JP2004027351A - Manufacturing method of high strength and high toughness martensitic stainless steel seamless pipe - Google Patents
Manufacturing method of high strength and high toughness martensitic stainless steel seamless pipe Download PDFInfo
- Publication number
- JP2004027351A JP2004027351A JP2002221633A JP2002221633A JP2004027351A JP 2004027351 A JP2004027351 A JP 2004027351A JP 2002221633 A JP2002221633 A JP 2002221633A JP 2002221633 A JP2002221633 A JP 2002221633A JP 2004027351 A JP2004027351 A JP 2004027351A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- finish rolling
- transformation point
- temperature
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
【課題】高強度で高靭性でかつ異方性の少ないのマルテンサイト系ステンレス鋼継目無管の製造方法を提案する。
【解決手段】マルテンサイト系ステンレス鋼素材を、オーステナイト域に加熱し、穿孔圧延と延伸圧延により素管としたのち冷却して実質的にマルテンサイト組織とし、ついで、素管を二相域温度に再加熱して、圧延開始温度TをAc1 変態点〜Ac3 変態点の範囲内の温度とする仕上げ圧延を施したのち冷却し製品管とし、ついでAc1 変態点以下の温度で焼戻しを施す。なお、圧延開始温度TがAc1 変態点〜Ac3 変態点の範囲内の温度で、さらに断面減少率Rが10〜90%で、圧延開始温度Tと断面減少率Rが、800 ≦T− 0.625R≦ 850 を満足する仕上げ圧延とすることが好ましい。
【選択図】 図1A method for producing a martensitic stainless steel seamless pipe having high strength, high toughness, and low anisotropy is proposed.
SOLUTION: A martensitic stainless steel material is heated to an austenite region, and is made into a base tube by piercing and elongation rolling, and then cooled to have a substantially martensitic structure. After reheating, finish rolling is performed to set the rolling start temperature T to a temperature within the range of the Ac 1 transformation point to the Ac 3 transformation point, and then cooled to obtain a product tube, and then tempered at a temperature equal to or lower than the Ac 1 transformation point. . In addition, the rolling start temperature T is a temperature within the range of the Ac 1 transformation point to the Ac 3 transformation point, the cross-section reduction rate R is 10 to 90%, and the rolling start temperature T and the cross-section reduction rate R are 800 ≦ T− It is preferable to perform finish rolling that satisfies 0.625R ≦ 850.
[Selection diagram] Fig. 1
Description
【0001】
【発明の属する技術分野】
本発明は、優れた耐食性を有し油井管用として好適な、マルテンサイト系ステンレス鋼継目無管の製造方法に係り、とくに靭性の向上および靭性の異方性改善に関する。
【0002】
【従来の技術】
近年、原油価格の高騰から、近い将来に予想される石油資源の枯渇を考慮して、従来は省みられなかったような深層油田や開発が一旦は放棄されていた腐食性の強いサワーガス田等の開発が、世界的規模で盛んになっている。
このような油田、ガス田は、一般に深度が極めて深く、またその雰囲気は高温でかつ、CO2 、Cl− 等を含む厳しい腐食環境となっている。したがって、このような油田、ガス田で使用される油井管には、高強度で高靭性、しかも耐食性を兼ね備えた材質が要求されている。一般に、CO2 、Cl− 等を含む厳しい腐食環境下では、耐CO2 腐食性に優れた13%Crを含むマルテンサイト系ステンレス鋼継目無管が多く使用されている。
【0003】
従来、マルテンサイト系ステンレス鋼継目無管は、鋼素材を穿孔可能な温度に加熱したのち、ピアサーミルによる穿孔圧延と、マンドレルミルあるいはプラグミルによる延伸圧延を行い素管とし、ついでオーステナイト域へ再加熱し、例えばストレッチレデュサーあるいはサイザーによる仕上圧延を行って製品管とされるのが普通であった。仕上圧延後の空冷で継目無管はマルテンサイト組織となるが、仕上圧延後に継目無管は通常、必要な強度と靭性を付与するためにオーステナイト域からの焼入れおよびAc1 変態点以下の温度での焼戻しを施される。
【0004】
しかしながら、最近の油井環境の悪化に伴い、使用される油井管への要求特性がさらに高度化しており、とくに、低温靭性および耐硫化物応力腐食割れ性に優れた油井管用鋼管が強く要望されている。
このような要望に対し、例えば、特開平1−123025 公報には、マルテンサイト系ステンレス鋼片を1050〜1250℃の温度に加熱し穿孔と圧延を行う工程と、少なくとも500 ℃までを30℃/分の冷却速度としてマルテンサイト変態開始温度以下の温度まで冷却して80容量%以上がマルテンサイトで占められる組織とする工程と、(Ac1 変態点)〜(Ac1 変態点−200 ℃)の温度域に再加熱し断面減少率で5%以上の仕上圧延を行う工程と、仕上圧延終了温度で保持するか、または仕上圧延終了後直ちにAc1 変態点以下の温度に再加熱したのち、空冷または強制冷却する工程、を順次行うマルテンサイト系ステンレス鋼継目無管の製造方法が記載されている。また特開平1−123025 公報に記載された技術では、マルテンサイトで占められる組織とする工程のあとに、(Ac1 変態点)〜(Ac1 変態点−200 ℃)の温度域に再加熱し断面減少率で5%以上の仕上圧延を行い、空冷または強制冷却する工程と、さらに、Ac1 変態点以下に加熱し、ついで空冷または強制冷却する工程とを行ってもよいとしている。
【0005】
【発明の解決しようとする課題】
しかしながら、特開平1−123025 公報に記載された技術で製造された継目無管では、未再結晶温度域で圧延されるため、組織が圧延方向に伸長し、そのため圧延方向の特性は優れているが、円周方向の特性が劣化し、靭性や耐食性に顕著な異方性が認められるという問題がある。
【0006】
本発明は、上記した従来技術の問題を有利に解決し、高強度・高靭性でかつ特性の異方性の少ないマルテンサイト系ステンレス鋼継目無管の製造方法を提案することを目的とする。本発明でいう「高強度」とは降伏強さYSが551 MPa 以上を有する場合をいい、また「高靱性」とは−40℃でのシャルピー衝撃値(単位断面積当りの吸収エネルギー)が90 J/cm2以上を有する場合をいうものとする。
【0007】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、靭性に及ぼす仕上圧延条件の影響について鋭意検討した。その結果、仕上圧延前に組織をマルテンサイト組織とした素管を、フェライト(α)+オーステナイト(γ)の二相域に再加熱したのち、圧延開始温度と断面減少率 (圧下率)との関係を特定範囲内とする適正条件で仕上圧延を施し冷却し、その後焼戻し処理を施すことにより、微細でかつ異方性の少ないマルテンサイト組織を有する製品管が得られることを新たに知見した。
【0008】
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。
