[go: up one dir, main page]

JP7555208B2 - Large hollow porous quartz glass base material and its manufacturing method - Google Patents

Large hollow porous quartz glass base material and its manufacturing method Download PDF

Info

Publication number
JP7555208B2
JP7555208B2 JP2020121187A JP2020121187A JP7555208B2 JP 7555208 B2 JP7555208 B2 JP 7555208B2 JP 2020121187 A JP2020121187 A JP 2020121187A JP 2020121187 A JP2020121187 A JP 2020121187A JP 7555208 B2 JP7555208 B2 JP 7555208B2
Authority
JP
Japan
Prior art keywords
quartz glass
hollow
soot body
base material
synthetic quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020121187A
Other languages
Japanese (ja)
Other versions
JP2022018230A (en
Inventor
児太郎 角
ひかり 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2020121187A priority Critical patent/JP7555208B2/en
Priority to CN202411625772.4A priority patent/CN119461788A/en
Priority to CN202110764980.2A priority patent/CN113943094B/en
Priority to US17/374,131 priority patent/US20220017404A1/en
Priority to KR1020210093021A priority patent/KR20220009353A/en
Publication of JP2022018230A publication Critical patent/JP2022018230A/en
Application granted granted Critical
Publication of JP7555208B2 publication Critical patent/JP7555208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • C03B37/01493Deposition substrates, e.g. targets, mandrels, start rods or tubes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • C03B2203/16Hollow core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、大型中空状多孔質石英ガラス母材及びその製造方法並びにそれを使用した中空状合成石英ガラスシリンダ及びその製造方法に関し、特に、外径300mmを超える大重量の大型中空状多孔質石英ガラス母材及び該大型中空状多孔質石英ガラス母材を好適に製造できる中空状多孔質石英ガラス母材の製造方法並びにそれを使用した中空状合成石英ガラスシリンダ及びその製造方法に関する。 The present invention relates to a large hollow porous quartz glass base material and its manufacturing method, as well as a hollow synthetic quartz glass cylinder using the same and its manufacturing method, and in particular to a large heavy hollow porous quartz glass base material with an outer diameter exceeding 300 mm, a manufacturing method for a hollow porous quartz glass base material that can suitably manufacture the large hollow porous quartz glass base material, and a hollow synthetic quartz glass cylinder using the same and its manufacturing method.

合成石英ガラスは光学、半導体、化学産業において広く用いられ、特にマイクロリソグラフィーにおける投影や露光システム用レンズ材としてや半導体製造冶具や光ファイバー用材料として多く用いられる。 Synthetic quartz glass is widely used in the optical, semiconductor and chemical industries, particularly as a lens material for projection and exposure systems in microlithography, as well as in semiconductor manufacturing tools and optical fiber materials.

中空状合成石英ガラスシリンダの製造は中空状多孔質合成石英ガラス母材(スート体)を製造し、それを焼結透明化することが一般的である。スート体の製造ではOVD法(Outside Vapor Deposition)が知られており、長軸を中心に回転するターゲット外表面に珪素含有原料を火炎加水分解、又は熱分解によって微細なSiO粒子に変換し堆積することによりスート体を製造する。 The manufacture of hollow synthetic quartz glass cylinders generally involves manufacturing a hollow porous synthetic quartz glass base material (soot body) and sintering it to make it transparent. The OVD method (Outside Vapor Deposition) is known for manufacturing soot bodies, and the soot body is manufactured by converting silicon-containing raw material into fine SiO2 particles by flame hydrolysis or pyrolysis and depositing them on the outer surface of a target rotating around its long axis.

中空状多孔質石英ガラス母材(スート体)は焼結前にターゲットを抜き出す作業が必要であり、抜き出す作業はターゲットと中空状スート体を相対的に回転させたり長軸方向に動かし行う。スート体とターゲットが固着している場合のこの作業は困難を極める。更に、大きな力を加えることで抜き出す事ができたとしてもその際にスート体内面に傷が発生し、発生した傷は焼結後の石英シリンダにも局所的な欠陥として残り不良部となる。 The hollow porous quartz glass base material (soot body) requires the removal of the target before sintering, and this is done by rotating the target and hollow soot body relative to one another and moving them in the longitudinal direction. This is extremely difficult if the soot body and the target are stuck together. Furthermore, even if it is possible to remove the target by applying a large force, scratches will be created on the inside of the soot body during the process, and these scratches will remain as localized defects in the quartz cylinder after sintering, resulting in defective parts.

近年、半導体ウエハの大径化や光ファイバー母材の大型化によって石英シリンダは大型化の需要が高まっている。大型石英シリンダを製造するためには製造の中間体である中空状多孔質石英ガラス母材(スート体)も大型化及び大重量化が必要である。しかしながら、スート体の大重量化大径化により、スート体からターゲットを抜き出す作業が困難になるという問題があった。これは、スート体成長中はターゲットとスート体が一体となりターゲットに追従しスート体が回転し、且つスート成長後にはスート体からターゲットを抜き出す事ができるという両方を実現するのが困難であったという事である。 In recent years, the demand for larger quartz cylinders has increased due to the increasing diameter of semiconductor wafers and the increasing size of optical fiber base materials. In order to manufacture large quartz cylinders, the hollow porous quartz glass base material (soot body), which is an intermediate product in the manufacturing process, must also be made larger and heavier. However, as the soot body becomes heavier and heavier, there is a problem that the task of extracting the target from the soot body becomes difficult. This means that it is difficult to achieve both: the target and soot body are integrated during soot body growth, and the soot body rotates following the target, and the target can be extracted from the soot body after soot growth.

また、OVD法では複数のガラス微粒子合成用バーナーを一定間隔で配置し、回転する出発部材(ターゲット)にバーナーの列を相対的に往復移動(スイング)させターゲットの上に層状にガラス微粒子を堆積させてスート体を得ることができる。スイングの折り返し点ではスイング速度が瞬間的に零になるために定常速度でスイングしている部分に比べ実際に火炎が照射されている時間は長い。その為、折り返し点ではガラス微粒子の堆積量が多く長軸方向に凹凸が発生する。その為、特許文献1では長軸方向に堆積を分散させる為にスイングの折り返し位置を所定の距離ずつ移動させることにより長軸方向に均一な外径のスート体を得るトラバース法を記載しており、堆積量や密度分布を分散する方法としてこのようなトラバース法が公知である。 In the OVD method, multiple burners for synthesizing glass particles are arranged at regular intervals, and the row of burners is moved back and forth (swinged) relative to a rotating starting member (target) to deposit glass particles in layers on the target, resulting in a soot body. At the turning point of the swing, the swing speed momentarily becomes zero, so the time during which the flame is actually irradiated is longer than in the part swinging at a steady speed. As a result, the amount of glass particles deposited at the turning point is large, and unevenness occurs in the longitudinal direction. For this reason, Patent Document 1 describes a traverse method in which the turning point of the swing is moved a specified distance at a time in order to distribute the deposition in the longitudinal direction, thereby obtaining a soot body with a uniform outer diameter in the longitudinal direction, and this traverse method is well known as a method for distributing the deposition amount and density distribution.

また、OVD法では長軸を中心に回転させながらターゲット外表面に堆積させるため、スート体の回転数を一定とするとスート体外径の成長に伴い、スート体外表面の周速は早くなり単位面積当たりの照射時間が短くなる事で径方向に均質なスート体を得ることができない。昨今、生産性の効率化とコスト低減の為に大径肉厚化が進む中で特に外径が300mmを超える大径スート体に対してはその影響は顕著であり、周速を一定となるようにスート体外径の成長に伴い回転数を低くする制御が必要となる。更に周速が一定であってもその速度が一定以上速い場合は成長後期に外径が大きくなった際に僅かな径方向重心の偏芯により振動が発生したり、それに伴う回転装置への負荷が増え安定した製造が不可能となる。更に、周速が一定以上早い場合はターゲットの回転にスート体が追従せずスート体とターゲットの界面で空回りしスート体が安定して一定速度で回転できなくなるという問題が発生する。この問題に対してはターゲットに対するスート体の固着を強固にする事で回避できるがその場合前述したターゲットの抜き出し作業が極めて困難となりターゲットの抜き出しが可能であっても局所的欠陥が発生する。その為、低回転数での周速一定条件が不可欠となる。 In addition, in the OVD method, deposition is performed on the outer surface of the target while rotating it around its long axis. Therefore, if the rotation speed of the soot body is constant, the peripheral speed of the outer surface of the soot body increases as the outer diameter of the soot body grows, and the irradiation time per unit area becomes shorter, making it impossible to obtain a radially homogeneous soot body. Recently, as the diameter and thickness of soot bodies are becoming larger in order to improve productivity and reduce costs, the effect is particularly noticeable for large-diameter soot bodies with outer diameters exceeding 300 mm, and it is necessary to control the rotation speed to be lower as the outer diameter of the soot body grows so that the peripheral speed is constant. Furthermore, even if the peripheral speed is constant, if the speed is faster than a certain level, vibrations will occur due to slight eccentricity of the radial center of gravity when the outer diameter becomes large in the later growth stage, and the load on the rotating device will increase, making stable production impossible. Furthermore, if the peripheral speed is faster than a certain level, the soot body will not follow the rotation of the target and will spin freely at the interface between the soot body and the target, causing the soot body to be unable to rotate stably at a constant speed. This problem can be avoided by strengthening the adhesion of the soot body to the target, but in that case the target extraction work described above becomes extremely difficult, and even if the target can be extracted, localized defects will occur. For this reason, a constant peripheral speed at a low rotation speed is essential.

しかし、大型化し且つ周速度を一定とする為に低回転条件にした場合、成長中や成長終了後にクラックが発生したり破裂する事が多発した。更にそこまで至らない場合でも塩素化剤による処理を実施する場合は焼結後の合成石英ガラスシリンダの塩素含有濃度分布が不均一になり、塩素化剤による処理を行わない場合はOH基含有濃度分布が不均一となる為、光学的に均質な物性の石英ガラスシリンダを得ることができない。 However, when the size was increased and low rotation conditions were used to keep the peripheral speed constant, cracks and ruptures frequently occurred during or after growth was completed. Even if it did not reach that stage, if treatment with a chlorinating agent was performed, the chlorine concentration distribution of the synthetic quartz glass cylinder after sintering became non-uniform, and if treatment with a chlorinating agent was not performed, the OH group concentration distribution became non-uniform, making it impossible to obtain a quartz glass cylinder with optically homogeneous physical properties.

光ファイバーの製造において、径方向や周方向の塩素濃度の差が重要であり、特に、周方向の塩素濃度分布の差を小さくすることにより、ファイバー・カールが向上することが、近年の研究で明らかになってきた。大口径のプリフォームを線引きする場合に、単位長さ辺りの線引き量が長くなると共に、線引き炉内での変形時間が長くなることにより、よりクラッド部のローカルな均質性がファイバーの性質に影響を与える為、クラッド用ガラス母材のサイズが大きくなると、より小規模な範囲での塩素濃度の安定性が重要となる。 In the manufacture of optical fibers, the difference in chlorine concentration in the radial and circumferential directions is important, and recent research has revealed that fiber curl is improved by reducing the difference in chlorine concentration distribution in the circumferential direction in particular. When drawing large-diameter preforms, the amount of drawing per unit length increases and the deformation time in the drawing furnace increases, which causes the local homogeneity of the cladding to affect the properties of the fiber. Therefore, as the size of the cladding glass base material increases, stability of the chlorine concentration over a smaller range becomes important.

塩素化処理せずに製造した石英ガラスシリンダは半導体製造装置内に使用する石英ガラス冶具やランプ向け材料の素材として使用する場合が多い。そのような石英ガラス素材を得るために所望のサイズに成型や熱加工するが、その際にOH基濃度差が大きいとシリンダ内に粘度分布が発生し、偏肉、サイディング、そしてオーバルといった形状不安定問題が発生する。これも前述の光ファイバー同様にガラスサイズが大きくなるとより顕著に出現するため、小規模な範囲でのOH基濃度の安定が重要となる。 Quartz glass cylinders manufactured without chlorination are often used as the raw material for quartz glass jigs and lamps used in semiconductor manufacturing equipment. To obtain such quartz glass material, it is molded and heat processed to the desired size, but if there is a large difference in OH group concentration during this process, a viscosity distribution will occur within the cylinder, resulting in shape instability problems such as uneven thickness, siding, and ovality. As with the optical fiber mentioned above, this becomes more noticeable as the glass size increases, so it is important to stabilize the OH group concentration over a small area.

OVD法のバーナーの往復運動と支持体の回転に関して、特許文献2は、表面の基礎温度を1050℃と1350℃の間に維持され、平均周速は8m/分から15m/分に維持され且つバーナー列の並進速度(スイング速度)は300mm/分から800mm/分との間に維持される事により局部的に軸方向密度変動がほとんど生じない母材製造を可能にすることを記載している。しかしながら、特許文献2記載の方法では、例えばスイング距離を100mm、スイング速度を800mm/分とし平均周速を9m/分とした場合は、堆積体の外径(以下、外径をODとも表す)を100mmから300mmに成長させると回転数は19.1rpmから6.4rpmにする必要がある。しかし、この条件で製造を行った場合、成長中にクラックが入り成長を継続できない。 Regarding the reciprocating motion of the burner and the rotation of the support in the OVD method, Patent Document 2 describes that the base temperature of the surface is maintained between 1050°C and 1350°C, the average peripheral speed is maintained between 8 m/min and 15 m/min, and the translation speed (swing speed) of the burner row is maintained between 300 mm/min and 800 mm/min, thereby enabling the production of a base material with almost no local axial density fluctuation. However, in the method described in Patent Document 2, for example, if the swing distance is 100 mm, the swing speed is 800 mm/min, and the average peripheral speed is 9 m/min, the rotation speed needs to be increased from 19.1 rpm to 6.4 rpm to grow the outer diameter (hereinafter, the outer diameter is also referred to as OD) of the deposit from 100 mm to 300 mm. However, if production is performed under these conditions, cracks will occur during growth and growth cannot continue.

また、特許文献3は、往復運動の折り返し位置を所定の距離ずつ一定方向に移動させ所定の位置で折り返し位置を逆方向に移動させる方法において、回転速度を一定とし、以下の関係になるように条件設定することで外形変動(スートの軸方向の凹凸)を抑制することを記載している。
A=(r/v)×Lで表される値が40≧A≧8
[r=回転数(rpm)、v=往復移動速度(mm/分)、L=バーナー間隔]
Furthermore, Patent Document 3 describes a method in which the turning point of the reciprocating motion is moved in a fixed direction by a specified distance and then moved in the opposite direction at a specified position, in which the rotation speed is kept constant and conditions are set to satisfy the following relationship, thereby suppressing external shape fluctuations (axial unevenness of the soot).
The value represented by A = (r/v) x L is 40 ≥ A ≥ 8
[r = rotation speed (rpm), v = reciprocating speed (mm/min), L = burner spacing]

特許文献3記載の方法では、例えばスイング速度850mm/分、スイング幅100mmの場合、Aを指定範囲にする為には回転数r(rpm)を68≦r≦320にする必要がある。しかしながら、堆積体の外形が大きい、例えばOD300mmでは表面周速p(m/分)は64≦p≦301と速く、強い遠心力が生じる。大重量、大径化が進むほどその力は大きくなる為、振動が発生したり、その遠心力に耐えうる剛性の装置及びターゲットにする必要があり高価となってしまい、さらに、成長中にクラックが発生する問題があった。さらに、特許文献3は、出発ロッドの表面に石英ガラス微粒子を堆積させ、中実の光ファイバプリフォームを製造する方法であり、中空状の多孔質石英ガラス母材を製造するものではない。特許文献3記載の方法では、外径300mm以上のスート体をターゲットの界面との間で空回りする事なく製造するにはターゲットとスート体を強固に固着させる必要があるが、そうした場合ターゲットを抜き出す作業が困難であるといった問題もあった。 In the method described in Patent Document 3, for example, when the swing speed is 850 mm/min and the swing width is 100 mm, the rotation speed r (rpm) must be set to 68≦r≦320 in order to set A within the specified range. However, when the outer diameter of the deposition body is large, for example, when the OD is 300 mm, the surface peripheral speed p (m/min) is fast at 64≦p≦301, and a strong centrifugal force is generated. The force increases as the weight and diameter increase, so vibration occurs, and the device and target must be made rigid enough to withstand the centrifugal force, which makes them expensive, and there is also a problem that cracks occur during growth. Furthermore, Patent Document 3 is a method of depositing silica glass particles on the surface of a starting rod to manufacture a solid optical fiber preform, but it is not a method of manufacturing a hollow porous silica glass base material. In the method described in Patent Document 3, in order to manufacture a soot body with an outer diameter of 300 mm or more without freewheeling between the interface of the target, it is necessary to firmly fix the target and the soot body, but in such a case, there is also a problem that it is difficult to extract the target.

また、特許文献4は、出発ロッドとバーナーの相対的往復移動(スイング)が一往復してもとの位置に戻る際に出発ロッドの回転位置がもとの位置から半周期ずれるように往復移動速度(スイング速度)と回転速度を設定することで長手方向の径の変動を抑制することを記載し、下記条件を記載している。
(L/V)×N(rpm)=n+0.5±0.1
[L=移動距離(mm)、V=往復移動速度(mm/分)、N=ロッドの回転数(rpm)、n:任意の整数]
Patent Document 4 also describes that fluctuations in the longitudinal diameter are suppressed by setting the reciprocating movement speed (swing speed) and rotation speed so that the rotational position of the starting rod is shifted by half a period from its original position when the relative reciprocating movement (swing) of the starting rod and the burner makes one round trip and returns to its original position, and describes the following conditions.
(L/V)×N(rpm)=n+0.5±0.1
[L = moving distance (mm), V = reciprocating speed (mm/min), N = number of rotations of the rod (rpm), n: any integer]

特許文献4記載の方法では、1往復したときに0.5回転周期(180°)ずらすため、2往復した際には回転位置は1回転(360°)ずれる事となる。例えばスイング速度850mm/分,スイング幅100mmの場合、回転数が12.75rpmとなった場合上記式を満たす(100mm/850mm/分×12.75rpm=1.5)。しかしながら、この12.75rpmの場合、3回転毎に1回スイングの折り返し位置と回転1回転とのタイミングが一致してしまい長軸方向、径方向共にスート体に密度分布が形成されてしまう。さらに、特許文献4も、出発ロッドの表面にガラス微粒子を堆積させ、中実のガラス微粒子堆積体を製造する方法であり、中空状の多孔質石英ガラス母材を製造するものではない。 In the method described in Patent Document 4, the rotational position is shifted by 0.5 rotational periods (180°) when the rod goes back and forth once, so when the rod goes back and forth twice, the rotational position is shifted by one rotation (360°). For example, when the swing speed is 850 mm/min and the swing width is 100 mm, the above formula is satisfied when the rotation speed is 12.75 rpm (100 mm/850 mm/min x 12.75 rpm = 1.5). However, in the case of 12.75 rpm, the timing of the swing turnaround position and one rotation coincides once every three rotations, and a density distribution is formed in the soot body in both the long axis direction and the radial direction. Furthermore, Patent Document 4 is also a method of depositing glass particles on the surface of a starting rod to produce a solid glass particle deposition body, but it is not a method of producing a hollow porous quartz glass base material.

前述した如く、いずれの特許文献も大径化された外径300mmを超えるスート体からのターゲットの抜き出し可能とする低回転数条件下でのスート体の局所的密度分布を示し更にそれを解決する事でクラックの発生を抑制する発明ではない。 As mentioned above, none of the patent documents discloses the local density distribution of the soot body under low rotation speed conditions that allows the extraction of a target from a large soot body with an outer diameter exceeding 300 mm, and does not disclose an invention that solves this problem to suppress the occurrence of cracks.

特開平3-228845号公報Japanese Patent Application Publication No. 3-228845 特表2001-504426号公報Special Publication No. 2001-504426 特開2002-167228号公報JP 2002-167228 A 特開2013-43810号公報JP 2013-43810 A

本発明は外径300mmを超えるスート体であっても成長中に発生する遠心力などの装置への負荷を大きく増大させる事なくスート体を作成でき、更に外径300mmを超えるスート体大径化に伴う周速一定低回転数条件下でのスート体の局所的密度分布を解消し、低速回転で製造した場合でもスート体へのクラックや破裂がなく、且つ大径化されたスート体からのターゲットの抜き取りが容易な大型中空状合成石英ガラス多孔質母材及びその製造方法並びに中空状合成石英ガラスシリンダ及びその製造方法を提供することを目的とする。 The present invention aims to provide a large hollow synthetic quartz glass porous base material and a manufacturing method thereof, as well as a hollow synthetic quartz glass cylinder and a manufacturing method thereof, which can produce a soot body without significantly increasing the load on the device, such as centrifugal force generated during growth, even when the soot body has an outer diameter of more than 300 mm, and which eliminates the local density distribution of the soot body under constant low peripheral speed conditions that accompany the increase in the diameter of the soot body when the outer diameter exceeds 300 mm, and which does not cause cracks or ruptures in the soot body even when produced at a low rotation speed, and which makes it easy to extract a target from the increased diameter soot body.

上記問題を解決すべくスート体を調査したところ、スート体におけるバーナーの往復移動の折り返し位置では堆積量のみではなく堆積した層の密度にも差があることが分かった。本発明において、バーナーの往復移動をスイングと称する。図4は、バーナーの往復移動(スイング)の折り返し位置とスート体の長軸方向における堆積した層の密度分布を示すグラフである。図4に示した如く、バーナーの折り返し位置ではスイング速度が定常速度で移動しているときよりも高密度になり、それをくり返し堆積する事でスート体に軸方向密度分布が発生する。 In order to solve the above problem, the soot body was investigated and it was found that there is a difference not only in the amount of deposition but also in the density of the deposited layer at the turning point of the reciprocating movement of the burner in the soot body. In this invention, the reciprocating movement of the burner is called a swing. Figure 4 is a graph showing the turning point of the reciprocating movement (swing) of the burner and the density distribution of the deposited layer in the longitudinal direction of the soot body. As shown in Figure 4, at the turning point of the burner, the density is higher than when the swing speed is moving at a steady speed, and repeated deposition generates an axial density distribution in the soot body.

更に調査を進めると、軸方向だけではなく径方向にも局所的に密度差が強く形成されている事が分かった。この径方向の局所的な密度変動を詳細に分析した結果、スイングの折り返し点と回転の1回転が一致するタイミングが発生していた。図5はスート体の径方向における密度分布を示すグラフである。図5に示した如く、通常であれば密度の高くなるスイング折り返し位置は周方向に分散しているが、スイングの折り返しと1回転のタイミングが一致した状態で一定時間以上成長した場合、高密度域が分散せず周方向で密度が高い部位と低密度域が重なり、密度が極端に低くなっている部位があることがわかった。図5において、γは下記式(1)により算出される頻度係数である。
γ=S/(L・N)・・・(1)
[前記式(1)において、Sはバーナーの移動速度(mm/分)、Lはバーナーの移動距離(mm)、Nはスート体の変動する回転数の最低値(rpm)である。]
Further investigation revealed that the density difference was formed not only in the axial direction but also in the radial direction locally. A detailed analysis of the local density variation in the radial direction revealed that the timing occurred when the swing turning point and one rotation coincided. Figure 5 is a graph showing the density distribution in the radial direction of the soot body. As shown in Figure 5, the swing turning point where the density is high is usually distributed in the circumferential direction, but when the swing turning point and one rotation timing coincide and the soot body grows for a certain period of time or more, the high density area does not distribute, and the high density area and the low density area overlap in the circumferential direction, and it was found that there are areas where the density is extremely low. In Figure 5, γ is a frequency coefficient calculated by the following formula (1).
γ=S/(L・N m )...(1)
[In the above formula (1), S is the burner moving speed (mm/min), L is the burner moving distance (mm), and Nm is the minimum value (rpm) at which the soot body fluctuates.]

つまり、スート体において軸方向の堆積量及び密度分布だけでなく径方向においても局所的な密度分布が発生しており、その影響でクラック、塩素含有濃度分布そしてOH基含有濃度分布などの諸問題が発生していることが判明した。さらに、成長時のスート体の回転周速を実際上一定となるように制御し、且つ頻度係数γを所定の範囲となるように設定することにより、外径300mmを超えるスート体であっても成長中に発生する遠心力などの装置への負荷を大きく増大させる事なくスート体を作成でき、更にクラックの発生を抑制し、塩素含有濃度及びOH基含有濃度の不均一を抑制することができることを見出した。さらに、上記設定とすることにより、大径化されたスート体からターゲットを容易に抜き取ることができることを見出した。 In other words, it was found that not only the deposition amount and density distribution in the axial direction in the soot body but also local density distribution occurs in the radial direction, which causes various problems such as cracks, chlorine concentration distribution, and OH group concentration distribution. Furthermore, it was found that by controlling the rotational speed of the soot body during growth to be practically constant and setting the frequency coefficient γ to be within a predetermined range, it is possible to create a soot body even with an outer diameter of more than 300 mm without significantly increasing the load on the device, such as the centrifugal force generated during growth, and further to suppress the occurrence of cracks and to suppress non-uniformity in the chlorine concentration and OH group concentration. Furthermore, it was found that the above settings make it possible to easily extract a target from a large-diameter soot body.

即ち、本発明の中空状多孔質石英ガラス母材の製造方法は、複数のガラス微粒子合成用バーナーを所定の間隔で配置し、該バーナーを往復移動させ、回転するターゲット上にガラス微粒子を堆積させてスート体を成長させる工程と、該スート体から該ターゲットを抜き取り、中空状多孔質石英ガラス母材を製造する工程と、を含む、中空状多孔質石英ガラス母材を製造する方法であって、成長時に変動する該スート体の外径に基づき該スート体の回転数を変動させることにより該スート体の回転周速を実際上一定となるように制御し、且つ該スート体の外径が250mmを超える範囲において下記式(1)により算出される頻度係数γが下記式(2)の範囲となるように設定することを特徴とする。
γ=S/(L・N)・・・(1)
0.13≦γ<1.0 ・・・(2)
[前記式(1)において、Sは前記バーナーの移動速度(mm/分)、Lは前記バーナーの移動距離(mm)、Nは前記スート体の変動する回転数の最低値(rpm)である。]
That is, the method for producing a hollow porous quartz glass base material of the present invention includes the steps of arranging a plurality of burners for synthesizing glass particles at a predetermined interval, moving the burners back and forth, and depositing glass particles on a rotating target to grow a soot body, and extracting the target from the soot body to produce a hollow porous quartz glass base material, and is characterized in that the rotational peripheral speed of the soot body is controlled to be essentially constant by varying the rotation speed of the soot body based on the outer diameter of the soot body which varies during growth, and the frequency coefficient γ calculated by the following formula (1) is set to be in the range of the following formula (2) in the range where the outer diameter of the soot body exceeds 250 mm.
γ=S/(L・N m )...(1)
0.13≦γ<1.0 (2)
[In the formula (1), S is the moving speed of the burner (mm/min), L is the moving distance of the burner (mm), and Nm is the minimum value (rpm) of the fluctuating rotation speed of the soot body.]

前記バーナーの往復移動における折り返し位置を所定の距離ずつ移動させるワブリング条件下で行う場合は、前記バーナーの1回の往復における折り返し位置の移動量が前記スート体に照射される前記バーナーの火炎径の1/3以下である場合においては上記式(2)の範囲となるように設定することが好適である。本発明において、バーナーの往復移動における折り返し位置を所定の距離ずつ移動させることをワブリングと称する。本発明方法において、前述の条件でワブリングを行うことにより、密度変動量が極めて小さく、均質な中空状多孔質石英ガラス母材を得ることができる。なお、ワブリング条件下では折り返し位置の移動量が火炎径の1/3を超える場合は折り返し位置が分散されるので熱も分散しクラックや物性の不均一といった問題は比較的起こりにくい。 When performing the wobbling under conditions in which the turning position in the reciprocating movement of the burner is moved by a predetermined distance, it is preferable to set it so that it falls within the range of the above formula (2) when the amount of movement of the turning position in one reciprocating movement of the burner is 1/3 or less of the flame diameter of the burner irradiated to the soot body. In the present invention, moving the turning position in the reciprocating movement of the burner by a predetermined distance is called wobbling. In the method of the present invention, by performing wobbling under the above conditions, it is possible to obtain a homogeneous hollow porous quartz glass base material with an extremely small density fluctuation. Note that, under wobbling conditions, if the amount of movement of the turning position exceeds 1/3 of the flame diameter, the turning positions are dispersed, so heat is also dispersed, and problems such as cracks and non-uniform physical properties are relatively unlikely to occur.

前記頻度係数γが0.13以上0.3以下であることが好適である。前記頻度係数γを0.3以下とすることにより、スート体のクラックや破裂が無く且つ塩素含有濃度の分布やOH基含有濃度の分布が均一であり、光学的に且つ熱物性的に極めて均質な中空状の合成石英ガラスシリンダを得ることができる。 It is preferable that the frequency coefficient γ is 0.13 or more and 0.3 or less. By setting the frequency coefficient γ to 0.3 or less, it is possible to obtain a hollow synthetic quartz glass cylinder that is free of cracks or ruptures in the soot body, has a uniform distribution of the chlorine content concentration and the OH group content concentration, and is extremely homogeneous in terms of optical and thermal properties.

本発明の合成石英ガラスシリンダの製造方法は、本発明の中空状多孔質石英ガラス母材の製造方法により得られる中空状多孔質石英ガラス母材を用いることを特徴とする。 The method for manufacturing a synthetic quartz glass cylinder of the present invention is characterized by using a hollow porous quartz glass base material obtained by the method for manufacturing a hollow porous quartz glass base material of the present invention.

本発明の中空状多孔質石英ガラス母材の第一の態様は、外径が300mmを超え且つ長さ2m以上の円筒形の大型中空状多孔質石英ガラス母材であって、該母材全体の平均密度が、0.55g/cm以上で、且つ円筒断面の90°毎の4方向で、径方向において内表面から等距離の4点の単位長さあたりの密度変動量が4点の平均値に対して10%/cm以下で有り、かつ、クラックを含まないことを特徴とする。 A first embodiment of the hollow porous quartz glass base material of the present invention is a large cylindrical hollow porous quartz glass base material having an outer diameter exceeding 300 mm and a length of 2 m or more, characterized in that the average density of the entire base material is 0.55 g/cm3 or more , the density variation per unit length at four points equidistant from the inner surface in the radial direction in four directions every 90° on the cylindrical cross section is 10%/cm or less compared to the average value of the four points, and the base material is free of cracks.

本発明の中空状多孔質石英ガラス母材の第二の態様は、外径が500mm以上であり且つ長さ1.0m以上の円筒形の大型中空状多孔質石英ガラス母材であって、該母材全体の平均密度が、0.55g/cm以上で、且つ円筒断面の90°毎の4方向で、径方向において内表面から等距離の4点の単位長さあたりの密度変動量が4点の平均値に対して10%/cm以下で有り、かつ、クラックを含まないことを特徴とする。 A second embodiment of the hollow porous quartz glass base material of the present invention is a large cylindrical hollow porous quartz glass base material having an outer diameter of 500 mm or more and a length of 1.0 m or more, characterized in that the average density of the entire base material is 0.55 g/cm3 or more , the density variation per unit length at four points equidistant from the inner surface in the radial direction in four directions every 90° on the cylindrical cross section is 10%/cm or less compared to the average value of the four points, and the base material is free of cracks.

前記大型中空状多孔質石英ガラス母材は、前記中空状多孔質石英ガラス母材の製造方法により好適に得られる。 The large-sized hollow porous quartz glass base material is preferably obtained by the manufacturing method for the hollow porous quartz glass base material.

本発明の中空状多孔質石英ガラス母材の第三の態様は、前記中空状多孔質石英ガラス母材の製造方法により得られる中空状多孔質石英ガラス母材であって、前述のワブリング条件下で且つ前記バーナーの1回の往復における折り返し位置の移動量が前記スート体に照射される前記バーナーの火炎径の1/3以下の条件下で製造され、円筒断面の90°毎の4方向で、径方向において内表面から等距離の4点の単位長さあたりの密度変動量が4点の平均値に対して2%/cm以下であることを特徴とする。 The third aspect of the hollow porous quartz glass base material of the present invention is a hollow porous quartz glass base material obtained by the manufacturing method of the hollow porous quartz glass base material, which is manufactured under the above-mentioned wobbling conditions and under conditions in which the movement amount of the turning position in one round trip of the burner is less than 1/3 of the flame diameter of the burner irradiated to the soot body, and is characterized in that the density variation per unit length at four points equidistant from the inner surface in the radial direction in four directions every 90° on the cylindrical cross section is 2%/cm or less compared to the average value of the four points.

本発明の中空状合成石英ガラスシリンダの第一の態様は、前記中空状多孔質石英ガラス母材を、脱水及びガラス化して得られる、外径200~500mm、長さ0.7m~3.5m、OH基濃度5ppm未満、含有塩素濃度500ppm以上3000ppm以下であり、多孔質部材のクラック起因の外観不良部を含まないことを特徴とする。 The first embodiment of the hollow synthetic quartz glass cylinder of the present invention is obtained by dehydrating and vitrifying the hollow porous quartz glass base material, and is characterized by having an outer diameter of 200 to 500 mm, a length of 0.7 to 3.5 m, an OH group concentration of less than 5 ppm, and a chlorine concentration of 500 ppm to 3000 ppm, and being free of external appearance defects caused by cracks in the porous member.

前記中空状合成石英ガラスシリンダの第一の態様において、該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置の塩素濃度の「最大値-最小値の差」が、4位置の平均値に対して15%以内であることが好適である。 In the first embodiment of the hollow synthetic quartz glass cylinder, it is preferable that the "maximum-minimum difference" of the chlorine concentration at four positions equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder, spaced every 90° in the circumferential direction, is within 15% of the average value of the four positions.

本発明の中空状合成石英ガラスシリンダの第二の態様は、前記中空状多孔質石英ガラス母材を、予備焼結及びガラス化して得られる、外径200~500mm、長さ0.7m~3.5m、OH基濃度50ppm以上500ppm以下であり、多孔質部材のクラック起因の外観不良部を含まないことを特徴とする。 The second embodiment of the hollow synthetic quartz glass cylinder of the present invention is obtained by pre-sintering and vitrifying the hollow porous quartz glass base material, and is characterized in that it has an outer diameter of 200 to 500 mm, a length of 0.7 m to 3.5 m, an OH group concentration of 50 ppm to 500 ppm, and is free of external defects caused by cracks in the porous member.

前記中空状合成石英ガラスシリンダの第二の態様において、該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置のOH基濃度の「最大値-最小値の差」が、4位置の平均値に対して15%以内であることが好適である。 In the second embodiment of the hollow synthetic quartz glass cylinder, it is preferable that the "maximum-minimum difference" of the OH group concentration at four positions every 90° in the circumferential direction that are equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder is within 15% of the average value of the four positions.

本発明の中空状合成石英ガラスシリンダの第三の態様は、前記中空状多孔質石英ガラス母材の第三の態様をガラス化して得られる中空状合成石英ガラスシリンダであって、該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置の塩素濃度の「最大値-最小値の差」が、4位置の平均値に対して10%以下であることを特徴とする。 The third embodiment of the hollow synthetic quartz glass cylinder of the present invention is a hollow synthetic quartz glass cylinder obtained by vitrifying the third embodiment of the hollow porous quartz glass base material, characterized in that the "maximum-minimum difference" of the chlorine concentration at four positions equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder, spaced every 90° in the circumferential direction, is 10% or less of the average value of the four positions.

本発明の中空状合成石英ガラスシリンダの第四の態様は、前記中空状多孔質石英ガラス母材の第三の態様をガラス化して得られる中空状合成石英ガラスシリンダであって、該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置のOH基濃度の「最大値-最小値の差」が、4位置の平均値に対して10%以下であることを特徴とする。 The fourth aspect of the hollow synthetic quartz glass cylinder of the present invention is a hollow synthetic quartz glass cylinder obtained by vitrifying the hollow porous quartz glass base material of the third aspect, characterized in that the "maximum-minimum difference" of the OH group concentration at four positions equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder, spaced every 90° in the circumferential direction, is 10% or less of the average value of the four positions.

本発明によれば、外径300mmを超えるスート体であっても成長中に発生する遠心力などの装置への負荷を大きく増大させる事なくスート体を作成でき、更に外径300mmを超えるスート体大径化に伴う周速一定低回転数条件下でのスート体の局所的密度分布を解消し、低速回転で製造した場合でもスート体へのクラックや破裂がなく、且つ大径化されたスート体からのターゲットの抜き取りが容易な大型中空状合成石英ガラス多孔質母材及びその製造方法並びに中空状合成石英ガラスシリンダ及びその製造方法を提供することができるという著大な効果を奏する。
さらに、本発明によれば、塩素含有濃度又はOH基含有濃度が均一で、光学的に且つ熱物性的に極めて均質な物性を有する中空状の大型合成石英ガラスシリンダを得ることができる。
According to the present invention, even if the soot body has an outer diameter of more than 300 mm, it is possible to create a soot body without significantly increasing the load on the apparatus, such as centrifugal force generated during growth, and further, it is possible to eliminate the local density distribution of the soot body under constant peripheral speed and low rotation speed conditions that accompanies the increase in the diameter of the soot body exceeding 300 mm, and to provide a large hollow synthetic quartz glass porous base material and a manufacturing method thereof, as well as a hollow synthetic quartz glass cylinder and a manufacturing method thereof, which are significant in that they are capable of eliminating cracks or ruptures in the soot body even when produced at low rotation speeds, and which facilitate the extraction of a target from the increased diameter soot body.
Furthermore, according to the present invention, it is possible to obtain a large hollow synthetic quartz glass cylinder having a uniform chlorine content or OH group content and extremely homogeneous optical and thermal properties.

本発明の中空状多孔質石英ガラス母材の製造方法を示す概略説明図である。FIG. 1 is a schematic diagram illustrating a method for producing a hollow porous quartz glass base material according to the present invention. 本発明の中空状多孔質石英ガラス母材の製造方法におけるバーナーの移動を示す概略説明図であり、(a)は非ワブリング条件下であり、(b)はワブリング条件下を示す。1A and 1B are schematic explanatory diagrams showing the movement of a burner in a method for producing a hollow porous quartz glass base material of the present invention, where (a) shows a non-wobbling condition and (b) shows a wobbling condition. 本発明の中空状多孔質石英ガラス母材の製造方法におけるバーナーの照射を示す概略説明図である。FIG. 2 is a schematic explanatory diagram showing burner irradiation in the method for producing a hollow porous quartz glass base material of the present invention. バーナーの往復移動の折り返し位置とスート体の長軸方向における堆積した層の密度分布を示すグラフである。1 is a graph showing the turning point of the reciprocating movement of a burner and the density distribution of a deposited layer in the longitudinal direction of a soot body. スート体の径方向における密度分布を示すグラフである。1 is a graph showing a density distribution in a radial direction of a soot body. 本発明の中空状多孔質石英ガラス母材における密度の測定方法を示す概略説明図である。FIG. 2 is a schematic diagram showing a method for measuring the density of the hollow porous quartz glass base material of the present invention.

以下に本発明の実施の形態を説明するが、これら実施の形態は例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。図示において、同一部材は同一符号であらわされる。 The following describes embodiments of the present invention, but these embodiments are shown as examples, and it goes without saying that various modifications are possible without departing from the technical concept of the present invention. In the drawings, the same members are denoted by the same reference numerals.

図1は、本発明の中空状多孔質石英ガラス母材の製造方法を示す概略説明図である。本発明の中空状多孔質石英ガラス母材の製造方法は、複数のガラス微粒子合成用バーナー16aを配置し、該バーナー16aを往復移動させ、回転するターゲット14上にガラス微粒子を堆積させてスート体12を成長させ、中空状多孔質石英ガラス母材を製造する方法であって、成長時に変動する該スート体12の外径に基づき該スート体12の回転数を変動させることにより該スート体12の回転周速を実際上一定となるように制御し、且つ該スート体の外径が250mmを超える範囲において下記式(1)により算出される頻度係数γが下記式(2)の範囲となるように設定するものである。なお、実際上一定とは、±5%を意味する。
γ=S/(L・N)・・・(1)
0.13≦γ<1.0 ・・・(2)
[前記式(1)において、Sは前記バーナー16aの移動速度(mm/分)、Lは前記バーナー16aの移動距離(mm)、Nは前記スート体12の変動する回転数の最低値(rpm)である。]
1 is a schematic diagram showing the method for producing a hollow porous quartz glass base material of the present invention. The method for producing a hollow porous quartz glass base material of the present invention is a method for producing a hollow porous quartz glass base material by arranging a plurality of glass particle synthesis burners 16a, reciprocating the burners 16a, depositing glass particles on a rotating target 14, and growing a soot body 12, and controlling the rotational speed of the soot body 12 to be practically constant by varying the rotation speed of the soot body 12 based on the outer diameter of the soot body 12 that varies during growth, and setting the frequency coefficient γ calculated by the following formula (1) to be within the range of the following formula (2) when the outer diameter of the soot body exceeds 250 mm. Note that practically constant means ±5%.
γ=S/(L・N m )...(1)
0.13≦γ<1.0 (2)
[In the formula (1), S is the moving speed (mm/min) of the burner 16a, L is the moving distance (mm) of the burner 16a, and Nm is the minimum value (rpm) of the fluctuating rotation speed of the soot body 12.]

図1において、符号10は中空状多孔質石英ガラス母材を製造する製造装置であり、ターゲット14を回転保持し且つ回転速度(rpm)を制御するターゲット保持回転機構20と、複数のガラス微粒子合成用バーナー16aが所定の間隔で配置されたガラス微粒子合成用バーナー群16と、該バーナー群16のスイング及び上下動の移動を制御するバーナー群移動制御装置18とを含む。 In FIG. 1, reference numeral 10 denotes a manufacturing device for producing a hollow porous quartz glass base material, and includes a target holding and rotating mechanism 20 that rotates and holds a target 14 and controls the rotation speed (rpm), a glass particle synthesis burner group 16 in which multiple glass particle synthesis burners 16a are arranged at predetermined intervals, and a burner group movement control device 18 that controls the swing and vertical movement of the burner group 16.

図1に示した如く、ターゲット14の回転数を制御するターゲット保持回転機構20及びバーナー群移動制御装置18によりスイング(往復移動)及び上下動移動が制御されたガラス微粒子合成用バーナー群16を用いて、成長時に変動するスート体12の外径に基づき該スート体12の回転数を変動させることにより該スート体12の回転周速を実際上一定となるように制御し、且つ前記式(1)により算出される頻度係数γが0.13以上1.0未満となるように設定した条件にて、ターゲット保持回転機構20により回転数が制御され回転保持されたロッド状のターゲット14の外表面に、ガラス原料(SiCl等)を供給されたガラス微粒子合成用バーナー16aの火炎による加水分解反応で生成されるガラス微粒子を堆積させてスート体12を成長させた後、スート体12からターゲット14を抜き取ることにより、本発明の中空状多孔質石英ガラス母材を製造することができる。 As shown in FIG. 1, a target holding and rotating mechanism 20 that controls the rotation speed of the target 14 and a group of glass particle synthesis burners 16 whose swing (reciprocating movement) and vertical movement are controlled by a burner group movement control device 18 are used to vary the rotation speed of the soot body 12 based on the outer diameter of the soot body 12 that varies during growth, thereby controlling the rotation peripheral speed of the soot body 12 to be practically constant, and under conditions set such that the frequency coefficient γ calculated by the above formula (1) is 0.13 or more and less than 1.0, glass particles generated by a hydrolysis reaction caused by the flame of a glass particle synthesis burner 16a to which a glass raw material ( SiCl4, etc.) is supplied are deposited on the outer surface of the rod-shaped target 14 whose rotation speed is controlled and held by the target holding and rotating mechanism 20 to grow the soot body 12, and then the target 14 is extracted from the soot body 12, thereby producing the hollow porous quartz glass base material of the present invention.

クラックが発生する原因はスート体内に生じる局所的な密度差であり、それはスート体の1回転のタイミングとバーナーのスイングの折り返しのタイミングが一致する事で発生している。ここでX回スイング(X/2往復)する間にY回転するときを考える。X回スイングするのに必要な時間はX(L/S)であり、逆にY回転するのに必要な時間はY/Nとなる。ここでLはバーナーの移動距離(mm)、Sはバーナーの移動速度(mm/分)、Nはスート体の回転数(rpm)である。スイングと回転のタイミングが一致すると言うことはX(L/S)=Y/Nとなり、X/Y=S/(LN)となる。このX/Yを頻度係数γと称する。図5に示されるγは該頻度係数である。 The cause of cracks is local density differences that occur within the soot body, which occur when the timing of one rotation of the soot body and the timing of the burner swing turn coincide. Now consider the case where Y rotations are made during X swings (X/2 round trips). The time required to swing X times is X(L/S), and conversely, the time required to rotate Y times is Y/N. Here, L is the burner travel distance (mm), S is the burner travel speed (mm/min), and N is the soot body rotation speed (rpm). The timing of the swing and rotation coincide, so X(L/S) = Y/N, and X/Y = S/(LN). This X/Y is called the frequency coefficient γ. γ shown in Figure 5 is the frequency coefficient.

例えば2回スイングする間に2回転する場合はγ=X/Y=2/2=1となる。この場合折り返しの1回転でスイングの左端側で回転とスイングのタイミングが一致し、次の1回転では右端側でタイミングが一致する事となる。バーナーは複数本等間隔で配置される為、隣のバーナーも考慮すると毎回転、回転とスイングが一致する事となる。一致する付近は高密度となり、そうでない部位は逆に極めて低密度となる。そしてこの密度差が大きい事により成長中や成長終了後にクラックが入る。
本発明において、スート体の表面周速を実際上一定となるように制御し、且つスート体の外径が250mmを超える範囲においてγを1.0未満とすることにより、クラックや破裂の無い大型中空状多孔質石英ガラス母材を得ることができる。本発明において、スート体の表面周速は5~50m/分が好ましく、5~10m/分がより好ましい。
For example, if two rotations occur during two swings, then γ = X/Y = 2/2 = 1. In this case, the timing of the rotation and swing will match at the left end of the swing during one turn, and the timing will match at the right end during the next turn. Since multiple burners are placed at equal intervals, the rotation and swing will match every turn, taking into account adjacent burners. The areas where they match will have a high density, while areas where they do not will have an extremely low density. This large density difference will cause cracks to appear during growth or after growth has finished.
In the present invention, by controlling the surface speed of the soot body to be substantially constant and setting γ to less than 1.0 in the range in which the outer diameter of the soot body exceeds 250 mm, a large hollow porous quartz glass preform free from cracks and ruptures can be obtained. In the present invention, the surface speed of the soot body is preferably 5 to 50 m/min, more preferably 5 to 10 m/min.

さらに、同様の考え方で毎回でなくても数回に1回、回転と折り返しが一致する場合もその影響を受ける。表1に、スイングX=2で回転Yが偶数の場合の回転とスイングが一致する頻度を示し、表2に、スイングX=2で回転Yが奇数の場合の回転とスイングが一致する頻度をそれぞれ示す。 Furthermore, using the same concept, even if not every time, the rotation and the turnaround may coincide, and this also has an effect. Table 1 shows the frequency with which the rotation and the swing coincide when swing X=2 and rotation Y is an even number, and Table 2 shows the frequency with which the rotation and the swing coincide when swing X=2 and rotation Y is an odd number.

Figure 0007555208000001
Figure 0007555208000001

Figure 0007555208000002
Figure 0007555208000002

スイング2回(1往復)の間に3回転するγ=2/3=0.667の場合は、3回転に1回スイングの折り返し位置と回転1回転の位置が一致し毎回一致する時に比べると軽度ではあるが密度に差が生まれる。スイング2回(1往復)の間に4回転するγ=2/4=0.5の場合は、4回転に2回スイングの折り返し位置と回転1回転の位置が一致し密度差が生まれる。これらは毎回一致する時ほどの密度差はない為クラックの発生には至りにくいが、密度差により塩素含有濃度の分布やOH基含有濃度の分布が不均一となり、光学的に均質な石英ガラスを得ることができない。 In the case of γ = 2/3 = 0.667, where there are three rotations during two swings (one round trip), the turning point of the swing coincides with the turning point of one rotation once every three rotations, resulting in a density difference, although it is minor compared to when they coincide every time. In the case of γ = 2/4 = 0.5, where there are four rotations during two swings (one round trip), the turning point of the swing coincides with the turning point of one rotation twice every four rotations, resulting in a density difference. As the density difference is not as great as when they coincide every time, cracks are unlikely to occur, but the density difference causes the distribution of chlorine concentration and OH group concentration to become non-uniform, making it impossible to obtain optically homogeneous quartz glass.

そこでX/Y=S/(LN)で表す頻度係数γにおいて、Nが最低値Nの時の頻度係数γの値がγ≦0.3となるようにスイング距離とスイング速度と回転数を設定することで回転とスイングのタイミングが一致しない条件とすることが出来、結果クラックがなく更に塩素含有濃度分布、OH基含有濃度分布の小さい石英ガラスシリンダを得ることができる。本発明は、スート体の回転周速を実際上一定となるように制御する為、スート体の回転数はスート体の成長に従い低下する。よって、本発明では、回転数Nが最低値Nの時の頻度係数γにより定義する。 Therefore, by setting the swing distance, swing speed, and rotation speed so that the value of the frequency coefficient γ when N is at its minimum value Nm in the frequency coefficient γ expressed by X/Y=S/(LN) is γ≦0.3, it is possible to achieve a condition in which the timing of the rotation and the swing do not coincide, and as a result, a quartz glass cylinder without cracks and with a small chlorine concentration distribution and OH group concentration distribution can be obtained. Since the present invention controls the rotational peripheral speed of the soot body to be practically constant, the rotational speed of the soot body decreases as the soot body grows. Therefore, in the present invention, the frequency coefficient γ is defined by the frequency coefficient γ when the rotation speed N is at its minimum value Nm .

また、頻度係数γを0.13以上とすることにより、外径250mmを超える堆積を行っても成長中のスート体の振動や装置の振動を発生させずにスート体を製造することができる。
本発明において、頻度係数γは0.13以上1.0未満であり、0.13以上0.3以下がより好ましい。γを1.0未満とすることにより、スート体のクラックや破裂を無くし、さらにγを0.3以下とすることにより、スート体のクラックや破裂が無く且つ塩素含有濃度の分布やOH基含有濃度の分布が均一で、光学的に且つ熱物性的に均質な石英ガラスシリンダを得ることができる。
Furthermore, by setting the frequency coefficient γ to 0.13 or more, a soot body can be produced without causing vibration of the growing soot body or vibration of the apparatus even when deposition is performed with an outer diameter exceeding 250 mm.
In the present invention, the frequency coefficient γ is 0.13 or more and less than 1.0, and more preferably 0.13 or more and 0.3 or less. By making γ less than 1.0, cracks and ruptures of the soot body are eliminated, and by making γ 0.3 or less, it is possible to obtain a quartz glass cylinder that is free of cracks and ruptures of the soot body, has a uniform distribution of the chlorine concentration and the OH group concentration, and is optically and thermally homogeneous.

本発明方法において、スイングの折り返し位置を所定の距離(α)ずつ一定方向に移動させ、所定の位置で折り返し位置を逆方向に移動させるようにするいわゆるワブリング条件を用いてもよく、非ワブリング条件で行ってもよい。図2は、本発明の中空状多孔質石英ガラス母材の製造方法におけるバーナーの移動を示す概略説明図であり、(a)は非ワブリング条件下であり、(b)はワブリング条件下を示す。図2において、Lはスイング距離、bはバーナー間隔、αはワブリングシフト量である。なお、図2はスイング距離とバーナー間隔が同一の条件の場合を示したが、本発明においてスイング距離とバーナー間隔は同一でも異なっていてもよいものである。 In the method of the present invention, the swing turning position may be moved in a fixed direction by a predetermined distance (α) and then moved in the opposite direction at a predetermined position, so-called wobbling conditions, or non-wobbling conditions may be used. Figure 2 is a schematic diagram showing the movement of the burner in the manufacturing method of the hollow porous quartz glass base material of the present invention, where (a) shows non-wobbling conditions and (b) shows wobbling conditions. In Figure 2, L is the swing distance, b is the burner spacing, and α is the wobbling shift amount. Note that Figure 2 shows the case where the swing distance and burner spacing are the same, but in the present invention, the swing distance and burner spacing may be the same or different.

ワブリング条件で行う場合は、バーナーの1回の往復における折り返し位置の移動量αがスート体に照射される前記バーナーの火炎径の1/3以下の場合においては上記式(2)の範囲となるように設定することが好適である。本発明方法において、前述の条件でワブリングを行うことにより、密度変動量が極めて小さく、均質な中空状多孔質石英ガラス母材を得ることができる。なお、ワブリング条件下では折り返し位置の移動量が火炎径の1/3を超える場合は折り返し位置が分散されるので熱も分散しクラックや物性の不均一といった問題は比較的起こりにくい。 When wobbling is performed, it is preferable to set the amount of movement α of the turning position during one round trip of the burner so that it falls within the range of formula (2) above when it is less than 1/3 of the flame diameter of the burner irradiated to the soot body. In the method of the present invention, by performing wobbling under the above conditions, it is possible to obtain a homogeneous hollow porous quartz glass base material with an extremely small amount of density fluctuation. Note that under wobbling conditions, if the amount of movement of the turning position exceeds 1/3 of the flame diameter, the turning positions are dispersed, so heat is also dispersed, and problems such as cracks and non-uniform physical properties are relatively unlikely to occur.

図3は、本発明の中空状多孔質石英ガラス母材の製造方法におけるバーナーの照射を示す概略説明図であり、dは火炎照射径である。ワブリングを用いる場合においても各スイングにおける折り返す位置を移動させる量αがバーナーから堆積体に照射され広がった火炎照射径dの1/3以下の場合は層間の重なりが大きい為、本発明の方法が有効である。火炎照射径dはスート体成長中の火炎の画像解析により測定することができる。 Figure 3 is a schematic diagram showing the irradiation of a burner in the manufacturing method of a hollow porous quartz glass base material of the present invention, where d is the flame irradiation diameter. Even when wobbling is used, if the amount of movement α of the turning position in each swing is 1/3 or less of the flame irradiation diameter d irradiated from the burner to the deposit and spreads, the overlap between layers is large, so the method of the present invention is effective. The flame irradiation diameter d can be measured by image analysis of the flame during soot body growth.

本発明方法により、密度変動が小さく且つクラックや破裂がない、外径300mmを超える大型中空状多孔質石英ガラス母材を得ることができる。具体的には、外径が300mmを超え且つ軸方向の長さ2m以上の円筒形の大型中空状多孔質石英ガラス母材や、外径が500mm以上であり且つ軸方向の長さ1.0m以上の円筒形の大型中空状多孔質石英ガラス母材を得ることができる。また、本発明方法により、重量100kg以上の大重量の大型中空状多孔質石英ガラス母材を得ることができる。さらに、本発明方法により、スート体が大径化され且つ大重量化されていても、ターゲットの抜き取りを極めて容易に行うことができる。 The method of the present invention can obtain a large hollow porous quartz glass preform with an outer diameter of more than 300 mm, which has small density fluctuations and is free of cracks and ruptures. Specifically, it can obtain a large hollow porous quartz glass preform with an outer diameter of more than 300 mm and an axial length of 2 m or more, and a large hollow porous quartz glass preform with an outer diameter of 500 mm or more and an axial length of 1.0 m or more. In addition, the method of the present invention can obtain a large hollow porous quartz glass preform with a weight of 100 kg or more. Furthermore, the method of the present invention can make it extremely easy to extract the target even if the soot body is large in diameter and heavy.

本発明の中空状多孔質石英ガラス母材の第一の態様は、母材全体の平均密度が0.55g/cm以上であり、密度変動が小さく且つクラックを含まない、外径が300mmを超え、長さ2m以上の大型中空状多孔質石英ガラス母材である。
本発明の中空状多孔質石英ガラス母材の第二の態様は、母材全体の平均密度が0.55g/cm以上であり、密度変動が小さく且つクラックを含まない、外径が500mm以上であり且つ長さ1.0m以上の大型中空状多孔質石英ガラス母材である。
A first embodiment of the hollow porous quartz glass base material of the present invention is a large hollow porous quartz glass base material having an average density of the entire base material of 0.55 g/ cm3 or more, small density fluctuation, no cracks, an outer diameter of more than 300 mm, and a length of 2 m or more.
A second embodiment of the hollow porous quartz glass base material of the present invention is a large hollow porous quartz glass base material having an average density of the entire base material of 0.55 g/ cm3 or more, small density fluctuation, no cracks, and an outer diameter of 500 mm or more and a length of 1.0 m or more.

前記中空状多孔質石英ガラス母材の第一及び第二の態様において、母材全体の平均密度は、0.55g/cm以上であり、0.56g/cm以上0.77g/cm以下が好ましく、0.59g/cm以上0.68g/cm以下がより好ましい。 In the first and second aspects of the hollow porous quartz glass base material, the average density of the entire base material is 0.55 g/cm3 or more , preferably 0.56 g/cm3 or more and 0.77 g/cm3 or less , and more preferably 0.59 g/ cm3 or more and 0.68 g/cm3 or less .

図6は、本発明の中空状多孔質石英ガラス母材における密度の変動の測定方法を示す概略説明図である。図6に示した如く、本発明の中空状多孔質石英ガラス母材12の円筒断面の90°毎の4方向の垂線(A~D)で、径方向において内表面から等距離(Xmm)の4点(a~d)のそれぞれ1cm当たりの密度を測定し、4点(a~d)の密度の最大値と最小値との差から密度変動量を規定する。本発明の中空状多孔質石英ガラス母材12の単位長さ当たりの密度変動量は、該4方向(A~D)の4点(a~d)の平均値に対して10%/cm以下であり、5%/cm以下が好ましく、2%/cm以下がより好ましい。 Fig. 6 is a schematic diagram showing a method for measuring density variation in the hollow porous quartz glass preform of the present invention. As shown in Fig. 6, the density per cm3 is measured at four points (a to d) at equal distances (X mm) from the inner surface in the radial direction on four perpendicular lines (A to D) in four directions every 90° of the cylindrical cross section of the hollow porous quartz glass preform 12 of the present invention, and the density variation is defined as the difference between the maximum and minimum density values of the four points (a to d). The density variation per unit length of the hollow porous quartz glass preform 12 of the present invention is 10%/cm or less, preferably 5%/cm or less, and more preferably 2%/cm or less, relative to the average value of the four points (a to d) in the four directions (A to D).

本発明の中空状多孔質石英ガラス母材の第三の態様は、円筒断面の90°毎の4方向で、径方向において内表面から等距離の4点の単位長さあたりの密度変動量が4点の平均値に対して2%/cm以下である中空状多孔質石英ガラス母材である。前記中空状多孔質石英ガラス母材の製造方法において、バーナーの1回の往復における折り返し位置の移動量がスート体に照射されるバーナーの火炎径の1/3以下であるワブリング条件下で中空状多孔質石英ガラス母材を製造することにより、前述の密度変動量が2%/cm以下と極めて小さく、均質な中空状多孔質石英ガラス母材を得ることができる。 The third aspect of the hollow porous quartz glass preform of the present invention is a hollow porous quartz glass preform in which the density variation per unit length at four points equidistant from the inner surface in the radial direction in four directions every 90° on the cylindrical cross section is 2%/cm or less relative to the average value of the four points. In the method for producing the hollow porous quartz glass preform, the hollow porous quartz glass preform is produced under wobbling conditions in which the movement amount of the turning position in one round trip of the burner is 1/3 or less of the flame diameter of the burner irradiated to the soot body, and thus a homogeneous hollow porous quartz glass preform can be obtained with the aforementioned density variation being extremely small at 2%/cm or less.

本発明の合成石英ガラスシリンダの製造方法は、本発明方法により得られる中空状多孔質石英ガラス母材を用いるものである。該合成石英ガラスシリンダの製造方法としては該中空状多孔質石英ガラス母材を用い、公知の方法により合成石英ガラスシリンダを製造すればよく、特に制限はないが、脱水処理及び焼結ガラス化し、合成石英ガラスシリンダを得る方法や、予備焼結及びガラス化し、合成石英ガラスシリンダを得る方法が好適である。本発明方法により、多孔質部材のクラック起因の外観不良部を含まず、クラックや破裂が無く、外径200mm以上の大型の合成石英ガラスシリンダが好適に得られる。 The method for producing a synthetic quartz glass cylinder of the present invention uses a hollow porous quartz glass base material obtained by the method of the present invention. The method for producing the synthetic quartz glass cylinder is not particularly limited as long as the hollow porous quartz glass base material is used to produce a synthetic quartz glass cylinder by a known method, but a method of obtaining a synthetic quartz glass cylinder by dehydration treatment and sintering and vitrification, or a method of obtaining a synthetic quartz glass cylinder by pre-sintering and vitrification, is preferable. The method of the present invention can suitably produce a large synthetic quartz glass cylinder with an outer diameter of 200 mm or more that does not include any external defects caused by cracks in the porous member, is free of cracks and ruptures, and has a diameter of 200 mm or more.

該大型の合成石英ガラスシリンダとしては、具体的には、外径が300mmを超える円筒形の大型中空状多孔質石英ガラス母材を用いることにより、外径200mm以上の中空状合成石英ガラスシリンダを得ることができ、また、外径が500mm以上の円筒形の大型中空状多孔質石英ガラス母材を用いることにより、外径300mm以上の中空状合成石英ガラスシリンダを得ることができる。特に、外径200mm以上300mm未満で且つ軸方向の長さ2.3mm以上の中空状合成石英ガラスシリンダや、外径300mm以上で且つ軸方向の長さ0.7mm以上の中空状合成石英ガラスシリンダがより好適である。 Specifically, as the large synthetic quartz glass cylinder, a hollow synthetic quartz glass cylinder with an outer diameter of 200 mm or more can be obtained by using a cylindrical large hollow porous quartz glass base material with an outer diameter of more than 300 mm, and a hollow synthetic quartz glass cylinder with an outer diameter of 300 mm or more can be obtained by using a cylindrical large hollow porous quartz glass base material with an outer diameter of 500 mm or more. In particular, hollow synthetic quartz glass cylinders with an outer diameter of 200 mm or more but less than 300 mm and an axial length of 2.3 mm or more, and hollow synthetic quartz glass cylinders with an outer diameter of 300 mm or more and an axial length of 0.7 mm or more are more suitable.

本発明において、スート体の外径が250mmを超える範囲において前記γを1.0未満に設定した条件により得られる中空状多孔質石英ガラス母材を用いることにより、多孔質部材のクラック起因の外観不良部を含まず、クラックや破裂のない大型の石英ガラスシリンダを容易に得ることができる。該石英ガラスシリンダは、特に大型が所望される半導体製造冶具用材料として好適である。さらに前記γを0.3以下に設定した条件により得られる中空状多孔質石英ガラス母材を用いることにより、クラックや破裂が無く且つ塩素含有濃度の分布やOH基含有濃度の分布が均一で、光学的に且つ熱物性的に極めて均質な石英ガラスシリンダを容易に得ることができる。 In the present invention, by using a hollow porous quartz glass base material obtained under conditions in which γ is set to less than 1.0 in the range in which the outer diameter of the soot body exceeds 250 mm, a large quartz glass cylinder that does not contain any defective appearance caused by cracks in the porous member and is free of cracks and ruptures can be easily obtained. This quartz glass cylinder is particularly suitable as a material for semiconductor manufacturing jigs, where large sizes are desired. Furthermore, by using a hollow porous quartz glass base material obtained under conditions in which γ is set to 0.3 or less, a quartz glass cylinder that is free of cracks and ruptures, has a uniform distribution of chlorine concentration and OH group concentration, and is extremely homogeneous optically and thermally.

本発明の中空状合成石英ガラスシリンダの第一の態様は、前記大型中空状多孔質石英ガラス母材を、塩素処理による脱水及びガラス化して得られる、外径200~500mm、長さ0.7m~3.5mの中空状合成石英ガラスシリンダであって、OH基濃度5ppm未満、含有塩素濃度500ppm以上3000ppm以下、好ましくは1000ppm以上2500ppm以下であり、多孔質部材のクラック起因の外観不良部を含まないことを特徴とする。 The first aspect of the hollow synthetic quartz glass cylinder of the present invention is a hollow synthetic quartz glass cylinder with an outer diameter of 200 to 500 mm and a length of 0.7 to 3.5 m, which is obtained by dehydrating and vitrifying the large hollow porous quartz glass base material by chlorine treatment, and which is characterized by having an OH group concentration of less than 5 ppm, a chlorine content concentration of 500 ppm to 3000 ppm, preferably 1000 ppm to 2500 ppm, and no external appearance defects caused by cracks in the porous member.

前記中空状合成石英ガラスシリンダの第一の態様において、該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置の塩素濃度の「最大値-最小値の差」が、4位置の平均値に対して15%以内であることが好ましく、10%以内であることがより好ましい。 In the first embodiment of the hollow synthetic quartz glass cylinder, the "maximum-minimum difference" of the chlorine concentration at four positions equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder, spaced every 90° in the circumferential direction, is preferably within 15% of the average value of the four positions, and more preferably within 10%.

本発明の合成石英ガラスシリンダの第二の態様は、前記大型中空状多孔質石英ガラス母材を、塩素処理を行わずに、予備焼結及びガラス化して得られる、外径200~500mm、長さ0.7m~3.5mの中空状合成石英ガラスシリンダであって、OH基濃度50ppm以上500ppm以下、好ましくは100ppm以上300ppm以下であり、多孔質部材のクラック起因の外観不良部を含まないことを特徴とする。 The second aspect of the synthetic quartz glass cylinder of the present invention is a hollow synthetic quartz glass cylinder with an outer diameter of 200 to 500 mm and a length of 0.7 to 3.5 m, obtained by pre-sintering and vitrifying the large hollow porous quartz glass base material without chlorine treatment, characterized in that the OH group concentration is 50 ppm to 500 ppm, preferably 100 ppm to 300 ppm, and does not contain any external appearance defects caused by cracks in the porous member.

前記中空状合成石英ガラスシリンダの第二の態様において、該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置のOH基濃度の「最大値-最小値の差」が、4位置の平均値に対して15%以内であることが好ましく、10%以内であることがより好ましい。 In the second embodiment of the hollow synthetic quartz glass cylinder, the "maximum-minimum difference" of the OH group concentration at four positions equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder, spaced every 90° in the circumferential direction, is preferably within 15% of the average value of the four positions, and more preferably within 10%.

本発明の合成石英ガラスシリンダの第三の態様は、前記中空状多孔質石英ガラス母材の第三の態様をガラス化して得られる中空状合成石英ガラスシリンダであって、該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置の塩素濃度の「最大値-最小値の差」が、4位置の平均値に対して10%以下であることを特徴とする。前記合成石英ガラスシリンダのOH基濃度は、5ppm未満が好ましく、実質的にOH基を含有しないことがより好ましい。なお、「実質的にOH基を含有しない」とは、合成石英ガラスシリンダ中のOH基の含有量が0ppm以上1ppm未満であることを意味する。
前記中空状多孔質石英ガラス母材をガラス化する方法は特に制限はなく、公知の方法を用いることができるが、脱水処理及び焼結ガラス化し、合成石英ガラスシリンダを得る方法が好適であり、塩素雰囲気下で脱水処理を行った後、焼結ガラス化し、合成石英ガラスシリンダを得る方法がより好適である。
A third embodiment of the synthetic quartz glass cylinder of the present invention is a hollow synthetic quartz glass cylinder obtained by vitrifying the third embodiment of the hollow porous quartz glass base material, characterized in that the "difference between maximum and minimum values" of chlorine concentration at four positions equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder and spaced every 90° in the circumferential direction is 10% or less of the average value of the four positions. The OH group concentration of the synthetic quartz glass cylinder is preferably less than 5 ppm, and more preferably contains substantially no OH groups. Incidentally, "substantially does not contain OH groups" means that the content of OH groups in the synthetic quartz glass cylinder is 0 ppm or more and less than 1 ppm.
The method for vitrifying the hollow porous quartz glass base material is not particularly limited, and any known method can be used, but a method in which the base material is dehydrated and sintered to obtain a synthetic quartz glass cylinder is preferred, and a method in which the base material is dehydrated in a chlorine atmosphere and then sintered to obtain a synthetic quartz glass cylinder is more preferred.

本発明の合成石英ガラスシリンダの第四の態様は、前記中空状多孔質石英ガラス母材の第三の態様をガラス化して得られる中空状合成石英ガラスシリンダであって、該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置のOH基濃度の「最大値-最小値の差」が、4位置の平均値に対して10%以下であることを特徴とする。前記合成石英ガラスシリンダは、実質的に塩素を含有しないことが好ましい。なお、「実質的に塩素を含有しない」とは、合成石英ガラスシリンダ中の塩素の含有量が0ppm以上20ppm未満であることを意味する。
前記中空状多孔質石英ガラス母材をガラス化する方法は特に制限はなく、公知の方法を用いることができるが、脱水処理及び焼結ガラス化し、合成石英ガラスシリンダを得る方法や、予備焼結及びガラス化し、合成石英ガラスシリンダを得る方法が好適であり、塩素処理を行わずに加熱により脱水処理を行った後、焼結ガラス化し、合成石英ガラスシリンダを得る方法がより好適である。
A fourth embodiment of the synthetic quartz glass cylinder of the present invention is a hollow synthetic quartz glass cylinder obtained by vitrifying the hollow porous quartz glass base material of the third embodiment, characterized in that the "difference between maximum and minimum values" of OH group concentrations at four positions equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder and spaced every 90° in the circumferential direction is 10% or less of the average value of the four positions. It is preferable that the synthetic quartz glass cylinder is substantially free of chlorine. Note that "substantially free of chlorine" means that the chlorine content in the synthetic quartz glass cylinder is 0 ppm or more and less than 20 ppm.
The method for vitrifying the hollow porous quartz glass base material is not particularly limited, and any known method can be used, but a method in which the base material is dehydrated and sintered into a synthetic quartz glass cylinder, or a method in which the base material is pre-sintered and vitrified into a synthetic quartz glass cylinder is preferred, and a method in which the base material is dehydrated by heating without being chlorinated, and then sintered into a synthetic quartz glass cylinder is more preferred.

従来、大型化し且つスート体成長時の周速度を一定とする為に低回転条件にした場合は、合成石英ガラスシリンダの製造時において塩素雰囲気下で脱水処理を行うと、合成石英ガラスシリンダの周方向の塩素含有濃度分布が不均一になり、また、塩素処理を行わずに加熱により脱水した場合は合成石英ガラスシリンダの周方向のOH基含有濃度分布が不均一になる問題があった。しかしながら、本発明方法において、前記γを0.3以下に設定した条件により得られる中空状多孔質石英ガラス母材を用いることにより、塩素雰囲気下で脱水処理を行っても塩素含有濃度分布が小さく、且つ塩素処理を行わずに加熱により脱水した場合においてもOH基含有濃度分布の差が小さい極めて均質な合成石英ガラスシリンダを得ることができる。 Conventionally, when the size was increased and the rotation conditions were set to be low in order to keep the peripheral speed constant during soot body growth, there was a problem that if dehydration treatment was performed in a chlorine atmosphere during the manufacture of a synthetic quartz glass cylinder, the chlorine content concentration distribution in the circumferential direction of the synthetic quartz glass cylinder became non-uniform, and if dehydration was performed by heating without chlorine treatment, the OH group content concentration distribution in the circumferential direction of the synthetic quartz glass cylinder became non-uniform. However, in the method of the present invention, by using a hollow porous quartz glass base material obtained under conditions in which the γ is set to 0.3 or less, it is possible to obtain an extremely homogeneous synthetic quartz glass cylinder in which the chlorine content concentration distribution is small even when dehydration treatment is performed in a chlorine atmosphere, and the difference in the OH group content concentration distribution is small even when dehydration is performed by heating without chlorine treatment.

このような極めて均質な合成石英ガラスシリンダは、光学用材料や光ファイバー用材料、並びに半導体製造装置内に使用する石英ガラス冶具やランプ向け材料の素材として特に好適である。特に、シリンダ断面内部で周方向の4方向各点の塩素濃度分布の最大値と最小値の差が、4点の平均値に対して15%以内であると、ファイバー・カールを始めとする、光ファイバーの特性に影響を与えないことを見出した。 Such extremely homogeneous synthetic quartz glass cylinders are particularly suitable as materials for optics and optical fibers, as well as for quartz glass jigs and lamps used in semiconductor manufacturing equipment. In particular, it was found that if the difference between the maximum and minimum values of the chlorine concentration distribution at each of the four circumferential points inside the cylinder cross section is within 15% of the average value of the four points, there is no effect on the characteristics of the optical fiber, including fiber curl.

塩素雰囲気下で脱水処理及び焼結透明化した合成石英ガラスシリンダの塩素含有濃度分布は、シリンダの周方向の4方向の高濃度と低濃度の差が300ppm以下であることが好ましく、200ppm以下であることがより好ましい。 The chlorine content distribution of a synthetic quartz glass cylinder that has been dehydrated and sintered to transparency in a chlorine atmosphere is preferably such that the difference between high and low concentrations in the four circumferential directions of the cylinder is 300 ppm or less, and more preferably 200 ppm or less.

塩素処理を行わずに加熱により脱水した合成石英ガラスシリンダのOH基含有濃度分布は、シリンダの周方向の4方向のOH基含有濃度の高濃度と低濃度の差が50ppm以下であることが好ましく、25ppm以下であることがより好ましい。 In the distribution of OH group concentrations in a synthetic quartz glass cylinder that has been dehydrated by heating without chlorine treatment, the difference between the high and low OH group concentrations in the four circumferential directions of the cylinder is preferably 50 ppm or less, and more preferably 25 ppm or less.

(実施例1)
複数のガラス微粒子合成用バーナーを一定間隔で配置し、回転するターゲット[外径(OD)50mmのセラミックス管]にバーナーの列を相対的に往復移動(スイング)させ、ターゲットの上に層状にガラス微粒子を堆積させ、ガラス微粒子堆積体を製造する、いわゆるOVD法において、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを140mm/分(一定)、表面周速11m/分(一定)の条件にてスート体を製造し、該スート体からターゲットを抜き取り、中空状多孔質石英ガラス母材を得た。製造条件を表3に、得られた中空状多孔質石英ガラス母材の結果を表4に、合成石英ガラスシリンダの測定結果を表5及び6にそれぞれ示す。
Example 1
In the so-called OVD method, in which a plurality of burners for synthesizing glass particles are arranged at regular intervals, a row of burners is moved back and forth (swinged) relative to a rotating target [ceramic tube with an outer diameter (OD) of 50 mm], glass particles are deposited in layers on the target, and a glass particle deposit body is manufactured, a soot body is manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 140 mm/min (constant), and a surface peripheral speed of 11 m/min (constant), and the target is extracted from the soot body to obtain a hollow porous quartz glass base material. The manufacturing conditions are shown in Table 3, the results of the obtained hollow porous quartz glass base material are shown in Table 4, and the measurement results of the synthetic quartz glass cylinder are shown in Tables 5 and 6, respectively.

Figure 0007555208000003
Figure 0007555208000003

ターゲットOD50mmからスート体を外径(OD)400mmまで成長させるとした場合は、上記条件では、70.1rpmから8.8rpmに回転数を遅くしていく事となる。その時の最低回転数Nは8.8rpmでありγ=S/(L・N)=0.16となる。
その結果、装置の成長中の振動等はわずかに振動があったが問題はなく成長することができ、スート体へのクラックもなく、外径400mm、軸方向の全長3500mm、重量247kgの大型中空状多孔質石英ガラス母材(スート体)を作成できた。
When the soot body is grown from a target OD of 50 mm to an outer diameter (OD) of 400 mm, the rotation speed is slowed down from 70.1 rpm to 8.8 rpm under the above conditions. The minimum rotation speed Nm at that time is 8.8 rpm, and γ=S/(L· Nm )=0.16.
As a result, although there was slight vibration during growth of the apparatus, growth proceeded without any problems, and there were no cracks in the soot body. A large hollow porous quartz glass preform (soot body) with an outer diameter of 400 mm, a total axial length of 3,500 mm, and a weight of 247 kg was successfully produced.

得られたスート体全体の平均密度及び密度の変動を測定した。密度の変動は図6においてX=105mmの4点(a~d)における単位長さ当たりの密度を算出し、4点(a~d)の密度の最大値と最小値との差を密度変動量と規定し、4点の平均値に対する比率を算出した。 The average density and density variation of the entire soot body obtained were measured. The density variation was calculated by calculating the density per unit length at four points (a to d) at X = 105 mm in Figure 6, and the difference between the maximum and minimum density values at the four points (a to d) was defined as the density variation amount, and the ratio to the average value of the four points was calculated.

Figure 0007555208000004
Figure 0007555208000004

スート体全体の平均密度は0.57g/cmであり、4方向における内面から105mm位置での4点の単位長さ当たりの密度変動量はその4点の平均値に対して4.4%/cmであり、密度変動量が極めて小さい中空状多孔質石英ガラス母材が得られた。 The average density of the entire soot body was 0.57 g/ cm3 , and the density variation per unit length at four points 105 mm from the inner surface in four directions was 4.4%/cm relative to the average value of the four points, resulting in a hollow porous quartz glass base material with an extremely small density variation.

得られた中空状多孔質石英ガラス母材を塩素雰囲気下で脱水処理及び焼結透明化し、外径210mm、内径45mm以下、長さ3.4mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。塩素含有濃度の測定は4方向それぞれを蛍光X線分析により行った。塩素濃度測定の分析装置としては、スペクトロ社製蛍光X線分析装置SPECTRO MIDEXを使用した(装置の検出下限値:塩素濃度20ppm)。OH基含有濃度(OH基)の測定はFT-IR分析により行った。OH基含有濃度測定の分析装置としては、サーモフィッシャーサイエンティフィック社製フーリエ変換赤外分光装置Nicolet iS10 FT-IRを使用した(装置の検出下限値:OH基濃度1ppm)。塩素濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置の塩素濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。結果を表5に示した。
The obtained hollow porous quartz glass base material was dehydrated and sintered to make it transparent in a chlorine atmosphere to obtain a synthetic quartz glass cylinder with an outer diameter of 210 mm, an inner diameter of 45 mm or less, and a length of 3.4 m. The obtained synthetic quartz glass cylinder had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The chlorine concentration was measured in each of the four directions by fluorescent X-ray analysis. The analytical device used for measuring the chlorine concentration was a fluorescent X-ray analyzer SPECTRO MIDEX manufactured by Spectro (lower detection limit of the device: chlorine concentration 20 ppm). The OH group concentration (OH group) was measured by FT-IR analysis. The analytical device used for measuring the OH group concentration was a Fourier transform infrared spectrometer Nicolet iS10 FT-IR manufactured by Thermo Fisher Scientific (lower detection limit of the device: OH group concentration 1 ppm). The fluctuation of the chlorine concentration was measured by measuring the difference between the maximum and minimum values of the chlorine concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and the ratio to the average value of the four points was calculated. The results are shown in Table 5.

Figure 0007555208000005
Figure 0007555208000005

シリンダの周方向4方向の塩素含有濃度を測定した結果、塩素含有濃度は1540~1720ppmであった。4方向の差は最大180ppmと小さく、4方向の平均値に対する変動量は10.9%と均質なものが得られた。また、OH基含有濃度(OH基)は1ppm未満であった。 The chlorine concentration was measured in four circumferential directions on the cylinder, and was found to be between 1540 and 1720 ppm. The difference between the four directions was small, at a maximum of 180 ppm, and the variation from the average value of the four directions was a homogeneous 10.9%. Additionally, the OH group concentration (OH group) was less than 1 ppm.

更に同一条件で作成したスート体を、塩素処理を行わずに加熱により脱水した後、焼結透明化し、外径210mm、内径45mm以下、長さ3.4mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。OH基濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置のOH基濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。結果を表6に示した。
Furthermore, a soot body prepared under the same conditions was dehydrated by heating without chlorine treatment, and then sintered and clarified to obtain a synthetic quartz glass cylinder having an outer diameter of 210 mm, an inner diameter of 45 mm or less, and a length of 3.4 m. The synthetic quartz glass cylinder obtained had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the OH group concentration was measured by measuring the difference between the maximum and minimum values of the OH group concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points. The results are shown in Table 6.

Figure 0007555208000006
Figure 0007555208000006

シリンダ周方向の4方向のOH基含有濃度を測定したところ、OH基含有濃度は230~255ppmであり、こちらも4方向間の差は最大25ppmと小さく、4方向の平均値に対する変動量も10.2%と均質であることが分かった。また、塩素含有濃度は20ppm未満であった。 When the OH group concentration was measured in four directions around the cylinder, it was found to be 230-255 ppm, with a small difference between the four directions of 25 ppm at most, and a homogeneous variation of 10.2% from the average value of the four directions. The chlorine concentration was also less than 20 ppm.

(実施例2)
製造条件を表3に示すように変更した以外は実施例1と同様の方法により中空状多孔質石英ガラス母材を得た。即ち、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを200mm/分(一定)、表面周速9m/分(一定)の条件にてスート体を製造し、該スート体からターゲットを抜き取り、中空状多孔質石英ガラス母材を得た。得られた中空状多孔質石英ガラス母材の結果を表4に、合成石英ガラスシリンダの測定結果を表5及び6にそれぞれ示す。
Example 2
A hollow porous quartz glass preform was obtained in the same manner as in Example 1, except that the manufacturing conditions were changed as shown in Table 3. That is, a soot body was manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 200 mm/min (constant), and a surface peripheral speed of 9 m/min (constant), and the target was extracted from the soot body to obtain a hollow porous quartz glass preform. The results of the obtained hollow porous quartz glass preform are shown in Table 4, and the measurement results of the synthetic quartz glass cylinder are shown in Tables 5 and 6, respectively.

ターゲットOD50mmからスート体OD400mmまで成長させるとした場合は、上記条件では、57.3rpmから7.2rpmに回転数を遅くしていく事となる。その時の最低回転数Nは7.2rpmでありγ=0.28となる。
その結果、装置の成長中の振動等はなく成長することができ、スート体へのクラックもなく、外径400mm、全長3500mm、重量247kgの大型中空状多孔質石英ガラス母材を作成できた。
When the soot body is grown from an OD of 50 mm to an OD of 400 mm, the rotation speed is slowed down from 57.3 rpm to 7.2 rpm under the above conditions. The minimum rotation speed Nm at that time is 7.2 rpm, and γ=0.28.
As a result, the growth was possible without any vibration of the apparatus during growth, there were no cracks in the soot body, and a large hollow porous quartz glass preform having an outer diameter of 400 mm, a total length of 3500 mm, and a weight of 247 kg could be produced.

得られたスート体全体の平均密度及び密度の変動を測定した。密度の変動は図6においてX=105mmの4点における単位長さ当たりの密度を算出した。スート体全体の平均密度は0.57g/cmであり、4方向における内面から105mm位置での単位長さ当たりの密度変動はその4点の平均値に対して3.8%/cmであり、密度変動量が極めて小さい中空状多孔質石英ガラス母材が得られた。 The average density and density variation of the entire soot body obtained were measured. The density variation was calculated as the density per unit length at four points of X=105 mm in Fig. 6. The average density of the entire soot body was 0.57 g/ cm3 , and the density variation per unit length at a position 105 mm from the inner surface in four directions was 3.8%/cm with respect to the average value of the four points, and a hollow porous quartz glass base material with an extremely small density variation was obtained.

得られた中空状多孔質石英ガラス母材を塩素雰囲気下で脱水処理及び焼結透明化し、外径210mm、内径45mm以下、長さ3.4mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。塩素濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置の塩素濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダの周方向4方向の塩素含有濃度を測定した結果、塩素含有濃度は1740~1960ppmであった。4方向間の差は最大220ppmと小さく、4方向の平均値に対する変動量は11.7%と均質なものが得られた。また、OH基含有濃度(OH基)は1ppm未満であった。
The obtained hollow porous quartz glass base material was dehydrated and sintered to make it transparent in a chlorine atmosphere to obtain a synthetic quartz glass cylinder with an outer diameter of 210 mm, an inner diameter of 45 mm or less, and a length of 3.4 m. The obtained synthetic quartz glass cylinder had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the chlorine concentration was measured by measuring the difference between the maximum and minimum values of the chlorine concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
The chlorine concentration was measured in four circumferential directions of the cylinder, and the chlorine concentration was 1740 to 1960 ppm. The difference between the four directions was small, at a maximum of 220 ppm, and the variation from the average value of the four directions was 11.7%, indicating a homogeneous concentration. The OH group concentration (OH group) was less than 1 ppm.

更に同一条件で作成したスート体を、塩素処理を行わずに加熱により脱水した後、焼結透明化し、外径210mm、内径45mm以下、長さ3.4mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。OH基濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置のOH基濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダ周方向の4方向のOH基含有濃度を測定したところ、OH基含有濃度は225~255ppmであり、こちらも4方向間の差は最大30ppmと小さく、4方向の平均値に対する変動量も12.4%と均質であることが分かった。また、塩素含有濃度は20ppm未満であった。
Furthermore, a soot body prepared under the same conditions was dehydrated by heating without chlorine treatment, and then sintered and clarified to obtain a synthetic quartz glass cylinder having an outer diameter of 210 mm, an inner diameter of 45 mm or less, and a length of 3.4 m. The synthetic quartz glass cylinder obtained had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the OH group concentration was measured by measuring the difference between the maximum and minimum values of the OH group concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
When the OH group concentration was measured in four directions around the cylinder, it was found that the OH group concentration was 225 to 255 ppm, the difference between the four directions was small at a maximum of 30 ppm, and the variation from the average value of the four directions was also homogeneous at 12.4%. The chlorine concentration was less than 20 ppm.

(実施例3)
製造条件を表3に示すように変更した以外は実施例1と同様の方法により中空状多孔質石英ガラス母材を得た。即ち、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを600mm/分(一定)、表面周速9m/分(一定)の条件にてスート体を製造し、該スート体からターゲットを抜き取り、中空状多孔質石英ガラス母材を得た。得られた中空状多孔質石英ガラス母材の結果を表4に、合成石英ガラスシリンダの測定結果を表5にそれぞれ示す。
Example 3
A hollow porous quartz glass preform was obtained in the same manner as in Example 1, except that the manufacturing conditions were changed as shown in Table 3. That is, a soot body was manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 600 mm/min (constant), and a surface peripheral speed of 9 m/min (constant), and the target was extracted from the soot body to obtain a hollow porous quartz glass preform. The results of the obtained hollow porous quartz glass preform are shown in Table 4, and the measurement results of the synthetic quartz glass cylinder are shown in Table 5.

ターゲットOD50mmからスート体OD400mmまで成長させるとした場合は、上記条件では、57.3rpmから7.2rpmに回転数を遅くしていく事となる。その時の最低回転数Nは7.2rpmでありγ=0.84となる。
その結果、装置の成長中の振動等はなく成長することができ、スート体へのクラックもなく、外径400mm、全長3500mm、重量247kgの大型中空状多孔質石英ガラス母材を作成できた。
When the soot body is grown from an OD of 50 mm to an OD of 400 mm, the rotation speed is slowed down from 57.3 rpm to 7.2 rpm under the above conditions. The minimum rotation speed Nm at that time is 7.2 rpm, and γ=0.84.
As a result, the growth was possible without any vibration of the apparatus during growth, there were no cracks in the soot body, and a large hollow porous quartz glass preform having an outer diameter of 400 mm, a total length of 3500 mm, and a weight of 247 kg could be produced.

得られたスート体全体の平均密度及び密度の変動を測定した。密度の変動は図6においてX=105mmの4点における単位長さ当たりの密度を算出した。スート体全体の平均密度は0.57g/cmであり、4方向における内面から105mm位置での単位長さ当たりの密度変動はその4点の平均値に対して9.5%/cmであった。 The average density and density variation of the entire soot body obtained were measured. The density variation was calculated as the density per unit length at four points of X=105 mm in Fig. 6. The average density of the entire soot body was 0.57 g/ cm3 , and the density variation per unit length at a position 105 mm from the inner surface in four directions was 9.5%/cm with respect to the average value of the four points.

得られた中空状多孔質石英ガラス母材を塩素雰囲気下で脱水処理及び焼結透明化し、外径210mm、内径45mm以下、長さ3.4mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。塩素濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置の塩素濃度の最大値と最小値の差を測定し、平均値に対する比率を算出した。
シリンダの周方向4方向の塩素含有濃度を測定した結果、塩素含有濃度は1640~2330ppmであった。4方向間の差は最大690ppmと大きく、4方向の平均値に対する変動量は34.9%であり、実施例1及び2に比べて均質性が低下していた。また、OH基含有濃度(OH基)は1ppm未満であった。
The obtained hollow porous quartz glass base material was dehydrated and sintered to make it transparent in a chlorine atmosphere to obtain a synthetic quartz glass cylinder with an outer diameter of 210 mm, an inner diameter of 45 mm or less, and a length of 3.4 m. The obtained synthetic quartz glass cylinder had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the chlorine concentration was measured by measuring the difference between the maximum and minimum values of the chlorine concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value.
The chlorine concentration was measured in four circumferential directions of the cylinder, and the chlorine concentration was 1640 to 2330 ppm. The difference between the four directions was as large as 690 ppm, and the amount of variation from the average value of the four directions was 34.9%, which indicated a decrease in homogeneity compared to Examples 1 and 2. The OH group concentration (OH group) was less than 1 ppm.

更に同一条件で作成したスート体を、塩素処理を行わずに加熱により脱水した後、焼結透明化し、外径210mm、内径45mm以下、長さ3.4mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。OH基濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置のOH基濃度の最大値と最小値の差を測定し、平均値に対する比率を算出した。
シリンダ周方向の4方向のOH基含有濃度を測定したところ、OH基含有濃度は195~255ppmであり、こちらも4方向間の差は最大60ppmと大きく、4方向の平均値に対する変動量も26.7%であり、実施例1及び2に比べて均質性が低下していることが分かった。また、塩素含有濃度は20ppm未満であった。
Furthermore, a soot body prepared under the same conditions was dehydrated by heating without chlorine treatment, and then sintered and clarified to obtain a synthetic quartz glass cylinder having an outer diameter of 210 mm, an inner diameter of 45 mm or less, and a length of 3.4 m. The synthetic quartz glass cylinder obtained had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the OH group concentration was measured by measuring the difference between the maximum and minimum values of the OH group concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value.
When the OH group concentration was measured in four directions in the circumferential direction of the cylinder, the OH group concentration was 195 to 255 ppm, and the difference between the four directions was also large at a maximum of 60 ppm, and the amount of variation from the average value of the four directions was 26.7%, indicating that the homogeneity was lower than in Examples 1 and 2. In addition, the chlorine concentration was less than 20 ppm.

(実施例4)
製造条件を表3に示すように変更した以外は実施例1と同様の方法により中空状多孔質石英ガラス母材を得た。即ち、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを200mm/分(一定)、表面周速9m/分(一定)の条件で、且つスイング1回のワブリングシフト量α4mm(このときの火炎の照射径は28mmであった為ワブリングシフト量は火炎の照射径の1/7。火炎径の測定方法は、スート体成長中の火炎の画像解析で行った。)の条件でスート体を製造し、該スート体からターゲットを抜き取り、中空状多孔質石英ガラス母材を得た。得られた中空状多孔質石英ガラス母材の結果を表4に、合成石英ガラスシリンダの測定結果を表5にそれぞれ示す。
Example 4
A hollow porous quartz glass preform was obtained in the same manner as in Example 1, except that the manufacturing conditions were changed as shown in Table 3. That is, a soot body was manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 200 mm/min (constant), a surface peripheral speed of 9 m/min (constant), and a wobbling shift amount α of 4 mm per swing (the flame irradiation diameter at this time was 28 mm, so the wobbling shift amount was 1/7 of the flame irradiation diameter. The flame diameter was measured by image analysis of the flame during the growth of the soot body). The target was extracted from the soot body to obtain a hollow porous quartz glass preform. The results of the obtained hollow porous quartz glass preform are shown in Table 4, and the results of the measurement of the synthetic quartz glass cylinder are shown in Table 5.

ターゲットOD50mmからスート体OD400mmまで成長させるとした場合は、上記条件では、57.3rpmから7.2rpmに回転数を遅くしていく事となる。その時の最低回転数Nは7.2rpmでありγ=0.28となる。
その結果、装置の成長中の振動等はなく成長することができ、スート体へのクラックもなく、外径400mm、全長3500mm、重量247kgの大型中空状多孔質石英ガラス母材を作成できた。
得られたスート体全体の平均密度及び密度の変動を測定した。密度の変動は図6においてX=105mmの4点における単位長さ当たりの密度を算出した。スート体全体の平均密度は0.57g/cmであり、4方向における内面から105mm位置での単位長さ当たりの密度変動はその4点の平均値に対して1.6%/cmであり、密度変動量が極めて小さい中空状多孔質石英ガラス母材が得られた。
When the soot body is grown from an OD of 50 mm to an OD of 400 mm, the rotation speed is slowed down from 57.3 rpm to 7.2 rpm under the above conditions. The minimum rotation speed Nm at that time is 7.2 rpm, and γ=0.28.
As a result, the growth was possible without any vibration of the apparatus during growth, there were no cracks in the soot body, and a large hollow porous quartz glass preform having an outer diameter of 400 mm, a total length of 3500 mm, and a weight of 247 kg could be produced.
The average density and density variation of the entire soot body obtained were measured. The density variation was calculated as the density per unit length at four points of X = 105 mm in Figure 6. The average density of the entire soot body was 0.57 g / cm 3 , and the density variation per unit length at a position 105 mm from the inner surface in four directions was 1.6% / cm with respect to the average value of the four points, and a hollow porous quartz glass base material with an extremely small density variation was obtained.

得られた中空状多孔質石英ガラス母材を塩素雰囲気下で脱水処理及び焼結透明化し、外径210mm、内径45mm以下、長さ3.4mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。塩素濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置の塩素濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダの周方向4方向の塩素含有濃度を測定した結果、塩素含有濃度は1860~1995ppmであった。4方向間の差は最大135ppmと極めて小さく、4方向の平均値に対する変動量は6.9%と均質なものが得られた。また、OH基含有濃度(OH基)は1ppm未満であった。
The obtained hollow porous quartz glass base material was dehydrated and sintered to make it transparent in a chlorine atmosphere to obtain a synthetic quartz glass cylinder with an outer diameter of 210 mm, an inner diameter of 45 mm or less, and a length of 3.4 m. The obtained synthetic quartz glass cylinder had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the chlorine concentration was measured by measuring the difference between the maximum and minimum values of the chlorine concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
The chlorine concentration was measured in four circumferential directions of the cylinder, and the chlorine concentration was 1860 to 1995 ppm. The difference between the four directions was extremely small, at a maximum of 135 ppm, and the variation from the average value of the four directions was 6.9%, indicating a homogeneous concentration. The OH group concentration (OH group) was less than 1 ppm.

更に同一条件で作成したスート体を、塩素処理を行わずに加熱により脱水した後、焼結透明化し、外径210mm、内径45mm以下、長さ3.4mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。OH基濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置のOH基濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダ周方向の4方向のOH基含有濃度を測定したところ、OH基含有濃度は200~215ppmであり、こちらも4方向間の差は最大15ppmと小さく、4方向の平均値に対する変動量も7.1%と均質であることが分かった。また、塩素含有濃度は20ppm未満であった。
Furthermore, a soot body prepared under the same conditions was dehydrated by heating without chlorine treatment, and then sintered and clarified to obtain a synthetic quartz glass cylinder having an outer diameter of 210 mm, an inner diameter of 45 mm or less, and a length of 3.4 m. The synthetic quartz glass cylinder obtained had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the OH group concentration was measured by measuring the difference between the maximum and minimum values of the OH group concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
When the OH group concentration was measured in four directions around the cylinder, it was found that the OH group concentration was 200 to 215 ppm, the difference between the four directions was small at a maximum of 15 ppm, and the variation from the average value of the four directions was also homogeneous at 7.1%. The chlorine concentration was less than 20 ppm.

(実施例5)
製造条件を表3に示すように変更した以外は実施例1と同様の方法により中空状多孔質石英ガラス母材を得た。即ち、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを200mm/分(一定)、表面周速13m/分(一定)の条件にてスート体を製造し、該スート体からターゲットを抜き取り、中空状多孔質石英ガラス母材を得た。得られた中空状多孔質石英ガラス母材の結果を表4に、合成石英ガラスシリンダの測定結果を表5にそれぞれ示す。
Example 5
A hollow porous quartz glass preform was obtained in the same manner as in Example 1, except that the manufacturing conditions were changed as shown in Table 3. That is, a soot body was manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 200 mm/min (constant), and a surface peripheral speed of 13 m/min (constant), and the target was extracted from the soot body to obtain a hollow porous quartz glass preform. The results of the obtained hollow porous quartz glass preform are shown in Table 4, and the measurement results of the synthetic quartz glass cylinder are shown in Table 5.

ターゲットOD50mmからスート体OD600mmまで成長させるとした場合は、上記条件では、82.8rpmから6.9rpmに回転数を遅くしていく事となる。その時の最低回転数Nは6.9rpmでありγ=0.29となる。
その結果、装置の成長中の振動等はなく成長することができ、スート体へのクラックもなく、外径600mm、全長2500mm、重量402kgの大型中空状多孔質石英ガラス母材を作成できた。
得られたスート体全体の平均密度及び密度の変動を測定した。密度の変動は図6においてX=200mmの4点における単位長さ当たりの密度を算出した。スート体全体の平均密度は0.57g/cmであり、4方向における内面から200mm位置での単位長さ当たりの密度変動量はその4点の平均値に対して3.7%/cmであり、密度変動量が極めて小さい中空状多孔質石英ガラス母材が得られた。
When the soot body is grown from an OD of 50 mm to an OD of 600 mm, the rotation speed is slowed down from 82.8 rpm to 6.9 rpm under the above conditions. The minimum rotation speed Nm at that time is 6.9 rpm, and γ=0.29.
As a result, the growth was possible without any vibration of the apparatus during growth, there were no cracks in the soot body, and a large hollow porous quartz glass preform having an outer diameter of 600 mm, a total length of 2500 mm and a weight of 402 kg was produced.
The average density and density variation of the entire soot body obtained were measured. The density variation was calculated as the density per unit length at four points of X=200 mm in Fig. 6. The average density of the entire soot body was 0.57 g/ cm3 , and the density variation per unit length at a position 200 mm from the inner surface in four directions was 3.7%/cm with respect to the average value of the four points, and a hollow porous quartz glass base material with an extremely small density variation was obtained.

得られた中空状多孔質石英ガラス母材を塩素雰囲気下で脱水処理及び焼結透明化し、外径350mm、内径45mm以下、長さ1.9mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。塩素濃度の変動は、周方向の90°毎の円筒断面の内面から100mmの4位置の塩素濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダの周方向4方向の塩素含有濃度を測定した結果、塩素含有濃度は1890~2170ppmであった。4方向間の差は最大280ppmと小さく、4方向の平均値に対する変動量は14.1%と均質なものが得られた。また、OH基含有濃度(OH基)は1ppm未満であった。
The obtained hollow porous quartz glass base material was dehydrated and sintered to make it transparent in a chlorine atmosphere to obtain a synthetic quartz glass cylinder with an outer diameter of 350 mm, an inner diameter of 45 mm or less, and a length of 1.9 m. The obtained synthetic quartz glass cylinder had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the chlorine concentration was measured by measuring the difference between the maximum and minimum values of the chlorine concentration at four positions 100 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
The chlorine concentration was measured in four circumferential directions of the cylinder, and the chlorine concentration was 1890 to 2170 ppm. The difference between the four directions was small, at a maximum of 280 ppm, and the variation from the average value of the four directions was 14.1%, indicating a homogeneous concentration. The OH group concentration (OH group) was less than 1 ppm.

更に同一条件で作成したスート体を、塩素処理を行わずに加熱により脱水した後、焼結透明化し、外径350mm、内径45mm以下、長さ1.9mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。OH基濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置のOH基濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダ周方向の4方向のOH基含有濃度を測定したところ、OH基含有濃度は225~245ppmであり、こちらも4方向間の差は最大25ppmと小さく、4方向の平均値に対する変動量も10.5%と均質であることが分かった。また、塩素含有濃度は20ppm未満であった。
Furthermore, a soot body prepared under the same conditions was dehydrated by heating without chlorine treatment, and then sintered and clarified to obtain a synthetic quartz glass cylinder having an outer diameter of 350 mm, an inner diameter of 45 mm or less, and a length of 1.9 m. The synthetic quartz glass cylinder obtained had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the OH group concentration was measured by measuring the difference between the maximum and minimum values of the OH group concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
When the OH group concentration was measured in four directions around the cylinder, it was found that the OH group concentration was 225 to 245 ppm, the difference between the four directions was also small at a maximum of 25 ppm, and the variation from the average value of the four directions was also homogeneous at 10.5%. In addition, the chlorine concentration was less than 20 ppm.

(実施例6)
製造条件を表3に示すように変更した以外は実施例1と同様の方法により中空状多孔質石英ガラス母材を得た。即ち、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを400mm/分(一定)、表面周速9m/分(一定)の条件にてスート体を製造し、該スート体からターゲットを抜き取り、中空状多孔質石英ガラス母材を得た。得られた中空状多孔質石英ガラス母材の結果を表4に、合成石英ガラスシリンダの測定結果を表5にそれぞれ示す。
Example 6
A hollow porous quartz glass preform was obtained in the same manner as in Example 1, except that the manufacturing conditions were changed as shown in Table 3. That is, a soot body was manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 400 mm/min (constant), and a surface peripheral speed of 9 m/min (constant), and the target was extracted from the soot body to obtain a hollow porous quartz glass preform. The results of the obtained hollow porous quartz glass preform are shown in Table 4, and the measurement results of the synthetic quartz glass cylinder are shown in Table 5.

ターゲットOD50mmからスート体OD600mmまで成長させるとした場合は、上記条件では、57.3rpmから4.8rpmに回転数を遅くしていく事となる。その時の最低回転数Nは4.8rpmでありγ=0.84となる。
その結果、装置の成長中の振動等はなく成長することができ、スート体へのクラックもなく、外径600mm、全長2500mm、重量402kgの大型中空状多孔質石英ガラス母材を作成できた。
得られたスート体全体の平均密度及び密度の変動を測定した。密度の変動は図6においてX=200mmの4点における単位長さ当たりの密度を算出した。スート体全体の平均密度は0.57g/cmであり、4方向における内面から200mm位置での単位長さ当たりの密度変動はその4点の平均値に対して8.3%/cmであった。
When the soot body is grown from an OD of 50 mm to an OD of 600 mm, the rotation speed is slowed down from 57.3 rpm to 4.8 rpm under the above conditions. The minimum rotation speed Nm at that time is 4.8 rpm, and γ=0.84.
As a result, the growth was possible without any vibration of the apparatus during growth, there were no cracks in the soot body, and a large hollow porous quartz glass preform having an outer diameter of 600 mm, a total length of 2500 mm and a weight of 402 kg was produced.
The average density and density variation of the entire soot body obtained were measured. The density variation was calculated as the density per unit length at four points of X=200 mm in Fig. 6. The average density of the entire soot body was 0.57 g/ cm3 , and the density variation per unit length at a position 200 mm from the inner surface in four directions was 8.3%/cm with respect to the average value of the four points.

得られた中空状多孔質石英ガラス母材を塩素雰囲気下で脱水処理及び焼結透明化し、外径350mm、内径45mm以下、長さ1.9mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。塩素濃度の変動は、周方向の90°毎の円筒断面の内面から100mmの4位置の塩素濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダの周方向4方向の塩素含有濃度を測定した結果、塩素含有濃度は1725~2340ppmであった。4方向に差は最大615ppmと大きく、4方向の平均値に対する変動量は29.1%であり、実施例4及び5に比べて均質性が低下していていた。また、OH基含有濃度(OH基)は1ppm未満であった。
The obtained hollow porous quartz glass base material was dehydrated and sintered to make it transparent in a chlorine atmosphere to obtain a synthetic quartz glass cylinder with an outer diameter of 350 mm, an inner diameter of 45 mm or less, and a length of 1.9 m. The obtained synthetic quartz glass cylinder had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the chlorine concentration was measured by measuring the difference between the maximum and minimum values of the chlorine concentration at four positions 100 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
The chlorine concentration was measured in four circumferential directions of the cylinder, and the chlorine concentration was 1725 to 2340 ppm. The difference in the four directions was as large as 615 ppm, and the amount of variation from the average value in the four directions was 29.1%, indicating that the homogeneity was lower than in Examples 4 and 5. The OH group concentration (OH group) was less than 1 ppm.

更に同一条件で作成したスート体を、塩素処理を行わずに加熱により脱水した後、焼結透明化し、外径350mm、内径45mm以下、長さ1.9mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。OH基濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置のOH基濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダ周方向の4方向のOH基含有濃度を測定したところ、OH基含有濃度は200~250ppmであり、こちらも4方向間の差は最大50ppmと比較的大きく、4方向の平均値に対する変動量も21.7%あり、実施例4及び5に比べて均質性が低下していることが分かった。また、塩素含有濃度は20ppm未満であった。
Furthermore, a soot body prepared under the same conditions was dehydrated by heating without chlorine treatment, and then sintered and clarified to obtain a synthetic quartz glass cylinder having an outer diameter of 350 mm, an inner diameter of 45 mm or less, and a length of 1.9 m. The synthetic quartz glass cylinder obtained had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the OH group concentration was measured by measuring the difference between the maximum and minimum values of the OH group concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
When the OH group concentration was measured in four directions in the circumferential direction of the cylinder, the OH group concentration was 200 to 250 ppm, and the difference between the four directions was also relatively large at a maximum of 50 ppm, and the amount of variation from the average value of the four directions was 21.7%, indicating that the homogeneity was lower than in Examples 4 and 5. In addition, the chlorine concentration was less than 20 ppm.

(実施例7)
製造条件を表3に示すように変更した以外は実施例1と同様の方法により中空状多孔質石英ガラス母材を得た。即ち、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを200mm/分(一定)、表面周速13m/分(一定)の条件で、且つスイング1回のワブリングシフト量α4mm(このときの火炎の照射径は28mmであった為ワブリングシフト量は火炎の照射径の1/7)の条件でスート体を製造し、該スート体からターゲットを抜き取り、中空状多孔質石英ガラス母材を得た。得られた中空状多孔質石英ガラス母材の結果を表4に、合成石英ガラスシリンダの測定結果を表5にそれぞれ示す。
(Example 7)
A hollow porous quartz glass preform was obtained in the same manner as in Example 1, except that the manufacturing conditions were changed as shown in Table 3. That is, a soot body was manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 200 mm/min (constant), a surface peripheral speed of 13 m/min (constant), and a wobbling shift amount α of 4 mm per swing (the flame irradiation diameter at this time was 28 mm, so the wobbling shift amount was 1/7 of the flame irradiation diameter), and the target was extracted from the soot body to obtain a hollow porous quartz glass preform. The results of the obtained hollow porous quartz glass preform are shown in Table 4, and the measurement results of the synthetic quartz glass cylinder are shown in Table 5.

ターゲットOD50mmからスート体OD600mmまで成長させるとした場合は、上記条件では、82.8rpmから6.9rpmに回転数を遅くしていく事となる。その時の最低回転数Nは6.9rpmでありγ=0.29となる。
その結果、装置の成長中の振動等はなく成長することができ、スート体へのクラックもなく、外径600mm、全長2500mm、重量402kgの大型中空状多孔質石英ガラス母材を作成できた。
得られたスート体全体の平均密度及び密度の変動を測定した。密度の変動は図6においてX=200mmの4点における単位長さ当たりの密度を算出した。スート体全体の平均密度は0.57g/cmであり、4方向における内面から200mm位置での単位長さ当たりの密度変動はその4点の平均値に対して1.8%/cmであり、密度変動量が極めて小さい中空状多孔質石英ガラス母材が得られた。
When the soot body is grown from an OD of 50 mm to an OD of 600 mm, the rotation speed is slowed down from 82.8 rpm to 6.9 rpm under the above conditions. The minimum rotation speed Nm at that time is 6.9 rpm, and γ = 0.29.
As a result, the growth was possible without any vibration of the apparatus during growth, there were no cracks in the soot body, and a large hollow porous quartz glass preform having an outer diameter of 600 mm, a total length of 2500 mm and a weight of 402 kg was produced.
The average density and density variation of the entire soot body obtained were measured. The density variation was calculated as the density per unit length at four points of X=200 mm in Fig. 6. The average density of the entire soot body was 0.57 g/ cm3 , and the density variation per unit length at a position 200 mm from the inner surface in four directions was 1.8%/cm with respect to the average value of the four points, and a hollow porous quartz glass base material with an extremely small density variation was obtained.

得られた中空状多孔質石英ガラス母材を塩素雰囲気下で脱水処理及び焼結透明化し、外径350mm、内径45mm以下、長さ1.9mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。塩素濃度の変動は、周方向の90°毎の円筒断面の内面から100mmの4位置の塩素濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダの周方向4方向の塩素含有濃度を測定した結果、塩素含有濃度は1770~1935ppmであった。4方向の差は最大165ppmと小さく、4方向の平均値に対する変動量は8.8%と均質なものが得られた。また、OH基含有濃度(OH基)は1ppm未満であった。
The obtained hollow porous quartz glass base material was dehydrated and sintered to make it transparent in a chlorine atmosphere to obtain a synthetic quartz glass cylinder with an outer diameter of 350 mm, an inner diameter of 45 mm or less, and a length of 1.9 m. The obtained synthetic quartz glass cylinder had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the chlorine concentration was measured by measuring the difference between the maximum and minimum values of the chlorine concentration at four positions 100 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
The chlorine concentration was measured in four circumferential directions of the cylinder, and the chlorine concentration was 1770 to 1935 ppm. The difference in the four directions was small, at a maximum of 165 ppm, and the variation from the average value of the four directions was 8.8%, indicating a homogeneous concentration. The OH group concentration (OH group) was less than 1 ppm.

更に同一条件で作成したスート体を、塩素処理を行わずに加熱により脱水した後、焼結透明化し、外径350mm、内径45mm以下、長さ1.9mの合成石英ガラスシリンダを得た。得られた合成石英ガラスシリンダは、多孔質部材のクラック起因の外観不良部を含まず、良好な外観であった。
得られた石英ガラスシリンダの塩素濃度及びOH基濃度を測定した。OH基濃度の変動は、周方向の90°毎の円筒断面の内面から50mmの4位置のOH基濃度の最大値と最小値の差を測定し、4点の平均値に対する比率を算出した。
シリンダ周方向の4方向のOH基含有濃度を測定したところ、OH基含有濃度は205~225ppmであり、こちらも4方向の差は最大20ppmと小さく、4方向の平均値に対する変動量も9.4%と均質であることが分かった。また、塩素含有濃度は20ppm未満であった。
Furthermore, a soot body prepared under the same conditions was dehydrated by heating without chlorine treatment, and then sintered and clarified to obtain a synthetic quartz glass cylinder having an outer diameter of 350 mm, an inner diameter of 45 mm or less, and a length of 1.9 m. The synthetic quartz glass cylinder obtained had a good appearance without any defects caused by cracks in the porous member.
The chlorine concentration and OH group concentration of the obtained quartz glass cylinder were measured. The fluctuation of the OH group concentration was measured by measuring the difference between the maximum and minimum values of the OH group concentration at four positions 50 mm from the inner surface of the cylindrical cross section at 90° intervals in the circumferential direction, and calculating the ratio to the average value of the four points.
When the OH group concentration was measured in four directions around the cylinder, it was found that the OH group concentration was 205 to 225 ppm, the difference in the four directions was also small at a maximum of 20 ppm, and the variation from the average value of the four directions was also homogeneous at 9.4%. In addition, the chlorine concentration was less than 20 ppm.

(比較例1)
製造条件を表3に示すように変更した以外は実施例1と同様の方法により中空状多孔質石英ガラス母材の製造を行った。即ち、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを140mm/分(一定)、表面周速18m/分(一定)の条件にてスート体を製造しようとした。
(Comparative Example 1)
A hollow porous quartz glass base material was manufactured in the same manner as in Example 1, except that the manufacturing conditions were changed as shown in Table 3. That is, a soot body was manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 140 mm/min (constant), and a surface peripheral speed of 18 m/min (constant).

ターゲットOD50mmからスート体OD400mmまで成長させるとした場合は、上記条件では、114.6rpmから14.3rpmに回転数を遅くしていく事となる。しかし、スート体ODが200mmを超えたあたりで装置の振動が始まり、その後250mmを超えた時点で振動が大きかったため、途中で製造を中止しOD400まで製造を継続することができなかった。 When growing the soot body from a target OD of 50 mm to an OD of 400 mm, under the above conditions, the rotation speed would be slowed down from 114.6 rpm to 14.3 rpm. However, when the soot body OD exceeded 200 mm, the device began to vibrate, and the vibrations became so strong when the soot body OD exceeded 250 mm, so production was stopped midway and it was not possible to continue production up to OD 400.

(比較例2)
製造条件を表3に示すように変更した以外は実施例1と同様の方法により中空状多孔質石英ガラス母材の製造を行った。即ち、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを800mm/分(一定)、表面周速9m/分(一定)の条件にてスート体を製造し、該スート体からターゲットを抜き取り、中空状多孔質石英ガラス母材を得た。得られた中空状多孔質石英ガラス母材の結果を表4に示す。
(Comparative Example 2)
A hollow porous quartz glass preform was manufactured in the same manner as in Example 1, except that the manufacturing conditions were changed as shown in Table 3. That is, a soot body was manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 800 mm/min (constant), and a surface peripheral speed of 9 m/min (constant), and the target was extracted from the soot body to obtain a hollow porous quartz glass preform. The results of the obtained hollow porous quartz glass preform are shown in Table 4.

ターゲットOD50mmからスート体OD400mmまで成長させるとした場合は、上記条件では、57.3rpmから7.2rpmに回転数を遅くしていく事となる。その時の最低回転数Nは7.2rpmでありγ=1.12となる。その結果、装置の成長中の振動等はなく成長することができたが、スート体ODが300mm付近になった時にスート体にクラックが入り製造を継続することができなかった。 When the soot body is grown from a target OD of 50 mm to an OD of 400 mm, the rotation speed is slowed down from 57.3 rpm to 7.2 rpm under the above conditions. The minimum rotation speed Nm at that time is 7.2 rpm, and γ is 1.12. As a result, the growth was possible without any vibration during the growth of the device, but when the soot body OD reached approximately 300 mm, a crack occurred in the soot body and production could not be continued.

(比較例3)
製造条件を表3に示すように変更した以外は実施例1と同様の方法により中空状多孔質石英ガラス母材の製造を行った。即ち、バーナー間隔を100mm、スイング距離Lを100mm、スイング速度Sを800mm/分(一定)、表面周速9m/分(一定)の条件で、且つスイング1回のワブリングシフト量α4mm(このときの火炎の照射径は28mmであった為ワブリングシフト量は火炎の照射径の1/7。火炎径の測定方法は、スート体成長中の火炎の画像解析でおこなった。)の条件にてスート体を製造し、該スート体からターゲットを抜き取り、中空状多孔質石英ガラス母材を得た。得られた中空状多孔質石英ガラス母材の結果を表4に示す。
(Comparative Example 3)
A hollow porous quartz glass preform was manufactured in the same manner as in Example 1, except that the manufacturing conditions were changed as shown in Table 3. That is, a soot body was manufactured under the conditions of a burner interval of 100 mm, a swing distance L of 100 mm, a swing speed S of 800 mm/min (constant), a surface peripheral speed of 9 m/min (constant), and a wobbling shift amount α of 4 mm per swing (the flame irradiation diameter at this time was 28 mm, so the wobbling shift amount was 1/7 of the flame irradiation diameter. The flame diameter was measured by image analysis of the flame during the growth of the soot body). The target was extracted from the soot body to obtain a hollow porous quartz glass preform. The results of the obtained hollow porous quartz glass preform are shown in Table 4.

ターゲットOD50mmからスート体OD400mmまで成長させるとした場合は、上記条件では、57.3rpmから7.2rpmに回転数を遅くしていく事となる。その時の最低回転数Nは7.2rpmでありγ=1.12となる。その結果、装置の成長中の振動等はなく成長することができたが、こちらもスート体ODが350mm付近になった時にスート体にクラックが入り製造を継続することができなかった。 When the soot body is grown from a target OD of 50 mm to an OD of 400 mm, the rotation speed is slowed down from 57.3 rpm to 7.2 rpm under the above conditions. The minimum rotation speed Nm at that time is 7.2 rpm, and γ is 1.12. As a result, the growth was possible without any vibration during the growth of the device, but when the soot body OD reached approximately 350 mm, a crack occurred in the soot body and production could not be continued.

10:製造装置、12:スート体、14:ターゲット、16:ガラス微粒子合成用バーナー群、16a:ガラス微粒子合成用バーナー、18:ガラス微粒子合成用バーナー群のスイング及び上下動装置、20:ターゲット保持回転機構、22:バーナー火炎、d:火炎照射径、L:スイング距離、b:バーナー間隔、α:ワブリングシフト量。 10: Manufacturing equipment, 12: Soot body, 14: Target, 16: Burner group for synthesizing glass particles, 16a: Burner for synthesizing glass particles, 18: Swing and vertical movement device for the burner group for synthesizing glass particles, 20: Target holding and rotation mechanism, 22: Burner flame, d: Flame irradiation diameter, L: Swing distance, b: Burner spacing, α: Wobbling shift amount.

Claims (13)

複数のガラス微粒子合成用バーナーを所定の間隔で配置し、該バーナーを往復移動させ、回転するターゲット上にガラス微粒子を堆積させてスート体を成長させる工程と、
該スート体から該ターゲットを抜き取り、中空状多孔質石英ガラス母材を製造する工程と、
を含む、中空状多孔質石英ガラス母材を製造する方法であって、
成長時に変動する該スート体の外径に基づき該スート体の回転数を変動させることにより該スート体の回転周速を実際上一定となるように制御し、且つ該スート体の外径が250mmを超える範囲において下記式(1)により算出される頻度係数γが下記式(2)の範囲となるように設定することを特徴とする中空状多孔質石英ガラス母材の製造方法。
γ=S/(L・N)・・・(1)
0.13≦γ<1.0 ・・・(2)
[前記式(1)において、Sは前記バーナーの移動速度(mm/分)、Lは前記バーナーの移動距離(mm)、Nは前記スート体の変動する回転数の最低値(rpm)である。]
a step of arranging a plurality of burners for synthesizing glass particles at a predetermined interval, reciprocating the burners, and depositing glass particles on a rotating target to grow a soot body;
extracting the target from the soot body to produce a hollow porous quartz glass base material;
A method for producing a hollow porous quartz glass base material, comprising:
A method for producing a hollow porous quartz glass base material, characterized in that the rotational peripheral speed of the soot body is controlled to be virtually constant by varying the rotation speed of the soot body based on the outer diameter of the soot body which varies during growth, and the frequency coefficient γ calculated by the following formula (1) is set to be within the range of the following formula (2) in the range in which the outer diameter of the soot body exceeds 250 mm.
γ=S/(L・N m )...(1)
0.13≦γ<1.0 (2)
[In the formula (1), S is the moving speed of the burner (mm/min), L is the moving distance of the burner (mm), and Nm is the minimum value (rpm) of the fluctuating rotation speed of the soot body.]
前記バーナーの往復移動における折り返し位置を所定の距離ずつ移動させ、前記バーナーの1回の往復における折り返し位置の移動量が前記スート体に照射される前記バーナーの火炎径の1/3以下であることを特徴とする請求項1記載の中空状多孔質石英ガラス母材の製造方法。 The method for manufacturing a hollow porous quartz glass base material according to claim 1, characterized in that the turning position in the reciprocating movement of the burner is moved by a predetermined distance, and the amount of movement of the turning position in one reciprocating movement of the burner is 1/3 or less of the flame diameter of the burner irradiated to the soot body. 前記頻度係数γが0.13以上0.3以下であることを特徴とする請求項1又は2記載の中空状多孔質石英ガラス母材の製造方法。 The method for manufacturing a hollow porous quartz glass base material according to claim 1 or 2, characterized in that the frequency coefficient γ is 0.13 or more and 0.3 or less. 請求項1~3のいずれか1項記載の方法により得られる中空状多孔質石英ガラス母材を用いることを特徴とする合成石英ガラスシリンダの製造方法。 A method for manufacturing a synthetic quartz glass cylinder, characterized by using a hollow porous quartz glass base material obtained by the method according to any one of claims 1 to 3. 外径が300mmを超え且つ長さ2m以上の円筒形の大型中空状多孔質石英ガラス母材であって、該母材全体の平均密度が、0.55g/cm以上で、且つ円筒断面の90°毎の4方向の垂線で、径方向において内表面から等距離(Xmm)の4点のそれぞれ1cm 当たりの密度の最大値と最小値の差を密度変動量と規定した時の、前記内表面から距離(Xmm)位置での単位長さあたりの密度変動量が4点の平均値に対して10%/cm以下であり、かつ、クラックを含まないことを特徴とする大型中空状多孔質石英ガラス母材。 A large, hollow, porous quartz glass preform having a cylindrical shape with an outer diameter exceeding 300 mm and a length of 2 m or more, characterized in that the average density of the entire preform is 0.55 g/cm3 or more , and when the density variation is defined as the difference between the maximum and minimum density values per cm3 at four points equidistant (X mm) from the inner surface in the radial direction on four perpendicular lines every 90° on the cross section of the cylinder, the density variation per unit length at a distance (X mm) from the inner surface is 10%/cm or less of the average value of the four points, and the preform contains no cracks. 外径が500mm以上であり且つ長さ1.0m以上の円筒形の大型中空状多孔質石英ガラス母材であって、該母材全体の平均密度が、0.55g/cm以上で、且つ円筒断面の90°毎の4方向の垂線で、径方向において内表面から等距離(Xmm)の4点のそれぞれ1cm 当たりの密度の最大値と最小値の差を密度変動量と規定した時の、前記内表面から距離(Xmm)位置での単位長さあたりの密度変動量が4点の平均値に対して10%/cm以下であり、かつ、クラックを含まないことを特徴とする大型中空状多孔質石英ガラス母材。 A large, hollow, porous quartz glass preform having a cylindrical shape with an outer diameter of 500 mm or more and a length of 1.0 m or more, characterized in that the average density of the entire preform is 0.55 g/ cm3 or more, and when the density variation is defined as the difference between the maximum and minimum density values per cm3 at four points equidistant (X mm) from the inner surface in the radial direction on four perpendicular lines in each 90° direction of the cylindrical cross section, the density variation per unit length at a distance (X mm) from the inner surface is 10%/cm or less of the average value of the four points, and the preform contains no cracks. 円筒断面の90°毎の4方向の垂線で、径方向において内表面から等距離(Xmm)の4点のそれぞれ1cm 当たりの密度の最大値と最小値の差を密度変動量と規定した時の、前記内表面から距離(Xmm)位置での単位長さあたりの密度変動量が4点の平均値に対して2%/cm以下である、請求項5又は6記載の中空状多孔質石英ガラス母材。 7. A hollow porous quartz glass base material according to claim 5 or 6, wherein the density variation per unit length at a distance (X mm) from the inner surface is 2 %/cm or less of the average value of the four points, when the density variation is defined as the difference between the maximum and minimum density per cm3 at four points equidistant ( X mm) from the inner surface in the radial direction on four perpendicular lines in every 90° on the cylindrical cross section. 請求項5~のいずれか1項記載の中空状多孔質石英ガラス母材ガラス化された中空状合成石英ガラスシリンダであって、
外径200~500mm、長さ0.7m~3.5m、OH基濃度5ppm未満、含有塩素濃度500ppm以上3000ppm以下であり外観不良部を含まないことを特徴とする中空状合成石英ガラスシリンダ。
A hollow synthetic quartz glass cylinder obtained by vitrifying the hollow porous quartz glass base material according to any one of claims 5 to 7 ,
A hollow synthetic quartz glass cylinder having an outer diameter of 200 to 500 mm, a length of 0.7 to 3.5 m, an OH group concentration of less than 5 ppm, a chlorine content concentration of 500 ppm to 3000 ppm , and no external defects.
前記中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置の塩素濃度の「最大値-最小値の差」が、4位置の平均値に対して15%以内であることを特徴とする請求項記載の中空状合成石英ガラスシリンダ。 A hollow synthetic quartz glass cylinder according to claim 8, characterized in that the "difference between the maximum value and the minimum value" of the chlorine concentration at four positions every 90° in the circumferential direction, which are equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder, is within 15% of the average value of the four positions. 請求項5~のいずれか1項記載の中空状多孔質石英ガラス母材ガラス化された中空状合成石英ガラスシリンダであって、
外径200~500mm、長さ0.7m~3.5m、OH基濃度50ppm以上500ppm以下であり外観不良部を含まないことを特徴とする中空状合成石英ガラスシリンダ。
A hollow synthetic quartz glass cylinder obtained by vitrifying the hollow porous quartz glass base material according to any one of claims 5 to 7 ,
A hollow synthetic quartz glass cylinder having an outer diameter of 200 to 500 mm, a length of 0.7 to 3.5 m, an OH group concentration of 50 ppm to 500 ppm , and no external defects.
前記中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置のOH基濃度の「最大値-最小値の差」が、4位置の平均値に対して15%以内であることを特徴とする請求項10記載の中空状合成石英ガラスシリンダ。 A hollow synthetic quartz glass cylinder according to claim 10, characterized in that the "difference between maximum and minimum values" of OH group concentrations at four positions every 90° in the circumferential direction, equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder, is within 15 % of the average value of the four positions. 請求項記載の中空状多孔質石英ガラス母材ガラス化された中空状合成石英ガラスシリンダであって、
該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置の塩素濃度の「最大値-最小値の差」が、4位置の平均値に対して10%以下であることを特徴とする中空状合成石英ガラスシリンダ。
A hollow synthetic quartz glass cylinder obtained by vitrifying the hollow porous quartz glass base material according to claim 7 ,
A hollow synthetic quartz glass cylinder, characterized in that the "difference between the maximum value and the minimum value" of the chlorine concentration at four positions equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder and spaced every 90° in the circumferential direction is 10% or less of the average value of the four positions.
請求項記載の中空状多孔質石英ガラス母材ガラス化された中空状合成石英ガラスシリンダであって、
該中空状合成石英ガラスシリンダの円筒断面の内面から等距離にある、周方向の90°毎の4位置のOH基濃度の「最大値-最小値の差」が、4位置の平均値に対して10%以下であることを特徴とする中空状合成石英ガラスシリンダ。
A hollow synthetic quartz glass cylinder obtained by vitrifying the hollow porous quartz glass base material according to claim 7 ,
A hollow synthetic quartz glass cylinder, characterized in that the "difference between maximum value and minimum value" of OH group concentration at four positions every 90° in the circumferential direction, which are equidistant from the inner surface of the cylindrical cross section of the hollow synthetic quartz glass cylinder, is 10% or less of the average value of the four positions.
JP2020121187A 2020-07-15 2020-07-15 Large hollow porous quartz glass base material and its manufacturing method Active JP7555208B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020121187A JP7555208B2 (en) 2020-07-15 2020-07-15 Large hollow porous quartz glass base material and its manufacturing method
CN202411625772.4A CN119461788A (en) 2020-07-15 2021-07-06 Large hollow porous quartz glass base material and hollow synthetic quartz glass cylinder
CN202110764980.2A CN113943094B (en) 2020-07-15 2021-07-06 Large hollow porous quartz glass base material and method for producing the same
US17/374,131 US20220017404A1 (en) 2020-07-15 2021-07-13 Large-sized hollow porous quartz glass preform and method of manufacturing the same
KR1020210093021A KR20220009353A (en) 2020-07-15 2021-07-15 Large hollow porous quartz glass preform and manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020121187A JP7555208B2 (en) 2020-07-15 2020-07-15 Large hollow porous quartz glass base material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022018230A JP2022018230A (en) 2022-01-27
JP7555208B2 true JP7555208B2 (en) 2024-09-24

Family

ID=79291951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020121187A Active JP7555208B2 (en) 2020-07-15 2020-07-15 Large hollow porous quartz glass base material and its manufacturing method

Country Status (4)

Country Link
US (1) US20220017404A1 (en)
JP (1) JP7555208B2 (en)
KR (1) KR20220009353A (en)
CN (2) CN113943094B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051259A (en) * 2017-08-29 2020-04-21 住友电气工业株式会社 Method for producing glass fine particle deposit, method for producing glass base material, and glass base material
JP2024014098A (en) * 2022-07-21 2024-02-01 古河電気工業株式会社 Optical fiber preform manufacturing equipment, manufacturing method, optical fiber preform and optical fiber
KR102659434B1 (en) * 2023-03-14 2024-04-22 비씨엔씨 주식회사 A device capable of controlling cracks in silica soot by through a healing pass process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504426A (en) 1996-07-18 2001-04-03 信越石英株式会社 Method for manufacturing quartz glass body
JP2002167228A (en) 2000-09-21 2002-06-11 Sumitomo Electric Ind Ltd Manufacturing method of optical fiber preform
JP2013530920A (en) 2010-07-09 2013-08-01 ヘレウス クオーツ ユーケー リミティド High purity synthetic silica and products such as jigs made from the high purity synthetic silica
JP2015505809A (en) 2011-12-15 2015-02-26 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフトHeraeus QuarzglasGmbH & Co. KG Method for producing synthetic quartz glass and quartz glass used as sheath material for optical fiber
JP2016003162A (en) 2014-06-17 2016-01-12 信越石英株式会社 Method for manufacturing hollow porous quartz glass preform, hollow porous quartz glass preform and quartz glass cylinder using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612949B2 (en) 1990-02-01 1997-05-21 信越化学工業株式会社 Manufacturing method of optical fiber preform base material
JP4049365B2 (en) * 2002-06-19 2008-02-20 信越化学工業株式会社 Method and apparatus for producing porous glass preform for optical fiber
DE102004035086B4 (en) * 2004-07-20 2008-07-03 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a hollow cylinder made of quartz glass with a small inner diameter and apparatus suitable for carrying out the method
JP5799666B2 (en) 2011-08-25 2015-10-28 住友電気工業株式会社 Method for producing glass particulate deposit
JP6158731B2 (en) * 2013-04-08 2017-07-05 信越化学工業株式会社 Manufacturing method of glass preform for optical fiber and glass preform for optical fiber
WO2016159220A1 (en) * 2015-03-31 2016-10-06 古河電気工業株式会社 Method for manufacturing porous glass base material for optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504426A (en) 1996-07-18 2001-04-03 信越石英株式会社 Method for manufacturing quartz glass body
JP2002167228A (en) 2000-09-21 2002-06-11 Sumitomo Electric Ind Ltd Manufacturing method of optical fiber preform
JP2013530920A (en) 2010-07-09 2013-08-01 ヘレウス クオーツ ユーケー リミティド High purity synthetic silica and products such as jigs made from the high purity synthetic silica
JP2015505809A (en) 2011-12-15 2015-02-26 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフトHeraeus QuarzglasGmbH & Co. KG Method for producing synthetic quartz glass and quartz glass used as sheath material for optical fiber
JP2016003162A (en) 2014-06-17 2016-01-12 信越石英株式会社 Method for manufacturing hollow porous quartz glass preform, hollow porous quartz glass preform and quartz glass cylinder using the same

Also Published As

Publication number Publication date
CN119461788A (en) 2025-02-18
CN113943094A (en) 2022-01-18
KR20220009353A (en) 2022-01-24
CN113943094B (en) 2024-12-06
US20220017404A1 (en) 2022-01-20
JP2022018230A (en) 2022-01-27

Similar Documents

Publication Publication Date Title
JP7555208B2 (en) Large hollow porous quartz glass base material and its manufacturing method
US8015845B2 (en) Glass tube processing method
US5769921A (en) Method of producing quartz glass body
CN1275887C (en) Method for producing a tube consisting of quartz glass, tubular semi-finished product consisting of porous quartz glass, and the use of the same
JP6185560B2 (en) Method for manufacturing a cylindrical part made of synthetic quartz glass containing fluorine
JP6814511B2 (en) How to make a quartz glass substrate tube
EP1487750B1 (en) Method for producing an optical fiber and optical fiber
US9296639B2 (en) Method for producing an optical preform with a POD cladding glass layer
JP2006193370A (en) Optical fiber preform and method of manufacturing the same
JP2793617B2 (en) Manufacturing method of optical fiber preform
JP6305839B2 (en) Method for producing hollow porous quartz glass preform and hollow porous quartz glass preform
JP2012167013A (en) Tool for producing synthetic quartz glass
JP4057304B2 (en) Manufacturing method of optical fiber preform
JPH0425215B2 (en)
JP2002154838A (en) Method for manufacturing glass preform for optical fiber
JP3917022B2 (en) Method for producing porous preform for optical fiber
EP3971145B1 (en) Manufacturing method of glass base material for optical fiber
US8245542B2 (en) Method for producing a cylinder from synthetic quartz glass
JP6556384B2 (en) Method for producing hollow porous quartz glass base material
JP2000063147A (en) Optical fiber preform and its production
CN110636992B (en) Method for manufacturing optical fiber preform and optical fiber preform
JP2025026828A (en) Tubular composite made of quartz glass and methods for making and using same - Patents.com
JP2022148517A (en) Method and apparatus for manufacturing optical fiber preform
JP2025026827A (en) Tubular composite made of quartz glass and methods for making and using same - Patents.com
JP2022127161A (en) Method for manufacturing optical fiber preform and method for manufacturing optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240910

R150 Certificate of patent or registration of utility model

Ref document number: 7555208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150