[go: up one dir, main page]

JP7549051B2 - Separator for power storage device and power storage device including same - Google Patents

Separator for power storage device and power storage device including same Download PDF

Info

Publication number
JP7549051B2
JP7549051B2 JP2022578448A JP2022578448A JP7549051B2 JP 7549051 B2 JP7549051 B2 JP 7549051B2 JP 2022578448 A JP2022578448 A JP 2022578448A JP 2022578448 A JP2022578448 A JP 2022578448A JP 7549051 B2 JP7549051 B2 JP 7549051B2
Authority
JP
Japan
Prior art keywords
separator
inorganic
storage device
less
electricity storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022578448A
Other languages
Japanese (ja)
Other versions
JPWO2022163714A1 (en
Inventor
一徳 内田
奨平 森
真也 浜崎
敏大 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JPWO2022163714A1 publication Critical patent/JPWO2022163714A1/ja
Application granted granted Critical
Publication of JP7549051B2 publication Critical patent/JP7549051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Electrotherapy Devices (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Memory System Of A Hierarchy Structure (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本開示は、蓄電デバイス用セパレータ、及びこれを含む蓄電デバイスに関する。 The present disclosure relates to a separator for an electricity storage device and an electricity storage device including the same.

微多孔膜、特にポリオレフィン系微多孔膜は、精密濾過膜、電池用セパレータ、コンデンサー用セパレータ、燃料電池用材料等の多くの技術分野で使用されており、特にリチウムイオン電池(LIB)に代表される2次電池用セパレータ、またはリチウムイオンキャパシタ用セパレータとして使用されている。リチウムイオン電池は、携帯電話、ノート型パーソナルコンピュータ等の小型電子機器用途、リチウムイオン電池又はリチウムイオンキャパシタはハイブリッド自動車、及びプラグインハイブリッド自動車を含む電気自動車等、様々な用途への応用が研究されている。Microporous membranes, particularly polyolefin-based microporous membranes, are used in many technical fields such as microfiltration membranes, battery separators, condenser separators, and fuel cell materials, and are particularly used as separators for secondary batteries such as lithium ion batteries (LIBs) or separators for lithium ion capacitors. Lithium ion batteries are being researched for use in small electronic devices such as mobile phones and notebook personal computers, and lithium ion batteries or lithium ion capacitors are being researched for use in hybrid automobiles and electric automobiles including plug-in hybrid automobiles.

近年、高エネルギー容量、高エネルギー密度、かつ高い出力特性を有するリチウムイオン電池に代表される蓄電デバイスが求められ、それに伴い、高強度(例えば、高突刺強度)、低い透気度、及び高耐熱性を兼ね備えたセパレータへの需要が高まっている。In recent years, there has been a demand for energy storage devices, such as lithium-ion batteries, that have high energy capacity, high energy density, and high output characteristics. This has led to an increased demand for separators that combine high strength (e.g., high puncture strength), low air permeability, and high heat resistance.

特許文献1は、粘度平均分子量が60万以上のポリオレフィンと無機フィラーの混合体から製造された微多孔性ポリオレフィンフィルムを記載している(請求項11、実施例等)。 Patent document 1 describes a microporous polyolefin film made from a mixture of a polyolefin having a viscosity average molecular weight of 600,000 or more and an inorganic filler (claim 11, examples, etc.).

国際公開第2019/107119号International Publication No. 2019/107119

L. Vincent, 及びP. Soille、“Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 13, No. 6, 1991年6月, pp.583-598L. Vincent, and P. Soille, “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 13, No. 6, June 1991, pp.583- 598 D. Comaniciu, 及びP. Meer、“Mean Shift: A Robust Approach toward Feature Space Analysis”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 24, 2002年, pp.603-619D. Comaniciu, and P. Meer, “Mean Shift: A Robust Approach toward Feature Space Analysis”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 24, 2002, pp.603-619. PS. Liao, TS. Chen, 及びPC. Chung、“A Fast Algorithm for Multilevel Thresholding”, Journal of Information Science and Engineering, vol. 17, 2001年, pp.713-727PS. Liao, TS. Chen, and PC. Chung, “A Fast Algorithm for Multilevel Thresholding”, Journal of Information Science and Engineering, vol. 17, 2001, pp.713-727 Michael Doube, Michal M Klosowski, Ignacio Arganda-Carreras, Fabrice P Cordelieres, Robert P Dougherty, Jonathan S Jackson, Benjamin Schmid, John R Hutchinson, 及びSandra J Shefelbinea、“BoneJ: Free and extensible bone image analysis in ImageJ” Bone Volume 47, Issue 6, 2010年12月, pp.1076-1079Michael Doube, Michal M Klosowski, Ignacio Arganda-Carreras, Fabrice P Cordelieres, Robert P Dougherty, Jonathan S Jackson, Benjamin Schmid, John R Hutchinson, and Sandra J Shefelbinea, “BoneJ: Free and extensible bone image analysis in ImageJ” Bone Volume 47, Issue 6, December 2010, pp.1076-1079

ポリオレフィン樹脂と無機粒子を含有する無機含有層を使用することで、透過性に優れるセパレータが得られることが知られている。しかしながら、一般的に、無機粒子を用いると、延伸により界面剥離部の孔が大きく拡大するため、高強度、及び高耐熱性を有するセパレータを提供することが困難である。一方、孔を小さく調整すると高い透過性を保つことが困難である。本開示は、高い透過性を有しつつ、高強度、及び高耐熱性を兼ね備えた、蓄電デバイス用セパレータを提供することを目的の一つとする。It is known that a separator with excellent permeability can be obtained by using an inorganic-containing layer containing a polyolefin resin and inorganic particles. However, when inorganic particles are generally used, the pores at the interface peeling portion are greatly enlarged by stretching, making it difficult to provide a separator with high strength and high heat resistance. On the other hand, if the pores are adjusted to be small, it is difficult to maintain high permeability. One of the objects of the present disclosure is to provide a separator for an electricity storage device that has high permeability while also having high strength and high heat resistance.

本開示の実施形態の例を以下の項目[1]~[19]に列記する。
[1]
無機粒子と、ポリオレフィンを50質量%以上含む熱可塑性樹脂と、を含む無機含有層とを備える、蓄電デバイス用セパレータであって、
上記無機含有層は孔を有し、上記無機含有層のMFRは0.05g/10min以上5g/10min以下である、蓄電デバイス用セパレータ。
[2]
上記無機含有層は、MD―ND断面において、上記孔の平均孔径が150nm以上2000nm以下である、項目1に記載の蓄電デバイス用セパレータ。
[3]
上記無機含有層は、MD―ND断面において、熱可塑性樹脂領域と無機材料領域と空隙領域とを有し、
上記空隙領域と上記熱可塑性樹脂領域との境界部分の長さ(Lpo)と上記熱可塑性樹脂領域と上記無機材料領域との界面の長さ(Lpi)との比率(Lpo/Lpi)が、0.2以上3.5以下である、項目1又は2に記載の蓄電デバイス用セパレータ。
[4]
無機粒子と、ポリオレフィンを50質量%以上含む熱可塑性樹脂と、を含む無機含有層とを備える、蓄電デバイス用セパレータであって、
上記無機含有層は、MD―ND断面において、熱可塑性樹脂領域と無機材料領域と空隙領域とを有し、
上記空隙領域と上記熱可塑性樹脂領域との境界部分の長さ(Lpo)と上記熱可塑性樹脂領域と上記無機材料領域との界面の長さ(Lpi)との比率(Lpo/Lpi)が、0.2以上3.5以下である、蓄電デバイス用セパレータ。
[5]
上記無機粒子の粒子径が60nm以上2000nm以下である、項目1~4のいずれか一項に記載の蓄電デバイス用セパレータ。
[6]
透気度が50秒/100ml以上300秒/1000ml以下である、項目1~5のいずれか一項に記載の蓄電デバイス用セパレータ。
[7]
上記蓄電デバイスセパレータは基材を備え、上記基材は、ポリプロピレンを50質量%以上含む微多孔層であり、
上記基材は、上記無機含有層の片面又は両面に存在する、項目1~6のいずれか一項に記載の蓄電デバイス用セパレータ。
[8]
上記蓄電デバイスセパレータは基材を備え、上記無機含有層と上記基材との膜厚比(上記基材の膜厚/上記無機含有層の膜厚)が、0.3以上3.0以下である、項目1~7のいずれか一項に記載の蓄電デバイス用セパレータ。
[9]
上記蓄電デバイスセパレータは基材を備え、上記基材のMFRは、0.05g/10min以上0.9g/10min以下である、項目1~8のいずれか一項に記載の蓄電デバイス用セパレータ。
[10]
上記蓄電デバイス用セパレータのMDの引張強度とTDの引張強度の比(MD/TD)が1.5以上である、項目1~9のいずれか一項に記載の蓄電デバイス用セパレータ。
[11]
TDの熱収縮率が3%以下である、項目1~10のいずれか1項に記載の蓄電デバイス用セパレータ。
[12]
上記無機含有層は、上記無機含有層の全質量を基準として、上記無機粒子を50質量%以上95質量%以下で含む、項目1~11のいずれか一項に記載の蓄電デバイス用セパレータ。
[13]
上記蓄電デバイス用セパレータの厚み14μm当たりの突刺強度が100gf/14μm以上である、項目1~12のいずれか一項に記載の蓄電デバイス用セパレータ。
[14]
上記無機含有層は、上記ポリオレフィンとしてポリエチレンを含み、上記ポリエチレンの量は、上記蓄電デバイス用セパレータ全体熱可塑性樹脂の全質量を基準として20質量%以上である、項目1~13のいずれか一項に記載の蓄電デバイス用セパレータ。
[15]
上記ポリエチレンの重量平均分子量は80万以下である、項目1~14のいずれか一項に記載の蓄電デバイス用セパレータ。
[16]
上記無機含有層の厚みが1μm以上27μm以下である、項目1~15のいずれか一項に記載の蓄電デバイス用セパレータ。
[17]
上記蓄電デバイス用セパレータの総厚みが5μm以上30μm以下である、項目1~16のいずれか一項に記載の蓄電デバイス用セパレータ。
[18]
上記無機含有層は、MD―ND断面において、上記孔の平均孔径が200nm以上2000nm以下である、項目1~17のいずれか一項に記載の蓄電デバイス用セパレータ。
[19]
項目1~18のいずれか一項に記載の蓄電デバイス用セパレータを含む蓄電デバイス。
Examples of embodiments of the present disclosure are listed in the following items [1] to [19].
[1]
A separator for an electricity storage device, comprising an inorganic-containing layer including inorganic particles and a thermoplastic resin including 50% by mass or more of polyolefin,
The separator for an electricity storage device, wherein the inorganic-containing layer has pores, and the MFR of the inorganic-containing layer is 0.05 g/10 min or more and 5 g/10 min or less.
[2]
2. The separator for a power storage device according to item 1, wherein the inorganic-containing layer has pores with an average pore size of 150 nm or more and 2000 nm or less in an MD-ND cross section.
[3]
The inorganic-containing layer has a thermoplastic resin region, an inorganic material region, and a void region in an MD-ND cross section,
3. The separator for an electric storage device according to item 1 or 2, wherein a ratio (L po /L pi ) of a length (L po ) of a boundary portion between the void region and the thermoplastic resin region to a length (L pi ) of an interface between the thermoplastic resin region and the inorganic material region is 0.2 or more and 3.5 or less.
[4]
A separator for an electricity storage device, comprising an inorganic-containing layer including inorganic particles and a thermoplastic resin including 50% by mass or more of polyolefin,
The inorganic-containing layer has a thermoplastic resin region, an inorganic material region, and a void region in an MD-ND cross section,
A separator for an electricity storage device, wherein the ratio (L po /L pi ) of the length (L po ) of the boundary portion between the void region and the thermoplastic resin region to the length (L pi ) of the interface between the thermoplastic resin region and the inorganic material region is 0.2 or more and 3.5 or less.
[5]
5. The separator for an electricity storage device according to any one of items 1 to 4, wherein the inorganic particles have a particle size of 60 nm or more and 2000 nm or less.
[6]
6. The separator for an electricity storage device according to any one of items 1 to 5, having an air permeability of 50 sec/100 ml or more and 300 sec/1000 ml or less.
[7]
the electricity storage device separator includes a substrate, the substrate being a microporous layer containing 50% by mass or more of polypropylene;
7. The separator for a storage battery device according to any one of items 1 to 6, wherein the substrate is present on one or both sides of the inorganic-containing layer.
[8]
8. The separator for an electricity storage device according to any one of items 1 to 7, wherein the electricity storage device separator includes a substrate, and a thickness ratio of the inorganic-containing layer to the substrate (thickness of the substrate/thickness of the inorganic-containing layer) is 0.3 or more and 3.0 or less.
[9]
9. The separator for an electricity storage device according to any one of items 1 to 8, wherein the electricity storage device separator comprises a substrate, and the substrate has an MFR of 0.05 g/10 min or more and 0.9 g/10 min or less.
[10]
10. The separator for use in an electricity storage device according to any one of items 1 to 9, wherein the ratio of the tensile strength in MD to the tensile strength in TD (MD/TD) of the separator for use in an electricity storage device is 1.5 or more.
[11]
11. The separator for use in an electricity storage device according to any one of items 1 to 10, having a TD heat shrinkage rate of 3% or less.
[12]
Item 12. The separator for a power storage device according to any one of items 1 to 11, wherein the inorganic-containing layer contains the inorganic particles in an amount of 50% by mass or more and 95% by mass or less, based on the total mass of the inorganic-containing layer.
[13]
Item 13. The separator for an electricity storage device according to any one of items 1 to 12, wherein the separator for an electricity storage device has a puncture strength of 100 gf/14 μm or more per 14 μm of thickness.
[14]
Item 14. The separator for a storage battery device according to any one of items 1 to 13, wherein the inorganic-containing layer contains polyethylene as the polyolefin, and the amount of the polyethylene is 20 mass% or more based on the total mass of the thermoplastic resin of the entire separator for the storage battery device.
[15]
15. The separator for use in an electricity storage device according to any one of items 1 to 14, wherein the polyethylene has a weight average molecular weight of 800,000 or less.
[16]
Item 16. The separator for an electrical storage device according to any one of items 1 to 15, wherein the inorganic-containing layer has a thickness of 1 μm or more and 27 μm or less.
[17]
Item 17. The separator for an electricity storage device according to any one of items 1 to 16, wherein the separator for an electricity storage device has a total thickness of 5 μm or more and 30 μm or less.
[18]
Item 18. The separator for a power storage device according to any one of items 1 to 17, wherein the inorganic-containing layer has pores with an average pore size of 200 nm or more and 2000 nm or less in an MD-ND cross section.
[19]
Item 19. An electricity storage device comprising the separator for an electricity storage device according to any one of items 1 to 18.

本開示は、高い透過性を有しつつ、高強度、及び高耐熱性を兼ね備えた、蓄電デバイス用セパレータを提供することができる。 The present disclosure can provide a separator for an electricity storage device that has high permeability while also having high strength and high heat resistance.

図1は、本開示の蓄電デバイス用セパレータにおける、無機含有層のMD―ND断面を示す模式図である。FIG. 1 is a schematic diagram showing an MD-ND cross section of an inorganic-containing layer in an electricity storage device separator according to the present disclosure. 図2は、実施例4における、無機含有層のMD―ND断面の走査電子顕微鏡(SEM)画像である。FIG. 2 is a scanning electron microscope (SEM) image of an MD-ND cross section of the inorganic-containing layer in Example 4. 図3は、比較例3における、無機含有層のMD―ND断面の走査電子顕微鏡(SEM)画像である。FIG. 3 is a scanning electron microscope (SEM) image of an MD-ND cross section of an inorganic-containing layer in Comparative Example 3. 図4は、画像処理領域の輝度ヒストグラム(横軸:輝度、縦軸:頻度)の例である。FIG. 4 is an example of a luminance histogram (horizontal axis: luminance, vertical axis: frequency) of an image processing area.

《蓄電デバイス用セパレータ》
〈無機含有層〉
本開示の蓄電デバイス用セパレータは、無機粒子及び熱可塑性樹脂を含む無機含有層とを有する。無機含有層は、複数の孔を有し、蓄電デバイス用セパレータを構成する微多孔膜である。無機含有層は、単層で用いても、二層以上を積層して多層で用いてもよい。
<Separator for power storage device>
<Inorganic-containing layer>
The separator for an electric storage device according to the present disclosure includes an inorganic-containing layer that includes inorganic particles and a thermoplastic resin. The inorganic-containing layer is a microporous film that has a plurality of pores and constitutes the separator for an electric storage device. The inorganic-containing layer may be used as a single layer or as a multilayer formed by stacking two or more layers.

〈熱可塑性樹脂〉
無機含有層に含まれる熱可塑性樹脂は、熱可塑性樹脂の全質量を基準として、ポリオレフィンを50質量%以上含む。熱可塑性樹脂中のポリオレフィン樹脂の量は、好ましくは50質量%より多く、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量以上、99質量%以上、又は100質量%であってもよい。
<Thermoplastic resin>
The thermoplastic resin contained in the inorganic-containing layer contains 50% by mass or more of polyolefin based on the total mass of the thermoplastic resin. The amount of polyolefin resin in the thermoplastic resin is preferably more than 50% by mass, and may be 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, or 100% by mass.

ポリオレフィンとしては、ポリエチレンであることが好ましい。基材を含む蓄電デバイス用セパレータ全体に含まれる熱可塑性樹脂の全質量を基準とした場合の、無機含有層に含まれるポリエチレンの量(以下、単に「全体基準のポリエチレン量」という。)は、20質量%以上であることが好ましい。全体基準のポリエチレン量が20質量%以上であることで、約100℃~140℃で溶融する蓄電デバイス用セパレータが得られるため、シャットダウン機能により電極間の抵抗を増大させて電池の熱暴走を抑制でき、電池の安全性が向上する。一方、全体基準のポリエチレン量が20質量%未満であると、溶融する樹脂が不足して十分な抵抗の増大ができないことがある。また、ポリエチレンを全体基準で20質量%以上含有することで、ポリエチレンは結晶サイズが大きくなりやすく、ラメラ開孔時に大きな開孔が形成され開孔同士が連結し、高透過性の蓄電デバイス用セパレータが得られる傾向がある。一方、ポリエチレンの割合が全体基準で20質量%未満であると、ラメラ開孔時に大きな開孔の割合が少なくなるため、十分な透過性が得られない傾向がある。The polyolefin is preferably polyethylene. The amount of polyethylene contained in the inorganic-containing layer based on the total mass of the thermoplastic resin contained in the entire separator for a power storage device including the substrate (hereinafter simply referred to as the "total polyethylene amount") is preferably 20% by mass or more. When the total polyethylene amount is 20% by mass or more, a separator for a power storage device that melts at about 100°C to 140°C is obtained, so that the shutdown function can increase the resistance between the electrodes to suppress thermal runaway of the battery, improving the safety of the battery. On the other hand, if the total polyethylene amount is less than 20% by mass, there may be a shortage of melting resin and sufficient resistance increase may not be possible. In addition, by containing 20% by mass or more of polyethylene on a total basis, the crystal size of the polyethylene tends to become large, and large openings are formed when the lamellar opening is opened, and the openings are connected to each other, so that a separator for a power storage device with high permeability tends to be obtained. On the other hand, if the proportion of polyethylene is less than 20% by mass on a total basis, the proportion of large openings when the lamellar opening is opened is small, so sufficient permeability tends not to be obtained.

全体基準のポリエチレン量の下限は、より好ましくは20質量%以上、25質量%以上、30質量%以上、又は35質量%以上であってよい。全体基準のポリエチレン量の上限は、好ましくは55質量%未満、50質量%以下、45質量%以下、40質量%以下、又は15質量%以下であってよい。The lower limit of the total polyethylene content may more preferably be 20% by mass or more, 25% by mass or more, 30% by mass or more, or 35% by mass or more. The upper limit of the total polyethylene content may preferably be less than 55% by mass, 50% by mass or less, 45% by mass or less, 40% by mass or less, or 15% by mass or less.

ポリエチレンとしては、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、及び高密度ポリエチレン等が挙げられ、透過性をより高める観点から、高密度ポリエチレン(HDPE)であることがより好ましい。 Examples of polyethylene include low density polyethylene (LDPE), medium density polyethylene (MDPE), and high density polyethylene, with high density polyethylene (HDPE) being more preferred from the viewpoint of increasing permeability.

熱可塑性樹脂は、ポリエチレン以外の他の熱可塑性樹脂を含有してもよい。他の熱可塑性樹脂としては、好ましくは、ポリエチレン以外のポリオレフィンである。ポリオレフィンは、炭素-炭素二重結合を有するモノマーを繰り返し単位として含むポリマーである。ポリオレフィンを構成するモノマーとしては、限定されないが、炭素-炭素二重結合を有する炭素原子数3~10のモノマー、例えば、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、及び1-オクテン等が挙げられる。ポリオレフィンは、ホモポリマー、コポリマー、又は多段重合ポリマー等であることができ、好ましくはホモポリマーである。The thermoplastic resin may contain a thermoplastic resin other than polyethylene. The other thermoplastic resin is preferably a polyolefin other than polyethylene. A polyolefin is a polymer containing a monomer having a carbon-carbon double bond as a repeating unit. Monomers constituting a polyolefin include, but are not limited to, monomers having 3 to 10 carbon atoms and having a carbon-carbon double bond, such as propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene. The polyolefin may be a homopolymer, a copolymer, or a multi-stage polymer, and is preferably a homopolymer.

ポリエチレン以外のポリオレフィンとしては、具体的には、シャットダウン特性等の観点から、ポリプロピレン、及びポリエチレンとポリプロピレンとの共重合体が好ましい。 As polyolefins other than polyethylene, specifically, polypropylene and copolymers of polyethylene and polypropylene are preferred from the viewpoint of shutdown characteristics, etc.

無機含有層中に含まれる熱可塑性樹脂の量は、無機含有層の全質量を基準として、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、好ましくは50質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下である。無機含有層の全質量を基準とした熱可塑性樹脂の量がこの範囲内であると、高い透過性を有しつつ、高強度のセパレータが得られ易い。The amount of thermoplastic resin contained in the inorganic-containing layer is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, based on the total mass of the inorganic-containing layer, and is preferably 50% by mass or less, more preferably 30% by mass or less, even more preferably 25% by mass or less. When the amount of thermoplastic resin based on the total mass of the inorganic-containing layer is within this range, a separator with high strength while having high permeability is easily obtained.

ポリエチレンのスチレン換算値で求めた重量平均分子量は、好ましくは80万以下、より好ましくは70以下、更に好ましくは65万以下であり、好ましくは10万以上、より好ましくは20万以上、更に好ましくは30万以上である。ポリエチレンの重量平均分子量が80万以下であると、無機粒子を混錬する際により均一に混錬できる。これによって、無機粒子が熱可塑性樹脂に分散してより均一な無機含有層を得ることができ、その結果、電極間抵抗抑制効果が高くなる。また、ポリエチレンの重量平均分子量が80万以下であると、無機含有層内の著しい無機粒子濃度のばらつきを抑え、高温溶融時に無機含有層が全体的に抵抗成分となるため、電極間抵抗を維持することがより容易である。さらに、ポリエチレンの重量平均分子量が80万以下であると、押出時の成膜安定性の観点から、押出時の圧力が低く抑えられ、成膜がより容易になる。一方、下限について、ポリエチレンの重量平均分子量が10万以上であると、溶融した膜の自立性が高まり、巻き取りがより容易となる。また、ポリエチレンの重量平均分子量が10万以上であると、配向度が向上してラメラ開孔し易くなり、透過性が高まるため好ましい。The weight average molecular weight of polyethylene calculated in terms of styrene is preferably 800,000 or less, more preferably 70 or less, and even more preferably 650,000 or less, and is preferably 100,000 or more, more preferably 200,000 or more, and even more preferably 300,000 or more. When the weight average molecular weight of polyethylene is 800,000 or less, the inorganic particles can be kneaded more uniformly. This allows the inorganic particles to be dispersed in the thermoplastic resin to obtain a more uniform inorganic-containing layer, resulting in a higher interelectrode resistance suppression effect. In addition, when the weight average molecular weight of polyethylene is 800,000 or less, the significant variation in inorganic particle concentration in the inorganic-containing layer is suppressed, and the inorganic-containing layer becomes a resistive component as a whole during high-temperature melting, making it easier to maintain the interelectrode resistance. Furthermore, when the weight average molecular weight of polyethylene is 800,000 or less, the pressure during extrusion is kept low from the viewpoint of film formation stability during extrusion, making film formation easier. On the other hand, as for the lower limit, when the weight average molecular weight of polyethylene is 100,000 or more, the self-supporting property of the molten film is increased, making it easier to wind it up. In addition, when the weight average molecular weight of the polyethylene is 100,000 or more, the degree of orientation is improved, lamellar pores are easily formed, and permeability is increased, which is preferable.

〈メルトフローレイト(MFR)〉
無機粒子と熱可塑性樹脂とを含む無機含有層のMFRは、0.05g/10min以上5g/10min以下であり、好ましくは0.1g/10min以上2.5g/10min以下、より好ましくは0.2g/10min以上1.0g/10min以下である。無機含有層のMFRが0.05g/10min以上であることで、熱可塑性樹脂と無機粒子とを二軸押出機等で高せん断条件で混錬すると均一な混錬ができ、無機粒子が分散して均一なセパレータとなり、電極間抵抗抑制効果が高くなるからであると考えられる。無機含有層のMFRが5g/10min以下であることで、押出時に多量の冷風を吹き付けることで高いMDの配向が付与でき、ラメラ開孔しやすくなり高い透過性の無機含有層が得られやすい。
<Melt Flow Rate (MFR)>
The MFR of the inorganic-containing layer containing inorganic particles and thermoplastic resin is 0.05 g/10 min or more and 5 g/10 min or less, preferably 0.1 g/10 min or more and 2.5 g/10 min or less, more preferably 0.2 g/10 min or more and 1.0 g/10 min or less. It is believed that the MFR of the inorganic-containing layer is 0.05 g/10 min or more, and when the thermoplastic resin and the inorganic particles are kneaded under high shear conditions using a twin-screw extruder or the like, they can be kneaded uniformly, and the inorganic particles are dispersed to form a uniform separator, thereby enhancing the effect of suppressing the resistance between electrodes. When the MFR of the inorganic-containing layer is 5 g/10 min or less, a high MD orientation can be imparted by blowing a large amount of cold air during extrusion, which makes it easier to open lamellae and easily obtain an inorganic-containing layer with high permeability.

無機含有層に含まれる熱可塑性樹脂のメルトフローレイト(MFR)(単層のMFR)は、荷重2.16kg、ポリエチレンの場合は温度190℃、ポリプロピレンの場合は温度230℃で測定した際に、0.2以上15以下であることが好ましい。好ましくは0.25以上、0.30以上、好ましくは5.00以下、1.00以下である。その理由は、理論に限定されないが、MFRが高い熱可塑性樹脂と無機粒子とを混錬すると均一な混錬ができ、無機粒子が分散して均一なセパレータとなり、電極間抵抗抑制効果が高くなるからであると考えられる。一方、MFRが低すぎると無機粒子が分散せず、セパレータ内に著しい無機粒子の低濃度部が生じ、高温溶融時に抵抗成分が局所的に不足するため電極間抵抗が維持できない傾向がある。また、押出時の成膜安定性の観点で、MFRが0.2以上であると、押出時の圧力が極端に上昇せず成膜しやすくなる。MFRが15以下であると、溶融した膜の自立性が高くなる傾向があり、巻き取りが容易で、成膜がしやすい。また、MFRが15以下であると、配向度の低下を抑制でき、ラメラ開孔しやすくなり、透過性も高くできる。The melt flow rate (MFR) (single layer MFR) of the thermoplastic resin contained in the inorganic-containing layer is preferably 0.2 or more and 15 or less when measured under a load of 2.16 kg and at a temperature of 190°C for polyethylene and at a temperature of 230°C for polypropylene. It is preferably 0.25 or more, 0.30 or more, and preferably 5.00 or less, 1.00 or less. The reason is not limited to theory, but it is thought that when a thermoplastic resin with a high MFR is kneaded with inorganic particles, uniform kneading is possible, the inorganic particles are dispersed to form a uniform separator, and the effect of suppressing the resistance between electrodes is high. On the other hand, if the MFR is too low, the inorganic particles do not disperse, and a significantly low concentration part of the inorganic particles occurs in the separator, and the resistance component is locally insufficient during high-temperature melting, so that the resistance between electrodes tends to be unable to be maintained. In addition, from the viewpoint of film formation stability during extrusion, if the MFR is 0.2 or more, the pressure during extrusion does not increase extremely, making it easier to form a film. When the MFR is 15 or less, the molten membrane tends to have high self-supporting property, and is easy to wind up and form into a membrane. Also, when the MFR is 15 or less, the decrease in the degree of orientation can be suppressed, lamellar pores can be easily opened, and the permeability can be increased.

〈無機粒子〉
無機含有層は、無機粒子(「無機フィラー」ともよばれる。)を含む。無機含有層が無機粒子を含むことで、高耐熱性を有するセパレータを得ることができる。
<Inorganic particles>
The inorganic-containing layer contains inorganic particles (also called "inorganic filler.") When the inorganic-containing layer contains inorganic particles, a separator having high heat resistance can be obtained.

無機粒子としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、及び酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン、及び窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、硫酸バリウム、水酸化アルミニウム、水酸化酸化アルミニウム、チタン酸カリウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、及びケイ砂等のセラミックス;並びにガラス繊維などが挙げられる。電池内での安全性と耐熱性の観点から、硫酸バリウム、チタニア、アルミナ及びベーマイトからなる群から選択される少なくとも一つが好ましい。Examples of inorganic particles include oxide ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, and iron oxide; nitride ceramics such as silicon nitride, titanium nitride, and boron nitride; ceramics such as silicon carbide, calcium carbonate, magnesium sulfate, aluminum sulfate, barium sulfate, aluminum hydroxide, aluminum oxide hydroxide, potassium titanate, talc, kaolinite, dickite, nacrite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand; and glass fibers. From the viewpoint of safety and heat resistance in the battery, at least one selected from the group consisting of barium sulfate, titania, alumina, and boehmite is preferable.

無機粒子の粒子径は、好ましくは60nm以上2000nm以下であり、下限は、より好ましくは150nm以上、更に好ましくは230nm以上、上限は、より好ましくは1000nm以下、更に好ましくは800nm以下である。無機粒子の粒子径が60nm以上であると、高温溶融時に電極間の空隙に粒子が移行しにくく、電極間に留まることによって無機粒子が抵抗成分となり、電極間抵抗を維持することがより容易である。また、60nm以上であると、無機粒子が無機含有層に分散しやすく、無機含有層内の著しい無機粒子濃度のばらつきを抑え、高温溶融時に無機含有層が全体的に抵抗成分となるため、電極間抵抗を維持することがより容易である。無機粒子の粒子径が2000nm以下であると、無機粒子が応力集中の起点となることを抑え、強度が向上する傾向にある。また、無機粒子の粒子径が2000nm以下であると、セパレータの厚みのバラつきを抑え、品位が向上する。The particle diameter of the inorganic particles is preferably 60 nm or more and 2000 nm or less, the lower limit is more preferably 150 nm or more, and even more preferably 230 nm or more, and the upper limit is more preferably 1000 nm or less, and even more preferably 800 nm or less. When the particle diameter of the inorganic particles is 60 nm or more, the particles are less likely to migrate into the gap between the electrodes during high-temperature melting, and the inorganic particles become a resistance component by remaining between the electrodes, making it easier to maintain the interelectrode resistance. In addition, when the particle diameter is 60 nm or more, the inorganic particles are easily dispersed in the inorganic-containing layer, and the significant variation in the inorganic particle concentration in the inorganic-containing layer is suppressed, and the inorganic-containing layer becomes a resistance component overall during high-temperature melting, making it easier to maintain the interelectrode resistance. When the particle diameter of the inorganic particles is 2000 nm or less, the inorganic particles are suppressed from becoming the starting point of stress concentration, and the strength tends to improve. In addition, when the particle diameter of the inorganic particles is 2000 nm or less, the variation in the thickness of the separator is suppressed, and the quality is improved.

無機含有層中の無機粒子の含有割合は、無機含有層の全質量を基準として、好ましくは50質量%以上95質量%以下であり、下限は、より好ましくは65質量%以上、更に好ましくは72質量%以上である。無機含有層中の無機粒子の含有割合が50質量%以上であると、高いドローダウン比で溶融押出することで、無機粒子とラメラ結晶を有する層を形成でき、その後一軸延伸することで、低空孔率でありながら高い透過性のセパレータを得ることがより容易である。その理由としては、理論に限定されないが、無機粒子の量が50質量%以上であることで、延伸方向に対して垂直方向のラメラ開孔と、延伸方向に対して水平方向のフィラー開孔との両方が起こり、かつ、ラメラ結晶により形成された垂直方向の開孔によって、フィラー開孔により形成された水平方向の独立した開孔同士が連結するため、僅かな延伸倍率においても、低空孔率と高透過性とを両立することができると考えられる。また、無機含有層中の無機粒子の含有割合が95質量%以下であれば、破膜のリスクが少なく、成膜時の厚み均一性が良好になる。The content of inorganic particles in the inorganic-containing layer is preferably 50% by mass or more and 95% by mass or less, based on the total mass of the inorganic-containing layer, and the lower limit is more preferably 65% by mass or more, and even more preferably 72% by mass or more. When the content of inorganic particles in the inorganic-containing layer is 50% by mass or more, a layer having inorganic particles and lamellar crystals can be formed by melt extrusion at a high drawdown ratio, and then uniaxial stretching is performed, making it easier to obtain a separator with low porosity and high permeability. The reason for this is not limited to theory, but when the amount of inorganic particles is 50% by mass or more, both lamellar openings perpendicular to the stretching direction and filler openings horizontal to the stretching direction occur, and the vertical openings formed by the lamellar crystals connect the independent horizontal openings formed by the filler openings, so that it is thought that low porosity and high permeability can be achieved even at a small stretching ratio. Furthermore, if the content of inorganic particles in the inorganic-containing layer is 95 mass % or less, the risk of film breakage is low and the thickness uniformity during film formation is good.

〈無機粒子の表面処理〉
無機粒子は、熱可塑性樹脂への分散性を高めるために、表面処理剤により表面処理されているものを用いることが好ましい。この表面処理剤としては、飽和脂肪酸及び/又はその塩(飽和脂肪酸塩)、不飽和脂肪酸及び/又はその塩(不飽和脂肪酸塩)、アルミニウム系カップリング剤、ポリシロキサン、シランカップリング剤などによる処理が挙げられる。熱可塑性樹脂への分散性の観点から、表面処理剤としては、飽和脂肪酸及びその塩、不飽和脂肪酸及びその塩であることが好ましく、炭素数8以上の飽和脂肪酸及びその塩、炭素数8以上の不飽和脂肪酸及びその塩がより好ましい。表面処理剤は熱可塑性樹脂混錬前に処理してもよく、混錬時に表面処理剤を後添加してもよい。無機粒子表面への均一な表面処理剤の被覆の観点で、混錬前に処理することが好ましい。これらの表面処理剤で処理することで、無機粒子が高度に樹脂中に分散し、より高い耐熱性を達成することができる。
Surface Treatment of Inorganic Particles
In order to improve the dispersibility in the thermoplastic resin, it is preferable to use inorganic particles that have been surface-treated with a surface treatment agent. Examples of the surface treatment agent include treatment with saturated fatty acid and/or its salt (saturated fatty acid salt), unsaturated fatty acid and/or its salt (unsaturated fatty acid salt), aluminum-based coupling agent, polysiloxane, silane coupling agent, etc. From the viewpoint of dispersibility in the thermoplastic resin, the surface treatment agent is preferably a saturated fatty acid and its salt, an unsaturated fatty acid and its salt, and more preferably a saturated fatty acid and its salt having 8 or more carbon atoms, an unsaturated fatty acid and its salt having 8 or more carbon atoms. The surface treatment agent may be applied before kneading the thermoplastic resin, or may be added after kneading. From the viewpoint of uniform coating of the surface treatment agent on the inorganic particle surface, it is preferable to treat before kneading. By treating with these surface treatment agents, the inorganic particles are highly dispersed in the resin, and higher heat resistance can be achieved.

無機粒子の表面親水度は、好ましくは0.1以上0.8以下である。表面親水度が0.8以下であると、無機粒子が熱可塑性樹脂へより良好に分散し、凝集を抑制することができる。無機粒子の表面親水度が0.1以上であると、電解液に対する親和性が高まり、イオン伝導性が向上する傾向にある。The surface hydrophilicity of the inorganic particles is preferably 0.1 or more and 0.8 or less. When the surface hydrophilicity is 0.8 or less, the inorganic particles are better dispersed in the thermoplastic resin and aggregation can be suppressed. When the surface hydrophilicity of the inorganic particles is 0.1 or more, the affinity for the electrolyte is increased and the ionic conductivity tends to improve.

無機粒子の表面処理量は、無機粒子の粒子径にもよるが、表面処理された無機粒子の全質量を基準として0.1質量%以上、10質量%以下が好ましい。表面処理量が10質量%以下で余剰の表面処理剤を減らすことができ、表面処理量が0.1質量%以上で良好な分散性が得られる。The amount of surface treatment of inorganic particles depends on the particle size of the inorganic particles, but is preferably 0.1% by mass or more and 10% by mass or less based on the total mass of the surface-treated inorganic particles. When the amount of surface treatment is 10% by mass or less, excess surface treatment agent can be reduced, and when the amount of surface treatment is 0.1% by mass or more, good dispersibility can be obtained.

〈無機粒子の目付量〉
無機粒子の目付量は、0.15mg/cm以上が好ましい。目付量が0.15mg/cm以上であると、セパレータの高温溶融時に樹脂と伴って無機粒子が電極間空隙に移行しにくく、無機粒子が電極間の抵抗成分となる無機粒子層として残るため、緻密な無機粒子層が形成される傾向がある。そして無機粒子が抵抗成分となり電極間抵抗を維持することができ、電池としての安全性が向上する傾向にある。
<Weight of inorganic particles>
The basis weight of the inorganic particles is preferably 0.15 mg/ cm2 or more. When the basis weight is 0.15 mg/ cm2 or more, the inorganic particles are less likely to migrate to the interelectrode gap together with the resin when the separator is melted at high temperature, and the inorganic particles remain as an inorganic particle layer that becomes a resistance component between the electrodes, so that a dense inorganic particle layer tends to be formed. The inorganic particles become a resistance component, which can maintain the interelectrode resistance, and the safety of the battery tends to be improved.

〈孔〉
無機含有層は孔を有する。本願明細書において、「孔」とは、微多孔膜における孔(「開孔」ともいう。)を意味する。無機含有層は、より具体的には、複数の開孔を有する微多孔膜である。MD―ND断面(面方向断面)において、孔(開孔)の輪郭は、熱可塑性樹脂のみ、又は熱可塑性樹脂及び無機粒子から形成される。そして、無機含有層のMD―ND断面において、孔の部分(以下、「開孔領域」という。)と、熱可塑性樹脂の部分(以下、「熱可塑性樹脂領域」という。)との境界部分の長さ(Lpo)と熱可塑性樹脂領域と無機材料の部分(以下、「無機材料領域」という。)との界面の長さ(Lpi)との比率(Lpo/Lpi)が、0.2以上3.5以下であることが好ましい。すなわち、上記輪郭のうち熱可塑性樹脂が形成する部分の長さ(Lpo)と熱可塑性樹脂と無機粒子との界面の長さ(Lpi)との比率(Lpo/Lpi)が、0.2以上3.5以下であることが好ましい。
Hole
The inorganic-containing layer has holes. In the present specification, "hole" means a hole (also called "open hole") in a microporous film. More specifically, the inorganic-containing layer is a microporous film having a plurality of open holes. In the MD-ND cross section (plane direction cross section), the outline of the hole (open hole) is formed only from the thermoplastic resin, or from the thermoplastic resin and inorganic particles. In the MD-ND cross section of the inorganic-containing layer, the ratio (L po /L pi ) of the length (L po ) of the boundary part between the hole part (hereinafter referred to as the "open hole region") and the thermoplastic resin part (hereinafter referred to as the "thermoplastic resin region") to the length (L pi ) of the interface between the thermoplastic resin region and the inorganic material part (hereinafter referred to as the "inorganic material region") is preferably 0.2 or more and 3.5 or less. That is, it is preferable that the ratio (L po /L pi ) of the length (L po ) of the portion of the contour formed by the thermoplastic resin to the length (L pi ) of the interface between the thermoplastic resin and the inorganic particles is 0.2 or more and 3.5 or less.

熱可塑性樹脂が無機粒子によって被覆される量が多くなる場合にはLpiが大きくなる。熱可塑性樹脂が無機成分に被覆される量が多くなると熱可塑性樹脂が溶融する高温状態においても孔構造を維持することが可能になり、高い耐熱性が得られやすい。他方、熱可塑性樹脂が空孔(孔の空間)に露出する量が多くなる場合にはLpoが大きくなる。熱可塑性樹脂が空孔に露出する量が多くなると熱可塑性樹脂が空孔と多く接するため、空孔同士の連結性が高くなり高い透過性が得られやすい。したがって、当該比率(Lpo/Lpi)の好ましい範囲は、熱可塑性樹脂から見た場合の無機粒子界面、及び熱可塑性樹脂から見た場合の空孔界面の、高い耐熱性及び高い透過性の両方を示すための好ましい範囲を示したものである。空孔サイズと粒子径によらず上記のような効果を示すことから、当該比率(Lpo/Lpi)として表現することが適切である。 When the amount of the thermoplastic resin covered by the inorganic particles increases, L pi increases. When the amount of the thermoplastic resin covered by the inorganic component increases, it is possible to maintain the pore structure even at high temperatures when the thermoplastic resin melts, and high heat resistance is easily obtained. On the other hand, when the amount of the thermoplastic resin exposed to the pores (pore space) increases, L po increases. When the amount of the thermoplastic resin exposed to the pores increases, the thermoplastic resin comes into contact with the pores more, so that the connectivity between the pores increases and high permeability is easily obtained. Therefore, the preferred range of the ratio (L po /L pi ) shows the preferred range for showing both high heat resistance and high permeability of the inorganic particle interface when viewed from the thermoplastic resin, and the pore interface when viewed from the thermoplastic resin. Since the above-mentioned effects are shown regardless of the pore size and particle diameter, it is appropriate to express it as the ratio (L po /L pi ).

当該比率(Lpo/Lpi)が0.2以上であることで、無機粒子を切欠とする開孔部と、ラメラによる開孔部が同時に形成され、これによって空孔を大きくかつ、無機粒子による開口部とラメラによる開孔部との連結構造が形成され、高い透過性が得られやすいと考えられる。フィラー開孔に由来する水平方向(延伸方向)の孔とラメラ開孔による垂直方向の孔の連結性が高まり、高い透過性が得られやすいと考えられる。当該比率(Lpo/Lpi)を0.2以上に調整する方法、すなわち、Lpiに対してLpoを大きく調整する方法は、MDに高いドローダウン比で溶融押出したのち、溶融押出後に極端に強い冷風を当て急冷させることが挙げられる。このように調整すると、後の延伸で、無機粒子による開孔だけでなく、ラメラによる開孔を同時に引き起こすことがより容易であるため当該比率(Lpo/Lpi)が0.2以上に調整しやすい。一方、MDに高いドローダウン比で溶融押出ししなかった場合、またはMDに高いドローダウン比で溶融押出しても、冷風量が少ないなどして冷却効率が悪い場合、ラメラによる開孔をほとんどせず当該比率(Lpo/Lpi)が0.2以上に調整することが困難である。 When the ratio (L po /L pi ) is 0.2 or more, the openings made by the inorganic particles and the openings made by the lamellae are simultaneously formed, which makes the pores larger and forms a connection structure between the openings made by the inorganic particles and the openings made by the lamellae, which is considered to be easy to obtain high permeability. It is considered that the connection between the horizontal (stretching direction) holes derived from the filler openings and the vertical holes made by the lamellae openings is increased, which makes it easy to obtain high permeability. A method of adjusting the ratio (L po /L pi ) to 0.2 or more, that is, a method of adjusting L po to be large relative to L pi , is to melt extrude at a high drawdown ratio in MD, and then apply extremely strong cold air after melt extrusion to rapidly cool. When adjusted in this way, it is easier to simultaneously cause openings by the inorganic particles as well as openings by the lamellae in the later stretching, so that the ratio (L po /L pi ) is easily adjusted to 0.2 or more. On the other hand, if melt extrusion is not performed at a high drawdown ratio in the MD, or if melt extrusion is performed at a high drawdown ratio in the MD but the cooling efficiency is poor due to a small amount of cold air, etc., there will be almost no lamellae opening, and it will be difficult to adjust the ratio (L po /L pi ) to 0.2 or more.

当該比率(Lpo/Lpi)は、熱可塑性樹脂の組成によって調整することもできる。組成による調整については、立体規則性の高いポリプロピレンなどの高結晶性の熱可塑性樹脂を用いることや、結晶核剤を添加などによりラメラ開孔を促進して当該比率を0.2以上に調整することが挙げられる。 The ratio ( Lpo / Lpi ) can also be adjusted by the composition of the thermoplastic resin, for example, by using a highly crystalline thermoplastic resin such as polypropylene having high stereoregularity, or by adding a crystal nucleating agent to promote lamellar opening and adjust the ratio to 0.2 or more.

当該比率(Lpo/Lpi)が3.5以下であることで、セパレータの孔が無機粒子からなる無機成分で被覆されるため、高温時も孔構造を保つため絶縁性を維持しやすく高い耐熱性が得られやすい。当該比率(Lpo/Lpi)を3.5以下に調整する方法、すなわち、Lpoに対してLpiを大きく調整する方法は、MDに高いドローダウン比で溶融押出したのち、MDとTDの総延伸倍率を低くかつ、TDの延伸倍率を低くすることが挙げられる。このように調整することで、熱可塑性樹脂と無機粒子の界面を破壊することなく維持できる結果、熱可塑性樹脂と無機粒子との界面の長さ(Lpi)が大きくなりやすい傾向があり、比率(Lpo/Lpi)を3.5以下に調整することが容易である。一方、MDに高いドローダウン比で溶融押出しなかった場合や、MDとTDの総延伸倍率を高くかつ、TDの延伸倍率を小さくしなかった場合は、ラメラ結晶が十分得られず、フィラー開孔のみ開孔起点を拡大して孔形成させるため、熱可塑性樹脂と無機粒子界面が破壊され、当該比率(Lpo/Lpi)が3.5以下に調整することが困難である。また流動パラフィンを導入して湿式法による作成方法を用いた場合においても、相分離により熱可塑性樹脂と無機粒子界面が分断され、当該比率(Lpo/Lpi)が3.5以下に調整することが困難である。 When the ratio (L po /L pi ) is 3.5 or less, the pores of the separator are covered with inorganic components made of inorganic particles, so that the pore structure is maintained even at high temperatures, making it easy to maintain insulation and obtain high heat resistance. A method of adjusting the ratio (L po /L pi ) to 3.5 or less, that is, a method of adjusting L pi to be large relative to L po , includes melt extrusion at a high drawdown ratio in MD, followed by lowering the total stretch ratio in MD and TD and lowering the stretch ratio in TD. By adjusting in this way, the interface between the thermoplastic resin and the inorganic particles can be maintained without being destroyed, and as a result, the length (L pi ) of the interface between the thermoplastic resin and the inorganic particles tends to be large, and it is easy to adjust the ratio (L po /L pi ) to 3.5 or less. On the other hand, if melt extrusion is not performed with a high drawdown ratio in MD, or if the total stretch ratio in MD and TD is not high and the stretch ratio in TD is not small, lamellar crystals are not obtained sufficiently, and the opening origin of the filler alone is enlarged to form holes, destroying the interface between the thermoplastic resin and the inorganic particles, making it difficult to adjust the ratio (L po /L pi ) to 3.5 or less. Even when liquid paraffin is introduced and a wet method is used for preparation, the interface between the thermoplastic resin and the inorganic particles is divided by phase separation, making it difficult to adjust the ratio (L po /L pi ) to 3.5 or less.

組成による調整については、無機粒子と親和性が高いと考えられる極性を持った官能基で変性された熱可塑性樹脂、例えば酸変性したポリオレフィンを一部添加することで当該比率を3.5以下に調整することが挙げられる。Regarding adjustments to the composition, one option is to adjust the ratio to 3.5 or less by adding a portion of a thermoplastic resin modified with a polar functional group that is thought to have a high affinity with inorganic particles, such as an acid-modified polyolefin.

比率(Lpo/Lpi)の下限は、好ましくは0.3以上、より好ましくは0.4以上、更に好ましくは0.5以上であり、上限は、好ましくは3.0以下、より好ましくは2.5以下、更に好ましくは2.0以下である。 The lower limit of the ratio (L po /L pi ) is preferably 0.3 or more, more preferably 0.4 or more, and even more preferably 0.5 or more, and the upper limit is preferably 3.0 or less, more preferably 2.5 or less, and even more preferably 2.0 or less.

図1は、本開示の蓄電デバイス用セパレータにおける、無機含有層のMD―ND断面を示す模式図である。無機含有層のMD―ND断面(10)を、走査電子顕微鏡で観察すると、無機粒子(1)、熱可塑性樹脂(2)及び開孔(3)の存在を確認することができる。無機粒子(1)の部分は「無機材料領域」、熱可塑性樹脂(2)の部分は「熱可塑性樹脂領域」、及び開孔(3)部分は「空隙領域」である。図1に示す開孔(3)の輪郭は、実線で示す熱可塑性樹脂から形成される輪郭(4)、及び丸点線で示す無機粒子から形成される輪郭(5)からなる。また、熱可塑性樹脂と無機粒子との界面を角点線(6)で示す。このとき、実線(4)の長さが「空隙領域と熱可塑性樹脂領域との境界部分の長さ(Lpo)」に対応し、角点線(6)の長さが「熱可塑性樹脂領域と無機材料領域との界面の長さ(Lpi)」に対応しており、これらの比率(Lpo/Lpi)は、0.2以上3.5以下である。 FIG. 1 is a schematic diagram showing an MD-ND cross section of an inorganic-containing layer in a separator for an electric storage device according to the present disclosure. When the MD-ND cross section (10) of the inorganic-containing layer is observed with a scanning electron microscope, the presence of inorganic particles (1), thermoplastic resin (2) and pores (3) can be confirmed. The inorganic particles (1) are the "inorganic material region", the thermoplastic resin (2) is the "thermoplastic resin region", and the pores (3) are the "void region". The contour of the pores (3) shown in FIG. 1 is composed of a contour (4) formed from the thermoplastic resin shown by a solid line, and a contour (5) formed from the inorganic particles shown by a dotted circle line. The interface between the thermoplastic resin and the inorganic particles is shown by a dotted square line (6). In this case, the length of the solid line (4) corresponds to the "length of the boundary between the void region and the thermoplastic resin region (L po )," and the length of the dotted line (6) corresponds to the "length of the interface between the thermoplastic resin region and the inorganic material region (L pi )," and the ratio thereof (L po /L pi ) is 0.2 or more and 3.5 or less.

無機含有層の孔の平均孔径は、MD―ND断面において、好ましくは150nm以上2000nm以下、より好ましくは200nm以上2000nm以下、更に好ましくは200nm以上1500nm以下、より更に好ましくは250nm以上1000nm以下である。その理由は、理論に限定されないが、無機含有層の平均孔径が150nm以上であると、開孔同士が連結した構造となり高い透過性が得られる傾向にある。また、平均孔径が2000nm以下であると、無機含有層の厚みに対して応力集中の起点となりにくく、セパレータの強度低下が生じにくいからであると考えられる。無機含有層の平均孔径は、実施例の欄で後述するように、無機含有層のMD―ND断面を走査型電子顕微鏡(SEM)で観察することにより測定することができる。The average pore size of the inorganic-containing layer is preferably 150 nm or more and 2000 nm or less, more preferably 200 nm or more and 2000 nm or less, even more preferably 200 nm or more and 1500 nm or less, and even more preferably 250 nm or more and 1000 nm or less, in the MD-ND cross section. The reason is not limited to theory, but when the average pore size of the inorganic-containing layer is 150 nm or more, the open pores tend to be connected to each other and have high permeability. In addition, when the average pore size is 2000 nm or less, it is unlikely to become a starting point of stress concentration with respect to the thickness of the inorganic-containing layer, and it is thought that the strength of the separator is unlikely to decrease. The average pore size of the inorganic-containing layer can be measured by observing the MD-ND cross section of the inorganic-containing layer with a scanning electron microscope (SEM), as described later in the example section.

無機含有層の長孔径は、一方向に配列していることが好ましい。本願明細書において、「長孔径」とは、開孔の輪郭上の任意の2点を結ぶ線分のうち、最も長い線分をいう。理論に限定されないが、長孔径が一方向に配列していると、セパレータに強い配向がかかり長孔径の方向の強度が大きくなり、電池巻き付け操作がしやすくなるため好ましい。長孔径の配列は、実施例の欄で後述するように、無機含有層の断面を走査型電子顕微鏡(SEM)で観察することにより確認することができる。「一方向に配列」とは、セパレータ表面の上記電子顕微鏡像において、90%以上のフィブリルが、その延在方向±20度の角度範囲内に含まれることを意味する。すなわち、上記電子顕微鏡像において、90%以上の孔部の長軸が、互いに±20度の角度範囲内に含まれている場合、長孔径の配列が「一方向に配列」していると判断する。It is preferable that the long hole diameters of the inorganic-containing layer are arranged in one direction. In this specification, the "long hole diameter" refers to the longest line segment among the line segments connecting any two points on the contour of the opening. Although not limited by theory, if the long hole diameters are arranged in one direction, the separator is strongly oriented, the strength in the long hole diameter direction is increased, and the battery winding operation is easier, which is preferable. The arrangement of the long hole diameters can be confirmed by observing the cross section of the inorganic-containing layer with a scanning electron microscope (SEM), as described later in the Examples section. "Aligned in one direction" means that in the above electron microscope image of the separator surface, 90% or more of the fibrils are included within an angle range of ±20 degrees in the extension direction. In other words, if the long axes of 90% or more of the holes are included within an angle range of ±20 degrees from each other in the above electron microscope image, the arrangement of the long hole diameters is determined to be "aligned in one direction".

無機含有層のMD―ND断面積に占める開孔の面積割合は、20%以上60%以下である。好ましくは30%以上、より好ましくは35%以上、好ましくは55%以下、より好ましくは50%以下である。開孔の面積割合を60%以下とすることで樹脂と無機粒子の割合を高めることができ、固形分のネットワーク構造が形成されるため、突刺時の伸度が向上して高い突刺強度が得られやすい。また、気孔割合を増やすためにMDの延伸倍率を大きくして開孔割合を大きくしようとすると、気孔が厚み方向に潰れやすく、孔同士の連結構造が分断され透気度が悪化する傾向がある。開孔の面積割合が20%以上であると、樹脂と無機粒子の割合が低いことで、孔同士の連結構造が形成され易いため、高い透過性が得られる。The area ratio of the open pores to the MD-ND cross-sectional area of the inorganic-containing layer is 20% or more and 60% or less. It is preferably 30% or more, more preferably 35% or more, preferably 55% or less, and more preferably 50% or less. By making the area ratio of the open pores 60% or less, the ratio of resin and inorganic particles can be increased, and a network structure of the solid content is formed, so that the elongation at the time of piercing is improved and high piercing strength is easily obtained. In addition, if an attempt is made to increase the open pore ratio by increasing the MD stretching ratio in order to increase the pore ratio, the pores tend to be crushed in the thickness direction, and the connection structure between the pores tends to be broken, resulting in a deterioration in air permeability. When the area ratio of the open pores is 20% or more, the low ratio of resin and inorganic particles makes it easy to form a connection structure between the pores, so high permeability is obtained.

〈エラストマー〉
無機含有層は、無機粒子以外に、エラストマーを更に含有してもよい。エラストマーとしては、熱可塑性エラストマー及び熱硬化性エラストマー等が挙げられ、好ましくは、熱可塑性エラストマーである。本願明細書において、熱可塑性エラストマーは、熱可塑性樹脂に包含される。無機含有層が熱可塑性エラストマーを含有することにより、強度及び透気度のバランスを損なうことなく溶融張力を低減することができるため、高い溶融張力を有する低いMFRの熱可塑性樹脂であっても薄膜化することが可能となり、薄膜高強度なセパレータを得ることができる。
<Elastomer>
The inorganic-containing layer may further contain an elastomer in addition to the inorganic particles. Examples of the elastomer include thermoplastic elastomers and thermosetting elastomers, and preferably thermoplastic elastomers. In the present specification, the thermoplastic elastomer is included in the thermoplastic resin. By containing a thermoplastic elastomer in the inorganic-containing layer, the melt tension can be reduced without impairing the balance between strength and air permeability, so that even a thermoplastic resin with a low MFR and a high melt tension can be thinned, and a thin, high-strength separator can be obtained.

〈無機含有層の厚み〉
無機含有層の厚みは、好ましくは1μm以上27μm以下、より好ましくは1μm以上20μm以下である。厚みが1μm以上であると、蓄電デバイス用セパレータの耐熱性が向上する。厚みが27μm以下であると、蓄電デバイスのエネルギー密度をより高めることができる。耐熱性とエネルギー密度を勘案すると好ましくは、3μm以上15μm以下、さらに好ましくは5μm以上10μm以下である。また、セパレータ全体の厚みに占める無機含有層の厚みの割合は、セパレータの耐熱性、イオン透過性、及び物理的強度を勘案すると好ましくは15%以上90以下、より好ましくは20以上80%以下、更に好ましくは20%以上60%以下である。
<Thickness of inorganic-containing layer>
The thickness of the inorganic-containing layer is preferably 1 μm or more and 27 μm or less, more preferably 1 μm or more and 20 μm or less. When the thickness is 1 μm or more, the heat resistance of the separator for the electric storage device is improved. When the thickness is 27 μm or less, the energy density of the electric storage device can be further increased. In consideration of the heat resistance and the energy density, the thickness is preferably 3 μm or more and 15 μm or less, more preferably 5 μm or more and 10 μm or less. In addition, in consideration of the heat resistance, ion permeability, and physical strength of the separator, the ratio of the thickness of the inorganic-containing layer to the thickness of the entire separator is preferably 15% or more and 90% or less, more preferably 20% or more and 80% or less, and even more preferably 20% or more and 60% or less.

〈基材〉
本開示の蓄電デバイス用セパレータは、無機含有層に加えて基材を含んでもよい。基材は、無機含有層の片面又は両面に存在してもよい。すなわち、蓄電デバイス用セパレータは、無機含有層の片面に基材が積層された二層構造でもよく、無機含有層の両面に(外層として)基材が積層され、または基材の両面に無機含有層が積層された三層の多層構造、または三層以上の多層構造を有してもよい。
<Substrate>
The separator for an electric storage device of the present disclosure may include a substrate in addition to the inorganic-containing layer. The substrate may be present on one or both sides of the inorganic-containing layer. That is, the separator for an electric storage device may have a two-layer structure in which a substrate is laminated on one side of the inorganic-containing layer, a multilayer structure in which substrates are laminated (as outer layers) on both sides of the inorganic-containing layer, or a multilayer structure of three or more layers in which inorganic-containing layers are laminated on both sides of the substrate.

基材は、基材の全質量を基準として、ポリプロピレンを50質量%以上含む微多孔層(以下、「PP微多孔層」ともいう。)であることが好ましい。基材中のポリプロピレンの量は、好ましくは50質量%より多く、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量以上、99質量%以上、又は100質量%であってもよい。基材は、無機含有層の片面又は両面上に存在することができる。すなわち、蓄電デバイス用セパレータは、無機含有層の片面に、基材が積層された二層構造でもよく、無機含有層の両面に、基材が積層された三層以上の多層構造を有してもよい。蓄電デバイス用セパレータが、外層として基材を有する場合も、内層として基材を有する場合も、基材のMFRは、0.05g/10min以上0.9g/10min以下であることが好ましい。外層のMFRが0.05g/10min以上であることで、均一な厚みで製膜することが容易である。外層のMFRが0.9g/10min以下であることで、高い透過性が得られやすく、セパレータの機械的強度が高くなる。The substrate is preferably a microporous layer (hereinafter also referred to as "PP microporous layer") containing 50% by mass or more of polypropylene based on the total mass of the substrate. The amount of polypropylene in the substrate is preferably more than 50% by mass, and may be 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, or 100% by mass. The substrate can be present on one or both sides of the inorganic-containing layer. That is, the separator for the electric storage device may have a two-layer structure in which the substrate is laminated on one side of the inorganic-containing layer, or may have a multi-layer structure of three or more layers in which the substrate is laminated on both sides of the inorganic-containing layer. Whether the separator for the electric storage device has a substrate as an outer layer or a substrate as an inner layer, the MFR of the substrate is preferably 0.05 g/10 min or more and 0.9 g/10 min or less. When the MFR of the outer layer is 0.05 g/10 min or more, it is easy to form a membrane with a uniform thickness. When the MFR of the outer layer is 0.9 g/10 min or less, high permeability is easily obtained, and the mechanical strength of the separator is increased.

多層構造は、どのような順番に積層されていても本願発明の効果を発現することができるが、PP微多孔層/無機含有層/PP微多孔層の順に積層された三層構造であることが特に好ましい。PP微多孔層/無機含有層/PP微多孔層の三層構造を有することにより、無機含有層による耐熱特性を備えつつ、PP微多孔層により機械的強度、及び電極面接触時の耐酸化性を維持することができる。無機含有層と基材との膜厚比(基材の厚さ/無機含有層の厚さ)は、0.3以上3.0以下であることが好ましい。無機層と基材の膜厚比を0.3以上にすることで、セパレータの溶融時に電極間抵抗を維持でき、電池の安全性が向上する。無機層と基材の膜厚比が3.0倍以下であると、製膜安定性が向上し、製膜が容易である。The multilayer structure can exhibit the effects of the present invention regardless of the order in which the layers are laminated, but a three-layer structure in which the layers are laminated in the order of PP microporous layer/inorganic-containing layer/PP microporous layer is particularly preferable. By having a three-layer structure of PP microporous layer/inorganic-containing layer/PP microporous layer, the heat resistance properties of the inorganic-containing layer can be provided, while the mechanical strength and oxidation resistance at the time of electrode surface contact can be maintained by the PP microporous layer. The thickness ratio of the inorganic-containing layer to the substrate (substrate thickness/inorganic-containing layer thickness) is preferably 0.3 to 3.0. By making the thickness ratio of the inorganic layer to the substrate 0.3 or more, the interelectrode resistance can be maintained when the separator is melted, and the safety of the battery is improved. When the thickness ratio of the inorganic layer to the substrate is 3.0 times or less, the film formation stability is improved and film formation is easy.

〈セパレータの厚み〉
蓄電デバイス用セパレータの総厚みは、好ましくは5μm以上30μm以下、より好ましくは5μm以上27μm以下である。厚みが5μm以上であると、蓄電デバイス用セパレータの耐熱性が向上する。厚みが30μm以下であると、蓄電デバイスのエネルギー密度を高めることができる。
<Separator thickness>
The total thickness of the separator for the electric storage device is preferably 5 μm or more and 30 μm or less, more preferably 5 μm or more and 27 μm or less. When the thickness is 5 μm or more, the heat resistance of the separator for the electric storage device is improved. When the thickness is 30 μm or less, the energy density of the electric storage device can be increased.

〈セパレータの透気度〉
蓄電デバイス用セパレータの透気度(「透気抵抗度」とも呼ばれる。)の上限値は、好ましくは1000秒/100ml以下、800秒/100ml以下、600秒/100ml以下、500秒/100ml以下、400秒/100ml以下、300秒/100ml以下、250秒/100ml以下、又は200秒/100ml以下であり、下限値は、好ましくは50秒/100ml以上、80秒/100ml以上、又は100秒/100ml以上であってよい。
<Air permeability of separator>
The upper limit of the air permeability (also referred to as "air permeability resistance") of the electricity storage device separator is preferably 1000 sec/100 ml or less, 800 sec/100 ml or less, 600 sec/100 ml or less, 500 sec/100 ml or less, 400 sec/100 ml or less, 300 sec/100 ml or less, 250 sec/100 ml or less, or 200 sec/100 ml or less, and the lower limit may be preferably 50 sec/100 ml or more, 80 sec/100 ml or more, or 100 sec/100 ml or more.

〈セパレータの突刺強度〉
蓄電デバイス用セパレータの突刺強度の下限値は、セパレータの厚みを14μmに換算した場合に、好ましくは100gf/14μm以上、例えば130gf/14μm以上、160gf/14μm以上であってよい。多層構造の突刺強度の上限値は、限定されないが、多層構造全体の厚みを14μmに換算した場合に、好ましくは550gf/14μm以下、例えば500gf/14μm以下、又は480gf/14μm以下であってよい。
<Separator puncture strength>
The lower limit of the puncture strength of the separator for an electric storage device may be preferably 100 gf/14 μm or more, for example 130 gf/14 μm or more, or 160 gf/14 μm or more, when the thickness of the separator is converted to 14 μm. The upper limit of the puncture strength of the multilayer structure is not limited, but may be preferably 550 gf/14 μm or less, for example 500 gf/14 μm or less, or 480 gf/14 μm or less, when the thickness of the entire multilayer structure is converted to 14 μm.

〈セパレータのMD/TD強度比〉
蓄電デバイス用セパレータのMDの引張強度とTDの引張強度の比(「MD/TD強度比」ともいう。)は、好ましくは1.5以上、より好ましくは6.0以上、更に好ましくは8.0以上である。MD/TD強度比が1.5以上であると、セパレータに強い配向がかることでMDの強度が大きくなり、電池巻き付け操作がしやすくなる。また、MD/TD強度比が1.5以上であると、TDの熱収縮率を低くすることができるため、電池巻き付け時にTDの熱収縮による短絡に対する耐性が高くなる。MD/TD強度比の上限は、特に限定されないが、好ましくは30以下、より好ましくは20以下、更に好ましくは15以下である。MD/TD強度比30以下であると、MDに亀裂が入りにくく、取り扱い時にセパレータが縦に(MDに)裂ける問題が起こりにくくなる。
<MD/TD strength ratio of separator>
The ratio of the tensile strength in the MD to the tensile strength in the TD of the separator for an electric storage device (also referred to as the "MD/TD strength ratio") is preferably 1.5 or more, more preferably 6.0 or more, and even more preferably 8.0 or more. When the MD/TD strength ratio is 1.5 or more, the separator is strongly oriented, so that the strength in the MD is increased, and the battery winding operation is easy. In addition, when the MD/TD strength ratio is 1.5 or more, the thermal shrinkage rate of the TD can be reduced, so that the resistance to short circuits caused by thermal shrinkage of the TD during battery winding is increased. The upper limit of the MD/TD strength ratio is not particularly limited, but is preferably 30 or less, more preferably 20 or less, and even more preferably 15 or less. When the MD/TD strength ratio is 30 or less, cracks are unlikely to occur in the MD, and the separator is unlikely to tear vertically (in the MD) during handling.

〈セパレータの熱収縮率〉
蓄電デバイス用セパレータのTDの熱収縮率は、好ましくは3%以下、より好ましくは1%以下である。TDの熱収縮率が1%以下であると、電池巻き付け時にTDの熱収縮による短絡に対する耐性が高くなる。
<Thermal shrinkage rate of separator>
The heat shrinkage rate of the TD of the separator for an electricity storage device is preferably 3% or less, more preferably 1% or less. When the heat shrinkage rate of the TD is 1% or less, resistance to short circuit caused by heat shrinkage of the TD during winding of the battery is increased.

《蓄電デバイス用セパレータの製造方法》
熱可塑性樹脂及び無機粒子を含む無機含有層の製造方法としては、一般に、熱可塑性樹脂組成物と、無機粒子を混合分散し、含有を溶融押出して樹脂フィルムを得る溶融押出工程、及び得られた樹脂シートを開孔して多孔化する孔形成工程を含み、任意に延伸工程、及び熱処理工程等を更に含む。無機含有層の製造方法は、孔形成工程に溶剤を使用しない乾式法と、溶剤を使用する湿式法とに大別される。
<<Method for producing separator for power storage device>>
A method for producing an inorganic-containing layer containing a thermoplastic resin and inorganic particles generally includes a melt extrusion step of mixing and dispersing a thermoplastic resin composition and inorganic particles, and melt extruding the mixture to obtain a resin film, and a hole forming step of opening holes in the obtained resin sheet to make it porous, and optionally further includes a stretching step, a heat treatment step, etc. The method for producing an inorganic-containing layer is roughly divided into a dry method in which no solvent is used in the hole forming step, and a wet method in which a solvent is used.

乾式法としては、熱可塑性樹脂組成物と無機粒子とをドライ状態で混合分散し、溶融混練して押出した後、熱処理と延伸によって熱可塑性樹脂結晶界面を剥離させる方法;及び、熱可塑性樹脂組成物と無機充填材とを溶融混練してシート上に成形した後、延伸によって熱可塑性樹脂と無機充填材との界面を剥離させる方法などが挙げられる。Dry methods include a method in which a thermoplastic resin composition and inorganic particles are mixed and dispersed in a dry state, melt-kneaded, and extruded, and then the thermoplastic resin crystal interface is peeled off by heat treatment and stretching; and a method in which a thermoplastic resin composition and inorganic filler are melt-kneaded and formed into a sheet, and then the interface between the thermoplastic resin and the inorganic filler is peeled off by stretching.

湿式法としては、熱可塑性樹脂組成物と無機粒子とを混合分散し、孔形成材を加えて溶融混練してシート状に成形し、必要に応じて延伸した後、孔形成材を抽出する方法;及び、熱可塑性樹脂組成物の溶解後、熱可塑性樹脂に対する貧溶媒に浸漬させて熱可塑性樹脂を凝固させると同時に溶剤を除去する方法などが挙げられる。Examples of wet methods include a method in which a thermoplastic resin composition is mixed and dispersed with inorganic particles, a pore-forming material is added, the mixture is melt-kneaded and formed into a sheet, which is stretched as necessary, and then the pore-forming material is extracted; and a method in which the thermoplastic resin composition is dissolved and then immersed in a poor solvent for the thermoplastic resin to solidify the thermoplastic resin and simultaneously remove the solvent.

熱可塑性樹脂組成物の溶融混練には、単軸押出機、及び二軸押出機を使用することができ、これら以外にも、例えばニーダー、ラボプラストミル、混練ロール、及びバンバリーミキサー等を使用することもできる。A single-screw extruder or a twin-screw extruder can be used for melt-kneading the thermoplastic resin composition. In addition to these, other devices such as a kneader, a lab plast mill, a kneading roll, and a Banbury mixer can also be used.

熱可塑性樹脂組成物は、無機含有層の製造方法に応じて、又は目的の無機含有層の物性に応じて、任意に、ポリオレフィン以外の樹脂、及び添加剤等を含有してもよい。添加剤としては、例えば孔形成材、フッ素系流動改質材、ワックス、結晶核材、酸化防止剤、脂肪族カルボン酸金属塩等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、及び着色顔料等が挙げられる。孔形成材としては、可塑剤、無機充填材又はそれらの組み合わせが挙げられる。The thermoplastic resin composition may optionally contain resins other than polyolefins and additives, etc., depending on the manufacturing method of the inorganic-containing layer or the physical properties of the intended inorganic-containing layer. Examples of additives include pore-forming materials, fluorine-based flow modifiers, waxes, crystal nucleating materials, antioxidants, metal soaps such as metal salts of aliphatic carboxylic acids, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and color pigments. Examples of pore-forming materials include plasticizers, inorganic fillers, or combinations thereof.

可塑剤としては、例えば、流動パラフィン、パラフィンワックス等の炭化水素類;フタル酸ジオクチル、フタル酸ジブチル等のエステル類;オレイルアルコール、ステアリルアルコール等の高級アルコール等が挙げられる。 Examples of plasticizers include hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate; and higher alcohols such as oleyl alcohol and stearyl alcohol.

孔形成工程中、又は孔形成工程の前若しくは後に、延伸工程を行ってもよい。延伸処理としては、一軸延伸、又は二軸延伸のいずれも用いることができる。限定されないが、乾式法を使用する際の製造コスト等の観点では、一軸延伸が好ましい。一軸延伸によるラメラ開孔法を用いることによって、以下に説明するように高透過性、高強度及び耐熱性を有する本開示の蓄電デバイス用セパレータをより容易に製造することができる。以下、このことについて説明する。この開孔法は、一般的に、溶融押出によりラメラ結晶を配向させた前駆体(原反フィルム)を得て、これを冷延伸した後に熱延伸させてラメラ晶間を開孔させる方法である。熱可塑性樹脂に高い含有量の無機粒子を混合し、これをMDに高いドローダウン比で溶融押出し、かつ冷却速度を早くすることで、高い配向のラメラ結晶を有する樹脂に高い含有量の無機粒子が密に配置された孔形成工程前の前駆体(原反フィルム)を得ることが可能となる。それによって、後の延伸で、無機粒子による開孔だけでなく、ラメラによる開孔を同時に引き起こすことがより容易である。その結果、熱可塑性樹脂と空孔との界面の長さ(Lpo)が大きくなりやすい傾向があり、比率(Lpo/Lpi)を0.2以上に調整することが容易である。また、一軸延伸による応力集中によって孔形成が促進されて、で、MDとTDの総延伸倍率を低くかつ、TDの延伸倍率を低い僅かな総延伸倍率であっても、高い透過性を有し、かつ、MD/TD強度比を1.5以上に調整することが容易である。このように、特定条件の一軸延伸によるラメラ開孔法によって本願発明の効果をより容易に得ることができる。その理由は定かではないが、本発明者らは、以下のように推定している。すなわち、無機粒子は樹脂よりも熱容量が大きいため冷却が遅く、一般的な冷却条件ではMDに結晶配向し難く、その後の一軸延伸において孔形成が阻害され、高い透過性が得られない傾向がある。そのため、無機粒子を含む原反フィルムの冷却速度を早くすることで、より具体的には、冷却に用いるエアナイフ風量を多くし、無機粒子を含む原反フィルムの樹脂温度を早く冷却することで、ラメラ結晶をMDにより強く配向させることが好ましい。これによって、高い含有量の無機粒子とラメラ結晶を有する樹脂とが密に配置された原反フィルムを得ることができ、僅かな延伸倍率であっても孔形成が促進されて、高い透過性、高い強度及び耐熱性を同時に達成することができる、蓄電デバイス用セパレータが得られると推察している。 A stretching step may be performed during the hole formation step, or before or after the hole formation step. As the stretching process, either uniaxial stretching or biaxial stretching can be used. Although not limited, uniaxial stretching is preferred from the viewpoint of manufacturing costs when using a dry method. By using the lamellar hole opening method by uniaxial stretching, the separator for the power storage device of the present disclosure having high permeability, high strength and heat resistance can be more easily manufactured as described below. This will be described below. This hole opening method is generally a method in which a precursor (original film) in which lamellar crystals are oriented by melt extrusion is obtained, and this is cold stretched and then hot stretched to open holes between the lamellar crystals. By mixing a high content of inorganic particles into a thermoplastic resin, melt extruding this in the MD at a high drawdown ratio, and increasing the cooling rate, it is possible to obtain a precursor (original film) before the hole formation step in which a high content of inorganic particles is densely arranged in a resin having highly oriented lamellar crystals. As a result, it is easier to simultaneously cause not only the opening of holes by inorganic particles but also the opening of holes by lamellae in the subsequent stretching. As a result, the length (L po ) of the interface between the thermoplastic resin and the pores tends to be large, and it is easy to adjust the ratio (L po /L pi ) to 0.2 or more. In addition, the stress concentration caused by the uniaxial stretching promotes the formation of holes, and even if the total stretching ratio in MD and TD is low and the stretching ratio in TD is low, the film has high permeability and the MD/TD strength ratio can be easily adjusted to 1.5 or more. In this way, the effect of the present invention can be more easily obtained by the lamellar opening method using uniaxial stretching under specific conditions. The reason is unclear, but the inventors have speculated as follows. That is, inorganic particles have a larger heat capacity than resin, so they are cooled slowly, and under general cooling conditions, they are difficult to crystallize in MD, and hole formation is inhibited in the subsequent uniaxial stretching, and high permeability tends not to be obtained. Therefore, it is preferable to increase the cooling speed of the raw film containing inorganic particles, more specifically, to increase the air knife volume used for cooling and to quickly cool the resin temperature of the raw film containing inorganic particles, thereby strongly orienting the lamellar crystals in the MD. This makes it possible to obtain a raw film in which a high content of inorganic particles and a resin having lamellar crystals are densely arranged, and it is presumed that a separator for an electricity storage device can be obtained that can simultaneously achieve high permeability, high strength, and heat resistance by promoting hole formation even at a small stretch ratio.

〈樹脂と無機材料の割合〉
無機粒子の含有量は、熱可塑性樹脂100質量部を基準とした場合、無機粒子の量は、好ましくは100重量部以上、より好ましくは200質量部以上、更に好ましくは300質量部以上である。ポリオレフィン等の結晶性樹脂に対して無機粒子の含有量が100質量部以上であれば、一実施形態において、高いドローダウン比で溶融押出することで、無機粒子とラメラ結晶を有する層を形成でき、その後一軸延伸することで、比率(Lpo/Lpi)を0.2以上に調整し、低空孔率でありながら高い透過性のセパレータが得られる。その理由としては、理論に限定されないが、無機粒子の量が多い場合、延伸方向に対して垂直方向のラメラ開孔と、延伸方向に対して水平方向のフィラー開孔との両方が起こり、かつ、ラメラ結晶により形成された垂直方向の気孔によって、フィラー開孔により形成された水平方向の独立気孔同士が連結するため、僅かな延伸倍率においても、低空孔率と高透過性を両立していると推測している。一方、無機粒子含有量が少ないと、フィラー開孔により得られた気孔同士の距離が遠くなるため、ラメラ開孔によってフィラー開孔による気孔同士の連結が困難になり、高い透過性が得られないからであると推測される。
<Ratio of resin and inorganic materials>
The content of inorganic particles is preferably 100 parts by weight or more, more preferably 200 parts by weight or more, and even more preferably 300 parts by weight or more, based on 100 parts by weight of thermoplastic resin. If the content of inorganic particles is 100 parts by weight or more relative to a crystalline resin such as polyolefin, in one embodiment, a layer having inorganic particles and lamellar crystals can be formed by melt extrusion at a high drawdown ratio, and then uniaxial stretching is performed to adjust the ratio (L po /L pi ) to 0.2 or more, thereby obtaining a separator with low porosity but high permeability. The reason for this is not limited to theory, but when the amount of inorganic particles is large, both lamellar openings perpendicular to the stretching direction and filler openings horizontal to the stretching direction occur, and the vertical pores formed by the lamellar crystals connect the horizontal independent pores formed by the filler openings, so that even at a small stretching ratio, it is presumed that low porosity and high permeability are compatible. On the other hand, when the inorganic particle content is low, the distance between the pores formed by the filler pores becomes large, making it difficult for the pores to be connected by the filler pores through the lamellar pores, and it is presumed that high permeability cannot be obtained.

無機含有層中の無機粒子の含有割合は、無機含有層の全質量を基準とした場合、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。無機粒子の含有量が無機含有層の全質量を基準として50質量%以上であれば、上記と同様の理由から、低空孔率でありながら高い透過性のセパレータが得られるため好ましい。The content of inorganic particles in the inorganic-containing layer is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, based on the total mass of the inorganic-containing layer, and is preferably 95% by mass or less, and more preferably 90% by mass or less. If the content of inorganic particles is 50% by mass or more based on the total mass of the inorganic-containing layer, a separator with low porosity and high permeability can be obtained for the same reasons as above, which is preferable.

微多孔性フィルムの収縮を抑制するために、延伸工程後又は孔形成工程後に熱固定を目的として熱処理工程を行ってもよい。熱処理工程は、物性の調整を目的として、所定の温度雰囲気及び所定の延伸率で行う延伸操作、及び/又は、延伸応力低減を目的として、所定の温度雰囲気及び所定の緩和率で行う緩和操作を含んでもよい。延伸操作を行った後に緩和操作を行ってもよい。これらの熱処理工程は、テンター又はロール延伸機を用いて行うことができる。In order to suppress shrinkage of the microporous film, a heat treatment step may be performed for the purpose of heat setting after the stretching step or the hole formation step. The heat treatment step may include a stretching operation performed in a predetermined temperature atmosphere and at a predetermined stretch ratio for the purpose of adjusting physical properties, and/or a relaxation operation performed in a predetermined temperature atmosphere and at a predetermined relaxation ratio for the purpose of reducing stretching stress. A relaxation operation may be performed after the stretching operation. These heat treatment steps may be performed using a tenter or roll stretching machine.

無機含有層を含む複数の微多孔膜が積層されている多層構造を有する蓄電デバイス用セパレータの製造方法としては、例えば、共押出法及びラミネート法が挙げられる。共押出法では、各層の樹脂組成物を同時に共押出で成膜し、得られた多層の原反フィルムを延伸開孔させて、多層の微多孔膜を作製することができる。ラミネート法では、各層を別々に押出成膜により成膜し原反フィルムを得る。得られた原反フィルムをラミネートすることにより、多層の原反フィルムを得て、得られた多層の原反フィルムを延伸開孔させて、多層の微多孔膜を作成することができる。共押出法では、無機粒子を含有しない層で無機含有層をサポートできるため成膜安定性が向上し、無機粒子含有量を多くできる点で好ましい。Examples of methods for producing a separator for a storage device having a multilayer structure in which multiple microporous films including inorganic-containing layers are laminated include a co-extrusion method and a lamination method. In the co-extrusion method, the resin compositions of each layer are simultaneously co-extruded to form a film, and the resulting multilayer raw film is stretched and perforated to produce a multilayer microporous film. In the lamination method, each layer is separately extrusion-formed to obtain a raw film. The resulting raw film is laminated to obtain a multilayer raw film, and the resulting multilayer raw film is stretched and perforated to produce a multilayer microporous film. The co-extrusion method is preferable in that the inorganic-containing layer can be supported by a layer that does not contain inorganic particles, improving film formation stability and allowing a large inorganic particle content.

《蓄電デバイス》
蓄電デバイスは、正極と、負極と、上記で説明された本開示の蓄電デバイス用セパレータを備える。蓄電デバイス用セパレータは、正極と負極との間に積層されている。
<Electricity storage device>
The power storage device includes a positive electrode, a negative electrode, and the above-described power storage device separator of the present disclosure. The power storage device separator is laminated between the positive electrode and the negative electrode.

蓄電デバイスとしては、限定されないが、例えばリチウム二次電池、リチウムイオン二次電池、ナトリウム二次電池、ナトリウムイオン二次電池、マグネシウム二次電池、マグネシウムイオン二次電池、カルシウム二次電池、カルシウムイオン二次電池、アルミニウム二次電池、アルミニウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ、レドックスフロー電池、リチウム硫黄電池、リチウム空気電池、及び亜鉛空気電池などが挙げられる。これらの中でも、実用性の観点から、リチウム二次電池、リチウムイオン二次電池、リチウムイオンキャパシタ、又はニッケル水素電池が好ましく、より好ましくはリチウムイオン二次電池、リチウムイオンキャパシタが好ましく、さらに好ましくはリチウムイオン二次電池である。Examples of the power storage device include, but are not limited to, lithium secondary batteries, lithium ion secondary batteries, sodium secondary batteries, sodium ion secondary batteries, magnesium secondary batteries, magnesium ion secondary batteries, calcium secondary batteries, calcium ion secondary batteries, aluminum secondary batteries, aluminum ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, electric double layer capacitors, lithium ion capacitors, redox flow batteries, lithium sulfur batteries, lithium air batteries, and zinc-air batteries. Among these, from the viewpoint of practicality, lithium secondary batteries, lithium ion secondary batteries, lithium ion capacitors, and nickel-hydrogen batteries are preferred, lithium ion secondary batteries and lithium ion capacitors are more preferred, and lithium ion secondary batteries are even more preferred.

蓄電デバイスは、例えば、正極と負極とを、上記で説明されたセパレータを介して重ね合わせて、必要に応じて捲回して、積層電極体又は捲回電極体を形成した後、これを外装体に装填し、正負極と外装体の正負極端子とをリード体などを介して接続し、さらに、鎖状又は環状カーボネート等の非水溶媒とリチウム塩等の電解質を含む非水電解液を外装体内に注入した後に外装体を封止して作製することができる。The energy storage device can be produced, for example, by stacking positive and negative electrodes with the separator described above between them and winding them as necessary to form a laminated electrode body or a wound electrode body, which is then loaded into an outer casing, connecting the positive and negative electrodes to the positive and negative electrode terminals of the outer casing via a lead body or the like, and further injecting a non-aqueous electrolyte solution containing a non-aqueous solvent such as a chain or cyclic carbonate and an electrolyte such as a lithium salt into the outer casing and then sealing the outer casing.

《測定及び評価方法》
[メルトフローレイト(MFR)]
ポリオレフィンのMFRは、JIS K 7210に準拠し、温度230℃及び荷重2.16kgの条件下で測定した(単位はg/10分である)。ポリプロピレンのMFRは、JIS K 7210に準拠し、温度230℃及び荷重2.16kgの条件下で測定した。ポリエチレンのMFRは、JIS K 7210に準拠し、温度190℃及び荷重2.16kgの条件下で測定した。エラストマーのMFRは、JIS K 7210に準拠し、温度230℃及び荷重2.16kgの条件下で測定した。
Measurement and evaluation methods
[Melt flow rate (MFR)]
The MFR of polyolefin was measured at a temperature of 230° C. and a load of 2.16 kg (unit: g/10 min) in accordance with JIS K 7210. The MFR of polypropylene was measured at a temperature of 230° C. and a load of 2.16 kg in accordance with JIS K 7210. The MFR of polyethylene was measured at a temperature of 190° C. and a load of 2.16 kg in accordance with JIS K 7210. The MFR of elastomer was measured at a temperature of 230° C. and a load of 2.16 kg in accordance with JIS K 7210.

[比率(Lpo/Lpi)]
試料の準備
セパレータと四酸化ルテニウム(株式会社レアメタリック製)とを密封容器内で共存させ、蒸気による染色を4時間行い、ルテニウム染色されたセパレータを作製した。主剤(Quetol812、日新EM株式会社製)10.6mL、硬化剤(メチルナジックアンヒドリド(MNA)、日新EM株式会社製)9.4mL、および反応促進剤(2,4,6-トリス(ジメチルアミノメチル)フェノール、日新EM株式会社製、DMP-30)0.34mLを混合し、十分に撹拌して混合液を得た。該混合液中に、上記ルテニウム染色されたセパレータを浸漬し、減圧環境下に置き、上記ルテニウム染色されたセパレータの細孔に混合液を十分に含浸させた。含浸後、セパレータを60℃で12時間以上硬化させることによって、上記ルテニウム染色されたセパレータをエポキシ樹脂包埋した。これによって、セパレータ内の空孔にエポキシ樹脂を充填し硬化させた。エポキシ樹脂包埋した後、カミソリ等で粗く断面加工し、その後、イオンミリング装置(E-3500 Plus、株式会社日立ハイテク製)を用いて断面ミリング加工し、平滑な断面を作製した。このとき、断面がMD-ND面となるように加工した。得られた断面試料を導電性接着剤(カーボン系)により断面観察用SEM試料台に固定、乾燥した後、導電処理としてオスミウムコーター(HPC-30W、株式会社真空デバイス製)を用いて、印加電圧調整つまみ設定4.5、放電時間0.5秒の条件でオスミウムコーティングを実施し、検鏡試料とした。
[Ratio ( Lpo / Lpi )]
Preparation of Samples A separator and ruthenium tetroxide (manufactured by Rare Metallic Co., Ltd.) were placed in a sealed container and dyed with steam for 4 hours to prepare a separator dyed with ruthenium. (manufactured by Nisshin EM Co., Ltd.) 10.6 mL, a curing agent (methylnadic anhydride (MNA), manufactured by Nisshin EM Co., Ltd.) 9.4 mL, and a reaction accelerator (2,4,6-tris(dimethylaminomethyl)phenol, manufactured by Nisshin EM Co., Ltd.) The separator dyed with ruthenium was immersed in the mixture and placed under reduced pressure to separate the ruthenium from the separator. The pores of the dyed separator were thoroughly impregnated with the mixture. After impregnation, the separator was cured at 60° C. for 12 hours or more, so that the ruthenium-dyed separator was embedded in the epoxy resin. The internal voids were filled with epoxy resin and allowed to harden. After embedding in epoxy resin, the cross section was roughly processed with a razor or the like, and then the cross section was milled using an ion milling device (E-3500 Plus, manufactured by Hitachi High-Tech Corporation) to prepare a smooth cross section. The cross section was processed to have an MD-ND plane. The obtained cross section sample was fixed to a SEM sample stage for cross section observation with a conductive adhesive (carbon-based), dried, and then subjected to conductive treatment using an osmium coater (HPC-30W Using a microscope (manufactured by Vacuum Devices Co., Ltd.), osmium coating was carried out under the conditions of an applied voltage adjustment knob setting of 4.5 and a discharge time of 0.5 seconds, to prepare a specimen for microscopic examination.

SEM画像の取得
上記検鏡試料を、走査型電子顕微鏡(S-4800、株式会社日立ハイテク製)で加速電圧1.0kV、エミッション電流10μA、プローブ電流High、検出器Upper+LA-BSE100、倍率10000倍、ピクセル数1280×960(約10nm/pixel)、ワーキングディスタンス2.0mmの条件で観察した。無機フィラーを含有する層の厚み方向全域が観察視野内に収まるように観察視野を決定し、輝度値が飽和せず、かつ、可能な限りコントラストが高くなるように設定し、8bitのグレースケール画像として電子顕微鏡像を取得した。ただし、無機フィラーを含有する層の厚みが観察視野より大きい場合、観察視野全体に無機フィラーを含有する層が収まるように観察視野を決定した。
Acquisition of SEM images The above-mentioned microscopic sample was observed with a scanning electron microscope (S-4800, manufactured by Hitachi High-Tech Corporation) under the following conditions: acceleration voltage 1.0 kV, emission current 10 μA, probe current High, detector Upper + LA-BSE100, magnification 10,000 times, pixel number 1280 × 960 (about 10 nm / pixel), and working distance 2.0 mm. The observation field was determined so that the entire thickness direction of the layer containing the inorganic filler was within the observation field, and the brightness value was set so that it was not saturated and the contrast was as high as possible, and an electron microscope image was obtained as an 8-bit grayscale image. However, when the thickness of the layer containing the inorganic filler was larger than the observation field, the observation field was determined so that the layer containing the inorganic filler was contained in the entire observation field.

画像処理(比率(Lpo/Lpi)の算出)
得られた電子顕微鏡像には、エポキシ樹脂、ポリオレフィン、無機フィラーが観察された。このエポキシ樹脂、ポリオレフィン、無機フィラーのそれぞれの界面の長さを解析するにあたって、閾値を定めて三値化を行ってしまうと、最も輝度が低い領域(エポキシ樹脂)と最も輝度が高い領域(無機フィラー)の界面の一部が、中程度の輝度の領域(ポリオレフィン)と認識されてしまい、あたかもエポキシ樹脂と無機フィラーの間にポリオレフィンが存在するかのように解析されてしまう場合がある。そこで、下記に示す手順により、非特許文献1に記載のwatershedアルゴリズムを利用して界面の長さを解析した。
(1)電子顕微鏡像において、無機フィラーを含有する層の厚みの8割以上を含み、かつ、無機フィラーを含有する層以外の領域を含まず、かつ、可能な限り広い領域を選択し、画像処理領域とする。無機フィラーを含有する層の厚みが観察視野より大きい場合、観察視野全体を画像処理領域とする。
(2)電子顕微鏡像には、エポキシ樹脂、ポリオレフィン、無機フィラーの3種の材料がそれぞれ異なる輝度で観察されており、画像処理領域の輝度ヒストグラムを算出すると、エポキシ樹脂、ポリオレフィン、無機フィラーに対応する3つのピークが存在する。この3つのピークのうち最も近接する2つのピークの極大値を取る2点の輝度の差を算出し、この数値をCDとする(図4)。このとき、CDの数値が一意に定まらない場合には、3つのピークをそれぞれガウス関数でフィッティングしてCDの値を決定する。
(3)非特許文献2に記載のmean shift filteringを実行し、平滑化処理した画像を得る。mean shift filteringの実行にはフリーソフトImageJのMean Shift Filter(FHTW-BerlinのKai Uwe Barthel氏が作成したオープンソースプラグイン)を使用し、引数であるSpatial radiusは3とし、Color distanceはCDとして、実行する。
(4)得られた平滑化処理した画像に対して、非特許文献3のアルゴリズムを利用して2つの閾値を決定し、2つの閾値のうち小さい方を閾値A、大きい方を閾値Bとする。
(5)閾値A未満の輝度のピクセルの輝度を255とし、閾値A以上の輝度のピクセルの輝度を0とした二値画像A1と、閾値A以上かつ閾値B未満の輝度のピクセルの輝度を255とし、閾値A未満および閾値B以上の輝度のピクセルの輝度を0とした二値画像A2と、閾値B以上の輝度のピクセルの輝度を255とし、閾値B未満の輝度のピクセルの輝度を0とした二値画像A3を作成する。
(6)二値画像A1、二値画像A2、二値画像A3のそれぞれに対して5×5の正方形のカーネルを用いて収縮処理を実行(注目ピクセルを中心とする5ピクセル×5ピクセルの領域内に一つでも輝度が0であるピクセルが存在する場合に注目ピクセルの輝度を0に置き換える処理を画像内の全ピクセルに対して実行)し、収縮処理後の二値画像A1、二値画像A2、二値画像A3をそれぞれ二値画像B1、二値画像B2、二値画像B3とする。
(7)非特許文献1のアルゴリズムに基づき、画像処理領域内の分水嶺(watersheds)を探索する。このとき、背景(background)は二値画像B1の輝度が255の領域とし、マーカー(markers)は二値画像B2および二値画像B3を用いる。具体的には、二値画像B2および二値画像B3のうち、輝度が255のピクセルが連続している領域を一つのマーカーと見做し、二値画像B2および二値画像B3の全てのマーカーを使用して分水嶺の探索を実行する。
(8)二値画像B1、二値画像B2、二値画像B3に対して、分水嶺に対応するピクセルに囲まれた領域であり、かつ、その領域内に一つでも輝度が255のピクセルが含まれる場合、その領域内のピクセルの輝度を全て255に置き換える処理を実行する。処理後の画像をそれぞれ二値画像C1、二値画像C2、二値画像C3とする。
(9)二値画像C1、二値画像C2、二値画像C3に対して、3×3の十字型カーネルを用いて膨張処理を実行(注目ピクセルの上下左右の合計4ピクセルの中に一つでも輝度が255のピクセルが存在する場合に注目ピクセルの輝度を255に置き換える処理を二値画像内の全ピクセルに対して実行)し、膨張処理後の二値画像をそれぞれ二値画像D1、二値画像D2、二値画像D3とする。
(10)二値画像D1のうち輝度が255のピクセルの数値を1に置き換えた数値行列E1と、二値画像D2のうち輝度が255のピクセルの数値を10に置き換えた数値行列E2と、二値画像D3のうち輝度が255のピクセルの数値を100に置き換えた数値行列E3を作成する。
(11)数値行列E1、数値行列E2、数値行列E3の和を数値行列Fとする。
(12)数値行列Fの成分のうち、11または111である成分の数をG1とし、数値が101または111である成分の数をG2とし、数値が110または111である成分の数をG3とする。
(13)電子顕微鏡像のピクセルサイズを考慮してG1、G2、G3を実空間の長さに変換した数値をそれぞれ空孔とポリオレフィンの界面の長さLpo、ポリオレフィンと無機フィラーの界面の長さLpiと見做す。
Image Processing (Calculation of Ratio ( Lpo / Lpi ))
In the obtained electron microscope image, epoxy resin, polyolefin, and inorganic filler were observed. When analyzing the interface length of each of these epoxy resin, polyolefin, and inorganic filler, if a threshold value is set and ternary is performed, a part of the interface between the lowest brightness area (epoxy resin) and the highest brightness area (inorganic filler) may be recognized as an area of medium brightness (polyolefin), and the analysis may be performed as if polyolefin exists between the epoxy resin and the inorganic filler. Therefore, the interface length was analyzed using the watershed algorithm described in Non-Patent Document 1 according to the procedure shown below.
(1) In an electron microscope image, a region that includes 80% or more of the thickness of the layer containing the inorganic filler, does not include any region other than the layer containing the inorganic filler, and is as large as possible is selected as the image processing region. When the thickness of the layer containing the inorganic filler is larger than the observation field, the entire observation field is used as the image processing region.
(2) In the electron microscope image, three materials, epoxy resin, polyolefin, and inorganic filler, are observed with different brightnesses, and when the brightness histogram of the image processing area is calculated, three peaks corresponding to epoxy resin, polyolefin, and inorganic filler are present. The difference in brightness between the two points that have the maximum values of the two closest peaks among these three peaks is calculated, and this value is taken as CD (Figure 4). At this time, if the value of CD cannot be uniquely determined, the value of CD is determined by fitting each of the three peaks with a Gaussian function.
(3) Execute the mean shift filtering described in Non-Patent Document 2 to obtain a smoothed image. To execute the mean shift filtering, use the Mean Shift Filter (an open source plug-in created by Kai Uwe Barthel of FHTW-Berlin) of the free software ImageJ, and execute the filtering with the arguments Spatial radius set to 3 and Color distance set to CD.
(4) For the smoothed image thus obtained, two thresholds are determined using the algorithm of Non-Patent Document 3, and the smaller of the two thresholds is designated as threshold A and the larger of the two thresholds is designated as threshold B.
(5) Create a binary image A1 in which the brightness of pixels with a brightness less than threshold A is set to 255 and the brightness of pixels with a brightness equal to or greater than threshold A is set to 0; a binary image A2 in which the brightness of pixels with a brightness equal to or greater than threshold A and less than threshold B is set to 255 and the brightness of pixels with a brightness less than threshold A and equal to or greater than threshold B is set to 0; and a binary image A3 in which the brightness of pixels with a brightness equal to or greater than threshold B is set to 255 and the brightness of pixels with a brightness less than threshold B is set to 0.
(6) A 5 x 5 square kernel is used to perform a shrinkage process on each of binary images A1, A2, and A3 (if there is even one pixel with a brightness of 0 within a 5 pixel x 5 pixel area centered on the pixel of interest, the brightness of the pixel of interest is replaced with 0, and this is performed on all pixels in the image), and the binary images A1, A2, and A3 after the shrinkage process are designated as binary images B1, B2, and B3, respectively.
(7) Based on the algorithm of Non-Patent Document 1, watersheds are searched for in the image processing area. In this case, the background is the area in binary image B1 with a brightness of 255, and binary images B2 and B3 are used as markers. Specifically, an area in binary image B2 and binary image B3 where pixels with a brightness of 255 are consecutive is regarded as one marker, and the search for watersheds is performed using all markers in binary image B2 and binary image B3.
(8) For binary images B1, B2, and B3, if a region is surrounded by pixels corresponding to a watershed and contains at least one pixel with a brightness of 255, a process is performed to replace the brightness of all pixels in that region with 255. The images after the process are designated as binary images C1, C2, and C3, respectively.
(9) An expansion process is performed on binary images C1, C2, and C3 using a 3 x 3 cross kernel (if there is even one pixel with a brightness of 255 among the four pixels above, below, left, and right of the pixel of interest, the brightness of the pixel of interest is replaced with 255, and this process is performed on all pixels in the binary image), and the binary images after the expansion process are designated as binary images D1, D2, and D3, respectively.
(10) Create a numerical matrix E1 by replacing the numerical values of pixels in the binary image D1 with a brightness of 255 with 1, a numerical matrix E2 by replacing the numerical values of pixels in the binary image D2 with a brightness of 255 with 10, and a numerical matrix E3 by replacing the numerical values of pixels in the binary image D3 with a brightness of 255 with 100.
(11) Let F be the sum of the numerical matrix E1, the numerical matrix E2, and the numerical matrix E3.
(12) Among the components of the numerical matrix F, the number of components whose numerical values are 11 or 111 is defined as G1, the number of components whose numerical values are 101 or 111 is defined as G2, and the number of components whose numerical values are 110 or 111 is defined as G3.
(13) Taking into account the pixel size of the electron microscope image, G1, G2, and G3 are converted into lengths in real space and regarded as the interface length Lpo between the pores and the polyolefin, and the interface length Lpi between the polyolefin and the inorganic filler, respectively.

画像処理(無機フィラーの平均粒子径の算出)
(1)平滑化処理した画像に対して、輝度が閾値B未満のピクセルの輝度を0とし、輝度が閾値B以上のピクセルの輝度を255とした二値画像を作成する。
(2)フリーソフトImageJを用いてBoneJ(非特許文献4に記載のオープンソースプラグイン)のThickness解析を実行し、Resultsウィンドウ内のTb. Thの平均値を読み取り、電子顕微鏡像のピクセルサイズを考慮して実空間の長さに換算した数値を無機フィラーの平均粒子径とする。
Image processing (calculation of average particle size of inorganic filler)
(1) A binary image is created from the smoothed image in which the brightness of pixels whose brightness is less than a threshold value B is set to 0 and the brightness of pixels whose brightness is equal to or greater than the threshold value B is set to 255.
(2) Using the free software ImageJ, perform thickness analysis of BoneJ (an open source plug-in described in Non-Patent Document 4), read the average value of Tb. Th in the Results window, and convert the value into a length in real space taking into account the pixel size of the electron microscope image to determine the average particle diameter of the inorganic filler.

[開孔の平均孔径]
画像処理(開孔サイズの算出)
上記平滑化処理した画像に対して、輝度が閾値A未満のピクセルの輝度を0とし、輝度が閾値A以上のピクセルの輝度を255として画像を二値化した。BoneJ(非特許文献2に記載のオープンソースプラグイン)のThickness解析を実行し、Resultsウィンドウ内のTb.Th meanの数値を読み取り、実空間の長さに換算した数値を開孔の平均孔径とした。
[Average pore size]
Image processing (calculation of aperture size)
The smoothed image was binarized by setting the brightness of pixels with brightness less than threshold A to 0 and the brightness of pixels with brightness equal to or greater than threshold A to 255. Thickness analysis was performed using BoneJ (an open source plug-in described in Non-Patent Document 2), and the value of Tb.Th mean in the Results window was read and the value converted to the length in real space was used as the average pore size of the pores.

[厚み(μm)]
ミツトヨ社製のデジマチックインジケータIDC112を用いて、室温23±2℃で、セパレータの厚さ(μm)を測定した。無機含有層の厚さは、SEM画像で得られた無機含有層と界面又は別層の中心線を引き、その線の間の長さを測定した。
[Thickness (μm)]
The thickness (μm) of the separator was measured using a Mitutoyo Digimatic Indicator IDC112 at room temperature of 23±2° C. The thickness of the inorganic-containing layer was measured by drawing a center line between the inorganic-containing layer and the interface or another layer obtained in the SEM image and measuring the length between the lines.

[透気抵抗度(秒/100ml)]
JIS P-8117に準拠したガーレー式透気度計を用いて、セパレータの透気抵抗度(秒/100ml)を測定した。
[Air permeability resistance (sec/100ml)]
The air permeability resistance (sec/100 ml) of the separator was measured using a Gurley air permeability meter conforming to JIS P-8117.

[突刺強度]
先端が半径0.5mmの半球状である針を用意し、直径(dia.)11mmの開口部を有するプレート2つの間にセパレータを挟み、針、セパレータ及びプレートをセットした。株式会社イマダ製「MX2-50N」を用いて、針先端の曲率半径0.5mm、セパレータ保持プレートの開口部直径11mm及び突刺速度25mm/分の条件下で突刺試験を行った。針とセパレータを接触させ、最大突刺荷重(すなわち、突刺強度(gf))を測定した。
[Puncture strength]
A needle with a hemispherical tip with a radius of 0.5 mm was prepared, and a separator was sandwiched between two plates with an opening with a diameter (dia.) of 11 mm, and the needle, separator, and plates were set. Using "MX2-50N" manufactured by Imada Co., Ltd., a puncture test was performed under the conditions of a curvature radius of the needle tip of 0.5 mm, an opening diameter of the separator holding plate of 11 mm, and a puncture speed of 25 mm/min. The needle and separator were brought into contact with each other, and the maximum puncture load (i.e., puncture strength (gf)) was measured.

[MD/TD強度比]
セパレータの引張強度は、引張試験機(ミネベア(株)製TG―1kN型)を用いて、試験前の試料長さを35mmにし、速度100mm/minで試料を引張ることで測定した。試料が降伏したときの強度(引張荷重値)、又は降伏前に切断(破断)した場合は切断したときの強度(引張荷重値)を試験片の断面積で除した値を引張強度とした。セパレータのMD、TDのそれぞれについて引張強度を測定した。MD/TD強度比は、MD引張強度をTD引張強度で除して求めた。
[MD/TD intensity ratio]
The tensile strength of the separator was measured using a tensile tester (TG-1kN type manufactured by Minebea Co., Ltd.) by setting the length of the sample before the test to 35 mm and pulling the sample at a speed of 100 mm/min. The strength (tensile load value) at the time of breaking (fracture) was measured, or if the specimen broke before yielding, the strength (tensile load value) at the time of breaking was divided by the cross-sectional area of the specimen to determine the tensile strength. The tensile strength was measured in each of the MD and TD. The MD/TD strength ratio was calculated by dividing the MD tensile strength by the TD tensile strength.

[F/S フューズ温度及び210℃抵抗]
正極シートの作製
正極活物質としてLiNi1/3Mn1/3Co1/3と、導電助剤としてカーボンブラックと、結着剤としてポリフッ化ビニリデン溶液とを、91:5:4の固形分質量比で混合し、分散溶媒としてN-メチル-2-ピロリドンを固形分68質量%となるように添加し、更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を、厚さ15μmのアルミニウム箔の片面に塗布した後、溶剤を乾燥除去し、塗布量が175g/mの正極とした。この正極をロールプレスで圧延して、正極合剤部分の密度が2.4g/cmの正極シートを得た。
[F/S fuse temperature and 210°C resistance]
Preparation of positive electrode sheet LiNi 1/3 Mn 1/3 Co 1/3 O 2 as a positive electrode active material, carbon black as a conductive assistant, and polyvinylidene fluoride solution as a binder were mixed in a solid content mass ratio of 91:5:4, and N-methyl-2-pyrrolidone was added as a dispersion solvent so that the solid content was 68 mass%, and further mixed to prepare a slurry solution. This slurry solution was applied to one side of an aluminum foil with a thickness of 15 μm, and then the solvent was dried and removed to obtain a positive electrode with a coating amount of 175 g / m 2. This positive electrode was rolled with a roll press to obtain a positive electrode sheet with a density of 2.4 g / cm 3 in the positive electrode mixture portion.

負極シートの作製
負極活物質として人造黒鉛、結着剤としてスチレンブタジエンゴム及びカルボキシメチルセルロース水溶液とを、96.4:1.9:1.7の固形分質量比で混合し、分散溶媒として水を固形分50質量%となるように添加し、更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を、厚さ10μmの銅箔の片面に塗布した後、溶剤を乾燥除去し、塗布量が86g/mの負極とした。この負極をロールプレスで圧延して、負極合剤部分の密度が1.25g/cmの負極シートを得た。
Preparation of negative electrode sheet Artificial graphite as a negative electrode active material, styrene butadiene rubber as a binder, and a carboxymethyl cellulose aqueous solution were mixed in a solid content mass ratio of 96.4: 1.9: 1.7, and water was added as a dispersion solvent so that the solid content was 50 mass%, and further mixed to prepare a slurry solution. This slurry solution was applied to one side of a copper foil having a thickness of 10 μm, and then the solvent was dried and removed to obtain a negative electrode with a coating amount of 86 g / m 2. This negative electrode was rolled with a roll press to obtain a negative electrode sheet with a density of 1.25 g / cm 3 in the negative electrode mixture part.

非水電解液の調整
プロピレンカーボネート:エチレンカーボネート:γ-ブチルラクトン=1:1:2(
体積比)の混合溶媒に、溶質としてLiBFを濃度1.0mol/Lとなるように溶解させ、更にトリオクチルホスフェートを0.5重量%となるように添加し、非水電解液を調製した。
Preparation of non-aqueous electrolyte: Propylene carbonate: Ethylene carbonate: γ-butyl lactone = 1: 1: 2 (
LiBF4 as a solute was dissolved in a mixed solvent of 0.05 wt. % and 0.05 wt. % of trioctyl phosphate was further added thereto to prepare a nonaqueous electrolyte solution.

フューズ温度及び膜抵抗値(Ω・cm)の測定
セパレータから30mm×30mm角の試料を切り取り、試料1を準備した。また、前述した方法で作製された正極を55mm×20mm角に切り取り、塗布された電極活物質部分が20mm×20mm角になるように電極活物質を除去し集電箔が剥き出しになった正極2Aを作成した。また、前述した方法で作製された負極を55mm×25mm角に切り取り、塗布された電極活物質部分が25mm×25mm角になるように電極活物質を除去し集電箔が剥き出しになった負極2Aを作成した。その後、試料1、正極2A及び負極2Bの電極活物質が塗布されている部分に非水電解液を1分以上含浸した。そして、負極2B、試料1、正極2A、カプトンフィルム、厚さ4mmシリコンゴムの順で積層した。この時、負極2Bの電極活物質が塗工されている部分に試料1及び正極2Aの電極活物質が塗工されている部分が重ね合うように積層した。この積層体を熱電対が埋め込まれたセラミックプレート上に配置し、油圧プレス機で面圧2MPaを印加しながら、ヒーターを昇温し、正極2A及び負極2Bの集電体部分が接続された交流電気抵抗測定装置「AG-4311」(安藤電機株式会社)を用いて、連続的に温度と抵抗値を測定した。なお、温度は室温23℃から220℃まで15℃/分の速度にて昇温し、抵抗値は1V、1kHzの交流にて測定した。得られた210℃の抵抗値(Ω)に実効電極面積4cmを乗じて算出した値を、F/S 210℃膜抵抗値(Ω・cm)とした。フューズ温度は、極小値よりも高温側で3倍のインピーダンスに達した温度をフューズ温度とした。
Measurement of fuse temperature and film resistance (Ω·cm 2 ) A 30 mm×30 mm square sample was cut from the separator to prepare sample 1. The positive electrode prepared by the above-mentioned method was cut into a 55 mm×20 mm square, and the electrode active material was removed so that the applied electrode active material portion was 20 mm×20 mm square to prepare a positive electrode 2A in which the current collector foil was exposed. The negative electrode prepared by the above-mentioned method was cut into a 55 mm×25 mm square, and the electrode active material was removed so that the applied electrode active material portion was 25 mm×25 mm square to prepare a negative electrode 2A in which the current collector foil was exposed. After that, the nonaqueous electrolyte was impregnated for 1 minute or more in the portions of sample 1, positive electrode 2A, and negative electrode 2B in which the electrode active material was applied. Then, negative electrode 2B, sample 1, positive electrode 2A, Kapton film, and 4 mm thick silicone rubber were laminated in this order. At this time, the sample 1 and the positive electrode 2A were laminated so that the portions coated with the electrode active material of the negative electrode 2B were overlapped. The laminate was placed on a ceramic plate in which a thermocouple was embedded, and the heater was heated while applying a surface pressure of 2 MPa with a hydraulic press, and the temperature and resistance value were continuously measured using an AC electrical resistance measuring device "AG-4311" (Ando Electric Co., Ltd.) to which the collector portions of the positive electrode 2A and the negative electrode 2B were connected. The temperature was raised from room temperature 23°C to 220°C at a rate of 15°C/min, and the resistance value was measured with an AC of 1V and 1kHz. The value calculated by multiplying the obtained resistance value (Ω) at 210°C by the effective electrode area of 4 cm2 was taken as the F/S 210°C film resistance value (Ω· cm2 ). The fuse temperature was taken as the temperature at which the impedance reached three times the minimum value on the high temperature side.

[MD熱収縮及びTD熱収縮]
熱収縮率は、セパレータを5cm角に切り出し、2cm間隔で9か所にマーキングし、用紙で包んだ。マーキングされた試料を130℃の温度下で1時間熱処理し、次いで室温まで冷却した後に、MD及びTDの長さを各3か所で測定し、収縮率を求めた。サンプル測定の精度上、又はおそらくサンプル内の成分の膨張により、熱収縮率がマイナスの値を示す場合があるが、マイナスの値を示した場合は0.0%と見なした。
[MD heat shrinkage and TD heat shrinkage]
The heat shrinkage was measured by cutting a separator into a 5 cm square, marking 9 points at 2 cm intervals, and wrapping it in paper. The marked sample was heat-treated at 130°C for 1 hour, and then cooled to room temperature. The lengths of the MD and TD were measured at 3 points each to determine the shrinkage. Due to the accuracy of the sample measurement, or possibly due to the expansion of the components in the sample, the heat shrinkage may show a negative value, but when a negative value was shown, it was considered to be 0.0%.

《実施例1》
[ポリエチレンと無機粒子を含むペレットの作製]
ポリエチレン(PE、MFR=0.31、重量平均分子量61万と、平均粒子径500nmの表面処理された硫酸バリウム(硫酸バリウム100質量部に対して、ステアリン酸ナトリウム1質量部を表面処理に用いた)をPE:BaSO=20:80(質量%)の質量比率でドライブレンドした後、二軸押出機HK-25D(パーカーコーポレーション社製、L/D=41)を使って溶融混練を行った。樹脂の分解・変性を極力抑制するために、樹脂投入ホッパー口から原料タンクまでを完全に密閉状態としてホッパー下部から連続的に窒素をフローして、原料投入口付近の酸素濃度を50ppm以下に制御した。また、ベント部はすべて完全に密閉してシリンダー内への空気漏れ込み部を無くした。この酸素濃度低減効果により、高温下でもポリマーの分解・変性が大幅に抑制された。硫酸バリウムは二軸フィーダで投入することで、更に、硫酸バリウムの微分散化が可能となった。溶融混練後、ダイス(2穴)からストランドを引いて水冷バスにて冷却後、ペレターザーを使ってカッティングして、ポリエチレンと無機粒子を含むペレット(以下、単に「上記ペレット」という。)を得た。
Example 1
[Preparation of pellets containing polyethylene and inorganic particles]
Polyethylene (PE, MFR = 0.31, weight average molecular weight 610,000 and surface-treated barium sulfate with an average particle diameter of 500 nm (1 part by mass of sodium stearate was used for surface treatment for 100 parts by mass of barium sulfate) were used as PE:BaSO 4 After dry blending at a mass ratio of 20:80 (mass%), melt-kneading was performed using a twin-screw extruder HK-25D (Parker Corporation, L/D = 41). In order to minimize decomposition and denaturation of the resin, the resin inlet hopper was completely sealed from the raw material tank, and nitrogen was continuously flowed from the bottom of the hopper to control the oxygen concentration near the raw material inlet to 50 ppm or less. In addition, all vents were completely sealed to eliminate air leakage into the cylinder. This oxygen concentration reduction effect significantly suppressed decomposition and denaturation of the polymer even at high temperatures. Barium sulfate was further finely dispersed by feeding it with a twin-screw feeder. After melt-kneading, the strand was pulled from the die (two holes) and cooled in a water-cooled bath, and then cut using a pelletizer to obtain pellets containing polyethylene and inorganic particles (hereinafter simply referred to as "the pellets").

[微多孔膜の作製(三層)]
共押出法によって積層シートを形成した。ポリプロピレン(PP、MFR=0.51)を32mmφの二軸同方向スクリュー式押出機で溶融し、サーキュラーダイへとギアポンプを使って供給した。上記ペレットを32mmφの単軸スクリュー式押出機で溶融し、サーキュラーダイへとギアポンプを使って供給した。それぞれの押出機により溶融混錬された組成物を2種3層の共押出可能なサーキュラーダイによりシート状に押出し、かつ溶融したポリマーを、吹込空気によって冷却した後、ロールに巻き取った。ポリプロピレン樹脂の混錬温度は230℃、押出量は2.4kg/hrで、230℃に温度設定されたサーキュラーダイの外層(表面の二層)より押出した。上記ペレットの混錬温度は230℃、押出量はポリプロピレン樹脂換算1.2kg/hrで、230℃に温度設定されたサーキュラーダイの内層(中間層)より押出した。押出された前駆体(原反フィルム)を、押出直後にエアリングによりΦ300mm幅あたり3.6m3/minの風量で冷却した。冷却後の原反フィルムの厚さは16μmであった。次いで、原反フィルムを127℃で15分間アニールした。次いで、アニールされた原反フィルムを、室温で10%まで冷間延伸し、次いで冷間延伸後のフィルムに対して115℃で100%まで熱間延伸し、熱間延伸後のフィルムに対して125℃で92%まで緩和することにより、微多孔を形成した。上記延伸開孔の後、得られた微多孔膜の物性測定を行った。結果を表1に示す。
[Preparation of microporous membrane (three layers)]
A laminated sheet was formed by co-extrusion. Polypropylene (PP, MFR = 0.51) was melted in a 32 mmφ twin-screw extruder and fed to a circular die using a gear pump. The pellets were melted in a 32 mmφ single-screw extruder and fed to a circular die using a gear pump. The composition melted and mixed by each extruder was extruded into a sheet shape by a two-kind, three-layer co-extrusion-capable circular die, and the molten polymer was cooled by blown air and then wound on a roll. The polypropylene resin was extruded from the outer layer (two outer layers) of a circular die set at a temperature of 230 ° C. at a mixing temperature of 230 ° C. and an extrusion rate of 2.4 kg / hr. The pellets were extruded from the inner layer (middle layer) of a circular die set at a temperature of 230 ° C. at a mixing temperature of 230 ° C. and an extrusion rate of 1.2 kg / hr in terms of polypropylene resin. The extruded precursor (raw film) was cooled immediately after extrusion with an air flow rate of 3.6 m3/min per Φ300 mm width by air ring. The thickness of the raw film after cooling was 16 μm. The raw film was then annealed at 127 ° C for 15 minutes. The annealed raw film was then cold stretched to 10% at room temperature, and then the cold stretched film was hot stretched to 100% at 115 ° C, and the hot stretched film was relaxed to 92% at 125 ° C to form micropores. After the above stretching and perforation, the physical properties of the obtained microporous film were measured. The results are shown in Table 1.

《実施例2~24、比較例1~3》
表1及び2に示されるとおりに原料、成膜条件又はセパレータ物性を変更させたこと以外は実施例1と同じ方法に従って微多孔膜を得て、得られた微多孔膜を評価した。層構成は押出量の比を変えることで調整した。実施例9に用いたポリエチレンはMFR=0.35、重量平均分子量51万であった。実施例8、11に用いた無機粒子の表面処理方法は、味の素ファインテクノ社製アルミニウム(Al)系カップリング剤(プレンアクトAL-M)を、無機粒子:プレンアクトAL-M=98:2(質量%)の質量比率でドライブレンドして行った処理方法であった。
Examples 2 to 24 and Comparative Examples 1 to 3
A microporous membrane was obtained in the same manner as in Example 1, except that the raw materials, membrane forming conditions, or separator properties were changed as shown in Tables 1 and 2, and the obtained microporous membrane was evaluated. The layer structure was adjusted by changing the ratio of the extrusion amount. The polyethylene used in Example 9 had an MFR of 0.35 and a weight average molecular weight of 510,000. The surface treatment method for the inorganic particles used in Examples 8 and 11 was a treatment method in which an aluminum (Al)-based coupling agent (Plenact AL-M) manufactured by Ajinomoto Fine-Techno Co., Inc. was dry-blended at a mass ratio of inorganic particles:Plenact AL-M of 98:2 (mass%).

《実施例25》
リチウムイオン二次電池の動作確認
電解液として、エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合したものに、リチウム塩としてのLiPFを1mol/L含有させた電解液を用いた。
Example 25
Confirmation of operation of lithium ion secondary battery As an electrolyte, an electrolyte in which ethylene carbonate and ethyl methyl carbonate were mixed in a volume ratio of 1:2 and LiPF 6 was added as a lithium salt at 1 mol/L was used.

正極活物質としてリチウム・ニッケル・マンガン・コバルト混合酸化物(LiNi0.5Co0.2Mn0.3)と、導電助剤としてカーボンブラック粉末(Timcal社製、商品名:SuperP Li)と、バインダーとしてPVDFとを、混合酸化物:導電助剤:バインダー=100:3.5:3の質量比で混合した。この混合物を、厚み15μmの正極集電体としてのアルミニウム箔の両面に塗布し、乾燥後、ロールプレスでプレスして、両面塗工正極を作製した。 A lithium nickel manganese cobalt mixed oxide ( LiNi0.5Co0.2Mn0.3O2 ) was used as the positive electrode active material, carbon black powder (manufactured by Timcal, product name: SuperP Li) was used as the conductive additive, and PVDF was used as the binder, and the mass ratio of the mixed oxide:conductive additive:binder was 100:3.5:3. This mixture was applied to both sides of an aluminum foil serving as a positive electrode current collector with a thickness of 15 μm, dried, and then pressed with a roll press to prepare a double-sided coated positive electrode.

溶剤中に、負極活物質として粒子径22μm(D50)の黒鉛粉末(日立化成社製、商品名:MAG)と、バインダー(日本ゼオン社製、商品名:BM400B)と、増粘剤としてカルボキシメチルセルロース(ダイセル社製、商品名:#2200)とを、黒鉛粉末:バインダー:増粘剤=100:1.5:1.1の質量比で混合した。この混合物を、厚み10μmの負極集電体としての銅箔の片面、及び両面に塗布し、溶剤を乾燥除去し、その後、塗布された銅箔をロールプレスでプレスして、それぞれ片面塗工負極と両面塗工負極を作製した。Graphite powder with a particle size of 22 μm (D50) (Hitachi Chemical Co., Ltd., product name: MAG) as the negative electrode active material, binder (Zeon Corporation, product name: BM400B), and carboxymethylcellulose (Daicel Corporation, product name: #2200) as the thickener were mixed in a solvent at a mass ratio of graphite powder:binder:thickener = 100:1.5:1.1. This mixture was applied to one side and both sides of copper foil as a negative electrode current collector with a thickness of 10 μm, the solvent was dried and removed, and then the applied copper foil was pressed with a roll press to prepare a single-sided coated negative electrode and a double-sided coated negative electrode, respectively.

得られた正極及び負極を、それぞれの活物質の対向面に、実施例1のセパレータを挟みながら、片面塗工負極/両面塗工正極/両面塗工負極/両面塗工正極/片面塗工負極の順に積層した。次いで、得られた積層体を、アルミニウム箔(厚み40μm)の両面を樹脂層で被覆したラミネートフィルムから成る袋(電池外装)の内部に正負極の端子を突設させながら挿入した。その後、上述のようにして作製した電解液を0.8mL袋内に注入し、袋に真空封止を行うことによってシート状リチウムイオン二次電池を作製した。The obtained positive and negative electrodes were laminated in the order of one-sided coated negative electrode/both-sided coated positive electrode/both-sided coated negative electrode/both-sided coated positive electrode/one-sided coated negative electrode, with the separator of Example 1 sandwiched between the opposing surfaces of the active materials. Next, the obtained laminate was inserted into a bag (battery exterior) made of a laminate film in which both sides of aluminum foil (thickness 40 μm) were coated with a resin layer, with the positive and negative terminals protruding. After that, 0.8 mL of the electrolyte prepared as described above was poured into the bag, and the bag was vacuum sealed to prepare a sheet-shaped lithium ion secondary battery.

得られたシート状リチウムイオン二次電池を、25℃に設定した恒温槽(二葉科学社製、商品名:PLM-73S)に収容し、充放電装置(アスカ電子(株)製、商品名:ACD-01)に接続し、16時間静置した。次いで、その電池を、0.05Cの定電流で充電して、電圧が4.2Vに到達してから4.2Vの定電圧で2時間充電した後、0.2Cの定電流で3.0Vまで放電するという充放電サイクルを、3回繰り返すことによって、電池の初期充放電を行った。なお、1Cとは、電池の全容量を1時間で放電させる場合の電流値を示す。The obtained sheet-shaped lithium ion secondary battery was placed in a thermostatic chamber (manufactured by Futaba Scientific Co., Ltd., product name: PLM-73S) set at 25°C, connected to a charge/discharge device (manufactured by Aska Electronics Co., Ltd., product name: ACD-01), and left to stand for 16 hours. The battery was then charged at a constant current of 0.05 C, and after the voltage reached 4.2 V, it was charged at a constant voltage of 4.2 V for 2 hours, and then discharged at a constant current of 0.2 C to 3.0 V. This charge/discharge cycle was repeated three times to perform initial charging and discharging of the battery. Note that 1 C refers to the current value when the entire capacity of the battery is discharged in 1 hour.

上記処理を行ったリチウム二次電池につき、温度25℃の条件下で放電電流1Cで放電終止電圧3Vまで放電を行った後、充電電流1Cで充電終止電圧4.1Vまで充電を行った。これを1サイクルとして充放電を繰り返し、初期容量に対する50サイクル後の容量保持率を測定したところ、容量保持率が90%以上であった。The lithium secondary battery that had been treated as described above was discharged at a discharge current of 1 C at a temperature of 25° C. to a discharge end voltage of 3 V, and then charged at a charge current of 1 C to a charge end voltage of 4.1 V. This constitutes one cycle. Charging and discharging were repeated, and the capacity retention rate after 50 cycles relative to the initial capacity was measured, and the capacity retention rate was 90% or more.

《比較例4》
セパレータを比較例3のセパレータに変更したこと以外は、実施例25と同様の方法でリチウムイオン二次電池の動作確認を行ったところ、容量保持率が90%未満であった。
Comparative Example 4
The operation of the lithium ion secondary battery was confirmed in the same manner as in Example 25 except that the separator was changed to that of Comparative Example 3. The capacity retention rate was found to be less than 90%.

《実施例26》
リチウムイオンキャパシタの動作確認
正極前駆体として平均粒子径5.5μmの活性炭を58.0質量部、炭酸リチウムを32.0質量部、アセチレンブラックを4.0質量部、アクリルラテックスを3.5質量部、CMC(カルボキシメチルセルロース)を1.5質量部、PVP(ポリビニルピロリドン)1.0質量部を混合した。この混合物を、厚み15μmのアルミニウム箔の両面に塗工、乾燥し、ロールプレス機を用いてプレスされた正極前駆体を作成した。
Example 26
Confirmation of operation of lithium ion capacitor As a positive electrode precursor, 58.0 parts by mass of activated carbon with an average particle size of 5.5 μm, 32.0 parts by mass of lithium carbonate, 4.0 parts by mass of acetylene black, 3.5 parts by mass of acrylic latex, 1.5 parts by mass of CMC (carboxymethyl cellulose), and 1.0 parts by mass of PVP (polyvinylpyrrolidone) were mixed. This mixture was applied to both sides of an aluminum foil with a thickness of 15 μm, dried, and pressed using a roll press machine to prepare a positive electrode precursor.

負極活性物質として平均粒子径4.5μmの人造黒鉛を83質量部、複合炭素材料を4質量部、アセチレンブラックを9質量部と、スチレン-ブタジエン共重合体を2質量部、CMC(カルボキシメチルセルロース)水溶液をCMCが2質量部になるように添加した。この混合物を、厚み10μmの電解銅箔の両面に負極塗工液を塗工し、乾燥温度60℃で乾燥して、ロールプレス機を用いてプレスされた負極を作成した。 As the negative electrode active material, 83 parts by mass of artificial graphite with an average particle size of 4.5 μm, 4 parts by mass of composite carbon material, 9 parts by mass of acetylene black, 2 parts by mass of styrene-butadiene copolymer, and an aqueous CMC (carboxymethylcellulose) solution were added so that the CMC amount was 2 parts by mass. This mixture was applied as the negative electrode coating liquid to both sides of electrolytic copper foil with a thickness of 10 μm, dried at a drying temperature of 60°C, and pressed using a roll press machine to create a negative electrode.

有機溶媒として、エチレンカーボネート(EC):ジメチルカーボネート(DMC):メチルエチルカーボネート(EMC)=34:44:22(体積比)の混合溶媒を用い、全非水系電解液に対してLiN(SOF)及びLiPFの濃度比が25:75(モル比)であり、かつLiN(SOF)及びLiPFの濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解した。 As the organic solvent, a mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC): methyl ethyl carbonate (EMC) = 34: 44: 22 (volume ratio) was used, and each electrolyte salt was dissolved so that the concentration ratio of LiN(SO 2 F) 2 and LiPF 6 was 25: 75 (molar ratio) relative to the total nonaqueous electrolyte solution, and the sum of the concentrations of LiN(SO 2 F) 2 and LiPF 6 was 1.2 mol/L.

最外層が負極になるように、正極前駆体、実施例1のセパレータ、負極の順にセパレータを挟んで正極活物質層と負極活物質層が対向するように積層し、電極積層体を得た。得られた積層体を、アルミニウム箔(厚み40μm)の両面を樹脂層で被覆したラミネートフィルムから成る袋(電池外装)の内部に正負極の端子を突設させながら挿入した。アスカ電子株式会社製の充放電試験装置(ACD-10APS(01))を用いて、45℃環境下、電流値6Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を1時間継続する手法により初期充電を行い、負極にリチウムドープを行った。 The positive electrode precursor, the separator of Example 1, and the negative electrode were laminated in this order so that the outermost layer was the negative electrode, with the positive electrode active material layer and the negative electrode active material layer facing each other with the separator sandwiched therebetween, to obtain an electrode laminate. The obtained laminate was inserted into a bag (battery exterior) made of a laminate film in which both sides of an aluminum foil (thickness 40 μm) were coated with a resin layer, with the positive and negative electrode terminals protruding. Using a charge/discharge tester (ACD-10APS (01)) manufactured by Asuka Electronics Co., Ltd., constant current charging was performed at a current value of 6 A in an environment of 45°C until the voltage reached 4.5 V, and then initial charging was performed by a method of continuing constant voltage charging at 4.5 V for 1 hour, and lithium was doped into the negative electrode.

ドープ後の非水系リチウム蓄電素子を、50℃環境下、10.0Aで電圧4.3Vに到達するまで定電流充電を行った。次いで、4.3V定電圧充電を5分間行い、10.0Aで電圧2.0Vに到達するまで定電流放電を行った。そして、2.0V定電圧放電を5分間行った。この作業を1サイクルとして、合計5サイクル実施した。60℃のエージング後、アルミラミネート包材の一部を開封しガス抜きを行った後、アルミラミネート包材を封止した。以上の工程により、リチウムイオンキャパシタを製造した。After doping, the non-aqueous lithium storage element was charged at a constant current of 10.0 A in a 50°C environment until a voltage of 4.3 V was reached. Next, a constant voltage charge of 4.3 V was performed for 5 minutes, and a constant voltage discharge of 10.0 A was performed until a voltage of 2.0 V was reached. Then, a constant voltage discharge of 2.0 V was performed for 5 minutes. This operation constitutes one cycle, and a total of 5 cycles were performed. After aging at 60°C, a portion of the aluminum laminate packaging material was opened and degassed, and the aluminum laminate packaging material was sealed. A lithium ion capacitor was manufactured by the above process.

上記処理を行ったリチウムイオンキャパシタにつき、温度25℃の条件下で充電電流200C(160A)で電圧3.8Vまで定電流充電し、続いて200Cの電流値で2.2Vまで定電流放電を行った。これを1サイクルとして充放電を繰り返し、初期容量に対する50サイクル後の容量保持率を測定したところ、容量保持率が90%以上であった。The lithium ion capacitor that had been treated as described above was charged at a constant current of 200 C (160 A) to a voltage of 3.8 V at a temperature of 25° C., and then discharged at a constant current of 200 C to 2.2 V. This constitutes one cycle, and charging and discharging were repeated. The capacity retention rate after 50 cycles relative to the initial capacity was measured, and the capacity retention rate was 90% or more.

《比較例5》
セパレータを比較例3のセパレータに変更したこと以外は、実施例26と同様の方法でリチウムイオンキャパシタの動作確認を行ったところ、容量保持率が90%未満であった。
Comparative Example 5
The operation of the lithium ion capacitor was confirmed in the same manner as in Example 26 except that the separator was changed to that of Comparative Example 3. The capacity retention rate was less than 90%.

図2は、実施例4における、無機含有層のMD―ND断面の走査電子顕微鏡(SEM)画像である。図3は、比較例3における、無機含有層のMD―ND断面の走査電子顕微鏡(SEM)画像である。図2及び3において、最も明るい領域は無機粒子、最も暗い領域は開孔、中間の明度の領域は熱可塑性樹脂を示す。 Figure 2 is a scanning electron microscope (SEM) image of the MD-ND cross section of the inorganic-containing layer in Example 4. Figure 3 is a scanning electron microscope (SEM) image of the MD-ND cross section of the inorganic-containing layer in Comparative Example 3. In Figures 2 and 3, the lightest areas represent inorganic particles, the darkest areas represent open pores, and the areas of intermediate brightness represent thermoplastic resin.

本開示の蓄電デバイス用セパレータは、低い透気度を有しつつ、高い強度及び耐熱性を同時に達成することができ、蓄電デバイス、例えばリチウムイオン二次電池、リチウムイオンキャパシタ等のセパレータとして好適に利用することができる。The separator for an electricity storage device disclosed herein has low air permeability while simultaneously achieving high strength and heat resistance, and can be suitably used as a separator for electricity storage devices, such as lithium ion secondary batteries and lithium ion capacitors.

1 無機粒子
2 熱可塑性樹脂
3 開孔
4 熱可塑性樹脂により形成される開孔の輪郭
5 無機粒子により形成される開孔の輪郭
6 熱可塑性樹脂と無機粒子との界面
10 無機含有層のMD―ND断面
REFERENCE SIGNS LIST 1 inorganic particle 2 thermoplastic resin 3 aperture 4 outline of aperture formed by thermoplastic resin 5 outline of aperture formed by inorganic particle 6 interface between thermoplastic resin and inorganic particle 10 MD-ND cross section of inorganic-containing layer

Claims (15)

無機粒子と、ポリオレフィンを50質量%以上含む熱可塑性樹脂と、を含む無機含有層とを備える、蓄電デバイス用セパレータであって、
前記無機含有層は、MD―ND断面において、熱可塑性樹脂領域と無機材料領域と空隙領域とを有し、
前記空隙領域と前記熱可塑性樹脂領域との境界部分の長さ(L po )と前記熱可塑性樹脂領域と前記無機材料領域との界面の長さ(L pi )との比率(L po /L pi )が、0.2以上3.0以下であり、
前記無機含有層の厚みが3μm以上27μm以下であり、
前記蓄電デバイス用セパレータのMDの引張強度とTDの引張強度の比(MD/TD)が8.0以上である、蓄電デバイス用セパレータ。
A separator for an electricity storage device, comprising an inorganic-containing layer including inorganic particles and a thermoplastic resin including 50% by mass or more of polyolefin,
The inorganic-containing layer has a thermoplastic resin region, an inorganic material region, and a void region in an MD-ND cross section,
a ratio (L po / L pi ) of a length (L po ) of a boundary portion between the void region and the thermoplastic resin region to a length (L pi ) of an interface between the thermoplastic resin region and the inorganic material region is 0.2 or more and 3.0 or less;
The thickness of the inorganic-containing layer is 3 μm or more and 27 μm or less,
The separator for an electricity storage device has a ratio of tensile strength in MD to tensile strength in TD (MD/TD) of 8.0 or more.
前記無機含有層は、MD―ND断面において、平均孔径が150nm以上2000nm以下の孔を有する、請求項1に記載の蓄電デバイス用セパレータ。 The electricity storage device separator according to claim 1 , wherein the inorganic-containing layer has pores having an average pore diameter of 150 nm or more and 2000 nm or less in an MD-ND cross section. 前記無機粒子の粒子径が60nm以上2000nm以下である、請求項1又は2に記載の蓄電デバイス用セパレータ。 The separator for an electricity storage device according to claim 1 or 2 , wherein the inorganic particles have a particle diameter of 60 nm or more and 2000 nm or less. 透気度が50秒/100ml以上1000秒/100ml以下である、請求項1~のいずれか一項に記載の蓄電デバイス用セパレータ。 The separator for an electricity storage device according to any one of claims 1 to 3 , having an air permeability of 50 sec/100 ml or more and 1000 sec/100 ml or less. 前記蓄電デバイスセパレータは基材を備え、前記基材は、ポリプロピレンを50質量%以上含む微多孔層であり、
前記基材は、前記無機含有層の片面又は両面に存在する、請求項1~のいずれか一項に記載の蓄電デバイス用セパレータ。
The separator for the electricity storage device includes a substrate, the substrate being a microporous layer containing 50% by mass or more of polypropylene,
The separator for an electricity storage device according to claim 1 , wherein the substrate is present on one or both sides of the inorganic-containing layer.
前記蓄電デバイスセパレータは基材を備え、前記無機含有層と前記基材との膜厚比(前記基材の膜厚/前記無機含有層の膜厚)が、0.3以上3.0以下である、請求項1~のいずれか一項に記載の蓄電デバイス用セパレータ。 The separator for an electricity storage device according to any one of claims 1 to 5, wherein the separator for an electricity storage device includes a substrate, and a thickness ratio of the inorganic-containing layer to the substrate (thickness of the substrate/thickness of the inorganic-containing layer) is 0.3 or more and 3.0 or less. 前記蓄電デバイスセパレータは基材を備え、前記基材のMFRは、0.05g/10min以上0.9g/10min以下である、請求項1~のいずれか一項に記載の蓄電デバイス用セパレータ。 The separator for an electricity storage device according to any one of claims 1 to 6 , wherein the separator for an electricity storage device comprises a substrate, and the MFR of the substrate is 0.05 g/10 min or more and 0.9 g/10 min or less. TDの熱収縮率が3%以下である、請求項1~のいずれか1項に記載の蓄電デバイス用セパレータ。 The separator for an electricity storage device according to any one of claims 1 to 7 , which has a TD heat shrinkage rate of 3% or less. 前記無機含有層は、前記無機含有層の全質量を基準として、前記無機粒子を50質量%以上95質量%以下で含む、請求項1~のいずれか一項に記載の蓄電デバイス用セパレータ。 The separator for an electric storage device according to claim 1 , wherein the inorganic-containing layer contains the inorganic particles in an amount of 50% by mass or more and 95% by mass or less, based on the total mass of the inorganic-containing layer. 前記蓄電デバイス用セパレータの厚み14μm当たりの突刺強度が100gf/14μm以上である、請求項1~のいずれか一項に記載の蓄電デバイス用セパレータ。 The separator for use in an electricity storage device according to any one of claims 1 to 9 , wherein the separator for use in an electricity storage device has a puncture strength per 14 µm of thickness of 100 gf/14 µm or more. 前記無機含有層は、前記ポリオレフィンとしてポリエチレンを含み、前記ポリエチレンの量は、前記蓄電デバイス用セパレータ全体熱可塑性樹脂の全質量を基準として20質量%以上である、請求項1~10のいずれか一項に記載の蓄電デバイス用セパレータ。 The separator for a storage device according to any one of claims 1 to 10 , wherein the inorganic-containing layer contains polyethylene as the polyolefin, and the amount of the polyethylene is 20 mass% or more based on the total mass of the thermoplastic resin of the entire separator for a storage device. 前記ポリエチレンの重量平均分子量は80万以下である、請求項11に記載の蓄電デバイス用セパレータ。 The separator for use in an electricity storage device according to claim 11 , wherein the polyethylene has a weight average molecular weight of 800,000 or less. 前記蓄電デバイス用セパレータの総厚みが5μm以上30μm以下である、請求項1~12のいずれか一項に記載の蓄電デバイス用セパレータ。 The separator for an electricity storage device according to any one of claims 1 to 12 , wherein the separator for an electricity storage device has a total thickness of 5 µm or more and 30 µm or less. 前記無機含有層は、MD―ND断面において、平均孔径が200nm以上2000nm以下の孔を有する、請求項1~13のいずれか一項に記載の蓄電デバイス用セパレータ。 The separator for an electricity storage device according to claim 1 , wherein the inorganic-containing layer has pores having an average pore diameter of 200 nm or more and 2000 nm or less in an MD-ND cross section. 請求項1~14のいずれか一項に記載の蓄電デバイス用セパレータを含む蓄電デバイス。 An electricity storage device comprising the separator for an electricity storage device according to any one of claims 1 to 14 .
JP2022578448A 2021-01-29 2022-01-26 Separator for power storage device and power storage device including same Active JP7549051B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2021013194 2021-01-29
JP2021013147 2021-01-29
JP2021013147 2021-01-29
JP2021013194 2021-01-29
PCT/JP2022/002916 WO2022163714A1 (en) 2021-01-29 2022-01-26 Separator for power storage device, and power storage device including same

Publications (2)

Publication Number Publication Date
JPWO2022163714A1 JPWO2022163714A1 (en) 2022-08-04
JP7549051B2 true JP7549051B2 (en) 2024-09-10

Family

ID=82654528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022578448A Active JP7549051B2 (en) 2021-01-29 2022-01-26 Separator for power storage device and power storage device including same

Country Status (3)

Country Link
JP (1) JP7549051B2 (en)
TW (1) TWI813152B (en)
WO (1) WO2022163714A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116259927B (en) * 2023-05-15 2023-08-04 蔚来电池科技(安徽)有限公司 Secondary battery and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529200A (en) 2015-09-18 2018-10-04 セルガード エルエルシー Improved membrane, calendered microporous membrane, battery separator, and related methods
WO2019107119A1 (en) 2017-11-28 2019-06-06 旭化成株式会社 Separator for power storage device and method for producing same, and power storage device and method for producing same
WO2019235112A1 (en) 2018-06-08 2019-12-12 旭化成株式会社 Multilayer separator
JP2020522094A (en) 2017-05-26 2020-07-27 セルガード エルエルシー New or improved microporous membrane, battery separator, coated separator, battery, and related methods
JP2021176127A (en) 2020-05-01 2021-11-04 旭化成株式会社 Laminated separator for power storage device and power storage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185634B2 (en) * 2017-04-06 2022-12-07 旭化成株式会社 Separator for lithium ion secondary battery
WO2020060886A1 (en) * 2018-09-17 2020-03-26 Celgard, Llc Multilayer membranes, separators, batteries, and methods
JP6936398B2 (en) * 2019-03-27 2021-09-15 旭化成株式会社 Separator for power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529200A (en) 2015-09-18 2018-10-04 セルガード エルエルシー Improved membrane, calendered microporous membrane, battery separator, and related methods
JP2020522094A (en) 2017-05-26 2020-07-27 セルガード エルエルシー New or improved microporous membrane, battery separator, coated separator, battery, and related methods
WO2019107119A1 (en) 2017-11-28 2019-06-06 旭化成株式会社 Separator for power storage device and method for producing same, and power storage device and method for producing same
WO2019235112A1 (en) 2018-06-08 2019-12-12 旭化成株式会社 Multilayer separator
JP2021176127A (en) 2020-05-01 2021-11-04 旭化成株式会社 Laminated separator for power storage device and power storage device

Also Published As

Publication number Publication date
TWI813152B (en) 2023-08-21
TW202241709A (en) 2022-11-01
JPWO2022163714A1 (en) 2022-08-04
WO2022163714A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP6345660B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP4789274B2 (en) Multilayer porous membrane
TWI629176B (en) Porous membranes and multilayer porous membranes
KR101227325B1 (en) Multilayer porous membrane and method for producing the same
KR101361400B1 (en) Multi-layered porous film
JP5511214B2 (en) Multilayer porous membrane
JP5196969B2 (en) Multilayer porous membrane
CN111244369B (en) Polyolefin microporous membrane
WO2020218583A1 (en) Heat-resistant polyolefin-based microporous film and method for producing same
JP7549051B2 (en) Separator for power storage device and power storage device including same
JP2021174656A (en) Polyolefin-based microporous film and manufacturing method thereof
JP2011116934A (en) Polyolefin microporous film
JP5491137B2 (en) Polyolefin microporous membrane, separator for electricity storage device, and electricity storage device
JP6791526B2 (en) Heat-resistant polyolefin-based microporous membrane and its manufacturing method
JP7357161B2 (en) Separator for energy storage devices
JP2022117476A (en) Separator for power storage device
JP2024039479A (en) multilayer porous membrane
JP2020116925A (en) Multilayer porous membrane with polyolefin microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240829

R150 Certificate of patent or registration of utility model

Ref document number: 7549051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150