すなわち、本発明は、マルテンサイト系ステンレス鋼素材を、オーステナイト域に加熱し、穿孔圧延と延伸圧延により素管とする素管製造工程と、該素管を再加熱して仕上圧延を行ないその後、冷却して所定寸法の製品管とする仕上圧延工程と、該仕上げ圧延工程後、前記製品管にAc1 変態点以下の温度で焼戻し処理を施す焼戻し処理工程とを、順次施すマルテンサイト系ステンレス鋼継目無管の製造方法において、前記延伸圧延後に前記素管を冷却して実質的にマルテンサイト組織とし、さらに前記仕上圧延工程における前記素管の再加熱温度を(Ac1 変態点)〜(Ac3 変態点)の二相域温度とし、前記仕上圧延の圧延開始温度Tを(Ac1 変態点)〜(Ac3 変態点)の範囲内の温度とすることを特徴とする高強度・高靭性マルテンサイト系ステンレス鋼継目無管の製造方法である。また、本発明では、前記仕上げ圧延の断面減少率Rを10〜90%とし、かつ前記仕上圧延の圧延開始温度Tと前記断面減少率Rとの関係が次 (1) 式
800 ≦T− 0.625R≦ 850 ………(1)
(ここで、T:仕上圧延の圧延開始温度(℃)、R:仕上げ圧延断面減少率(%))
を満足する仕上圧延とすることが好ましい。
【0009】
【発明の実施の形態】
本発明で鋼素材として使用するマルテンサイト系ステンレス鋼は、通常公知のマルテンサイト系ステンレス鋼がすべて好適に使用できる。なお、本発明に好適なマルテンサイト系ステンレス鋼素材として、好ましい組成はつぎのとおりである。なお、組成における質量%は単に%と記す。マルテンサイト系ステンレス鋼素材としては、C:0.30%以下、Si:1.00%以下、Mn:0.05〜2.00%、P:0.03%以下、S:0.005 %以下、Cr:10.0〜15.0%、Al:0.05%以下、を含み、残部Feおよび不可避的不純物からなる組成を有することが好ましい。上記組成に加えてさらに、Ni:7.0 %以下、Mo:3.0 %以下、Cu:3.0 %以下のうちの1種または2種以上、および/またはNb:0.2 %以下、V:0.2 %以下、Ti:0.3 %以下、Zr:0.2 %以下、B:0.0005〜0.01%、N:0.07%以下のうちの1種または2種以上、および/またはCa:0.0005〜0.01%、REM :0.0005〜0.01%のうちの1種または2種を含有してもよい。
【0010】
次に、鋼素材の好ましい組成の限定理由について説明する。
C:0.30%以下
Cは、マルテンサイト系ステンレス鋼管の強度を確保するために必要な元素であり、本発明では 0.005%以上含有することが好ましいが、0.30%を超えて含有すると、粗大炭化物が増加し靭性が低下するとともに耐食性が低下する。このため、本発明ではCは0.30%以下に限定することが好ましい。なお、より安定した耐食性を得るためにはCは0.22%以下とすることがより好ましい。
【0011】
Si:1.00%以下
Siは、通常の製鋼過程において脱酸剤として必要な元素であり、0.10%以上含有することが好ましいが、1.00%を超えると靱性を低下させ、さらに熱間加工性をも低下させる。このため、Siは1.00%以下に限定することが好ましい。なお、より好ましくは、0.10〜0.50%である。
【0012】
Mn:0.05〜2.00%
Mnは、マルテンサイト系ステンレス鋼管の強度を確保するために必要な元素であり、本発明では0.05%以上の含有を必要とするが、2.00%を超えて含有すると靭性に悪影響を及ぼす。このため、Mnは0.05〜2.00%の範囲に限定することが好ましい。なお、より好ましくは、0.30〜1.60%である。
【0013】
P:0.03%以下
Pは、耐食性、耐硫化物応力腐食割れ性および熱間加工性をともに劣化させる元素であり、できるだけ低減するのが望ましいが、極端な低減は製造コストの高騰を招く。このため、Pは、工業的に比較的安価に実施可能でかつ耐食性および耐硫化物応力腐食割れ性を劣化させない範囲である0.03%以下とした。
【0014】
S:0.010 %以下
Sは、熱間加工性を著しく劣化させる元素であり、鋼管製造における生産性向上のため、あるいはさらに靭性、耐応力腐食割れ性の向上のためにも、できるだけ低減するのが望ましいが、極端な低減は製造コストの高騰を招く。0.010 %以下に低減すれば、通常の工程での鋼管製造が可能となることから、本発明では、Sの上限を0.010 %とした。なお、好ましくは0.005 %以下である。
【0015】
Cr:10.0〜15.0%
Crは、耐食性、耐応力腐食割れ性を保持するために主要な元素であり、耐食性の観点からは10.0%以上の含有を必要とするが、15.0%を超えて含有すると熱間加工性が劣化する。このことから、Crは10.0〜15.0%の範囲に限定した。
Al:0.05%以下
Alは、強力な脱酸作用を有する元素であり、本発明では0.001 %以上含有することが好ましいが、0.05%を超える含有は酸化物系介在物を増加させ、靭性に悪影響を及ぼす。このため、Alは0.05%以下に限定した。
【0016】
上記した成分に加えてさらにNi、Mo、Cuのうちの1種または2種以上、Nb、V、Ti、Zr、B、Nのうちの1種または2種以上を必要に応じ含有できる。
Ni:7.0 %以下、Mo:3.0 %以下、Cu:3.0 %以下のうちの1種または2種以上
Ni、Mo、Cuは、いずれも耐食性を改善する作用を有する元素であり、必要に応じ選択して含有できる。
【0017】
Niは、耐食性を向上させるとともに、強度、靭性を大きく向上させる元素であり、このような効果は 1.0%以上の含有で顕著に認められるようになるが、7.0 %を超えて含有しても含有量に見合う効果が期待できない。
Moは、孔食に対する抵抗性を増加させ、耐食性を改善する元素である。このような効果は、0.1 %以上の含有で顕著に認められるようになるが、一方、3.0 %を超える含有はδフェライトの発生を招き、耐食性、耐応力腐食割れ性および熱間加工性を低下させる。
【0018】
Cuは、保護被膜を強固にし、耐食性を高める元素であり、このような効果は 0.1%以上の含有で顕著に認められるようになるが、3.0 %を超えて含有すると熱間加工性が低下する。
Nb:0.2 %以下、V:0.2 %以下、Ti:0.3 %以下、Zr:0.2 %以下、B:0.0005〜0.01%、N:0.07%以下のうちの1種または2種以上、
Nb、V、Ti、Zr、B、Nは、いずれも強度や靭性を向上させる効果があり、必要に応じ含有できる。しかし、Nb:0.2 %、V:0.2 %、Ti:0.3 %、Zr:0.2 %、B:0.01%、N:0.07%を超えて含有すると、靭性、耐食性が低下する。
【0019】
Ca:0.0005〜0.01%、REM :0.0005〜0.01%のうちの1種または2種
Ca、REM はいずれも、介在物を球状化する作用を有し、Ca:0.0005%以上、REM :0.0005%以上含有することが好ましい。一方、Ca:0.01%、REM :0.01%をそれぞれ超えて含有すると、靭性、耐食性が低下する。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。
【0020】
本発明では、好ましくは上記した組成のマルテンサイト系ステンレス鋼を、転炉等、通常公知の溶製方法で溶製したのち、連続鋳造法により鋳片(スラブ)としたのち、該鋳片(スラブ)を圧延してビレットとして、素管製造用素材とすることが好ましい。なお、連続鋳造法により直接ビレットとし、素管製造用素材としてもよい。
【0021】
本発明の製造工程の概略を図2に示す。
本発明では、好ましくは上記した組成を有するマルテンサイト系ステンレス鋼素材 (ビレット)を、まず、オーステナイト域に加熱し、穿孔圧延と延伸圧延により素管とする素管製造工程を施す。
マルテンサイト系ステンレス鋼素材の加熱は、オーステナイト域である、1100〜1300℃とすることが好ましい。加熱温度が1100℃未満では次の工程である穿孔圧延,延伸圧延における変形抵抗が大きくなり、一方、1300℃を超えると、δフェライトの発生を招き熱間加工性および靱性が著しく低下するとともに、スケール発生が著しくなり歩留低下、表面性状の低下を招く。
【0022】
穿孔圧延は、通常公知の、傾斜圧延方式(マンネスマン方式)、プレスピアシング方式等のピアサーミルがいずれも適用可能であり、穿孔圧延の方法は特に限定されない。穿孔された鋼素材はついで延伸圧延されて、素管とされる。延伸圧延はマンドレルミル、プラグミル等の通常公知の方法がいずれも適用可能であり、延伸圧延の方法は特に限定されない。なお、延伸圧延は 800℃以上の温度で終了することが好ましい。
【0023】
本発明では、延伸圧延終了後、素管をマルテンサイト変態開始温度(Ms点)以下まで冷却して、組織を実質的にマルテンサイト組織とする。なお、ここでいう「実質的にマルテンサイト組織とする」とは、冷却後の素管組織が、面積率で90%以上のマルテンサイト相からなる状態をいうものとする。なお、マルテンサイト相以外の組織はおよそ10%までのオーステナイト相またはおよそ2%までのフェライト相である。仕上圧延前の素管の組織を実質的にマルテンサイト組織とすることにより、その後の再加熱により微細な再結晶組織が得られる。マルテンサイト組織以外の組織を主相とすると、その後の再加熱により、素管の組織を微細な再結晶組織とすることができず、最終的に靭性の顕著な向上が得られないか、もしくは、靱性の異方性が顕著となる。
【0024】
実質的にマルテンサイト組織とされた素管は、ついで再加熱され、仕上圧延により所定寸法の製品管とされたのち、冷却される仕上圧延工程を施される。
仕上圧延のために、素管を(Ac1 変態点)〜(Ac3 変態点)の二相域温度に再加熱する。二相域に加熱することにより、マルテンサイト組織を微細な再結晶状態の組織とすることができる。本発明では、このような微細な再結晶状態の組織の素管を仕上圧延して、所定寸法の製品管とする。再加熱温度がAc3 変態点を超えると、最終的に結晶粒が粗大化し靱性の向上は認められず、一方、Ac1 変態点未満では、靱性の異方性が顕著となる。
【0025】
本発明では、仕上圧延に際し、圧延開始温度Tを(Ac1 変態点)〜(Ac3 変態点)の範囲内の温度とする。圧延開始温度Tが(Ac1 変態点)未満では、圧延温度が低くなりすぎて、再結晶が不十分となり圧延集合組織が残留しやすく、特性の異方性が顕著となりやすい。一方、圧延開始温度Tが(Ac3 変態点)を超えると、圧延温度が高すぎて、圧延後にも再結晶が過度に進行するため、圧延加工による組織微細化効果が少なく、靭性の向上は認められない。このため、圧延開始温度Tを(Ac1 変態点)〜(Ac3 変態点)の範囲内の温度に限定した。
【0026】
なお、仕上圧延では、断面減少率Rを10〜90%とし、 かつ圧延開始温度Tと断面減少率Rとの関係が次(1)式
800 ≦T− 0.625R≦ 850 ………(1)
(ここで、T:仕上圧延の圧延開始温度(℃)、R:仕上げ圧延断面減少率(%))を満足する条件で行うことが好ましい。断面減少率R(%)は、仕上圧延前の素管断面積に対する仕上圧延前の素管断面積と仕上圧延後の製品管断面積の差の比、{(仕上圧延前素管断面積)−(仕上圧延後製品管断面積)}/(仕上圧延前素管断面積)で定義される。
【0027】
仕上圧延の断面減少率が10%未満では、圧延加工により導入される歪が少なく圧延後の組織微細化の程度が少なく、所望の強度上昇、靭性向上効果が少ない。一方、断面減少率が90%を超えると、組織が伸長し特性の異方性が顕著となる。このため、仕上圧延の圧下率(断面減少率)は10〜90%の範囲に限定することが好ましい。なお、より好ましくは30%〜70%である。
【0028】
本発明における仕上圧延では、圧延開始温度Tを上記した範囲内とした上で、さらに断面減少率Rを上記した範囲内とし、かつ前記(1)式を満足するように断面減少率Rに応じ圧延開始温度Tを調整して圧延することが好ましい。
マルテンサイト系ステンレス鋼継目無管の靭性を、断面減少率Rと圧延開始温度Tとの関係で図1に示す。
【0029】
仕上圧延の圧延開始温度Tが本発明の範囲内((Ac1 変態点)〜(Ac3 変態点))で、かつ圧延開始温度Tと断面減少率Rとの関係が(1)式を満足する領域Cでは、管軸方向(L方向)の−40℃でのシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )L および管円周方向(C方向)の−40℃でのシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )C がともに180 J/cm2以上となり、かつ靭性の異方性(E−40 )C /(E−40 )L が0.80以上となる。すなわち、領域Cでは、−40℃でのシャルピー衝撃値(単位断面積当りの吸収エネルギー)が高く、かつ異方性の少ない高靭性を示している。
【0030】
また、圧延開始温度Tが本発明の範囲内((Ac1 変態点)〜(Ac3 変態点))であるが、(1)式左辺が満足されない、すなわちT− 0.625R<800 の場合である、領域Bでは、管軸方向(L方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )L は180 J/cm2以上となるが、管円周方向(C方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )C は若干低下し90〜180 J/cm2の範囲となる。その結果、(E−40 )C /(E−40 )L が0.80未満となり、異方性が大きくなる。しかし、使用上十分なシャルピー衝撃値(単位断面積当たりの吸収エネルギー)が確保されている。
【0031】
また、圧延開始温度Tが本発明の範囲内((Ac1 変態点)〜(Ac3 変態点))であるが、 (1) 式の右辺が満足されない、すなわち850 <T− 0.625Rの場合である、領域Dでは、管軸方向(L方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )L および管円周方向(C方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )C がともに若干低下し180 J/cm2未満となるがいずれも90J/cm2以上あり、使用上十分な靭性が確保されている。
【0032】
また、圧延開始温度Tが本発明の範囲((Ac1 変態点)〜(Ac3 変態点))を低く外れる領域Aでは、管軸方向(L方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )L は180 J/cm2以上となるが、管円周方向(C方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )C が90J/cm2未満となり、(E−40 )C /(E−40 )L が0.80未満で靭性の異方性が大きくなる。
【0033】
また、圧延開始温度Tが本発明の範囲を高く外れる領域Eでは、管軸方向(L方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )L および管円周方向(C方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )C がともに90J/cm2未満と、靭性が低下する。
すなわち、圧延開始温度Tが本発明の範囲((Ac1 変態点)〜(Ac3 変態点))となる領域では、管軸方向(L方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )L および管円周方向(C方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )C がともに90J/cm2以上となり、使用上十分な靭性を確保できる。さらに、(1)式を満足する条件で仕上圧延を行なうことにより、管軸方向(L方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )L および管円周方向(C方向)のシャルピー衝撃値(単位断面積当りの吸収エネルギー)(E−40 )C がともに180 J/cm2以上となり、かつ(E−40 )C /(E−40 )L が0.80超えとなる、異方性が小さく高靭性を有する継目無鋼管となる。
【0034】
本発明では、仕上圧延開始温度を上記した範囲内とし、好ましくは (1) 式を満足する仕上圧延として、仕上圧延後、空冷するか、あるいは空冷以上の冷却速度で冷却する。その後の焼戻し処理により、組織が微細でかつ異方性の少ないマルテンサイト組織となり、高強度でかつ高靭性の、異方性の少ない特性を有する製品管が得られる。
【0035】
なお、仕上圧延は、ストレッチレデュサー、サイザー等の連続圧延機で行うことが好ましい。
【0036】
【実施例】
表1に示す組成のマルテンサイト系ステンレス鋼溶湯を転炉で溶製し、該溶鋼を連続鋳造法でスラブとしたのち、該スラブを圧延によりビレット(素管製造用素材)とした。これらビレット(マルテンサイト系ステンレス鋼素材)をマンネスマン方式のピアサーミルの穿孔圧延し、ついでマンドレルミルで延伸圧延し、表2に示す寸法の素管とした。なお、延伸圧延後、素管はMs点以下の温度まで冷却し、組織を実質的にマルテンサイト組織とした。素管の一部から試験片を採取し、素管組織を光学顕微鏡で観察した。また、延伸圧延後、Ms点以下の温度まで冷却することなく、直ちに再加熱した例を従来例とした。
【0037】
ついで、素管を表2に示す温度に再加熱したのち、表2に示す、条件で仕上圧延を実施し、表2に示すサイズの製品管とした。なお、仕上圧延は、ストレッチレデュサーを用いた。仕上圧延後、製品管は空冷 (放冷)した。冷却後、製品管はさらに表2に示す温度で焼戻された。
得られた各製品管について管軸方向(L方向)から試験片を採取し、ASTM A370 の規定に準拠して管軸方向の引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。また、ASTM A370 の規定に準拠してー40℃での管軸方向および円周方向のシャルピー衝撃試験を実施し、−40℃での衝撃値(単位断面積当りの吸収エネルギー)E−40 を求めた。なお、衝撃試験片は板厚5mmのサブサイズとし、管円周方向(C方向)からの試験片は試験片端部を矯正し、試験した。得られた結果から、管円周方向の衝撃値(単位断面積当りの吸収エネルギー)(E−40 )C と管軸方向の衝撃値(単位断面積当りの吸収エネルギー)(E−40 )L との比、(E−40 )C /(E−40 )L を算出した。
【0038】
得られた結果を表3に示す。
【0039】
【表1】
【0040】
【表2】
【0041】
【表3】
【0042】
本発明例はいずれも、高い強度(YS:550MPa以上)と高い靭性(L方向の(E−40 )L :180 J/cm2以上)を有し、さらに靭性(衝撃値)のC方向とL方向の比、(E−40 )C /(E−40 )L が0.80以上を示しており、従来例(鋼管No. 8)、比較例に比べて、異方性の少ない高強度高靭性鋼管となっている。一方、本発明の範囲から外れる比較例では、L方向の靭性(衝撃値)が劣化しているか、あるいはC方向の靭性(衝撃値)向上が少なく、また(E−40 )C /(E−40 )L が0.80未満と靭性の異方性が大きくなっている。
【0043】
【発明の効果】
本発明によれば、高強度・高靭性でかつ異方性の少ないマルテンサイト系ステンレス鋼継目無管が安価にかつ安定して製造でき、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】靭性および靭性の異方性におよぼす仕上圧延開始温度と断面減少率との影響を示すグラフである。
【図2】本発明の製造工程の概略を示す説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a martensitic stainless steel seamless pipe having excellent corrosion resistance and suitable for oil country tubular goods, and more particularly to improvement in toughness and improvement in toughness anisotropy.
[0002]
[Prior art]
In recent years, in view of soaring crude oil prices, the depletion of petroleum resources expected in the near future, in consideration of deep oil fields that were not previously excluded, and highly corrosive sour gas fields that were once abandoned, etc. Has become active on a global scale.
Such oil fields and gas fields generally have extremely deep depths, high temperatures, and severe corrosive environments including CO 2 , Cl − and the like. Therefore, oil country tubular goods used in such oil fields and gas fields are required to be made of a material having high strength, high toughness, and corrosion resistance. Generally, a martensitic stainless steel seamless tube containing 13% Cr excellent in CO 2 corrosion resistance is often used in a severe corrosive environment containing CO 2 , Cl − and the like.
[0003]
Conventionally, a martensitic stainless steel seamless pipe is heated to a temperature at which the steel material can be pierced, then pierced and rolled by a piercer mill, and stretched and rolled by a mandrel mill or plug mill to obtain a raw tube, and then reheated to an austenite region. For example, it was usual that finish rolling was performed by a stretch reducer or a sizer to obtain a product tube. While air-cooled after finish rolling, the seamless pipe has a martensitic structure, but after finish rolling, the seamless pipe is usually quenched from the austenite region and given a temperature not higher than the Ac 1 transformation point in order to impart necessary strength and toughness. Tempered.
[0004]
However, with the recent deterioration of the oil well environment, the required characteristics of the oil well pipe used have been further enhanced, and in particular, there has been a strong demand for steel pipes for oil well pipes having excellent low-temperature toughness and sulfide stress corrosion cracking resistance. I have.
In response to such a demand, for example, Japanese Patent Application Laid-Open No. Hei 1-23025 discloses a process in which a martensitic stainless steel slab is heated to a temperature of 1050 to 1250 ° C. to perform piercing and rolling, and a step of heating at least 500 ° C. to 30 ° C. / Cooling to a temperature below the martensite transformation start temperature as a cooling rate per minute to form a structure in which 80% by volume or more is occupied by martensite, and (Ac 1 transformation point) to (Ac 1 transformation point -200 ° C.) A step of reheating to a temperature range and performing finish rolling at a cross-sectional reduction rate of 5% or more, and holding at the finish rolling end temperature, or immediately after finishing finish rolling, reheating to a temperature below the Ac 1 transformation point, and then air cooling. Alternatively, a method for producing a martensitic stainless steel seamless pipe in which a step of forcibly cooling is sequentially performed is described. According to the technique described in Japanese Patent Application Laid-Open No. 1-123025, after the step of forming a structure occupied by martensite, reheating is performed to a temperature range of (Ac 1 transformation point) to (Ac 1 transformation point -200 ° C.). It is stated that a step of performing finish rolling at a cross-sectional reduction rate of 5% or more and air cooling or forcibly cooling, and a step of heating to an Ac 1 transformation point or less and then air cooling or forced cooling may be performed.
[0005]
[Problems to be solved by the invention]
However, in the seamless pipe manufactured by the technique described in Japanese Patent Application Laid-Open No. 1-123025, the structure is elongated in the rolling direction because the rolling is performed in the non-recrystallization temperature range, and therefore, the characteristics in the rolling direction are excellent. However, there is a problem that properties in the circumferential direction are deteriorated, and remarkable anisotropy is observed in toughness and corrosion resistance.
[0006]
An object of the present invention is to advantageously solve the above-mentioned problems of the prior art, and to provide a method for producing a martensitic stainless steel seamless pipe having high strength, high toughness, and low anisotropy in properties. In the present invention, “high strength” means that the yield strength YS has 551 MPa or more, and “high toughness” means that the Charpy impact value (absorbed energy per unit cross-sectional area) at −40 ° C. is 90%. J / cm 2 or more.
[0007]
[Means for Solving the Problems]
The present inventors have diligently studied the effect of finish rolling conditions on toughness in order to achieve the above-mentioned object. As a result, before the finish rolling, the raw tube having a martensitic structure was reheated to the two-phase region of ferrite (α) + austenite (γ), and then the rolling start temperature and the area reduction rate (reduction rate) were determined. It was newly found that a product pipe having a fine and less anisotropic martensitic structure can be obtained by subjecting finish rolling to cooling under appropriate conditions with the relationship within a specific range, followed by cooling and then tempering.
[0008]
The present invention has been completed based on the above findings, with further investigations.
That is, the present invention is to heat the martensitic stainless steel material to the austenite region, and to perform a raw tube production step of forming a raw tube by piercing rolling and elongating rolling, and then perform finish rolling by reheating the raw tube, a rolling process finishing the product pipe having a predetermined size was cooled, the finish after rolling process, a tempering step of subjecting the tempering treatment at a temperature below the Ac 1 transformation point to said product tube, sequentially subjected martensitic stainless steel In the method for manufacturing a seamless pipe, the raw pipe is cooled to a substantially martensitic structure after the elongation rolling, and the reheating temperature of the raw pipe in the finish rolling step is (Ac 1 transformation point) to (Ac (3 transformation points), and the rolling start temperature T of the finish rolling is a temperature in the range of (Ac 1 transformation point) to (Ac 3 transformation point). Ma It is a manufacturing method of the ten sites stainless steel seamless pipe. In the present invention, the cross-sectional reduction rate R of the finish rolling is set to 10 to 90%, and the relationship between the rolling start temperature T of the finish rolling and the cross-sectional reduction rate R is expressed by the following equation (1): 800 ≦ T−0 .625R ≦ 850 (1)
(Where, T: rolling start temperature of finish rolling (° C.), R: reduction ratio of finish rolling section (%))
Is preferable.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As the martensitic stainless steel used as the steel material in the present invention, all commonly known martensitic stainless steels can be suitably used. The preferred composition of the martensitic stainless steel material suitable for the present invention is as follows. In addition, the mass% in the composition is simply described as%. As a martensitic stainless steel material, C: 0.30% or less, Si: 1.00% or less, Mn: 0.05 to 2.00%, P: 0.03% or less, S: 0.005% Hereinafter, it is preferable that the composition contains Cr: 10.0 to 15.0% and Al: 0.05% or less, and has a composition including the balance of Fe and inevitable impurities. In addition to the above composition, one or more of Ni: 7.0% or less, Mo: 3.0% or less, Cu: 3.0% or less, and / or Nb: 0.2% or less , V: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.0005 to 0.01%, N: 0.07% or less Or more, and / or one or two of Ca: 0.0005 to 0.01% and REM: 0.0005 to 0.01%.
[0010]
Next, the reasons for limiting the preferable composition of the steel material will be described.
C: 0.30% or less C is an element necessary for securing the strength of the martensitic stainless steel pipe. In the present invention, it is preferable that the content of C is 0.005% or more, but more than 0.30%. When it is contained, coarse carbides increase and the toughness decreases, and the corrosion resistance decreases. Therefore, in the present invention, C is preferably limited to 0.30% or less. In order to obtain more stable corrosion resistance, C is more preferably set to 0.22% or less.
[0011]
Si: 1.00% or less Si is an element necessary as a deoxidizing agent in a normal steelmaking process, and it is preferable to contain 0.10% or more, but if it exceeds 1.00%, the toughness is reduced. Also reduces hot workability. For this reason, Si is preferably limited to 1.00% or less. In addition, more preferably, it is 0.10 to 0.50%.
[0012]
Mn: 0.05-2.00%
Mn is an element necessary for securing the strength of the martensitic stainless steel pipe. In the present invention, Mn needs to be contained at 0.05% or more. However, if it exceeds 2.00%, the toughness is adversely affected. Exert. For this reason, Mn is preferably limited to the range of 0.05 to 2.00%. In addition, more preferably, it is 0.30 to 1.60%.
[0013]
P: 0.03% or less P is an element that deteriorates both corrosion resistance, sulfide stress corrosion cracking resistance and hot workability, and it is desirable to reduce it as much as possible. However, extreme reduction leads to a rise in manufacturing costs. . Therefore, P is set to 0.03% or less, which is a range that can be implemented industrially at relatively low cost and does not deteriorate the corrosion resistance and the sulfide stress corrosion cracking resistance.
[0014]
S: 0.010% or less S is an element that significantly degrades hot workability, and is reduced as much as possible to improve productivity in steel pipe production, or to further improve toughness and stress corrosion cracking resistance. However, an extreme reduction leads to an increase in manufacturing costs. If it is reduced to 0.010% or less, steel pipe can be manufactured in a normal process. Therefore, in the present invention, the upper limit of S is set to 0.010%. Incidentally, the content is preferably 0.005% or less.
[0015]
Cr: 10.0 to 15.0%
Cr is a main element for maintaining corrosion resistance and stress corrosion cracking resistance. From the viewpoint of corrosion resistance, Cr needs to be contained at least 10.0%, but if it exceeds 15.0%, it becomes hot. Workability deteriorates. For this reason, Cr was limited to the range of 10.0 to 15.0%.
Al: 0.05% or less Al is an element having a strong deoxidizing effect, and is preferably contained in the present invention in an amount of 0.001% or more. Increases, adversely affecting toughness. For this reason, Al was limited to 0.05% or less.
[0016]
In addition to the components described above, one or more of Ni, Mo, and Cu, and one or more of Nb, V, Ti, Zr, B, and N can be further contained as necessary.
One or more of Ni: 7.0% or less, Mo: 3.0% or less, and Cu: 3.0% or less Ni, Mo, and Cu are elements having an effect of improving corrosion resistance. Yes, it can be selected and contained as needed.
[0017]
Ni is an element that enhances corrosion resistance and greatly improves strength and toughness. Such an effect is remarkably recognized at a content of 1.0% or more, but is included at a content exceeding 7.0%. However, an effect commensurate with the content cannot be expected.
Mo is an element that increases resistance to pitting corrosion and improves corrosion resistance. Such an effect is remarkably recognized at a content of 0.1% or more, while a content exceeding 3.0% causes generation of δ-ferrite, corrosion resistance, stress corrosion cracking resistance and hot working. Decreases workability.
[0018]
Cu is an element that strengthens the protective coating and enhances the corrosion resistance. Such an effect is remarkably recognized at a content of 0.1% or more, but when the content exceeds 3.0%, hot working is performed. Is reduced.
Nb: 0.2% or less, V: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.0005 to 0.01%, N: 0.07% or less One or more of the above,
Nb, V, Ti, Zr, B, and N all have the effect of improving strength and toughness, and can be contained as necessary. However, when the content exceeds Nb: 0.2%, V: 0.2%, Ti: 0.3%, Zr: 0.2%, B: 0.01%, and N: 0.07%, the toughness increases. And the corrosion resistance is reduced.
[0019]
One or two of Ca: 0.0005 to 0.01% and REM: 0.0005 to 0.01%. Each of Ca and REM has an effect of spheroidizing inclusions. 0.0005% or more, REM: 0.0005% or more. On the other hand, if the content of Ca exceeds 0.01% and the content of REM exceeds 0.01%, the toughness and the corrosion resistance decrease.
The balance other than the components described above consists of Fe and inevitable impurities.
[0020]
In the present invention, preferably, the martensitic stainless steel having the above composition is melted by a generally known melting method such as a converter, and then cast into a slab (slab) by a continuous casting method. The slab is preferably rolled into a billet to be used as a raw material for pipe production. The billet may be directly formed into a billet by a continuous casting method, and may be used as a raw material for producing a pipe.
[0021]
FIG. 2 shows an outline of the manufacturing process of the present invention.
In the present invention, preferably, a martensitic stainless steel material (billet) having the above-described composition is first heated to the austenite region, and subjected to a blank tube manufacturing step of forming a blank tube by piercing rolling and elongating rolling.
The heating of the martensitic stainless steel material is preferably performed in the austenitic range of 1100 to 1300 ° C. If the heating temperature is lower than 1100 ° C., the deformation resistance in the next step, piercing rolling and elongation rolling, increases, while if it exceeds 1300 ° C., δ ferrite is generated, and the hot workability and toughness are remarkably reduced. The generation of scale is remarkable, leading to a decrease in yield and a decrease in surface properties.
[0022]
For piercing and rolling, any of known piercer mills such as inclined rolling method (Mannesmann method) and press piercing method can be applied, and the method of piercing and rolling is not particularly limited. The perforated steel material is then drawn and rolled into a raw tube. For the elongation rolling, any of the generally known methods such as a mandrel mill and a plug mill can be applied, and the elongation rolling method is not particularly limited. The elongation rolling is preferably completed at a temperature of 800 ° C. or higher.
[0023]
In the present invention, after the elongation-rolling is completed, the raw tube is cooled to a martensite transformation start temperature (Ms point) or lower to substantially change the structure to a martensite structure. Here, “substantially have a martensite structure” refers to a state where the raw tube structure after cooling is composed of a martensite phase having an area ratio of 90% or more. The structure other than the martensite phase is an austenite phase up to about 10% or a ferrite phase up to about 2%. By making the structure of the raw tube before the finish rolling substantially a martensite structure, a fine recrystallized structure can be obtained by reheating after that. If a structure other than the martensite structure is used as the main phase, the subsequent reheating cannot make the structure of the raw tube into a fine recrystallized structure, and eventually a remarkable improvement in toughness cannot be obtained, or , Anisotropy of toughness becomes remarkable.
[0024]
The raw tube having a substantially martensitic structure is then reheated, finished into a product tube having a predetermined size by finish rolling, and then subjected to a finish rolling step of cooling.
For finish rolling, the tube is reheated to a two-phase region temperature of (Ac 1 transformation point) to (Ac 3 transformation point). By heating to the two-phase region, the martensite structure can be made into a fine recrystallized structure. In the present invention, the raw tube having such a fine recrystallized structure is finish-rolled into a product tube having a predetermined size. When the reheating temperature exceeds the Ac 3 transformation point, the crystal grains eventually become coarse and no improvement in toughness is observed. On the other hand, when the reheating temperature is less than the Ac 1 transformation point, the anisotropy of toughness becomes remarkable.
[0025]
In the present invention, at the time of finish rolling, the rolling start temperature T is set to a temperature within the range of (Ac 1 transformation point) to (Ac 3 transformation point). If the rolling start temperature T is lower than (Ac 1 transformation point), the rolling temperature becomes too low, recrystallization becomes insufficient, and the rolling texture tends to remain, and the anisotropy of the characteristics tends to be remarkable. On the other hand, if the rolling start temperature T exceeds the (Ac 3 transformation point), the rolling temperature is too high, and recrystallization proceeds excessively even after rolling. unacceptable. For this reason, the rolling start temperature T is limited to a temperature within the range of (Ac 1 transformation point) to (Ac 3 transformation point).
[0026]
In the finish rolling, the area reduction rate R is set to 10 to 90%, and the relationship between the rolling start temperature T and the area reduction rate R is expressed by the following equation (1): 800 ≦ T−0.625R ≦ 850 (1) )
(Here, T: rolling start temperature of finish rolling (° C.), R: finish rolling section reduction rate (%)) are preferably performed under conditions that satisfy the conditions. The cross-sectional reduction rate R (%) is the ratio of the difference between the cross-sectional area of the tube before finish rolling and the cross-sectional area of the product tube after finish rolling to the cross-sectional area of the tube before finish rolling, {(cross-sectional area of the tube before finish rolling) -(Cross-sectional area of product tube after finish rolling) / (cross-sectional area of raw tube before finish rolling).
[0027]
When the cross-sectional reduction rate in the finish rolling is less than 10%, the strain introduced by the rolling process is small, the degree of microstructure refinement after rolling is small, and the desired strength increase and toughness improving effect are small. On the other hand, when the cross-sectional reduction rate exceeds 90%, the tissue elongates and the anisotropy of the characteristics becomes remarkable. For this reason, it is preferable that the rolling reduction (cross-sectional reduction rate) of the finish rolling is limited to the range of 10 to 90%. In addition, it is more preferably 30% to 70%.
[0028]
In the finish rolling in the present invention, the rolling start temperature T is set within the above-mentioned range, the cross-section reduction rate R is further set within the above-described range, and the cross-section reduction rate R is adjusted so as to satisfy the formula (1). It is preferable to perform rolling while adjusting the rolling start temperature T.
FIG. 1 shows the toughness of the martensitic stainless steel seamless pipe in relation to the cross-sectional reduction rate R and the rolling start temperature T.
[0029]
The rolling start temperature T of the finish rolling is within the range of the present invention ((Ac 1 transformation point) to (Ac 3 transformation point)), and the relationship between the rolling start temperature T and the area reduction rate R satisfies the formula (1). In the region C, the Charpy impact value (absorbed energy per unit sectional area) at −40 ° C. in the tube axis direction (L direction) (E −40 ) L and −40 ° C. in the tube circumferential direction (C direction). Impact energy (absorbed energy per unit cross-sectional area) (E- 40 ) C is 180 J / cm 2 or more, and anisotropy (E- 40 ) C / (E- 40 ) L of toughness is 0. .80 or more. That is, in the region C, the Charpy impact value (absorbed energy per unit cross-sectional area) at −40 ° C. is high, and high toughness with little anisotropy is shown.
[0030]
When the rolling start temperature T is within the range of the present invention ((Ac 1 transformation point) to (Ac 3 transformation point)), the left side of the expression (1) is not satisfied, that is, T−0.625R <800. In the area B, the Charpy impact value (absorbed energy per unit cross-sectional area) (E- 40 ) L in the pipe axis direction (L direction) is 180 J / cm 2 or more, but the pipe circumferential direction (C Direction), the Charpy impact value (absorbed energy per unit cross-sectional area) (E- 40 ) C slightly decreases to a range of 90 to 180 J / cm 2 . As a result, (E- 40 ) C / (E- 40 ) L becomes less than 0.80, and the anisotropy increases. However, a sufficient Charpy impact value (absorbed energy per unit cross-sectional area) for use is ensured.
[0031]
Further, the rolling start temperature T is within the range of the present invention ((Ac 1 transformation point) to (Ac 3 transformation point)), but the right side of the expression (1) is not satisfied, that is, 850 <T−0.625R. In the region D, the Charpy impact value in the pipe axis direction (L direction) (absorbed energy per unit cross-sectional area) (E- 40 ) L and the Charpy impact value in the pipe circumferential direction (C direction) (unit cutoff) Both (absorbed energy per area) (E- 40 ) and C are slightly reduced to less than 180 J / cm 2 , but all are 90 J / cm 2 or more, and sufficient toughness in use is secured.
[0032]
Further, in a region A where the rolling start temperature T is lower than the range of the present invention ((Ac 1 transformation point) to (Ac 3 transformation point)), the Charpy impact value (per unit cross-sectional area) in the tube axis direction (L direction). Absorbed energy) (E- 40 ) L is 180 J / cm 2 or more, but Charpy impact value (absorbed energy per unit cross-sectional area) in the circumferential direction (C direction) of the tube (E- 40 ) C is 90 J / cm2. cm 2 , and when (E− 40 ) C / (E− 40 ) L is less than 0.80, the anisotropy of toughness increases.
[0033]
In a region E where the rolling start temperature T is outside the range of the present invention, the Charpy impact value (absorbed energy per unit cross-sectional area) (E- 40 ) L in the tube axis direction (L direction) and the tube circumferential direction ( (C direction) Charpy impact value (absorbed energy per unit cross-sectional area) (E- 40 ) When both C are less than 90 J / cm 2 , toughness is reduced.
That is, in a region where the rolling start temperature T falls within the range of the present invention ((Ac 1 transformation point) to (Ac 3 transformation point)), the Charpy impact value (absorbed energy per unit cross-sectional area) in the tube axis direction (L direction). ) (E- 40 ) L and Charpy impact value (absorbed energy per unit cross-sectional area) in the circumferential direction (C direction) of the tube (E- 40 ) C are both 90 J / cm 2 or more, and sufficient toughness in use is obtained. Can be secured. Further, by performing the finish rolling under the condition satisfying the expression (1), the Charpy impact value (absorbed energy per unit sectional area) (E- 40 ) L in the pipe axis direction (L direction) and the pipe circumferential direction ( Charpy impact value C direction) (becomes a unit absorbed energy) (E -40 per cross sectional area) C together 180 J / cm 2 or more, and (E -40) C / (E -40) L is 0.80 A seamless steel pipe having a small anisotropy and high toughness, which exceeds the above, is obtained.
[0034]
In the present invention, the finish rolling start temperature is set within the above range, and preferably, as finish rolling satisfying the expression (1), after finish rolling, air cooling or cooling at a cooling rate higher than air cooling. By the subsequent tempering treatment, the structure becomes a fine martensitic structure with little anisotropy, and a product tube having high strength, high toughness and low anisotropy characteristics can be obtained.
[0035]
The finish rolling is preferably performed by a continuous rolling mill such as a stretch reducer or a sizer.
[0036]
【Example】
A martensitic stainless steel melt having the composition shown in Table 1 was melted in a converter, the molten steel was converted into a slab by a continuous casting method, and then the slab was rolled into a billet (raw material for raw pipe production). These billets (martensitic stainless steel material) were pierced and rolled by a Mannesmann piercer mill, and then drawn and rolled by a mandrel mill to obtain raw tubes having the dimensions shown in Table 2. After the elongation rolling, the raw tube was cooled to a temperature equal to or lower than the Ms point, and the structure was substantially changed to a martensite structure. A test piece was collected from a part of the tube, and the tube structure was observed with an optical microscope. In addition, an example in which reheating was performed immediately after elongation rolling without cooling to a temperature equal to or lower than the Ms point was adopted as a conventional example.
[0037]
Next, after the raw tube was reheated to the temperature shown in Table 2, finish rolling was performed under the conditions shown in Table 2 to obtain a product tube having the size shown in Table 2. The finish rolling was performed using a stretch reducer. After finish rolling, the product tube was air-cooled (cooled). After cooling, the product tubes were further tempered at the temperatures shown in Table 2.
From each of the obtained product pipes, a test piece was sampled from the pipe axis direction (L direction), and a tensile test was performed in the pipe axis direction in accordance with the provisions of ASTM A370 to obtain tensile properties (yield strength YS, tensile strength). TS). In addition, a Charpy impact test in a tube axis direction and a circumferential direction at −40 ° C. was performed at −40 ° C. in accordance with the provisions of ASTM A370, and an impact value (absorbed energy per unit sectional area) E− 40 at −40 ° C. was obtained. I asked. The impact test piece was a sub-size having a thickness of 5 mm, and the test piece from the pipe circumferential direction (C direction) was tested by correcting the end of the test piece. From the obtained results, the impact value in the pipe circumferential direction (absorbed energy per unit sectional area) (E- 40 ) C and the impact value in the pipe axis direction (absorbed energy per unit sectional area) (E- 40 ) L , And (E- 40 ) C / (E- 40 ) L was calculated.
[0038]
Table 3 shows the obtained results.
[0039]
[Table 1]
[0040]
[Table 2]
[0041]
[Table 3]
[0042]
Each of the examples of the present invention has high strength (YS: 550 MPa or more) and high toughness ((E- 40 ) L in the L direction: 180 J / cm 2 or more). The ratio in the L direction, (E- 40 ) C / (E- 40 ) L, is 0.80 or more, which is high strength with less anisotropy as compared with the conventional example (steel pipe No. 8) and the comparative example. It is a high toughness steel pipe. On the other hand, in the comparative examples departing from the scope of the present invention, either the L direction of toughness (impact value) is degraded, or C in toughness (impact value) increased less, also (E -40) C / (E - 40 ) When L is less than 0.80, the anisotropy of toughness is large.
[0043]
【The invention's effect】
According to the present invention, a martensitic stainless steel seamless pipe having high strength, high toughness, and low anisotropy can be manufactured stably at low cost, and has a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of finish rolling start temperature and cross-sectional reduction rate on toughness and toughness anisotropy.
FIG. 2 is an explanatory view showing an outline of a manufacturing process of the present invention.
Claims (2)
記
800 ≦T− 0.625R≦ 850 ………(1)
ここで、T:仕上圧延の圧延開始温度(℃)
R:仕上げ圧延断面減少率(%)The cross-sectional reduction rate R of the finish rolling is set to 10 to 90%, and the relationship between the rolling start temperature T of the finish rolling and the cross-sectional reduction rate R satisfies the following expression (1). 2. A method for producing a high-strength and high-toughness martensitic stainless steel seamless tube according to item 1.
800 ≦ T− 0.625R ≦ 850 (1)
Here, T: rolling start temperature of finish rolling (° C.)
R: Finish rolling cross-section reduction rate (%)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221633A JP3937964B2 (en) | 2001-08-29 | 2002-07-30 | High strength and high toughness martensitic stainless steel seamless pipe manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001259889 | 2001-08-29 | ||
JP2002128533 | 2002-04-30 | ||
JP2002221633A JP3937964B2 (en) | 2001-08-29 | 2002-07-30 | High strength and high toughness martensitic stainless steel seamless pipe manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004027351A true JP2004027351A (en) | 2004-01-29 |
JP3937964B2 JP3937964B2 (en) | 2007-06-27 |
Family
ID=31191816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002221633A Expired - Fee Related JP3937964B2 (en) | 2001-08-29 | 2002-07-30 | High strength and high toughness martensitic stainless steel seamless pipe manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3937964B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254799A (en) * | 2006-03-22 | 2007-10-04 | Sumitomo Metal Ind Ltd | Method for producing martensitic stainless steel pipe |
JP2015081352A (en) * | 2013-10-21 | 2015-04-27 | Jfeスチール株式会社 | Equipment column for manufacturing thick steel |
WO2015064006A1 (en) * | 2013-10-29 | 2015-05-07 | Jfeスチール株式会社 | Device array for manufacturing seamless steel pipes, and method for manufacturing high-strength stainless seamless steel pipe for oil wells using same |
JP2016169409A (en) * | 2015-03-12 | 2016-09-23 | Jfeスチール株式会社 | Method for producing seamless steel pipe of martensitic high Cr steel |
-
2002
- 2002-07-30 JP JP2002221633A patent/JP3937964B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254799A (en) * | 2006-03-22 | 2007-10-04 | Sumitomo Metal Ind Ltd | Method for producing martensitic stainless steel pipe |
JP2015081352A (en) * | 2013-10-21 | 2015-04-27 | Jfeスチール株式会社 | Equipment column for manufacturing thick steel |
WO2015059871A1 (en) * | 2013-10-21 | 2015-04-30 | Jfeスチール株式会社 | Device array for producing thick steel material, and method for producing thick steel material |
RU2660474C2 (en) * | 2013-10-21 | 2018-07-06 | ДжФЕ СТИЛ КОРПОРЕЙШН | Thick-walled steel article manufacturing process line and the thick-walled steel article manufacturing method from the high-strength stainless steel in the process line |
US10562085B2 (en) | 2013-10-21 | 2020-02-18 | Jfe Steel Corporation | Equipment line for manufacturing heavy-walled steel products |
WO2015064006A1 (en) * | 2013-10-29 | 2015-05-07 | Jfeスチール株式会社 | Device array for manufacturing seamless steel pipes, and method for manufacturing high-strength stainless seamless steel pipe for oil wells using same |
JP2015086412A (en) * | 2013-10-29 | 2015-05-07 | Jfeスチール株式会社 | Device array for manufacturing seamless steel pipes, and method for manufacturing high-strength stainless seamless steel pipe for oil wells using the same |
US10570471B2 (en) | 2013-10-29 | 2020-02-25 | Jfe Steel Corporation | Equipment line for manufacturing seamless steel tube or pipe and method of manufacturing high-strength stainless steel seamless tube or pipe for oil wells using the equipment line |
JP2016169409A (en) * | 2015-03-12 | 2016-09-23 | Jfeスチール株式会社 | Method for producing seamless steel pipe of martensitic high Cr steel |
Also Published As
Publication number | Publication date |
---|---|
JP3937964B2 (en) | 2007-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6846371B2 (en) | Method for making high-strength high-toughness martensitic stainless steel seamless pipe | |
US10287645B2 (en) | Method for producing high-strength steel material excellent in sulfide stress cracking resistance | |
US8293037B2 (en) | Method for producing duplex stainless steel pipe | |
JP6037031B1 (en) | High strength seamless thick steel pipe and method for manufacturing the same | |
JPWO2004001076A1 (en) | Steel pipe for oil well with excellent crushing characteristics after pipe expansion and its manufacturing method | |
JP2014012890A (en) | Low alloy high strength seamless steel pipe for oil well having excellent sulfide stress corrosion cracking resistance and its manufacturing method | |
JP6171851B2 (en) | Apparatus row for seamless steel pipe production and method for producing high-strength stainless steel seamless steel pipe for oil wells using the same | |
JP2012149317A (en) | High strength martensitic stainless steel seamless pipe for oil well | |
JPWO2005080621A1 (en) | Steel plate or steel pipe with small expression of bauschinger effect and method for producing the same | |
JP2567150B2 (en) | Manufacturing method of high strength low yield ratio line pipe material for low temperature | |
JPH04231414A (en) | Production of highly corrosion resistant oil well pipe | |
JP6123734B2 (en) | Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same | |
JP2007196237A (en) | Manufacturing method of seamless steel pipe for machine structural parts | |
CN112410647B (en) | Method for producing X65 acid-resistant pipeline steel plate used under low-cost and ultralow-temperature conditions by using coiler furnace | |
JP2006097109A (en) | High carbon hot rolled steel sheet and manufacturing method thereof | |
JP2003105441A (en) | Manufacturing method of high strength and high toughness 13Cr martensitic stainless steel seamless tube | |
JP3937964B2 (en) | High strength and high toughness martensitic stainless steel seamless pipe manufacturing method | |
JP3214348B2 (en) | Manufacturing method of alloy steel pipe | |
JP2001247931A (en) | Non-tempered high-strength seamless steel pipe and method for producing the same | |
JPH09287029A (en) | Manufacturing method of high strength seamless steel pipe with excellent toughness | |
JP2000096142A (en) | Rolling method for steel pipe | |
JP3589066B2 (en) | Manufacturing method of high strength and high toughness seamless steel pipe | |
JPH11302785A (en) | Steel for seamless steel pipes | |
JPH05171361A (en) | Production of martensitic stainless steel | |
JP2007246985A (en) | Manufacturing method of high toughness high tensile steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070319 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3937964 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100406 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120406 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130406 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130406 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140406 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |