JP7559728B2 - Seamless steel pipe and method for manufacturing steel pipe - Google Patents
Seamless steel pipe and method for manufacturing steel pipe Download PDFInfo
- Publication number
- JP7559728B2 JP7559728B2 JP2021159801A JP2021159801A JP7559728B2 JP 7559728 B2 JP7559728 B2 JP 7559728B2 JP 2021159801 A JP2021159801 A JP 2021159801A JP 2021159801 A JP2021159801 A JP 2021159801A JP 7559728 B2 JP7559728 B2 JP 7559728B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- yield strength
- steel pipe
- strength
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Articles (AREA)
Description
本発明は、管軸方向引張降伏強度が高く、かつ管軸方向引張降伏強度と管軸方向圧縮降伏強度との差が小さく、疲労特性に優れる鋼管およびその製造方法に関する。 The present invention relates to a steel pipe that has high axial tensile yield strength, a small difference between axial tensile yield strength and axial compressive yield strength, and excellent fatigue properties, and a method for manufacturing the same.
鋼管の冷間圧延には、冷牽(冷間引き抜き、押し抜き圧延)と冷間ピルガー圧延がある。この冷間圧延では、管軸方向への延伸や減肉により鋼管にひずみを与え、鋼管の機械的特性の一つである管軸方向降伏強度を向上させることができる。
これら冷間圧延は、高い管軸方向引張荷重が加わる用途に用いられる鋼管の製造において行われる。例えば、特許文献1では、冷牽により疲労強度を向上させた管の製造方法が開示されている。
Cold rolling of steel pipes includes cold drawing (cold drawing, punch rolling) and cold pilger rolling. In this cold rolling, the steel pipe is strained by elongating it in the axial direction and reducing its wall thickness, which improves the axial yield strength of the steel pipe, which is one of its mechanical properties.
Cold rolling is carried out in the manufacture of steel pipes used in applications where a high tensile load is applied in the axial direction of the pipe. For example, Patent Document 1 discloses a method for manufacturing a pipe having improved fatigue strength by cold drawing.
しかしながら、特許文献1に記載の技術では、管軸方向に圧縮することにより負荷がかかる場合の疲労特性については課題がある。
つまり、冷牽や冷間ピルガー圧延のような、管を軸方向に延伸する形態の冷間圧延では、管軸方向の降伏強度を向上させ、管軸方向の疲労強度も向上させる効果が得られる。これに対し、管軸方向に圧縮することにより発生する負荷については、バウシンガー効果により管軸方向において引張方向の降伏強度特性よりも大きく劣る。疲労強度は材料の引張強度と相関関係が高い。つまり、これら冷間圧延を利用して鋼管の強度を向上させる手法では、管軸方向に圧縮する場合の降伏強度(管軸方向圧縮降伏強度)が引張による降伏強度(管軸方向引張降伏強度)に対して低下し、同じく管軸方向に圧縮することにより負荷が発生する場合の疲労特性(圧縮疲労特性)が劣るという課題がある。
However, the technology described in Patent Document 1 has a problem with respect to fatigue characteristics when a load is applied by compressing the tube in the axial direction.
That is, cold rolling such as cold drawing and cold pilger rolling, which stretches the tube in the axial direction, improves the yield strength in the axial direction of the tube and also improves the fatigue strength in the axial direction of the tube. On the other hand, the load generated by compression in the axial direction of the tube is significantly inferior to the yield strength characteristics in the tensile direction in the axial direction due to the Bauschinger effect. Fatigue strength is highly correlated with the tensile strength of the material. In other words, these methods of improving the strength of steel tubes using cold rolling have the problem that the yield strength when compressed in the axial direction of the tube (compressive yield strength in the axial direction of the tube) is lower than the yield strength due to tension (tensile yield strength in the axial direction of the tube), and the fatigue characteristics (compressive fatigue characteristics) when a load is generated by compression in the axial direction of the tube are also inferior.
従来の冷間圧延を用いて管軸方向の引張降伏強度が高められた鋼管は、引張方向のみの繰り返し負荷による疲労強度(引張疲労強度)の向上には有効であるが、相対的に降伏強度が劣る圧縮方向の負荷には弱くなるのである。 Steel pipes in which the tensile yield strength in the axial direction has been increased using conventional cold rolling are effective in improving fatigue strength (tensile fatigue strength) under repeated loads in the tensile direction only, but are weaker against loads in the compressive direction, where the yield strength is relatively poor.
鋼管の疲労特性に影響をおよぼす負荷は、管軸方向引張だけという場合は少なく、管軸方向引張と管軸方向圧縮との組み合わせであることが多い。
つまり、従来の冷牽や冷間ピルガー圧延を利用して鋼管を高強度化させる手法では、管軸方向の引張降伏強度(管軸方向引張降伏強度)と管軸方向への引張負荷のみが作用する疲労強度(引張疲労強度)の向上には効果があるものの、管軸方向引張降伏強度と管軸方向への引張負荷で得られる疲労強度に対し、管軸方向に圧縮する場合の降伏強度(管軸方向圧縮降伏強度)や疲労強度(圧縮疲労強度)を高くすることは困難であった。
The load that affects the fatigue properties of steel pipes is rarely axial tension alone, but rather a combination of axial tension and axial compression.
In other words, the conventional method of increasing the strength of steel pipes by using cold drawing or cold pilger rolling is effective in improving the tensile yield strength in the pipe axis direction (tensile yield strength in the pipe axis direction) and the fatigue strength under a tensile load only in the pipe axis direction (tensile fatigue strength), but it is difficult to increase the yield strength when compressed in the pipe axis direction (compressive yield strength in the pipe axis direction) and the fatigue strength (compressive fatigue strength) compared to the tensile yield strength in the pipe axis direction and the fatigue strength obtained under a tensile load in the pipe axis direction.
以上の理由から、従来の冷間圧延を用いて鋼管を高強度化する方法では、管軸方向に圧縮する場合の機械的特性(管軸方向圧縮降伏強度、圧縮疲労強度)が管軸方向引張降伏強度、引張疲労強度よりも劣るという課題を解決できない。管軸方向に圧縮する場合の機械的特性が優れていることが求められるのは、管軸方向への圧縮負荷が発生する用途、例えば、車軸の様に管軸方向に対して繰り返し曲げ負荷を受ける場合(曲げ曲率の内径側において管軸方向圧縮負荷が発生する場合)がある。
また、鋼管をネジで繰り返し連結する場合、締結時にはネジ部に圧縮負荷、締結後の使用時には引張負荷が発生する。
さらに、熱井や油井採掘用の鋼管として使用する場合は、高温の地熱による熱膨張と井戸が冷えた時の熱収縮にともない、管軸方向に圧縮と引張の負荷が繰り返し発生する。
加えて、化学プラント配管として使用する場合や、CCS(Carbon dioxide Capture and Storage)やCCUS(Carbon dioxide Capture, Utilization and Storage)で二酸化炭素地中埋め込みのために使用する場合には、管内流体の圧力変動による温度変化と内外圧変化が起こるため、熱応力と圧力により管軸方向に引張と圧縮の負荷が繰り返し発生する。
これら繰り返し引張圧縮疲労負荷がかかる使用環境では、従来の冷間圧延により得られる管軸方向圧縮降伏強度の低い鋼管では十分な疲労強度が得られない。
For the above reasons, the conventional method of increasing the strength of steel pipes by cold rolling cannot solve the problem that the mechanical properties (axial compressive yield strength and compressive fatigue strength) when compressed in the axial direction are inferior to the axial tensile yield strength and tensile fatigue strength. Applications requiring excellent mechanical properties when compressed in the axial direction include those in which a compressive load is applied in the axial direction, such as wheel axles, where the pipe is repeatedly subjected to bending loads in the axial direction (where a compressive load is applied in the axial direction on the inner diameter side of the bending curvature).
Furthermore, when steel pipes are repeatedly connected with screws, a compressive load is applied to the threaded portion when the pipes are fastened, and a tensile load is applied when the pipes are used after fastening.
Furthermore, when used as steel pipes for hot wells or oil well drilling, repeated compressive and tensile loads are generated in the axial direction of the pipe due to thermal expansion caused by high temperatures of geothermal energy and thermal contraction when the well cools down.
In addition, when used as piping in chemical plants or for burying carbon dioxide underground for CCS (Carbon dioxide Capture and Storage) or CCUS (Carbon dioxide Capture, Utilization and Storage), temperature changes and internal and external pressure changes occur due to pressure fluctuations in the fluid inside the pipe, and thermal stress and pressure cause repeated tensile and compressive loads in the axial direction of the pipe.
In these operating environments where repeated tension-compression fatigue loads are applied, sufficient fatigue strength cannot be obtained with steel pipes having low axial compressive yield strength obtained by conventional cold rolling.
本発明は上記事情を鑑みてなされたものであり、管軸方向引張降伏強度が高く、かつ管軸方向の引張降伏強度と圧縮降伏強度との差が小さく、疲労特性に優れる鋼管およびその製造方法を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide a steel pipe that has high axial tensile yield strength, a small difference between axial tensile yield strength and compressive yield strength, and excellent fatigue properties, and a manufacturing method thereof.
なお、管軸方向引張降伏強度が高いとは、管軸方向引張降伏強度が400MPa以上であり、管軸方向の引張降伏強度と圧縮降伏強度との差が小さいとは、管軸方向圧縮降伏強度/管軸方向引張降伏強度が0.85~1.15の範囲であるものをいう。
疲労特性に優れるとは、同一の鋼管素材において、冷牽や冷間ピルガーで製造した鋼管よりも高い疲労強度を有することを指す。
Here, a high axial tensile yield strength means that the axial tensile yield strength is 400 MPa or more, and a small difference between the axial tensile yield strength and the compressive yield strength means that the axial compressive yield strength/axial tensile yield strength is in the range of 0.85 to 1.15.
"Excellent fatigue properties" means that the same steel pipe material has a higher fatigue strength than a steel pipe manufactured by cold drawing or cold pilgering.
特許文献1に示されるように、鋼管の機械的特性で最も重要となる管軸方向強度を向上させる手段で利用される冷間圧延としては、冷牽、または冷間ピルガー圧延が従来行われてきた。本発明者らは、これらの冷間加工による鋼管の塑性ひずみを付与する方向が課題の原因であることに注目した。
つまり、冷牽や冷間ピルガー圧延では、鋼管に冷間で塑性ひずみを与え、転位強化で鋼管を高強度化する。冷牽や冷間ピルガー圧延で発生する塑性ひずみにより、管外周では、縮径または拡管変形が発生する。
また、管肉厚方向では、塑性ひずみにより、減肉又は増肉が発生する。
一方で、管軸方向では、延伸する方向のみに塑性ひずみが付与される。
金属材料では、成形加工の終了時、最終的に塑性ひずみが付与される方向に対して反対方向の負荷に弱くなるというバウシンガー効果が普遍的に発生する。そのため、従来の冷間圧延である冷牽や冷間ピルガー圧延では、バウシンガー効果により、管軸方向圧縮強度の低下が必然的に発生する。
As shown in Patent Document 1, cold drawing or cold pilger rolling has been conventionally used as a cold rolling method for improving the axial strength, which is the most important mechanical property of a steel pipe. The present inventors have noticed that the direction in which plastic strain is imparted to the steel pipe by these cold working methods is the cause of the problem.
In other words, in cold drawing and cold pilger rolling, plastic strain is applied to the steel pipe in the cold state, and the steel pipe is strengthened by dislocation strengthening. The plastic strain generated in cold drawing and cold pilger rolling causes diameter reduction or pipe expansion deformation on the outer periphery of the pipe.
In addition, in the thickness direction of the pipe, a decrease or increase in thickness occurs due to plastic strain.
On the other hand, in the axial direction of the tube, plastic strain is imparted only in the elongation direction.
In metal materials, the Bauschinger effect generally occurs at the end of forming, which means that the material becomes weak against a load in the opposite direction to the direction in which plastic strain is applied. Therefore, in conventional cold rolling such as cold drawing and cold pilger rolling, the axial compressive strength of the tube inevitably decreases due to the Bauschinger effect.
そこで、本発明者らは、管軸方向に延伸のみ生じさせていた従来の鋼管の冷間圧延方法に対して、管軸方向の塑性ひずみの方向に着目して鋭意検討した。その結果、管軸方向の延伸による塑性ひずみに頼らない冷間加工により鋼管の管軸方向圧縮降伏強度とそれに伴う疲労強度を高める方法を着想した。 The inventors therefore conducted extensive research into the direction of plastic strain in the axial direction of steel pipes, in contrast to the conventional cold rolling method for steel pipes, which only caused stretching in the axial direction. As a result, they came up with a method for increasing the axial compressive yield strength and associated fatigue strength of steel pipes by cold working that does not rely on plastic strain caused by stretching in the axial direction.
本発明は以上の知見に基づきなされたものであり、その要旨は次のとおりである。
[1]質量%で、
C:0.01~1.15%、
Si:0.01~2.50%、
Mn:0.01~2.50%、
N:0.001~0.050%、を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
フェライト相を有し、且つ残留オーステナイト相が面積率で10%以下である組織を有し、
管軸方向引張降伏強度が400MPa以上であり、
管軸方向圧縮降伏強度/管軸方向引張降伏強度が0.85~1.15である、鋼管。
[2]前記成分組成として、質量%で、さらに
Cr:2.00%以下、
Mo:2.00%以下のうちから選ばれた1種または2種を含有する、前記[1]に記載の鋼管。
[3]前記成分組成として、質量%で、さらに
Ti:0.50%以下、
Al:0.30%以下、
V:0.55%以下、
Nb:0.75%以下のうちから選ばれた1種または2種以上を含有する、前記[1]または[2]に記載の鋼管。
[4]前記成分組成として、質量%で、さらに
Ni:2.5%未満、
W:1.0%未満、
Cu:2.5%未満、
B:0.010%以下、
Zr:0.10%以下、
Ca:0.010%以下、
Ta:0.01%以下、
REM:0.10%以下、
Mg:0.10%以下、
Sn:0.30%以下、
Sb:0.30%以下、
Ag:0.30%以下のうちから選ばれた1種または2種以上を含有する、前記[1]~[3]のいずれかに記載の鋼管。
[5]前記[1]~[4]のいずれかに記載の鋼管の製造方法であって、鋼管素材に管周方向の曲げ曲げ戻し加工を行い鋼管を得る、鋼管の製造方法。
[6]前記管周方向の曲げ曲げ戻し加工後、保持温度を300℃以下として300秒以上3600秒未満の保持をし、空冷を行う熱処理を行う、前記[5]に記載の鋼管の製造方法。
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
[1] In mass%,
C: 0.01-1.15%,
Si: 0.01-2.50%,
Mn: 0.01 to 2.50%,
N: 0.001 to 0.050%, with the balance being Fe and unavoidable impurities;
The steel has a structure having a ferrite phase and a retained austenite phase of 10% or less in area ratio,
The axial tensile yield strength is 400 MPa or more,
A steel pipe having a ratio of compressive yield strength in the pipe axis direction to tensile yield strength in the pipe axis direction of 0.85 to 1.15.
[2] The composition further includes, in mass%, Cr: 2.00% or less;
Mo: 2.00% or less.
[3] The component composition further includes, in mass%, Ti: 0.50% or less;
Al: 0.30% or less,
V: 0.55% or less,
The steel pipe according to the above [1] or [2], containing one or more selected from the following: Nb: 0.75% or less.
[4] The component composition further includes, in mass%, Ni: less than 2.5%;
W: less than 1.0%
Cu: less than 2.5%
B: 0.010% or less,
Zr: 0.10% or less,
Ca: 0.010% or less,
Ta: 0.01% or less,
REM: 0.10% or less,
Mg: 0.10% or less,
Sn: 0.30% or less,
Sb: 0.30% or less,
The steel pipe according to any one of the above [1] to [3], containing one or more selected from the following: Ag: 0.30% or less.
[5] A method for producing a steel pipe according to any one of [1] to [4] above, comprising bending and unbending a steel pipe material in a pipe circumferential direction to obtain a steel pipe.
[6] A method for manufacturing a steel pipe as described in [5] above, in which, after bending and unbending in the circumferential direction of the pipe, a heat treatment is performed in which the holding temperature is 300°C or less and the holding time is 300 seconds or more and less than 3600 seconds, followed by air cooling.
本発明によれば、管軸方向引張降伏強度が高く、かつ管軸方向の引張降伏強度と圧縮降伏強度との差が小さく、疲労特性に優れる鋼管およびその製造方法が提供される。 The present invention provides a steel pipe that has high axial tensile yield strength, a small difference between axial tensile yield strength and compressive yield strength, and excellent fatigue properties, and a method for manufacturing the same.
以下に、本発明について説明する。 The present invention is described below.
本発明の鋼管は、質量%で、C:0.01~1.15%、Si:0.01~2.50%、Mn:0.01~2.50%、N:0.001~0.050%、を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライト相を有し、且つ残留オーステナイト相が面積率で10%以下である組織を有し、管軸方向引張降伏強度が400MPa以上であり、管軸方向圧縮降伏強度/管軸方向引張降伏強度が0.85~1.15である。 The steel pipe of the present invention has a composition, by mass%, of C: 0.01-1.15%, Si: 0.01-2.50%, Mn: 0.01-2.50%, N: 0.001-0.050%, with the balance being Fe and unavoidable impurities, has a ferrite phase, and has a structure in which the area ratio of the retained austenite phase is 10% or less, has an axial tensile yield strength of 400 MPa or more, and has an axial compressive yield strength/axial tensile yield strength of 0.85-1.15.
まず、本発明の鋼管の組成限定理由について説明する。以下、とくに断らない限り、質量%は単に%と記す。 First, we will explain the reasons for limiting the composition of the steel pipe of the present invention. Hereinafter, unless otherwise specified, mass% will simply be written as %.
C:0.01~1.15%
Cは、鋼の強度特性、疲労特性の向上に重要であり、0.01%以上含有することが必要である。しかし、過剰なCの含有はオーステナイト相や過剰な炭化物を形成して強度特性、疲労特性、さらには靭性を低下させる。そのため、C含有量は1.15%以下とする。高い強度、疲労特性を得つつ、靭性も良好に保つ観点から、C含有量は0.05%以上とすることが好ましい。また、C含有量は、0.55%以下とすることが好ましい。
C: 0.01-1.15%
C is important for improving the strength and fatigue properties of steel, and must be present at 0.01% or more. However, excessive C content forms an austenite phase and excessive carbides, which reduces the strength properties. , fatigue properties, and furthermore, toughness are deteriorated. Therefore, the C content is set to 1.15% or less. From the viewpoint of obtaining high strength and fatigue properties while maintaining good toughness, the C content is set to 0.05%. The C content is preferably 0.55% or less.
Si:0.01~2.50%
Siは鋼の脱酸作用があるため、溶鋼中への適量の含有が有効である。また、鋼の強度特性向上に有効であるため、Siを含有することは必要である。しかし、多量のSi含有に伴い、冷間加工性と低温靱性を損なう。そのため、Si含有量は2.50%以下とする。一方、脱酸後のSiを過剰に低減させることは製造コストの上昇につながるため、Si含有量は0.01%以上とする。なお、十分に脱酸作用を得るために、Si含有量は0.10%以上とすることが好ましい。過剰に鋼中にSiが残存することによる冷間加工性と低温靱性の低下を抑制する観点から、Si含有量は0.80%以下とすることが好ましい。
Si: 0.01~2.50%
Since silicon has a deoxidizing effect on steel, it is effective to include an appropriate amount of silicon in molten steel. In addition, silicon is effective in improving the strength properties of steel, so it is necessary to include silicon. However, a large amount of silicon The inclusion of Si impairs cold workability and low temperature toughness. Therefore, the Si content is set to 2.50% or less. On the other hand, excessive reduction of Si after deoxidation leads to an increase in manufacturing costs. The Si content is set to 0.01% or more. In order to obtain a sufficient deoxidizing effect, the Si content is preferably set to 0.10% or more. Excessive Si remaining in the steel From the viewpoint of suppressing deterioration in cold workability and low temperature toughness due to hardening, the Si content is preferably set to 0.80% or less.
Mn:0.01~2.50%
Mnは、鋼の強度特性を向上させるために0.01%以上含有することが必要である。一方で、Mnは強力なオーステナイト相形成元素であるため、過剰にMnを含有すると残留オーステナイト相が増加し、強度が低下する。そのため、Mn含有量は2.50%以下とする。また、強度特性を高めつつ、所定の組織を得るために、Mn含有量は0.10%以上とすることが好ましい。また、Mn含有量は1.50%以下とすることが好ましい。
Mn: 0.01-2.50%
Mn must be present in an amount of 0.01% or more to improve the strength properties of steel. However, since Mn is a strong austenite phase forming element, excessive Mn content can cause the formation of a retained austenite phase. The Mn content is increased and the strength is decreased. Therefore, the Mn content is set to 2.50% or less. In order to obtain a desired structure while improving the strength characteristics, the Mn content is set to 0.10% or more. The Mn content is preferably 1.50% or less.
N:0.001~0.050%
Nは、微細な組織と強度特性を得るために0.001%以上含有することが必要である。一方で、過剰にNを含有すると鋼中に気泡が発生するため、N含有量は0.050%以下とする。極度にNを少なくするには処理に時間とコストがかかり、また、気泡の無い微細な組織を安定して得るという観点から0.005~0.050%とすることが好ましい。
N: 0.001-0.050%
In order to obtain a fine structure and strength properties, the N content must be 0.001% or more. On the other hand, if the N content is excessive, bubbles will form in the steel. To reduce the N content too much would require a lot of time and cost for processing, and from the viewpoint of stably obtaining a fine structure without bubbles, the content should be 0.005 to 0.050%. preferable.
残部はFeおよび不可避的不純物である。なお、不可避的不純物としては、P:0.05%以下、S:0.05%以下、O(酸素):0.01%以下が挙げられる。P、S、Oは精錬時に不可避的に混入する不純物である。これらの元素は不純物として残留量が多すぎた場合、熱間加工性の低下や耐食性、低温靱性の低下など様々な問題が生じる場合がある。そのためそれぞれP:0.05%以下、S:0.05%以下、O:0.01%以下に管理することが好ましい。 The balance is Fe and unavoidable impurities. Examples of unavoidable impurities include P: 0.05% or less, S: 0.05% or less, and O (oxygen): 0.01% or less. P, S, and O are impurities that are inevitably mixed in during refining. If too many of these elements remain as impurities, various problems may occur, such as reduced hot workability, corrosion resistance, and low-temperature toughness. For this reason, it is preferable to keep the amounts of P to 0.05% or less, S to 0.05% or less, and O to 0.01% or less, respectively.
上記成分組成のほかに、本発明では必要に応じて、以下に述べる元素を適宜含有してもよい。 In addition to the above composition, the present invention may contain the following elements as necessary.
Cr:2.00%以下、Mo:2.00%以下のうちから選ばれた1種または2種
Cr:2.00%以下(0%を含む)
Crは鋼の強度特性を向上するとともに、耐食性や耐摩耗性の向上に有効であるため、含有する場合には、0.05%以上含有することが好ましい。一方、過剰にCrを含有すると、硬度が上がり、冷間加工性が低下する。そのため、Cr含有量は2.00%以下であることが好ましい。強度向上効果と優れた冷間加工性を得るという観点から、Cr含有量は0.5%以上であることがより好ましい。また、Cr含有量は1.3%以下であることがより好ましい。
One or two selected from the following: Cr: 2.00% or less, Mo: 2.00% or less Cr: 2.00% or less (including 0%)
Cr improves the strength properties of steel and is effective in improving corrosion resistance and wear resistance, so if Cr is contained, it is preferable to contain 0.05% or more. On the other hand, if Cr is contained in excess, the hardness increases and the cold workability decreases. Therefore, the Cr content is preferably 2.00% or less. From the viewpoint of obtaining a strength improvement effect and excellent cold workability, the Cr content is more preferably 0.5% or more. In addition, the Cr content is more preferably 1.3% or less.
Mo:2.00%以下(0%を含む)
Moは、高温強度の向上に有効であるため、含有する場合には、0.05%以上含有することが好ましい。一方で、Mo含有量が多いと硬度が上昇し、冷間加工性が低下する。そのため、Mo含有量は2.00%以下とすることが好ましい。高温強度と優れた冷間加工性を得る観点から、Mo含有量は0.1%以上であることがより好ましい。また、Mo含有量は1.5%以下であることがより好ましい。
Mo: 2.00% or less (including 0%)
Mo is effective in improving high-temperature strength, so if it is contained, it is preferable to contain 0.05% or more. On the other hand, if the Mo content is high, the hardness increases and the cold workability decreases. Therefore, the Mo content is preferably 2.00% or less. From the viewpoint of obtaining high-temperature strength and excellent cold workability, the Mo content is more preferably 0.1% or more. In addition, the Mo content is more preferably 1.5% or less.
本発明はさらに必要に応じて、以下に述べる元素を適宜含有してもよい。 The present invention may further contain the elements described below as necessary.
Ti:0.50%以下(0%を含む)、Al:0.30%以下(0%を含む)、V:0.55%以下(0%を含む)、Nb:0.75%以下(0%を含む)のうちから選ばれた1種または2種以上
Ti、Al、V、Nbは、適量含有すると窒化物や炭化物を形成し組織の微細化に有効であり、必要に応じて含有することができる。含有する場合、Ti含有量は0.001%以上であることが好ましい。Al含有量は0.001%以上であることが好ましい。V含有量は0.01%以上であることが好ましい。Nb含有量は0.01%以上であることが好ましい。含有する場合、靭性低下を防ぐため、Tiは0.50%以下、Alは0.30%以下、Vは0.55%以下、Nbは0.75%以下で含有することが好ましい。また、合金コストを抑制するという観点から、Ti含有量は0.05%以下であることが好ましく、Al含有量は0.10%以下であることが好ましく、V含有量は0.30%以下であることが好ましく、Nb含有量は0.30%以下であることが好ましい。
One or more selected from Ti: 0.50% or less (including 0%), Al: 0.30% or less (including 0%), V: 0.55% or less (including 0%), and Nb: 0.75% or less (including 0%). When contained in an appropriate amount, Ti, Al, V, and Nb form nitrides or carbides and are effective in refining the structure, and can be contained as necessary. When contained, the Ti content is preferably 0.001% or more. The Al content is preferably 0.001% or more. The V content is preferably 0.01% or more. The Nb content is preferably 0.01% or more. When contained, in order to prevent a decrease in toughness, it is preferable to contain Ti at 0.50% or less, Al at 0.30% or less, V at 0.55% or less, and Nb at 0.75% or less. Also, from the viewpoint of suppressing alloy costs, the Ti content is preferably 0.05% or less, the Al content is preferably 0.10% or less, the V content is preferably 0.30% or less, and the Nb content is preferably 0.30% or less.
本発明はさらに必要に応じて、以下に述べる元素を適宜含有してもよい。 The present invention may further contain the elements described below as necessary.
Ni:2.5%未満(0%を含む)、W:1.0%未満(0%を含む)、Cu:2.5%未満(0%を含む)のうちから選ばれた1種または2種以上
Ni:2.5%未満(0%を含む)
Niは鋼の靭性向上に効果的である。Niを含有する場合、0.01%以上含有することが好ましい。一方で、過剰にNiを含有すると、引張強度や疲労強度が低下する。そのため、Ni含有量は2.5%未満であることが好ましい。靭性と優れた強度特性を得る観点から、Ni含有量は0.05%以上であることがより好ましい。また、Ni含有量は1.50%以下であることが好ましい。
One or more selected from the following: Ni: less than 2.5% (including 0%), W: less than 1.0% (including 0%), Cu: less than 2.5% (including 0%) Ni: less than 2.5% (including 0%)
Ni is effective in improving the toughness of steel. When Ni is contained, it is preferable to contain 0.01% or more. On the other hand, if Ni is contained excessively, the tensile strength and fatigue strength are reduced. Therefore, the Ni content is preferably less than 2.5%. From the viewpoint of obtaining toughness and excellent strength characteristics, the Ni content is more preferably 0.05% or more. In addition, the Ni content is preferably 1.50% or less.
W:1.0%未満(0%を含む)、Cu:2.5%未満(0%を含む)
WとCuは鋼の耐腐食性を向上させる。含有する場合、W含有量は0.01%以上、Cu含有量は0.01%以上とすることが好ましい。各元素の含有量が多いと熱間で成形する際の表面肌の悪化や疵の原因となる。そのため、Wは1.0%未満、Cuは2.5%未満で含有することが好ましい。W含有量は0.10%以下とすることがより好ましい。Cu含有量は1.50%以下とすることがより好ましい。
W: less than 1.0% (including 0%), Cu: less than 2.5% (including 0%)
W and Cu improve the corrosion resistance of steel. When contained, the W content is preferably 0.01% or more and the Cu content is preferably 0.01% or more. If the content of each element is high, it may cause deterioration of the surface skin or defects during hot forming. Therefore, it is preferable that W is contained at less than 1.0% and Cu is contained at less than 2.5%. It is more preferable that the W content is 0.10% or less. It is more preferable that the Cu content is 1.50% or less.
本発明はさらに必要に応じて、以下に述べる元素を適宜含有してもよい。 The present invention may further contain the elements described below as necessary.
B:0.010%以下(0%を含む)、Zr:0.10%以下(0%を含む)、Ca:0.010%以下(0%を含む)、Ta:0.01%以下(0%を含む)、REM:0.10%以下(0%を含む)、Mg:0.10%以下(0%を含む)のうちから選ばれた1種また2種以上
B、Zr、Ca、Ta、REM、Mgは、ごく微量を含有すると熱間成形時の加工性や表面スケールへ影響を与え、表面疵の抑制に役立つ。そのため、含有する場合、B含有量は0.001%以上であることが好ましい。Zr含有量は0.01%以上であることが好ましい。Ca含有量は0.001%以上であることが好ましい。Ta含有量は0.001%以上であることが好ましい。REM含有量は0.001%以上であることが好ましい。Mg含有量は0.001%以上であることが好ましい。しかしながら、過剰な含有は逆に表面疵を悪化させる場合がある。Bは0.010%以下、Zrは0.10%以下、Caは0.010%以下、Taは0.01%以下、REMは0.10%以下、Mgは0.10%以下で含有することが好ましい。B含有量は0.005%以下であることがより好ましい。Zr含有量は0.03%以下であることがより好ましい。Ca含有量は0.005%以下であることがより好ましい。Ta含有量は0.005%以下であることがより好ましい。REM含有量は0.005%以下であることがより好ましい。Mg含有量は0.005%以下であることがより好ましい。
One or more selected from B: 0.010% or less (including 0%), Zr: 0.10% or less (including 0%), Ca: 0.010% or less (including 0%), Ta: 0.01% or less (including 0%), REM: 0.10% or less (including 0%), and Mg: 0.10% or less (including 0%). When B, Zr, Ca, Ta, REM, and Mg are contained in very small amounts, they affect the workability and surface scale during hot forming, and are useful for suppressing surface defects. Therefore, when contained, the B content is preferably 0.001% or more. The Zr content is preferably 0.01% or more. The Ca content is preferably 0.001% or more. The Ta content is preferably 0.001% or more. The REM content is preferably 0.001% or more. The Mg content is preferably 0.001% or more. However, excessive content may worsen surface defects. It is preferable that B is 0.010% or less, Zr is 0.10% or less, Ca is 0.010% or less, Ta is 0.01% or less, REM is 0.10% or less, and Mg is 0.10% or less. It is more preferable that the B content is 0.005% or less. It is more preferable that the Zr content is 0.03% or less. It is more preferable that the Ca content is 0.005% or less. It is more preferable that the Ta content is 0.005% or less. It is more preferable that the REM content is 0.005% or less. It is more preferable that the Mg content is 0.005% or less.
本発明はさらに必要に応じて、以下に述べる元素を適宜含有してもよい。 The present invention may further contain the elements described below as necessary.
Sn:0.30%以下(0%を含む)、Sb:0.30%以下(0%を含む)、Ag:0.30%以下(0%を含む)のうちから選ばれた1種または2種以上
Sn、Sb、Agは、微量に添加すると耐食性能が向上する。含有量について特に下限を設ける必要はないが、含有する場合には、Sn、Sb、Agのそれぞれの含有量は0.0001%以上とすることにより耐食性能向上効果が得られる。一方で、含有量が多すぎると熱間加工性が低下する。そのため、含有する場合、Sn、Sb、Agのそれぞれの含有量は0.30%以下とする。
One or more selected from Sn: 0.30% or less (including 0%), Sb: 0.30% or less (including 0%), Ag: 0.30% or less (including 0%) Sn, Sb, and Ag improve corrosion resistance when added in small amounts. There is no need to set a lower limit for the content, but when contained, the effect of improving corrosion resistance can be obtained by making the content of each of Sn, Sb, and Ag 0.0001% or more. On the other hand, if the content is too high, hot workability is reduced. Therefore, when contained, the content of each of Sn, Sb, and Ag is 0.30% or less.
次に本発明における鋼管の組織について説明する。 Next, we will explain the structure of the steel pipe in this invention.
本発明の組織は、フェライト相(ベイナイト相を含む)を有し、且つ残留オーステナイト相が面積率で10%以下である。また、本発明の組織は、セメンタイト相(パーライトを含む)を含んでいてもよい。これらの組織を有する鋼管は、熱間圧延後の放冷ままや、焼鈍熱処理で処理された状態では高い管軸方向引張降伏強度が得られないが、冷間加工を行うと、塑性ひずみによる転位強化で高強度化し、あわせて優れた疲労強度特性を発揮する。 The structure of the present invention has a ferrite phase (including a bainite phase), and the area ratio of the retained austenite phase is 10% or less. The structure of the present invention may also contain a cementite phase (including pearlite). Steel pipes having these structures do not have high axial tensile yield strength when left to cool after hot rolling or when treated by annealing, but when cold worked, they are strengthened by dislocation strengthening caused by plastic strain, and also exhibit excellent fatigue strength properties.
この組織ではバウシンガー効果が働くため、管軸方向に対する延伸塑性ひずみを利用して、鋼管を高強度化する冷牽や冷間ピルガー圧延を行うと、管軸方向圧縮降伏強度が低下し、その結果、管軸方向への引張負荷に対する疲労強度よりも、管軸方向への圧縮負荷を受ける疲労強度が劣る。そのため、管軸方向に対して引張と圧縮共に優れた疲労強度を得るには、冷間加工として曲げ曲げ戻し加工を行うことが必要となる。 Because the Bauschinger effect is at work in this structure, when cold drawing or cold pilger rolling is performed to increase the strength of steel pipes by utilizing the elongation plastic strain in the axial direction, the compressive yield strength in the axial direction decreases, and as a result, the fatigue strength under a compressive load in the axial direction is inferior to the fatigue strength under a tensile load in the axial direction. Therefore, in order to obtain excellent fatigue strength in both tension and compression in the axial direction, bending and unbending is required as cold working.
フェライト相の面積率は特に限定されないが、50%以上であると冷間加工時の加工性が良好であるため好ましい。フェライト相の面積率は、上限も特に限定されないが、良好な加工性を得つつ、高強度特性を得るという観点から、フェライト相の面積率は95%以下であることが好ましい。 The area ratio of the ferrite phase is not particularly limited, but is preferably 50% or more since this provides good workability during cold working. There is no particular upper limit to the area ratio of the ferrite phase, but from the viewpoint of obtaining good workability while also obtaining high strength characteristics, it is preferable that the area ratio of the ferrite phase is 95% or less.
セメンタイト相の面積率も特に限定されないが、高強度、高硬度を得るという観点から、5%以上であることが好ましい。また、優れた靭性や冷間加工性を得るという観点から、セメンタイト相の面積率は、50%以下であることが好ましい。 The area ratio of the cementite phase is not particularly limited, but from the viewpoint of obtaining high strength and high hardness, it is preferable that it is 5% or more. Furthermore, from the viewpoint of obtaining excellent toughness and cold workability, the area ratio of the cementite phase is preferably 50% or less.
また、フェライト相やセメンタイト相中に存在する残留オーステナイト相については、面積率で10%を超えると冷間加工性や強度特性に悪影響が発生するが、10%以下であれば問題にならない。よって、本発明の組織では、残留オーステナイト相が面積率で10%以下である。 In addition, if the area ratio of the retained austenite phase present in the ferrite phase or cementite phase exceeds 10%, it will have a detrimental effect on cold workability and strength characteristics, but if it is 10% or less, there will be no problem. Therefore, in the structure of the present invention, the area ratio of the retained austenite phase is 10% or less.
組織の測定方法は次の通りである。冷間加工後の鋼管を鏡面研磨し、ナイタールまたはビレラ腐食液などの酸で腐食後、光学顕微鏡により、フェライト相、またはフェライト相とセメンタイト相(パーライトを含む)を含む組織であることを確認でき、パーライトは黒く着色されるため分率を測定できる。倍率は100から400倍とし、50個以上のフェライト粒、または合計で50個以上のフェライト粒とパーライト粒を観察できる視野にすると面積率の精度をより高められる。 The method for measuring the structure is as follows. After cold working, the steel pipe is mirror-polished and etched with an acid such as Nital or Virela's etching solution. Using an optical microscope, it can be confirmed that the structure contains ferrite phase, or ferrite phase and cementite phase (including pearlite); pearlite is colored black, so its fraction can be measured. The accuracy of the area ratio can be improved by using a magnification of 100 to 400 times and a field of view that allows observation of 50 or more ferrite grains, or a total of 50 or more ferrite grains and pearlite grains.
また、組織中、フェライト相、またはフェライト相とセメンタイト相以外は電子顕微鏡により観察できる。残留オーステナイト相は、鏡面研磨後の試験片についてX線回折により、フェライト相の体心立方格子とオーステナイト相の面心立方格子のピークを分離すれば容易に分率を測定できる。X線回折により、残留オーステナイト相の体積率を測定し、これを残留オーステナイト相の面積率として扱う。 In addition, the structure can be observed using an electron microscope except for the ferrite phase, or the ferrite phase and cementite phase. The percentage of retained austenite phase can be easily measured by separating the peaks of the body-centered cubic lattice of the ferrite phase and the face-centered cubic lattice of the austenite phase using X-ray diffraction on a mirror-polished test piece. The volume fraction of the retained austenite phase is measured using X-ray diffraction, and this is treated as the area fraction of the retained austenite phase.
また、本発明の鋼管では、冷間加工前と冷間加工後において、フェライト相、またはフェライト相とセメンタイト相を含む同一の組織が得られる。 In addition, the steel pipe of the present invention has the same structure containing ferrite phase or ferrite phase and cementite phase before and after cold working.
本発明の鋼管における組織は、成分組成の調整により制御することができる。 The structure of the steel pipe of the present invention can be controlled by adjusting the composition.
本発明の鋼管において、管軸方向引張降伏強度は400MPa以上とする。通常、フェライト相を含む組織は軟質であるため、冷間加工無しでは400MPa以上の管軸方向引張降伏強度は得られない。そこで、本発明では、400MPa以上の高い管軸方向引張降伏強度を得るために、冷間加工による転位強化を行う。なお、管軸方向引張降伏強度の上限に制限はないが、あまりに高強度になると遅れ破壊が生じる場合があるため、870MPa以下であることが好ましい。 In the steel pipe of the present invention, the axial tensile yield strength is set to 400 MPa or more. Normally, a structure containing a ferrite phase is soft, so an axial tensile yield strength of 400 MPa or more cannot be obtained without cold working. Therefore, in the present invention, dislocation strengthening is performed by cold working to obtain a high axial tensile yield strength of 400 MPa or more. There is no upper limit to the axial tensile yield strength, but since delayed fracture may occur if the strength is too high, it is preferable that it be 870 MPa or less.
また、本発明では、管軸方向圧縮降伏強度と管軸方向引張降伏強度の比、すなわち管軸方向圧縮降伏強度/管軸方向引張降伏強度を0.85~1.15とする。管軸方向圧縮降伏強度/管軸方向引張降伏強度を0.85~1.15とすることにより、管軸方向において、引張負荷の疲労強度に対し、圧縮負荷を含む場合でも優れた疲労強度が得られる。管軸方向圧縮降伏強度と管軸方向引張降伏強度の比である管軸方向圧縮降伏強度/管軸方向引張降伏強度は1に近いほど優れた疲労特性が得られるため好ましく、管軸方向圧縮降伏強度/管軸方向引張降伏強度は、0.95以上であることが好ましい。また、管軸方向圧縮降伏強度/管軸方向引張降伏強度は1.10以下であることが好ましい。 In addition, in the present invention, the ratio of tube axial compressive yield strength to tube axial tensile yield strength, i.e., tube axial compressive yield strength/tube axial tensile yield strength, is set to 0.85 to 1.15. By setting the tube axial compressive yield strength/tube axial tensile yield strength to 0.85 to 1.15, excellent fatigue strength can be obtained in the tube axial direction, even when a compressive load is included, compared to the fatigue strength of a tensile load. The ratio of tube axial compressive yield strength to tube axial tensile yield strength, i.e., tube axial compressive yield strength/tube axial tensile yield strength, is preferably closer to 1, since excellent fatigue properties can be obtained, and the tube axial compressive yield strength/tube axial tensile yield strength is preferably 0.95 or more. Also, the tube axial compressive yield strength/tube axial tensile yield strength is preferably 1.10 or less.
なお、管軸方向圧縮降伏強度の測定は、円柱圧縮試験により測定できる。圧縮を行う円柱試験片は管軸方向に平行に肉厚中心部より採取する。また、円柱外径d[mm]と円柱高さh[mm]をh/d≦2.0とすればよい。具体的には、管の肉厚中心部から円柱外径d=3.0mm、円柱高さh=5.0mmとして試験片を切り出す。圧縮試験は、常温(25℃)で、平板間に試験片を挟んで荷重を与える形式を採用し、圧縮した際に得られる応力ひずみ曲線を利用して圧縮降伏強度を算出する。応力ひずみ曲線は、圧縮試験機で圧縮速度1.0mm/minで30%圧縮を行うことで得られる。 The tube axial compressive yield strength can be measured by a cylindrical compression test. The cylindrical test piece to be compressed is taken from the center of the wall thickness parallel to the tube axial direction. The outer diameter d [mm] of the cylinder and the height h [mm] of the cylinder should be h/d≦2.0. Specifically, a test piece with an outer diameter d = 3.0 mm and a height h = 5.0 mm is cut out from the center of the tube thickness. The compression test is performed at room temperature (25°C) by sandwiching the test piece between flat plates and applying a load, and the compressive yield strength is calculated using the stress-strain curve obtained during compression. The stress-strain curve is obtained by compressing 30% with a compression tester at a compression speed of 1.0 mm/min.
また、管軸方向引張降伏強度は、JIS Z2241(2011)に従い、まず、試験片としては、管軸方向に平行に管の肉厚中心部から平行部径3.0mmの丸棒引張試験片を切り出す。そして、常温(25℃)で、クロスヘッド速度1.0mm/minで破断まで引張試験を実施する。これにより得られる応力ひずみ曲線を利用して、引張降伏強度を算出する。 The axial tensile yield strength is measured according to JIS Z2241 (2011). First, a round bar tensile test piece with a parallel diameter of 3.0 mm is cut from the center of the wall thickness of the tube parallel to the axial direction. A tensile test is then performed at room temperature (25°C) and a crosshead speed of 1.0 mm/min until fracture. The tensile yield strength is calculated using the stress-strain curve obtained from this.
本発明の鋼管では、上記の成分組成を有する鋼管素材に対して、後述の曲げ曲げ戻し加工を施すことによって、管軸方向圧縮降伏強度/管軸方向引張降伏強度を0.85~1.15に制御することができる。 In the steel pipe of the present invention, the axial compressive yield strength/axial tensile yield strength can be controlled to 0.85 to 1.15 by performing the bending and unbending process described below on the steel pipe material having the above-mentioned composition.
本発明で良好な疲労強度が得られる疲労環境を説明する。従来の冷間圧延である冷牽や冷間ピルガー圧延では、管軸方向を引張方向とする応力に対する疲労特性は良好である。つまり、疲労試験の応力σの比R(=σmin/σmax)が0となる片振りの引張応力環境で良好である。一方で、通常の疲労環境は引張と圧縮が付与される両振り疲労環境R=-1が大半であるが、圧縮降伏強度に劣る従来の冷間圧延では両振りの疲労環境で良好な疲労強度が得られない。本発明は管軸方向圧縮降伏強度/管軸方向引張降伏強度に優れるため、圧縮方向の応力が負荷される両振りの疲労環境でも優れた疲労強度を発揮する。そのため、本発明の鋼管は、車軸、ネジ継手を有する鋼管、熱井や油井採掘用の鋼管、化学プラント配管等に好適に用いられる。 The fatigue environment in which good fatigue strength can be obtained with the present invention will be explained. In conventional cold rolling, such as cold drawing and cold pilger rolling, the fatigue characteristics are good against stress in the axial direction of the tube as the tensile direction. In other words, it is good in a unilateral tensile stress environment in which the stress σ ratio R (=σmin/σmax) in the fatigue test is 0. On the other hand, most normal fatigue environments are alternating fatigue environments in which tension and compression are applied, R=-1, but conventional cold rolling, which has poor compressive yield strength, does not provide good fatigue strength in an alternating fatigue environment. Since the present invention is excellent in axial compressive yield strength/axial tensile yield strength, it exhibits excellent fatigue strength even in an alternating fatigue environment in which stress in the compressive direction is loaded. Therefore, the steel pipe of the present invention is suitable for use in axles, steel pipes with threaded joints, steel pipes for hot wells and oil wells, chemical plant piping, etc.
次に、本発明の鋼管の製造方法について説明する。 Next, we will explain the manufacturing method of the steel pipe of the present invention.
まず、上記の成分組成を有する鋼素材を作製する。鋼の溶製は各種溶解プロセスが適用でき、制限はない。たとえば、鉄スクラップや各元素の塊を電気溶解して製造する場合は真空溶解炉、大気溶解炉が利用できる。また、高炉法による溶銑を利用する場合はAr-O2混合ガス底吹き脱炭炉や真空脱炭炉等が利用できる。溶解した材料は静止鋳造、または連続鋳造により凝固させ、インゴットやスラブとし、その後、熱間圧延で板形状の鋼素材、または、鍛造や圧延で丸ビレット形状に成形し鋼素材となる。 First, a steel material having the above-mentioned composition is prepared. Various melting processes can be applied to the production of steel, and there is no limitation. For example, when producing steel by electrically melting scrap iron or a lump of each element, a vacuum melting furnace or an atmospheric melting furnace can be used. When using molten pig iron by the blast furnace method, an Ar- O2 mixed gas bottom blowing decarburization furnace or a vacuum decarburization furnace can be used. The melted material is solidified by static casting or continuous casting to form an ingot or slab, and then formed into a plate-shaped steel material by hot rolling, or into a round billet shape by forging or rolling to form the steel material.
次に、板形状の鋼素材の場合は、略管形に成形された後、端部を溶接されて鋼管形状とされる。鋼管成形のプロセスは特に制限はなく、UOE成形法やロールフォーミングなどの成形技術と、溶材を利用した溶接や誘導加熱を利用した電縫溶接が利用できる。また、丸ビレット状の鋼素材の場合は、加熱炉で加熱され、各種熱間圧延プロセスを経て鋼管形状となる。そして、丸ビレットを中空管にする熱間成形(穿孔プロセス)を行う。熱間成形としては、マンネスマン方式、押出製管法等のいずれの手法も利用できる。また、必要に応じて、中空管に対し減肉、外径定型を行う熱間圧延プロセスであるエロンゲーター、アッセルミル、マンドレルミル、プラグミル、サイザー、ストレッチレデューサー等を利用してもよい。 Next, in the case of a plate-shaped steel material, it is formed into an approximately tubular shape, and the ends are welded to form a steel pipe. There are no particular limitations on the steel pipe forming process, and forming techniques such as UOE forming and roll forming, welding using a molten material, and electric resistance welding using induction heating can be used. In the case of a round billet-shaped steel material, it is heated in a heating furnace and undergoes various hot rolling processes to form a steel pipe. Then, hot forming (piercing process) is performed to make the round billet into a hollow pipe. Any method such as the Mannesmann method or the extrusion pipe method can be used for hot forming. In addition, if necessary, an elongator, Assel mill, mandrel mill, plug mill, sizer, stretch reducer, etc., which are hot rolling processes that reduce the wall thickness and determine the outer diameter of the hollow pipe, may be used.
次に、成形後の鋼管は、冷間加工前に焼鈍熱処理を行うことが組織の均質化と残留応力が除去されるために好ましい。熱処理後の冷却は、焼鈍で得られる均一で残留応力の少ない状態を維持するために、炉冷や5℃/s以下の放冷とすることが好ましい。 Next, it is preferable to perform annealing heat treatment on the formed steel pipe before cold working, as this homogenizes the structure and removes residual stress. Cooling after heat treatment is preferably performed by furnace cooling or natural cooling at a rate of 5°C/s or less in order to maintain the uniform state with little residual stress obtained by annealing.
本発明では、管周方向への曲げ曲げ戻し加工により鋼管の高降伏強度化を行う。 In the present invention, the yield strength of steel pipes is increased by bending and unbending the pipe in the circumferential direction.
この冷間加工方法では管周方向への曲げ曲げ戻し加工による塑性ひずみで発生する転位強化を利用して鋼管を高強度化する。図面に基づいて、本加工手法について説明する。この手法は、冷間加工による塑性ひずみが管軸長手方向へ発生する冷間引き抜き圧延や冷間ピルガー圧延と異なり、図1に示すように、ひずみは管の扁平による曲げ加工後(1回目の扁平加工)、再び真円に戻す際の曲げ戻し加工(2回目の扁平加工)により与えられる。この手法では、曲げ曲げ戻しの繰り返しや曲げ量の変化を利用してひずみ量を調整するが、与えるひずみは加工前後の形状を大きく変えない。さらに、管軸方向へのひずみがほとんど発生せず管周方向と管肉厚方向へ与えられたひずみによる転位強化で高強度化するため、管軸方向へのバウシンガー効果の発生を抑制できる。つまり、冷間引抜圧延や冷間ピルガー圧延のように管軸方向圧縮強度の管軸方向引張強度に対する大きな低下が発生しないため、それに伴い優れた管軸方向圧縮疲労強度特性が得られる。 This cold working method uses dislocation strengthening caused by plastic strain caused by bending and unbending in the circumferential direction of the tube to increase the strength of the steel tube. This working method is explained based on the drawings. Unlike cold drawing and cold pilger rolling, in which plastic strain caused by cold working occurs in the longitudinal direction of the tube axis, as shown in Figure 1, this method is given by bending the tube to flatten it (first flattening process) and then bending it back to return it to a perfect circle (second flattening process). In this method, the amount of strain is adjusted by using repeated bending and unbending and changes in the amount of bending, but the applied strain does not significantly change the shape before and after processing. Furthermore, since there is almost no strain in the axial direction of the tube, and strength is increased by dislocation strengthening caused by strain applied in the circumferential direction and the wall thickness direction of the tube, the occurrence of the Bauschinger effect in the axial direction of the tube can be suppressed. In other words, there is no significant decrease in the axial compressive strength relative to the axial tensile strength, as occurs with cold drawing rolling or cold pilger rolling, resulting in excellent axial compressive fatigue strength properties.
なお、図1(a)(b)は、工具接触部を2ヶ所とした場合の断面図であり、図1(c)は工具接触部を3か所とした場合の断面図である。また、図1における太い矢印は、鋼管に偏平加工を行う際の力の掛かる方向である。図1に示すように、2回目の偏平加工を行う際、1回目の偏平加工を施していない箇所に工具が接触するように、鋼管を回転させるように工具を動かしたり、工具の位置をずらしたりするなどの工夫をすればよい(図1中の斜線部は1回目の扁平箇所を示す。)。 Figures 1(a) and (b) are cross-sectional views when there are two tool contact areas, and Figure 1(c) is a cross-sectional view when there are three tool contact areas. The thick arrow in Figure 1 indicates the direction in which force is applied when flattening the steel pipe. As shown in Figure 1, when performing the second flattening, the tool can be moved to rotate the steel pipe or the tool can be shifted so that the tool comes into contact with areas that have not been flattened in the first flattening (the shaded areas in Figure 1 indicate the areas that were flattened in the first flattening).
図1に示すように、鋼管を扁平させる管周方向への曲げ曲げ戻し加工を、管の周方向全体に間欠的、または連続的に与えることで、鋼管の曲率の最大値付近で曲げによるひずみが加えられ、鋼管の曲率の最小値に向けて曲げ戻しによるひずみが加わる。その結果、鋼管の強度向上(転位強化)に必要な曲げ曲げ戻し変形によるひずみが蓄積される。また、この加工形態を用いる場合、管の肉厚や外径を圧縮して行う加工形態とは異なり、多大な動力を必要とせず、偏平による変形であるため加工前後の形状変化を最小限にとどめながら加工可能な点が特徴的である。 As shown in Figure 1, by performing bending and unbending in the circumferential direction of the pipe to flatten it intermittently or continuously around the entire circumference of the pipe, bending strain is applied near the maximum value of the steel pipe's curvature, and unbending strain is applied toward the minimum value of the steel pipe's curvature. As a result, strain due to bending and unbending deformation necessary for improving the strength of the steel pipe (dislocation strengthening) accumulates. In addition, when using this processing method, unlike processing methods that compress the pipe's wall thickness and outer diameter, it is characterized by the fact that it does not require a large amount of power, and because the deformation is due to flattening, processing can be performed while minimizing shape changes before and after processing.
曲げ曲げ戻し加工では鋼管の管軸方向の強度を制御するために、管の扁平量の管理が重要であり、より多く扁平させるとひずみが多くなり一度の曲げ曲げ戻し加工での管軸方向の強度の向上量が大きくなる。曲げ曲げ戻し加工により十分な管軸方向の強度を得るには素材成分にもよるが加工前の鋼管外径に対し、5%以上の扁平量(初期外径の95%以下になる外径までの扁平)を与えることが好ましい。また、10%以上の扁平量とすることで安定した管軸方向の強度が得られる。扁平量に特に上限は無いが、あまりに扁平量が大きいと曲げ曲げ戻し加工後の真円度が悪くなる。また、加工中に割れが発生する可能性がある。そのため、25%以下の扁平量で曲げ曲げ戻し加工を行うことが好ましい。 In bending and unbending, in order to control the strength of the steel pipe in the axial direction, it is important to manage the flattening amount of the pipe. The more flattened the pipe, the more distortion there is, and the greater the improvement in strength in the axial direction in one bending and unbending process. To obtain sufficient strength in the axial direction by bending and unbending, it is preferable to give the steel pipe a flattening amount of 5% or more (flattening to an outer diameter that is 95% or less of the initial outer diameter) compared to the outer diameter before processing, although this depends on the material composition. In addition, a flattening amount of 10% or more will provide stable strength in the axial direction. There is no particular upper limit to the flattening amount, but if the flattening amount is too large, the roundness after bending and unbending will deteriorate. In addition, there is a possibility of cracks occurring during processing. Therefore, it is preferable to perform bending and unbending with a flattening amount of 25% or less.
図1に示すような鋼管の扁平に用いる工具形状について、ロールを用いてもよく、鋼管周方向に2個以上配置したロール間で鋼管を扁平させ回転させれば、容易に繰り返し曲げ曲げ戻し変形によるひずみを与えることが可能である。この場合においても、管軸方向の強度は扁平量で制御でき、初期鋼管外径に対する鋼管の扁平量が5%以上になるようにロール間隔を鋼管の初期外径の95%以下にすることが好ましく、ロール間隔を鋼管の初期外径の90%以下として扁平量を10%以上にすると安定した管軸方向の強度特性が得られる。初期外径に対して25%超えの扁平量を与えるロール間隔とすると、割れが発生したり、真円度が悪くなったりし、また、ロールへの噛み込み性が低下するため、扁平量は25%以下とすることが好ましい。 As shown in Figure 1, rolls may be used as the tool shape used to flatten the steel pipe. If the steel pipe is flattened and rotated between two or more rolls arranged in the circumferential direction of the steel pipe, it is possible to easily give strain by repeated bending and unbending deformation. Even in this case, the strength in the pipe axial direction can be controlled by the amount of flattening. It is preferable to set the roll spacing to 95% or less of the initial outer diameter of the steel pipe so that the amount of flattening of the steel pipe relative to the initial outer diameter is 5% or more. If the roll spacing is 90% or less of the initial outer diameter of the steel pipe and the amount of flattening is 10% or more, stable strength characteristics in the pipe axial direction can be obtained. If the roll spacing is set to a flattening amount of more than 25% of the initial outer diameter, cracks may occur, the roundness may deteriorate, and the bite into the rolls may decrease, so the amount of flattening is preferably 25% or less.
ロールの回転軸を管の回転軸に対し、90°以内で傾斜させれば、鋼管は偏平加工を受けながら管回転軸方向に進行するため、容易に加工の連続化が可能となる。また、このロールを用いて連続的に行う加工は、例えば、鋼管の進行に対して扁平量を変化させるように、適切にロールの間隔を変化させれば、容易に一度目、二度目の鋼管の曲率(扁平量)を変更できる。したがって、ロールの間隔を変化させることで中立線の移動経路を変更して、肉厚方向でのひずみの均質化が可能となる。また同様に、ロール間隔ではなく、ロール径を変更することにより扁平量を変化させることで同様の効果が得られる。また、これらを組み合わせても良い。設備的には複雑になるが、ロール数を3個以上とすれば、加工中の管の触れ回りが抑制でき、安定した加工が可能になる。 If the rotation axis of the roll is inclined within 90° to the rotation axis of the tube, the steel tube advances in the direction of the tube rotation axis while undergoing flattening processing, making it easy to continue processing. In addition, continuous processing using this roll can easily change the curvature (flattening amount) of the steel tube for the first and second times by appropriately changing the roll spacing so that the flattening amount changes as the steel tube advances. Therefore, by changing the roll spacing, the movement path of the neutral line can be changed, making it possible to homogenize the strain in the wall thickness direction. Similarly, the same effect can be obtained by changing the roll diameter instead of the roll spacing to change the flattening amount. These can also be combined. Although the equipment becomes complicated, if the number of rolls is three or more, the tube can be prevented from moving around during processing, making stable processing possible.
上述したように、ロール等の工具については、間隔を管外径よりも5~25%小さくした状態で管外周を挟み込み、管を回転させることで、偏平を行うことが好ましい。 As mentioned above, it is preferable to use tools such as rolls to clamp the outer periphery of the tube with a gap that is 5 to 25% smaller than the outer diameter of the tube, and then rotate the tube to flatten it.
管周方向への曲げ曲げ戻し加工における加工温度については、転位が著しく消失しない範囲で所定の管軸方向強度が得られる場合であれば、加熱した場合や加工速度を上昇させた場合の発熱も問題にならない。これらの点から加工温度は300℃以下で管理されることが好ましく、累積した転位が消失しないようにするためには、常温であることが好ましい。 As for the processing temperature during bending and unbending in the circumferential direction of the tube, if the required axial strength can be obtained without significant loss of dislocations, heat generation when heating or increasing the processing speed will not be a problem. From these points of view, it is preferable to keep the processing temperature at 300°C or less, and it is preferable to keep it at room temperature in order to prevent accumulated dislocations from disappearing.
また、加工時間は加工速度の上昇にともなう加工発熱が生じても、転位が著しく消失することがなく、所定の管軸方向の強度が得られる場合は問題にならない。加工中の鋼管温度が300℃を上回らないことが好ましい。傾斜ロールを用いて曲げ曲げ戻し加工を行う場合においては、10秒/m以上(鋼管の管軸方向長さで1mの曲げ曲げ戻し加工を10秒以上の時間をかけて行う)とすることが好ましい。 In addition, even if processing heat occurs with an increase in processing speed, the processing time is not a problem as long as dislocations do not disappear significantly and the required strength in the tube axis direction is obtained. It is preferable that the temperature of the steel pipe during processing does not exceed 300°C. When bending and unbending processing is performed using inclined rolls, it is preferable that the bending and unbending processing is performed for 10 seconds/m or more (1 m of bending and unbending processing in the axial length of the steel pipe is performed over a period of 10 seconds or more).
本発明で冷間加工後に転位が著しく消失することがない範囲で熱処理を行っても良い。熱処理を行うことで冷間加工後の残留応力を低減し、より疲労強度を向上させることができると共に、管軸方向圧縮降伏強度と管軸方向引張降伏強度の比を1に近づけることができ、熱処理はより強度比の小さな鋼管を得るのに有効である。熱処理温度(保持温度)の上限は300℃以下であれば強度低下に問題なく、熱処理温度は300℃以下とすることが好ましい。この熱処理温度は、青熱脆性を避ける観点から、100~250℃とすることが好ましい。
また、熱処理時間(保持時間)は、曲げ曲げ戻し加工後の強度維持の観点から、300秒以上3600秒未満とすることが好ましい。熱処理(保持)後、空冷(平均冷却速度(=(冷却開始温度(℃)-冷却停止温度(℃))/冷却時間(s)):0.1~5.0℃/s)を行う。
In the present invention, heat treatment may be performed within a range in which dislocations do not disappear significantly after cold working. By performing heat treatment, residual stress after cold working can be reduced, fatigue strength can be improved, and the ratio of axial compressive yield strength to axial tensile yield strength can be brought closer to 1, so heat treatment is effective for obtaining a steel pipe with a smaller strength ratio. The upper limit of the heat treatment temperature (holding temperature) is 300°C or less, so there is no problem with strength reduction, and the heat treatment temperature is preferably 300°C or less. From the viewpoint of avoiding blue brittleness, this heat treatment temperature is preferably 100 to 250°C.
From the viewpoint of maintaining strength after bending and unbending, the heat treatment time (holding time) is preferably 300 seconds or more and less than 3600 seconds. After the heat treatment (holding), air cooling (average cooling rate (= (cooling start temperature (°C) - cooling end temperature (°C)) / cooling time (s)): 0.1 to 5.0°C/s) is performed.
以下、実施例に基づいて本発明を説明する。なお、本実施例は継目無鋼管を対象とするが、板形状の鋼素材から成形および溶接して得られた鋼管であっても同様の効果が得られる。 The present invention will be explained below based on examples. Note that this example is directed to seamless steel pipes, but the same effect can be obtained with steel pipes obtained by forming and welding plate-shaped steel material.
表1に示す鋼種A~Nの成分組成を有する素材を真空溶解炉で溶製し、その後外径φ60mmの丸ビレットへ熱間圧延した。 Materials with the composition of steel types A to N shown in Table 1 were melted in a vacuum melting furnace and then hot rolled into round billets with an outer diameter of φ60 mm.
熱間圧延後、丸ビレットは再度加熱炉へ挿入し、1200℃以上の高温で保持した後マンネスマン式穿孔圧延機で外径φ70mm、内径58mm(肉厚6mm)の継目無素管に熱間成形した。熱間成形後のそれぞれの成分の素管は放冷した。鋼種B、D、E、F、G、H、I、J、K、L、M、Nについては放冷後850℃に再加熱し、その後徐冷する焼鈍熱処理を行った。熱間圧延、または焼鈍熱処理後の素管(鋼管素材)は管軸引張方向の高強度化のために冷間加工を行った。冷間加工方法は、表2に示すように、従来の冷間加工方法の一つである引き抜き圧延と本発明の曲げ曲げ戻し加工の2種類のいずれかを行った。また、加工回数は1回に加えて更なる高強度化を目的として2回実施する条件も加えた。引き抜き圧延は、肉厚圧下を10~25%の範囲で行い、外周長を20%低減させる条件で行った。曲げ曲げ戻し加工は、管外周上に円柱形状ロールを120°ピッチで3個配置した圧延機を準備し(図1(c)参照)、ロール間隔を管外径より10~20%小さくした状態で管外周を挟み込み、管を回転させて行った。曲げ曲げ戻し加工時の鋼管の進行方向速度は0.02m/秒とし、加工中の管外表面温度は150℃以下であることを確認した。 After hot rolling, the round billet was again inserted into the heating furnace and held at a high temperature of 1200°C or more, and then hot-formed into a seamless blank pipe with an outer diameter of φ70 mm and an inner diameter of 58 mm (wall thickness 6 mm) using a Mannesmann piercing mill. The blank pipes of each component were allowed to cool after hot forming. For steel types B, D, E, F, G, H, I, J, K, L, M, and N, they were allowed to cool and then reheated to 850°C, followed by annealing heat treatment in which they were slowly cooled. The blank pipes (steel pipe materials) after hot rolling or annealing heat treatment were cold worked to increase the strength in the tensile direction of the pipe axis. As shown in Table 2, the cold working method was either one of two types: drawing rolling, which is one of the conventional cold working methods, or bending and bending back processing according to the present invention. In addition, the number of times of processing was increased to one, and a condition was added in which processing was performed twice for the purpose of further increasing strength. The drawing rolling was performed under conditions of a wall thickness reduction of 10-25% and a 20% reduction in outer periphery. The bending and unbending process was performed by preparing a rolling mill with three cylindrical rolls arranged at a 120° pitch around the outer periphery of the tube (see Figure 1 (c)), clamping the outer periphery of the tube with the roll spacing set to 10-20% smaller than the outer diameter of the tube, and rotating the tube. The speed of the steel tube in the traveling direction during bending and unbending was 0.02 m/s, and it was confirmed that the temperature of the outer surface of the tube during processing was 150°C or less.
圧延時の冷間加工後はそのままとし、また、一部の条件では、熱処理温度(保持温度):250℃、加熱保持時間20分(1200秒)の熱処理を行った。 After the cold working during rolling, the material was left as is, and in some cases, heat treatment was performed at a heat treatment temperature (holding temperature) of 250°C and a heating holding time of 20 minutes (1200 seconds).
[組織観察]
冷間加工後またはその後の熱処理後の鋼管の肉厚中心位置(管軸方向垂直断面の肉厚中心位置)から供試材を切り出し、鏡面研磨後にナイタール腐食を行い、光学顕微鏡で倍率100~400倍で観察して組織を特定し、フェライト相を有する適切な組織であるか否かを確認した。
残留オーステナイト相については、鏡面研磨後の試験片についてX線回折によりフェライト相の体心立方格子とオーステナイト相の面心立方格子のピークを分離すれば容易に分率を測定できる。X線回折により、残留オーステナイト相の体積率を測定し、これを残留オーステナイト相の面積率とした。また、測定面積は5mm2の範囲とした。
[Textural observation]
Test specimens were cut out from the center of the wall thickness (center of the wall thickness in a cross section perpendicular to the axial direction of the tube) of the steel tube after cold working or subsequent heat treatment, mirror polished, and then subjected to nital etching. The structure was identified by observing the specimens under an optical microscope at magnifications of 100 to 400 times to confirm whether or not they had a suitable structure containing a ferrite phase.
The fraction of the retained austenite phase can be easily measured by separating the peaks of the body-centered cubic lattice of the ferrite phase and the face-centered cubic lattice of the austenite phase by X-ray diffraction of the mirror-polished test piece. The volume fraction of the retained austenite phase was measured by X-ray diffraction, and this was taken as the area fraction of the retained austenite phase. The measurement area was in the range of 5 mm2 .
表1に鋼種別の化学成分と組織観察結果を示す。表1に示すように、鋼種J、K、Lは、組織内に残留オーステナイト相が10%超、または鋼中にN2ガスの影響と思われる気泡が確認された。また、鋼種M、N(No.27、28)は冷間加工後の管軸方向引張降伏強度が400MPaを下回った。
これら鋼種M、N(順に、No.27、28)は、冷間加工後も高い機械的特性が得られないため、後述の管軸方向圧縮降伏強度/管軸方向引張降伏強度と管軸方向疲労強度の評価を未実施で終了した。
また、鋼種J、K、L(順に、No.24、25、26)は、冷間加工性が悪い、または、鋼中に空孔などの欠陥があるため、冷間加工不可であり、これらも後述の管軸方向圧縮降伏強度/管軸方向引張降伏強度と管軸方向疲労強度の評価を未実施で終了した。
The chemical composition and microstructural observation results for each steel type are shown in Table 1. As shown in Table 1, steel types J, K, and L had retained austenite phase exceeding 10% in the structure, or bubbles thought to be due to the influence of N2 gas were confirmed in the steel. In addition, steel types M and N (No. 27 and 28) had axial tensile yield strength below 400 MPa after cold working.
These steel types M and N (Nos. 27 and 28, respectively) did not have high mechanical properties even after cold working, so the evaluation of the compressive yield strength in the tube axial direction/tensile yield strength in the tube axial direction and the fatigue strength in the tube axial direction, which will be described later, was not carried out.
In addition, steel types J, K, and L (Nos. 24, 25, and 26, respectively) were not capable of cold working due to poor cold workability or the presence of defects such as voids in the steel. For these steels as well, the evaluation of the compressive yield strength in the tube axial direction/tensile yield strength in the tube axial direction and the fatigue strength in the tube axial direction, which will be described later, was not carried out.
[評価]
得られた鋼管に対して、管軸方向の機械的特性と疲労特性の評価を行った。
機械的特性の評価は管軸方向の引張と圧縮降伏強度の評価を行い、また、引張と圧縮の応力を交互に付与した疲労強度(応力比R=-1)を測定した。
引張降伏強度、圧縮降伏強度は冷間加工後の鋼管について、また、冷間加工後に熱処理を施した場合は熱処理後の鋼管について、管軸方向に平行に管肉厚中央部から評価部φ3mmの丸棒試験片を切り出して評価した。引張、圧縮のいずれも1.0mm/minの加工速度で試験を実施し、引張降伏強度と、引張降伏強度に対する圧縮降伏強度の比率(管軸方向圧縮降伏強度/管軸方向引張降伏強度)を求めた。
[evaluation]
The mechanical properties and fatigue properties in the axial direction of the obtained steel pipes were evaluated.
The mechanical properties were evaluated by evaluating the tensile and compressive yield strength in the axial direction of the tube, and the fatigue strength (stress ratio R=-1) was measured by alternately applying tensile and compressive stresses.
The tensile yield strength and compressive yield strength were evaluated by cutting round bar test pieces with a diameter of 3 mm from the center of the wall thickness of the steel pipe after cold working, or after heat treatment if the steel pipe was heat treated after cold working, parallel to the pipe axis. Both tension and compression tests were performed at a processing speed of 1.0 mm/min, and the tensile yield strength and the ratio of compressive yield strength to tensile yield strength (compressive yield strength in the pipe axis direction/tensile yield strength in the pipe axis direction) were calculated.
具体的には、まず、管軸方向圧縮降伏強度の測定は、円柱圧縮試験により測定した。圧縮を行う円柱試験片は管軸方向に平行に肉厚中心部より採取した。また、円柱外径d[mm]と円柱高さh[mm]をh/d≦2.0とした。具体的には、管の肉厚中心部から円柱外径d=3.0mm、円柱高さh=5.0mmとして試験片を切り出した。圧縮試験は、常温(25℃)で、平板間に試験片を挟んで荷重を与える形式を採用し、圧縮した際に得られる応力ひずみ曲線を利用して圧縮降伏強度を算出した。応力ひずみ曲線は、圧縮試験機で圧縮速度1.0mm/minで30%圧縮を行うことで得た。 Specifically, the tube axial compressive yield strength was measured by a cylindrical compression test. The cylindrical test piece to be compressed was taken from the center of the wall thickness parallel to the tube axial direction. In addition, the outer diameter d [mm] of the cylinder and the height h [mm] of the cylinder were set to h/d≦2.0. Specifically, a test piece was cut out from the center of the wall thickness of the tube with an outer diameter d = 3.0 mm and a height h = 5.0 mm. The compression test was performed at room temperature (25°C) by sandwiching the test piece between flat plates and applying a load, and the compressive yield strength was calculated using the stress-strain curve obtained during compression. The stress-strain curve was obtained by performing 30% compression at a compression speed of 1.0 mm/min using a compression tester.
また、管軸方向引張降伏強度は、JIS Z2241(2011)に従い、まず、試験片としては、管軸方向に平行に管の肉厚中心部から平行部径3.0mmの丸棒引張試験片を切り出した。そして、常温(25℃)で、クロスヘッド速度1.0mm/minで破断まで引張試験を実施した。これにより得られる応力ひずみ曲線を利用して、引張降伏強度を算出した。 The axial tensile yield strength was measured in accordance with JIS Z2241 (2011). First, a round bar tensile test piece with a parallel diameter of 3.0 mm was cut out from the center of the wall thickness of the tube parallel to the axial direction. A tensile test was then performed at room temperature (25°C) at a crosshead speed of 1.0 mm/min until fracture. The tensile yield strength was calculated using the stress-strain curve obtained from this.
また、同じサイズの試験片を用いて疲労強度の調査も実施した。評価部φ3mmの丸棒に対して常温(25℃)の大気中で種々の引張圧縮応力を応力比R=-1と応力負荷速度を2Hzで与え、付与回数が107回以上得られる応力値を疲労強度として評価した。得られた疲労強度は鋼種と冷間加工条件別に引き抜き圧延と曲げ曲げ戻し加工の値を相対比較した。 In addition, fatigue strength was investigated using test pieces of the same size. Various tensile and compressive stresses were applied to the evaluation part of a φ3 mm round bar in air at room temperature (25°C) at a stress ratio R = -1 and a stress loading rate of 2 Hz, and the stress value obtained when the number of times of application was 107 or more was evaluated as fatigue strength. The obtained fatigue strength was relatively compared between the values of drawing rolling and bending and unbending processing according to the steel type and cold processing conditions.
表2の結果から、本発明例の曲げ曲げ戻し加工を実施した条件では、従来の冷間圧延手法である引き抜き圧延に対して、管軸方向の引張降伏強度と圧縮降伏強度との差が小さく疲労特性に優れることが分かった。 The results in Table 2 show that under the conditions in which the bending and unbending process of the present invention was carried out, the difference between the tensile yield strength and compressive yield strength in the tube axis direction was small compared to the conventional cold rolling method of draw rolling, and the fatigue properties were excellent.
Claims (6)
C:0.01~1.15%、
Si:0.01~2.50%、
Mn:0.01~2.50%、
N:0.001~0.050%、を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
フェライト相を有し、且つ残留オーステナイト相が面積率で10%以下である組織を有し、
管軸方向引張降伏強度が400MPa以上であり、
管軸方向圧縮降伏強度/管軸方向引張降伏強度が0.85~1.15である、継目無鋼管。 In mass percent,
C: 0.01-1.15%,
Si: 0.01-2.50%,
Mn: 0.01 to 2.50%,
N: 0.001 to 0.050%, with the balance being Fe and unavoidable impurities;
The steel has a structure having a ferrite phase and a retained austenite phase of 10% or less in area ratio,
The axial tensile yield strength is 400 MPa or more,
A seamless steel pipe having a ratio of compressive yield strength in the pipe axis direction to tensile yield strength in the pipe axis direction of 0.85 to 1.15.
Cr:2.00%以下、
Mo:2.00%以下のうちから選ばれた1種または2種を含有する、請求項1に記載の継目無鋼管。 The composition further includes, in mass%, Cr: 2.00% or less,
2. The seamless steel pipe according to claim 1, further comprising one or two selected from the group consisting of Mo: 2.00% or less.
Ti:0.50%以下、
Al:0.30%以下、
V:0.55%以下、
Nb:0.75%以下のうちから選ばれた1種または2種以上を含有する、請求項1または2に記載の継目無鋼管。 The composition further includes, in mass%, Ti: 0.50% or less,
Al: 0.30% or less,
V: 0.55% or less,
The seamless steel pipe according to claim 1 or 2, further comprising one or more selected from the group consisting of Nb: 0.75% or less.
Ni:2.5%未満、
W:1.0%未満、
Cu:2.5%未満、
B:0.010%以下、
Zr:0.10%以下、
Ca:0.010%以下、
Ta:0.01%以下、
REM:0.10%以下、
Mg:0.10%以下、
Sn:0.30%以下、
Sb:0.30%以下、
Ag:0.30%以下のうちから選ばれた1種または2種以上を含有する、請求項1~3のいずれかに記載の継目無鋼管。 The composition further includes, in mass%, Ni: less than 2.5%;
W: less than 1.0%
Cu: less than 2.5%
B: 0.010% or less,
Zr: 0.10% or less,
Ca: 0.010% or less,
Ta: 0.01% or less,
REM: 0.10% or less,
Mg: 0.10% or less,
Sn: 0.30% or less,
Sb: 0.30% or less,
The seamless steel pipe according to any one of claims 1 to 3, further comprising one or more selected from the following: Ag: 0.30% or less.
C:0.01~1.15%、
Si:0.01~2.50%、
Mn:0.01~2.50%、
N:0.001~0.050%、を含有し、
あるいはさらに、
Cr:2.00%以下、
Mo:2.00%以下、
Ti:0.50%以下、
Al:0.30%以下、
V:0.55%以下、
Nb:0.75%以下、
Ni:2.5%未満、
W:1.0%未満、
Cu:2.5%未満、
B:0.010%以下、
Zr:0.10%以下、
Ca:0.010%以下、
Ta:0.01%以下、
REM:0.10%以下、
Mg:0.10%以下、
Sn:0.30%以下、
Sb:0.30%以下、
Ag:0.30%以下のうちから選ばれた1種または2種以上を含有し、
残部がFeおよび不可避的不純物からなる成分組成を有し、
フェライト相を有し、且つ残留オーステナイト相が面積率で10%以下である組織を有し、
管軸方向引張降伏強度が400MPa以上であり、
管軸方向圧縮降伏強度/管軸方向引張降伏強度が0.85~1.15である鋼管の製造方法であって、鋼管素材に管周方向の曲げ曲げ戻し加工を行い鋼管を得る、鋼管の製造方法。 In mass percent,
C: 0.01-1.15%,
Si: 0.01-2.50%,
Mn: 0.01 to 2.50%,
N: 0.001 to 0.050%;
Or even more so:
Cr: 2.00% or less,
Mo: 2.00% or less,
Ti: 0.50% or less,
Al: 0.30% or less,
V: 0.55% or less,
Nb: 0.75% or less,
Ni: less than 2.5%
W: less than 1.0%
Cu: less than 2.5%
B: 0.010% or less,
Zr: 0.10% or less,
Ca: 0.010% or less,
Ta: 0.01% or less,
REM: 0.10% or less,
Mg: 0.10% or less,
Sn: 0.30% or less,
Sb: 0.30% or less,
Ag: 0.30% or less,
The balance is Fe and unavoidable impurities.
The steel has a structure having a ferrite phase and a retained austenite phase of 10% or less in area ratio,
The axial tensile yield strength is 400 MPa or more,
A method for producing a steel pipe having a ratio of compressive yield strength in the pipe axis direction to tensile yield strength in the pipe axis direction of 0.85 to 1.15 , comprising bending and unbending a steel pipe material in the pipe circumferential direction to obtain the steel pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021159801A JP7559728B2 (en) | 2021-09-29 | 2021-09-29 | Seamless steel pipe and method for manufacturing steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021159801A JP7559728B2 (en) | 2021-09-29 | 2021-09-29 | Seamless steel pipe and method for manufacturing steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023049821A JP2023049821A (en) | 2023-04-10 |
JP7559728B2 true JP7559728B2 (en) | 2024-10-02 |
Family
ID=85801693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021159801A Active JP7559728B2 (en) | 2021-09-29 | 2021-09-29 | Seamless steel pipe and method for manufacturing steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7559728B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163455A (en) | 2006-12-04 | 2008-07-17 | Nippon Steel Corp | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method thereof |
JP2012167329A (en) | 2011-02-15 | 2012-09-06 | Jfe Steel Corp | Steel pipe for line pipe with excellent collapse resisting performance |
JP2020193374A (en) | 2019-05-29 | 2020-12-03 | Jfeスチール株式会社 | Welded steel pipe for sour linepipe and method for manufacturing the same |
-
2021
- 2021-09-29 JP JP2021159801A patent/JP7559728B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163455A (en) | 2006-12-04 | 2008-07-17 | Nippon Steel Corp | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method thereof |
JP2012167329A (en) | 2011-02-15 | 2012-09-06 | Jfe Steel Corp | Steel pipe for line pipe with excellent collapse resisting performance |
JP2020193374A (en) | 2019-05-29 | 2020-12-03 | Jfeスチール株式会社 | Welded steel pipe for sour linepipe and method for manufacturing the same |
Non-Patent Citations (1)
Title |
---|
E.Tsuru et al.,Analytical Methods for Girth-welded UOE Linepipes with Plastic Anisotropy and Geometric Imperfections to Predict the Deformation Limitation,Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference,2011年,June 19-24,637-645頁 |
Also Published As
Publication number | Publication date |
---|---|
JP2023049821A (en) | 2023-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2785425C (en) | Method for manufacturing seamless steel pipe for line pipe and seamless steel pipe for line pipe | |
US11821051B2 (en) | Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe | |
JP6197850B2 (en) | Method for producing duplex stainless steel seamless pipe | |
JP4894855B2 (en) | Seamless pipe manufacturing method | |
JP5796351B2 (en) | High strength sour line pipe excellent in crush resistance and manufacturing method thereof | |
JP2009541589A (en) | Seamless precision steel pipe for hydraulic cylinders with improved isotropic toughness at low temperatures and method for obtaining the same | |
US12157937B2 (en) | Duplex stainless steel seamless pipe and method for manufacturing same | |
JP5348383B2 (en) | High toughness welded steel pipe with excellent crushing strength and manufacturing method thereof | |
JP6341125B2 (en) | Method for producing duplex stainless steel pipe | |
JP6171851B2 (en) | Apparatus row for seamless steel pipe production and method for producing high-strength stainless steel seamless steel pipe for oil wells using the same | |
CA3108758C (en) | Duplex stainless steel seamless pipe and method for manufacturing same | |
JP2016164288A (en) | Method for producing high strength stainless seamless steel pipe for oil well | |
JP5803270B2 (en) | High strength sour line pipe excellent in crush resistance and manufacturing method thereof | |
CN117280064A (en) | High-strength hot-rolled steel plate and manufacturing method thereof and high-strength electric resistance welded steel pipe and manufacturing method thereof | |
JP2016188408A (en) | Thin wall high intensity seamless steel pipe production device row and production method of thin wall high intensity stainless seamless steel pipe for oil well using the same | |
WO2020090149A1 (en) | Steel for bolts, and method for manufacturing same | |
JP7559728B2 (en) | Seamless steel pipe and method for manufacturing steel pipe | |
JP6202010B2 (en) | Manufacturing method of high-strength duplex stainless steel seamless steel pipe | |
JPH03297505A (en) | Drawing method for seamless steel pipe of austenitic high alloy superior in sour resistance | |
JP3326783B2 (en) | Manufacturing method of low alloy seamless steel pipe with excellent high temperature strength | |
JP2004027351A (en) | Method for producing high strength and high toughness martensitic stainless steel seamless pipe | |
JPH11172336A (en) | Production of seamless steel tube | |
JPH0547603B2 (en) | ||
JP2002275583A (en) | Reduced diameter rolled steel pipe and method for producing the same | |
JPH03294003A (en) | Method for drawing austenitic high alloy seamless steel tube excellent in sourness resisting properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240313 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7559728 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |