in non-small cell lung cancer patients with quantitative vessel tortuosity |
KR101754291B1 (ko) | 2017-04-04 | 2017-07-06 | 이현섭 | 개인 맞춤형 뇌질병 진단 및 상태 판정을 위한 의료 영상 처리 시스템 및 방법 |
GB201705876D0 (en) | 2017-04-11 | 2017-05-24 | Kheiron Medical Tech Ltd | Recist |
US10152571B1 (en) | 2017-05-25 | 2018-12-11 | Enlitic, Inc. | Chest x-ray differential diagnosis system |
US20200085382A1 (en) | 2017-05-30 | 2020-03-19 | Arterys Inc. | Automated lesion detection, segmentation, and longitudinal identification |
EP3646240B1 (en) | 2017-06-26 | 2024-09-04 | The Research Foundation for The State University of New York | System, method, and computer-accessible medium for virtual pancreatography |
EP3437559B1 (de) | 2017-08-03 | 2020-06-24 | Siemens Healthcare GmbH | Ermitteln eines funktionsparameters betreffend eine lokale gewebefunktion für mehrere gewebebereiche |
EP3470006B1 (en) | 2017-10-10 | 2020-06-10 | Holo Surgical Inc. | Automated segmentation of three dimensional bony structure images |
US10223610B1 (en) | 2017-10-15 | 2019-03-05 | International Business Machines Corporation | System and method for detection and classification of findings in images |
EP3714467A4 (en) | 2017-11-22 | 2021-09-15 | Arterys Inc. | CONTENT-BASED IMAGE RECOVERY FOR INJURY ANALYSIS |
US10973486B2 (en) | 2018-01-08 | 2021-04-13 | Progenics Pharmaceuticals, Inc. | Systems and methods for rapid neural network-based image segmentation and radiopharmaceutical uptake determination |
JP7448476B2 (ja) | 2018-01-08 | 2024-03-12 | プロジェニクス ファーマシューティカルズ, インコーポレイテッド | 高速ニューラルネットワークベースの画像セグメント化および放射性医薬品摂取判定のためのシステムおよび方法 |
US20200342600A1 (en) | 2018-01-08 | 2020-10-29 | Progenics Pharmaceuticals, Inc. | Systems and methods for rapid neural network-based image segmentation and radiopharmaceutical uptake determination |
EP3514756A1 (en) * | 2018-01-18 | 2019-07-24 | Koninklijke Philips N.V. | Medical analysis method for predicting metastases in a test tissue sample |
US11542234B2 (en) | 2018-03-16 | 2023-01-03 | Universität Zu Köln | 2-alkoxy-6-[18F]fluoronicotinoyl substituted lys-c(O)-glu derivatives as efficient probes for imaging of PSMA expressing tissues |
US11026649B2 (en) | 2018-06-25 | 2021-06-08 | Siemens Medical Solutions Usa, Inc. | Method and system for determining tumor burden in medical images |
US10902588B2 (en) | 2018-08-13 | 2021-01-26 | International Business Machines Corporation | Anatomical segmentation identifying modes and viewpoints with deep learning across modalities |
US11145059B2 (en) | 2018-11-21 | 2021-10-12 | Enlitic, Inc. | Medical scan viewing system with enhanced training and methods for use therewith |
US11011257B2 (en) | 2018-11-21 | 2021-05-18 | Enlitic, Inc. | Multi-label heat map display system |
US11457871B2 (en) | 2018-11-21 | 2022-10-04 | Enlitic, Inc. | Medical scan artifact detection system and methods for use therewith |
US11282198B2 (en) | 2018-11-21 | 2022-03-22 | Enlitic, Inc. | Heat map generating system and methods for use therewith |
US20200170604A1 (en) * | 2018-12-04 | 2020-06-04 | Howmedica Osteonics Corp. | CT Based Probabilistic Cancerous Bone Region Detection |
US11514571B2 (en) | 2018-12-17 | 2022-11-29 | Siemens Healthcare Gmbh | Hierarchical analysis of medical images for identifying and assessing lymph nodes |
US20220015721A1 (en) | 2019-01-07 | 2022-01-20 | Siemens Medical Solutions Usa, Inc. | Determination of metabolic rate from static pet scan |
WO2020144134A1 (en) | 2019-01-07 | 2020-07-16 | Exini Diagnostics Ab | Systems and methods for platform agnostic whole body image segmentation |
JP7515502B2 (ja) | 2019-03-15 | 2024-07-12 | ジェネンテック, インコーポレイテッド | 陽電子放射断層撮影を用いた腫瘍セグメンテーションのための深層畳み込みニューラルネットワーク |
EP3664034B1 (en) | 2019-03-26 | 2021-09-01 | Siemens Healthcare GmbH | Method and data processing system for providing lymph node information |
CN113710159A (zh) | 2019-04-24 | 2021-11-26 | 普罗热尼奇制药公司 | 用于对骨扫描图像进行自动化及交互式分析以检测转移的系统及方法 |
CN113748443A (zh) | 2019-04-24 | 2021-12-03 | 普罗热尼奇制药公司 | 用于交互式调整核医学图像中的强度窗口设定的系统和方法 |
US11564621B2 (en) | 2019-09-27 | 2023-01-31 | Progenies Pharmacenticals, Inc. | Systems and methods for artificial intelligence-based image analysis for cancer assessment |
US11900597B2 (en) | 2019-09-27 | 2024-02-13 | Progenics Pharmaceuticals, Inc. | Systems and methods for artificial intelligence-based image analysis for cancer assessment |
US11321844B2 (en) | 2020-04-23 | 2022-05-03 | Exini Diagnostics Ab | Systems and methods for deep-learning-based segmentation of composite images |
US11386988B2 (en) | 2020-04-23 | 2022-07-12 | Exini Diagnostics Ab | Systems and methods for deep-learning-based segmentation of composite images |
US11721428B2 (en) | 2020-07-06 | 2023-08-08 | Exini Diagnostics Ab | Systems and methods for artificial intelligence-based image analysis for detection and characterization of lesions |
MX2022016373A (es) | 2020-07-06 | 2023-03-06 | Exini Diagnostics Ab | Sistemas y metodos para analisis de imagenes basado en inteligencia artificial para deteccion y caracterizacion de lesiones. |
US20230115732A1 (en) | 2021-10-08 | 2023-04-13 | Exini Diagnostics Ab | Systems and methods for automated identification and classification of lesions in local lymph and distant metastases |
-
2020
- 2020-04-23 CN CN202080030140.7A patent/CN113710159A/zh active Pending
- 2020-04-23 US US16/856,120 patent/US11534125B2/en active Active
- 2020-04-23 WO PCT/US2020/029435 patent/WO2020219620A1/en unknown
- 2020-04-23 EP EP20725041.6A patent/EP3959684A1/en active Pending
- 2020-04-23 AU AU2020261370A patent/AU2020261370A1/en active Pending
- 2020-04-23 JP JP2021562965A patent/JP7561140B2/ja active Active
- 2020-04-23 BR BR112021021011A patent/BR112021021011A2/pt unknown
- 2020-04-23 CA CA3136127A patent/CA3136127A1/en active Pending
-
2022
- 2022-11-18 US US17/989,863 patent/US11937962B2/en active Active
-
2024
- 2024-02-07 US US18/435,386 patent/US20240285246A1/en active Pending
- 2024-09-20 JP JP2024163842A patent/JP2025000721A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017500537A (ja) | 2013-10-18 | 2017-01-05 | モレキュラ インサイト ファーマシューティカルズ インコーポレイテッド | 癌の病期を決定するためにspect/ct分析を使用する方法 |
US20160275674A1 (en) | 2015-12-29 | 2016-09-22 | Laboratoires Bodycad Inc. | Method and system for performing multi-bone segmentation in imaging data |
JP2017198697A (ja) | 2017-06-30 | 2017-11-02 | 富士フイルムRiファーマ株式会社 | 画像処理プログラム、記録媒体、画像処理装置、及び画像処理方法 |
Non-Patent Citations (1)
Title |
---|
NAKAJIMA et al.,Enhanced diagnostic accuracy for quantitative bone scan using an artificial neural network system: a Japanese multi-center database project,EJNMMI Research,2013年,3, 83 |
Also Published As
Publication number | Publication date |
---|---|
BR112021021011A2 (pt) | 2021-12-14 |
US20200337658A1 (en) | 2020-10-29 |
US20230148980A1 (en) | 2023-05-18 |
EP3959684A1 (en) | 2022-03-02 |
JP2022530039A (ja) | 2022-06-27 |
CN113710159A (zh) | 2021-11-26 |
AU2020261370A1 (en) | 2021-10-14 |
US11937962B2 (en) | 2024-03-26 |
US11534125B2 (en) | 2022-12-27 |
US20240285246A1 (en) | 2024-08-29 |
WO2020219620A1 (en) | 2020-10-29 |
TW202105407A (zh) | 2021-02-01 |
CA3136127A1 (en) | 2020-10-29 |
JP2025000721A (ja) | 2025-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7561140B2 (ja) | 転移を検出するための骨スキャン画像の自動化された対話型の分析のためのシステムおよび方法 | |
US12243236B1 (en) | Systems and methods for platform agnostic whole body image segmentation | |
TWI835768B (zh) | 用於基於神經網路之快速影像分段及放射性藥品之攝取的測定之系統及方法 | |
US10973486B2 (en) | Systems and methods for rapid neural network-based image segmentation and radiopharmaceutical uptake determination | |
JP7390188B2 (ja) | 医用画像分析、決定サポートシステム、および関連するグラフィカルユーザインタフェース(gui)アプリケーションのためのネットワーク | |
JP2023532761A (ja) | 病変の検出および特性評価のための人工知能ベースの画像分析のためのシステムならびに方法 | |
US20230351586A1 (en) | Systems and methods for artificial intelligence-based image analysis for detection and characterization of lesions | |
US20240354940A1 (en) | Systems and methods for facilitating lesion inspection and analysis | |
TWI872062B (zh) | 用於偵測轉移之骨掃描影像之自動及互動式分析系統、裝置及方法 | |
CN113272859B (zh) | 用于平台中立性全身图像分段的系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230421 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240304 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7561140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |