JP7544488B2 - Hot work tool steel with excellent manufacturability and thermal conductivity - Google Patents
Hot work tool steel with excellent manufacturability and thermal conductivity Download PDFInfo
- Publication number
- JP7544488B2 JP7544488B2 JP2020022074A JP2020022074A JP7544488B2 JP 7544488 B2 JP7544488 B2 JP 7544488B2 JP 2020022074 A JP2020022074 A JP 2020022074A JP 2020022074 A JP2020022074 A JP 2020022074A JP 7544488 B2 JP7544488 B2 JP 7544488B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- thermal conductivity
- work tool
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001315 Tool steel Inorganic materials 0.000 title claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 60
- 239000010959 steel Substances 0.000 claims description 60
- 150000001247 metal acetylides Chemical class 0.000 claims description 16
- 229910000734 martensite Inorganic materials 0.000 claims description 15
- 229910001563 bainite Inorganic materials 0.000 claims description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 238000005496 tempering Methods 0.000 description 31
- 238000010791 quenching Methods 0.000 description 27
- 230000000171 quenching effect Effects 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 24
- 238000012360 testing method Methods 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 238000004512 die casting Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005242 forging Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- -1 M23C6 Chemical class 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Description
本発明は、金型用鋼に関して、特にダイカストやホットスタンピングなどの、高温環境下で使用される金型用鋼に関する。 The present invention relates to mold steel, and in particular to mold steel used in high-temperature environments such as die casting and hot stamping.
近年、ダイカスト分野において、自動車の軽量化を目的としたアルミ部品の高強度化や、生産性向上を目的とした部品成形加工ピッチの短縮化から、ダイカスト金型への機械的及び熱的負荷が増大している。その結果、金型には摩耗・大割れなどの問題が生じやすくなっている。これらの問題に対応するため、金型材料には、硬度・靭性に優れる材料が求められている。 In recent years, in the field of die casting, the mechanical and thermal load on die casting dies has increased due to the strengthening of aluminum parts to reduce the weight of automobiles and the shortening of part forming processing pitches to improve productivity. As a result, dies are more susceptible to problems such as wear and large cracks. To address these issues, there is a demand for die materials with excellent hardness and toughness.
また、ホットスタンピングでは、被加工材である鋼板表面に発生したスケールによる金型の摩耗が問題となっており、金型材料には、高い硬度及び軟化抵抗性が求められている。 In addition, in hot stamping, wear of the die caused by scale that forms on the surface of the steel plate, which is the workpiece, is an issue, so the die material must have high hardness and resistance to softening.
さらに、ダイカスト・ホットスタンピング用金型は内部に冷却回路が作製されており、ここを流れる冷却水による冷却効率が生産サイクルスピードに大きく影響する。冷却効率を高める方法としては金型の高熱伝導率化がある。そのため、前述した生産性向上を目的とした、生産サイクルスピードの向上に対する要求に応えるためには、材料の特性として高い熱伝導率が必要である。 Furthermore, die casting and hot stamping dies have cooling circuits built in, and the cooling efficiency of the cooling water flowing through these circuits has a significant impact on the production cycle speed. One way to increase cooling efficiency is to increase the thermal conductivity of the die. Therefore, in order to meet the demand for faster production cycle speeds with the aim of improving productivity as mentioned above, a material with high thermal conductivity is required as a property.
また、上記の金型を実際に製造することを検討すると製造性、すなわち高い熱間加工性も必要である。 In addition, when considering actually manufacturing the above mold, manufacturability, i.e. high hot workability, is also necessary.
従来より、出願人はCu及びBを含まない熱伝導率に優れた熱間工具鋼を提案している(特許文献1参照。)。もっとも、この提案では、Cu及びBが添加されておらず、また不完全焼入れ相であるベイナイトが形成され、靭性が不足するおそれがあった。さらに熱間加工性に関する記載も見当たらない。 The applicant has previously proposed a hot work tool steel that does not contain Cu or B and has excellent thermal conductivity (see Patent Document 1). However, this proposal does not contain Cu or B, and bainite, an incompletely hardened phase, is formed, which may result in insufficient toughness. Furthermore, there is no description of hot workability.
また、Mn量が多い金型用鋼が提案されている(特許文献2参照。)。しかし、Mnが1.5%より多いので、Mnの過剰添加によって熱伝導率が低下しやすい。また、熱間加工性に関する記載も見当たらない。 In addition, mold steels with a high Mn content have been proposed (see Patent Document 2). However, since the Mn content is more than 1.5%, the thermal conductivity is likely to decrease due to the excessive addition of Mn. In addition, there is no description of hot workability.
また、V量の多い金型用鋼が提案されている(特許文献3参照。)。しかし、Vが0.55%よりも多く、Vの過剰添加によって熱伝導率が低下しやすい。また、熱間加工性に関する記載も見当たらない。 In addition, mold steels with a high V content have been proposed (see Patent Document 3). However, the V content is greater than 0.55%, and excessive V addition tends to reduce thermal conductivity. In addition, there is no description of hot workability.
また、Cr量の多い金型用鋼が提案されている(特許文献4参照。)。しかし、Crが4.0%より多いので、Crの過剰添加によって熱伝導率が低下しやすい。また、熱間加工性に関する記載も見当たらない。 In addition, mold steels with a high Cr content have been proposed (see Patent Document 4). However, since the Cr content is more than 4.0%, the thermal conductivity is likely to decrease due to the excessive addition of Cr. In addition, there is no description of hot workability.
また、ダイカスト金型用プリハードン鋼が提案されている(特許文献5参照。)。しかし、C量が0.35%以下と少なく、焼入焼戻し硬さが不足しやすい。また、熱間加工性に関する記載も見当たらない。 Prehardened steel for die-casting dies has also been proposed (see Patent Document 5). However, the C content is low at 0.35% or less, and the quench-tempered hardness is likely to be insufficient. There is also no description of hot workability.
また、Mo+1/2Wの値の大きい熱間工具鋼が提案されている(特許文献6参照。)。しかし、Mo+1/2Wの値が3.0より大きく、MoまたはWの過剰添加によって熱伝導率が低下しやすい。また、熱間加工性に関する記載も見当たらない。 In addition, hot work tool steels with a large Mo+1/2W value have been proposed (see Patent Document 6). However, the Mo+1/2W value is greater than 3.0, and the thermal conductivity is likely to decrease due to the excessive addition of Mo or W. In addition, there is no description of hot workability.
また、Niが多い熱間工具鋼が提案されている(特許文献7参照。)。しかし、Niが3.0%以上と多く、Niの過剰添加によって熱伝導率が低下しやすい。また、熱間加工性に関する記載は見当たらない。 Hot work tool steel with a high Ni content has also been proposed (see Patent Document 7). However, the Ni content is high at 3.0% or more, and excessive Ni addition tends to reduce thermal conductivity. In addition, there is no description of hot workability.
その他にも金型用鋼が提案されている(特許文献8参照。)。もっとも、この提案はBもしくはCuを含まず、靱性に不足しやすい。熱間加工性に関する記載もみあたらない。 Other die steels have also been proposed (see Patent Document 8). However, these proposals do not contain B or Cu and tend to lack toughness. There is no description of hot workability.
本発明の目的は、高い熱間加工性、熱伝導率、硬度、軟化抵抗性、靭性を兼ね備えており、ダイカストやホットスタンピングなどの金型用鋼に適用可能な熱間工具鋼を提供することである。 The object of the present invention is to provide a hot work tool steel that combines high hot workability, thermal conductivity, hardness, softening resistance, and toughness, and can be used as a die steel for die casting, hot stamping, etc.
本願発明者らは鋭意開発を進めた結果、鋼の合金成分、熱間加工性の指標となるパラメータ、鋼の組織、炭化物の状態をそれぞれ規定することで、高い熱間加工性、熱伝導率、硬度、軟化抵抗性、靭性を兼備した熱間工具鋼が得られることを見出した。 As a result of the intensive development of the present inventors, it has been discovered that by specifying the alloy composition of the steel, the parameters that indicate hot workability, the structure of the steel, and the state of the carbides, it is possible to obtain a hot work tool steel that combines high hot workability, thermal conductivity, hardness, softening resistance, and toughness.
すなわち、本発明の課題を解決する第1の手段は、 質量%で、C:0.35%超~0.70%、Si:0.01%~1.20%、Mn:0.01%~1.50%、Cr:0.35%~4.00%、Cu:0.10%~2.50%、Ni:0.10%~2.99%、V:0.10%超~0.55%、B:0.0001%~0.0100%、O:0.0050%以下であって、MoとWのいずれか1種または双方を含有し、かつ、Mo:3.00%以下、W:6.00%以下、Mo+1/2W:0.50%~3.00%であって、残部がFe及び不可避不純物からなる鋼であり、
B+O+N:0.0420%以下を充たし、さらに、次の式に示すKの値が15.6以上であること、を特徴とする熱間工具鋼である。
式:K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(ただし、この式の右辺の各元素記号には、鋼を構成する元素成分の百分率の数値を代入する。)
That is, a first means for solving the problems of the present invention is a steel containing, in mass %, C: more than 0.35% to 0.70%, Si: 0.01% to 1.20%, Mn: 0.01% to 1.50%, Cr: 0.35% to 4.00%, Cu: 0.10% to 2.50%, Ni: 0.10% to 2.99%, V: more than 0.10% to 0.55%, B: 0.0001% to 0.0100%, O: 0.0050% or less, one or both of Mo and W, and Mo: 3.00% or less, W: 6.00% or less, Mo+1/2W: 0.50% to 3.00%, with the balance being Fe and unavoidable impurities;
This hot work tool steel is characterized in that B+O+N is 0.0420% or less, and further, the value of K shown in the following formula is 15.6 or more.
Formula: K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(However, the percentage of each element that makes up the steel is substituted for each element symbol on the right side of this formula.)
その第2の手段は、第1の手段に記載の鋼の成分に、さらにN:0.0001%~0.0400%が添加されていることを特徴とするものである。 The second method is characterized in that N: 0.0001% to 0.0400% is further added to the steel components described in the first method.
その第3の手段は、第1または第2の手段の記載の鋼の成分に、さらにTi:0.001%~0.150%が添加されていることを特徴とするものである。 The third means is characterized in that Ti: 0.001% to 0.150% is further added to the components of the steel described in the first or second means.
その第4の手段は、第1~第3のいずれか1の手段の記載の鋼の成分に、さらにAl:0.001%以上0.200%以下が添加されていることを特徴とするものである。 The fourth means is characterized in that Al: 0.001% or more and 0.200% or less is further added to the composition of the steel described in any one of the first to third means.
その第5の手段は、焼入焼戻しされた状態であって、その組織が、マルテンサイト単相組織であること、またはマルテンサイトの割合が80%以上のマルテンサイトとベイナイトの混合組織であること、を特徴とする、第1~第4のいずれか1の手段に記載の熱間工具鋼である。 The fifth means is a hot work tool steel according to any one of the first to fourth means, characterized in that in a quenched and tempered state, the structure is a martensite single phase structure, or a mixed structure of martensite and bainite with a martensite ratio of 80% or more.
その第6の手段は、焼入焼戻しされた状態であって、M23C6、M6C、M7C3、M3C、M2C、MCの全炭化物中に占めるM23C6とM6C炭化物の割合が90%以下であること、を特徴とする、第1~第5のいずれか1の手段に記載の熱間工具鋼である。 The sixth aspect of the present invention is a hot work tool steel according to any one of the first to fifth aspects, characterized in that in a quenched and tempered state, the ratio of M23C6 and M6C carbides to all carbides of M23C6 , M6C , M7C3 , M3C , M2C and MC is 90% or less.
本発明における高熱間加工性とは、鋼塊状態にてグリーブル試験を1100℃で実施したときの絞りが70%以上のことをいう。
また、本発明における高熱伝導率とは、焼入焼戻し後の室温での熱伝導率が25.0W/m・K以上のことをいう。
また、本発明における高硬度とは、焼入焼戻し後の室温での硬さが48.0HRC以上のことをいう。
また、本発明における高靱性とは、焼入焼戻し後の室温でのシャルピー衝撃値が20J/cm2以上のことをいう。
また、本発明における高軟化抵抗性とは、焼入焼戻し後に600℃で100h保持後の室温での硬さが32.0HRC以上のことをいう。
In the present invention, high hot workability refers to a reduction in area of 70% or more when a Gleeble test is carried out at 1100° C. in the state of a steel ingot.
In the present invention, high thermal conductivity means a thermal conductivity of 25.0 W/m·K or more at room temperature after quenching and tempering.
In the present invention, high hardness refers to a hardness of 48.0 HRC or more at room temperature after quenching and tempering.
Further, in the present invention, high toughness means a Charpy impact value of 20 J/cm 2 or more at room temperature after quenching and tempering.
In the present invention, high softening resistance means that the hardness at room temperature after quenching and tempering and then holding at 600° C. for 100 hours is 32.0 HRC or more.
本発明の手段によると、高熱間加工性、高熱伝導率、高硬度、高靱性、高軟化抵抗性をバランスよく兼ね備えた熱間工具鋼が得られる。すなわち、本発明の手段による熱間工具鋼は、鋼塊状態にてグリーブル試験を1100℃で実施したときの絞りが70%以上の高熱間加工性を示し、焼入焼戻し後の室温での熱伝導率が25.0W/m・K以上の高熱伝導率であって、焼入焼戻し後の室温での硬さが48.0HRC以上と高硬度であって、焼入焼戻し後の室温でのシャルピー衝撃値が20J/cm2以上の高靱性であって、焼入焼戻し後に600℃で100h保持後の室温での硬さが32.0HRC以上といった高軟化抵抗性を示すものとなり、これらの全ての特性を兼ね備えるものとなる。 According to the present invention, a hot work tool steel having a good balance of high hot workability, high thermal conductivity, high hardness, high toughness, and high softening resistance can be obtained. That is, the hot work tool steel according to the present invention exhibits high hot workability with a reduction of 70% or more when a Gleeble test is carried out at 1100°C in a steel ingot state, a high thermal conductivity of 25.0 W/m·K or more at room temperature after quenching and tempering, a high hardness of 48.0 HRC or more at room temperature after quenching and tempering, high toughness with a Charpy impact value of 20 J/ cm2 or more at room temperature after quenching and tempering, and a high softening resistance with a hardness of 32.0 HRC or more at room temperature after holding at 600°C for 100 hours after quenching and tempering, and thus exhibits all of these characteristics.
本発明の実施の形態を説明するに先立ち、本発明の鋼の各成分を規定する理由を以下に説明する。なお、以下の%は質量%である。 Before describing the embodiments of the present invention, the reasons for specifying each component of the steel of the present invention will be explained below. Note that the following percentages are mass percentages.
C:0.35%超~0.70%、
Cは固溶することでマトリックスを強化し、また、炭化物を形成することで析出強化を促す元素であることから、Cは0.35%より多いものとする。0.35%以下であると十分な焼入焼戻硬さが得られない。他方、Cが0.70%より多いと偏析を助長し、靭性を低下させる。また、熱間加工性が悪化する。そこで、Cは、0.35%超~0.70%とする。好ましくは、Cは0.55%超~0.70%である。
C: more than 0.35% to 0.70%,
Since C is an element that strengthens the matrix by dissolving in solid solution and promotes precipitation strengthening by forming carbides, the C content is set to be more than 0.35%. Sufficient quenching and tempering hardness cannot be obtained. On the other hand, if the C content is more than 0.70%, segregation is promoted, and the toughness is reduced. In addition, hot workability is deteriorated. Therefore, the C content is set to 0. C is more than 0.35% to 0.70%. Preferably, C is more than 0.55% to 0.70%.
Si:0.01%~1.20%、
Siは製鋼時の脱酸剤として必要な元素であり、少ないと十分に脱酸されない。また、Siはマトリックスに固溶することで硬さを向上させる効果がある。そこで、Siは0.01%以上とする。他方、Siが1.20%を超えると、炭化物を形成することなくマトリックスに固溶して熱伝導率を低下させることとなる。
そこで、Siは0.01%~1.20%とする。好ましくは、Siは0.05%~1.00%である。
Si: 0.01% to 1.20%,
Silicon is an element necessary as a deoxidizer during steelmaking, and if there is too little, the deoxidization will not be sufficient. Silicon also has the effect of improving hardness by dissolving in the matrix. Therefore, the amount of silicon is set to 0.01 On the other hand, if the Si content exceeds 1.20%, it will dissolve in the matrix without forming carbides, resulting in a decrease in thermal conductivity.
Therefore, the Si content is set to 0.01% to 1.20%, and preferably, the Si content is set to 0.05% to 1.00%.
Mn:0.01%~1.50%、
Mnは製鋼時の脱酸剤として必要な元素である。少ないと十分に脱酸されない。そこで、Mnは0.01%以上とする。他方、1.50%を超えると、マトリックスに固溶して熱伝導率を低下させる。そこで、Mnは0.01%~1.50%とする。好ましくは、Mnは0.05%~0.92%未満である。より好ましくは、Mnは0.10%~0.50%未満である。
Mn: 0.01% to 1.50%,
Mn is an element necessary as a deoxidizer during steelmaking. If there is too little, deoxidization is not sufficient. Therefore, the Mn content is set to 0.01% or more. On the other hand, if it exceeds 1.50%, it will dissolve in the matrix and Therefore, Mn is set to 0.01% to 1.50%. Preferably, Mn is set to 0.05% to less than 0.92%. More preferably, Mn is set to 0. It is between 10% and less than 0.50%.
Cr:0.35%~4.00%、
Crは焼入性を向上させ、ベイナイト形成による靱性の低下を抑制するのに必要な元素である。十分な靭性が得られないので、Crは0.35%以上とする。他方、多すぎると、マトリックスに固溶して熱伝導率を低下させる為。また、多すぎると高温で粗大化しやすいM23C6炭化物が焼戻し時に析出し、軟化抵抗性が低下するため、Crは4.00%以下とする。
そこで、Crは0.35%~4.00%である。好ましくは、Crは0.40%~2.60%未満である。より好ましくは、Crは0.50~2.10%未満である。
Cr: 0.35% to 4.00%,
Cr is an element necessary for improving hardenability and suppressing the decrease in toughness due to the formation of bainite. Since sufficient toughness cannot be obtained, the Cr content is set to 0.35% or more. On the other hand, if the Cr content is too high, , to dissolve in the matrix and reduce thermal conductivity. Also, if there is too much, M23C6 carbide , which tends to coarsen at high temperatures, precipitates during tempering, reducing softening resistance, so Cr is set to 4.00%. The following applies.
Therefore, Cr is 0.35% to 4.00%. Preferably, Cr is 0.40% to less than 2.60%. More preferably, Cr is 0.50% to less than 2.10%. be.
Cu:0.10%~2.50%、
Cuは焼入性を向上させ、ベイナイト形成による靱性の低下を抑制するのに必要な元素である。十分な靭性が得られないので、Cuは0.10%以上とする。他方、多すぎると、熱間加工性が悪化する。また、マトリックスに固溶して熱伝導率を低下させる。そこで、Cuは2.50%以下とする。
そこでCuは0.10%~2.50%である。好ましくは、Cuは0.30%~2.20%である。
Cu: 0.10% to 2.50%,
Cu is an element necessary for improving hardenability and suppressing the decrease in toughness due to the formation of bainite. Since sufficient toughness cannot be obtained, the Cu content is set to 0.10% or more. On the other hand, if the Cu content is too high, In addition, Cu dissolves in the matrix and reduces the thermal conductivity. Therefore, the Cu content is set to 2.50% or less.
Therefore, Cu is 0.10% to 2.50%. Preferably, Cu is 0.30% to 2.20%.
Ni:0.10%~2.99%、
NiはCrと同様に、焼入れ性を向上させ、ベイナイト形成による靱性の低下を抑制する元素である。また、Cuによる赤熱脆化を防ぐことから、Niは0.10%以上とする。他方、多すぎると、マトリックスに固溶して熱伝導率を低下させるので、2.99%以下とする。
そこで、Niは0.10%~2.99%とする。好ましくは、Niは0.10%~2.00%である。
Ni: 0.10% to 2.99%,
Ni, like Cr, is an element that improves hardenability and suppresses the decrease in toughness caused by the formation of bainite. In addition, in order to prevent red embrittlement caused by Cu, the Ni content is set to 0.10% or more. If the amount is too large, it dissolves in the matrix and reduces the thermal conductivity, so the amount is set to 2.99% or less.
Therefore, the Ni content is set to 0.10% to 2.99%, and preferably, the Ni content is set to 0.10% to 2.00%.
MoとWのいずれか1種または双方を含有するものであって、
Mo:3.00%以下、
W:6.00%以下、
Mo+1/2W:0.50%~3.00%、
Mo及びWは、いずれも焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高める元素である。少ないと十分な焼入焼戻硬さが得られない。これらの効果を得るためには、Mo+1/2W:0.50%である。
もっとも、多すぎると、マトリックスに残存するMoやWが増加し、熱伝導率を低下させるので、Moと1/2Wの合計量で3.00%以下とする。
そこで、Mo+1/2Wは、0.50%~3.00%とする。好ましくは、Mo+1/2Wは1.50%~3.00%である。
Contains either one or both of Mo and W,
Mo: 3.00% or less,
W: 6.00% or less,
Mo+1/2W: 0.50% to 3.00%,
Both Mo and W are elements that promote secondary hardening during tempering and increase the hardness after quenching and tempering. If the content is too low, sufficient hardness after quenching and tempering cannot be obtained. To obtain these effects, Mo+1/2W: 0.50% is required.
However, if the amount is too large, the amount of Mo and W remaining in the matrix increases, lowering the thermal conductivity, so the total amount of Mo and 1/2 W is set to 3.00% or less.
Therefore, Mo+1/2W is set to 0.50% to 3.00%, and preferably, Mo+1/2W is set to 1.50% to 3.00%.
V:0.10%超~0.55%、
Vは、焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高める。Vが少ないと十分な焼入焼戻し硬さが得られない。他方、Vが多すぎると、マトリックスに残存するVが増加し、熱伝導率を低下させる。そこで、Vは0.10%超~0.55%とする。好ましくは、0.25%~0.45%未満である。
V: more than 0.10% to 0.55%,
V promotes secondary hardening during tempering and increases the hardness after quenching and tempering. If there is too little V, sufficient hardness after quenching and tempering cannot be obtained. On the other hand, if there is too much V, the V remaining in the matrix Therefore, the V content is set to more than 0.10% and less than 0.55%, and preferably to 0.25% and less than 0.45%.
B:0.0001%~0.0100%、
Bは微量添加により焼入性を向上させ、ベイナイト形成による靱性の低下を抑制するのに必要な元素である。Bが少なすぎると十分な靭性が得られないが、Bが多すぎると焼戻し時に粗大な炭化物を形成し、靭性が低下する。また、融点を下げ、熱間加工性が悪化する。そこで、Bは0.0001%~0.0100%とする。好ましくは、0.0005%~0.0075%である。
B: 0.0001% to 0.0100%,
B is an element that is necessary to improve hardenability by adding a small amount and to suppress the decrease in toughness due to the formation of bainite. If there is too little B, sufficient toughness cannot be obtained, but if there is too much B, the steel will become brittle during tempering. It forms coarse carbides and reduces toughness. It also lowers the melting point and deteriorates hot workability. Therefore, B is set to 0.0001% to 0.0100%, preferably 0.0005% to 0.0100%. It is 0.0075%.
O:0.0050%以下、
Oは多すぎると熱間加工性が悪化する。また、Oの過剰添加は精錬の時間、コストの上昇を招く。そこで、Oは、0.0050%以下とする。好ましくは、Oは0.0030%以下である。
O: 0.0050% or less,
Too much O deteriorates hot workability. Moreover, excessive addition of O increases the refining time and costs. Therefore, O is set to 0.0050% or less. Preferably, O is set to 0. 0.030% or less.
B+O+N:0.0420%以下、
Bは過剰であると、融点を下げ、熱間加工性が悪化する。Oは多すぎると熱間加工性が悪化する。Nは多すぎると熱間加工性が悪化する。そこで、BとOとNの合計量が多すぎると、熱間加工性が悪化する。そこで、B+O+Nの合計量は質量%で0.0420%以下とする。好ましくは、0.0300%以下とする。
B+O+N: 0.0420% or less,
If B is excessive, the melting point is lowered and hot workability is deteriorated. If O is too much, hot workability is deteriorated. If N is too much, hot workability is deteriorated. Therefore, B and O If the total amount of B and N is too large, the hot workability deteriorates. Therefore, the total amount of B+O+N is set to 0.0420% or less by mass%, and preferably to 0.0300% or less.
Kの値:15.6以上、
Kの値は、熱間加工性の1つの指標であって、以下の式から求まる。
K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu(ただし、式の右辺にある各元素記号には鋼を構成する元素成分の百分率の数値を代入する。)
Kの値は15.6未満であると、熱間加工性が悪化する。そこで、Kの値は、15.6以上とする。好ましくはKの値は19.4以上である。
K value: 15.6 or more,
The value of K is an index of hot workability and is calculated by the following formula.
K = 36.04 - 12.65C - 1.58Mo - 0.79W - 9.34Mn - 19.01Al + 0.69Ni - 0.34Cu (where the numerical percentage of the elemental components constituting the steel is substituted for each element symbol on the right side of the formula.)
If the value of K is less than 15.6, the hot workability deteriorates. Therefore, the value of K is set to 15.6 or more, and preferably, the value of K is 19.4 or more.
さらに、以下のN、Ti、Alは本発明の熱間工具鋼に以下に規定する範囲であれば適宜添加することのできる成分である。 Furthermore, the following N, Ti, and Al are components that can be added to the hot work tool steel of the present invention as appropriate within the ranges specified below.
N:0.0001%~0.0400%、
Nは、必ずしも添加する必要はないが、NはCと同様に、焼入焼戻硬さを大きくするのに有効な元素であるから、必要に応じて添加することができる。他方、多すぎると熱間加工性が悪化する。また、過剰添加は精錬の時間、コストの上昇を招く。
そこで、Nは0.0001%~0.0400%とする。好ましくは、Nは0.0001%~0.0300%以下である。より好ましくは、Nは0.0001%~0.0200%以下である。
N: 0.0001% to 0.0400%,
It is not always necessary to add N, but since N, like C, is an effective element for increasing the hardness after quenching and tempering, it can be added as necessary. Moreover, excessive addition of Nb increases the refining time and costs.
Therefore, N is set to 0.0001% to 0.0400%. Preferably, N is set to 0.0001% to 0.0300% or less. More preferably, N is set to 0.0001% to 0.0200% or less. It is.
Ti:0.001%~0.150%、
Tiは必ずしも添加する必要はないが、TiはBによる焼入性向上を促進する効果がある。Tiが添加されると、焼入れの際にNがTiと化合物化することによって、固溶B量が増加し、焼入性は向上する。他方、Tiの過剰添加は粗大なTiNを形成し、靭性が低下する。
そこで、Tiは0.001%~0.150%とする。好ましくは、Tiは0.001%~0.100%である。
Ti: 0.001% to 0.150%,
It is not always necessary to add Ti, but Ti has the effect of promoting the improvement of hardenability by B. When Ti is added, N forms a compound with Ti during hardening, and the amount of dissolved B is increased. On the other hand, excessive addition of Ti forms coarse TiN, which reduces toughness.
Therefore, the Ti content is set to 0.001% to 0.150%, and preferably, the Ti content is set to 0.001% to 0.100%.
Al:0.001%以上0.200%以下、
Alは必ずしも添加する必要はないが、Alはマトリクスに固溶して硬さを向上する元素であることから、必要に応じて添加することができる。他方、Alは多すぎると熱間加工性が悪化する。また、マトリックスに固溶して熱伝導率を低下させる。
そこで、Alは0.001%~0.200%とする。好ましくはAlは0.005%~0.150%である。
Al: 0.001% or more and 0.200% or less,
Although it is not always necessary to add Al, since Al is an element that dissolves in the matrix to improve hardness, it can be added as necessary. On the other hand, if there is too much Al, it may deteriorate hot workability. In addition, it dissolves in the matrix and reduces thermal conductivity.
Therefore, the Al content is set to 0.001% to 0.200%, and preferably to 0.005% to 0.150%.
焼入焼戻し状態での組織:マルテンサイト単相組織であること、またはマルテンサイトの割合が80%以上のマルテンサイトとベイナイトの混合組織であること、
不完全焼入れ相であるベイナイトが多く存在すると靭性が大幅に低下し、ホットスタンピング・ダイカスト金型として使われた際に、十分な金型寿命が得られなくなる。そこで、焼入焼戻し後の組織は、マルテンサイト単相か、あるいはベイナイトとマルテンサイトとの混合組織の場合にはマルテンサイトの割合を80%以上とすることが好ましい。すなわち、ベイナイト組織は20%未満であることが好ましい。
Structure in quenched and tempered state: A martensite single phase structure, or a mixed structure of martensite and bainite with a martensite ratio of 80% or more.
If a large amount of bainite, which is an incompletely hardened phase, is present, the toughness is significantly reduced, and when used as a hot stamping die casting die, a sufficient die life cannot be obtained. Therefore, the structure after quenching and tempering is preferably a martensite single phase, or in the case of a mixed structure of bainite and martensite, the proportion of martensite is preferably 80% or more. In other words, the bainite structure is preferably less than 20%.
焼入焼戻し状態でM23C6、M6C、M7C3、M3C、M2C、MCの全炭化物中に占めるM23C6とM6C炭化物の割合:90%以下
高温で粗大化しやすい炭化物のM23C6とM6Cが焼入焼戻し状態で多く存在すると、鋼材の軟化抵抗性が低下する。
そこで、M23C6、M6C、M7C3、M3C、M2C、MCといった全炭化物中に占めるM23C6とM6C炭化物の割合を90%以下とすることが好ましい。
Proportion of M23C6 and M6C carbides among all carbides of M23C6 , M6C , M7C3 , M3C , M2C and MC in the quenched and tempered state: 90% or less If there are a large number of M23C6 and M6C carbides , which are prone to coarsening at high temperatures, in the quenched and tempered state, the softening resistance of the steel material decreases.
Therefore, it is preferable that the ratio of M23C6 and M6C carbides to all carbides such as M23C6 , M6C , M7C3 , M3C , M2C and MC is 90% or less.
以下に本発明の発明鋼を用いた実施例とその特性の評価について記載する。本発明の熱間工具鋼は、以下の実験に記載のような成分と熱処理によって得ることができる。
まず、表1の発明鋼No.1~44および表2の比較鋼No.45~67に記載の化学成分の鋼をそれぞれ100kg真空誘導溶解炉にて溶製し、得られた鋼塊を幅65mm、高さ30mmのブロックに熱間鍛伸した。
この一部より直径8mm、長さ100mmの試験片を作製し、熱間加工性の調査を実施した。
次に、残りの鍛伸材を870℃で焼なまし後、表面と中心の中間位置から直径20mm、長さ160mmの丸棒を採取した。この丸棒を1030℃に保持した後、空冷によって焼入れを行ない、570~670℃で2回焼戻しを行った後、これら試料について、組織観察、析出炭化物種の同定、熱伝導率、焼入焼戻し硬さ、靭性、軟化抵抗性の調査を実施した。
Examples of the present invention using the steel of the present invention and evaluation of its properties are described below. The hot work tool steel of the present invention can be obtained by the components and heat treatment described in the following experiments.
First, 100 kg of steels having chemical compositions shown in the invention steels No. 1 to 44 in Table 1 and the comparative steels No. 45 to 67 in Table 2 were melted in a vacuum induction melting furnace, and the resulting steel ingots were hot forged into blocks having a width of 65 mm and a height of 30 mm.
A test piece having a diameter of 8 mm and a length of 100 mm was prepared from a part of this material, and its hot workability was examined.
Next, the remaining forged and stretched material was annealed at 870°C, and then round bars with a diameter of 20 mm and a length of 160 mm were taken from the midpoint between the surface and the center. These round bars were held at 1030°C, quenched by air cooling, and tempered twice at 570-670°C. After that, the samples were subjected to structural observation, identification of precipitated carbide species, and investigation of thermal conductivity, quenching and tempering hardness, toughness, and softening resistance.
(組織観察について)
組織観察は、焼入焼戻し後の試料の鍛伸方向に平行な面を鏡面になるまで研磨し、ナイタールで腐食した後、走査型電子顕微鏡を用いて行った。総面積50000μm2の領域において、組織観察をする際には、ベイナイトの有無を確認し、ベイナイトが確認された場合には、画像解析を用いてベイナイトの面積率の算出を百分率で行った。
(Regarding tissue observation)
The microstructure observation was performed using a scanning electron microscope after polishing the surface of the quenched and tempered sample parallel to the forging direction until it became a mirror surface and etching with nital. When observing the microstructure in an area of 50,000 μm2 in total, the presence or absence of bainite was confirmed, and when bainite was confirmed, the area ratio of bainite was calculated as a percentage using image analysis.
(炭化物観察について)
炭化物観察用の試験片は、焼入焼戻し後について試料の鍛伸方向に平行な面を研磨し、抽出レプリカ法により作成した。この試験片を、透過型電子顕微鏡の明視野像を用いて、総面積500μm2の領域において観察した。
炭化物種は、電子線回折の結果と炭化物の形状から判断した。撮影した写真を画像解析し、全炭化物中に占めるM23C6、M6C炭化物の合計面積率を百分率で算出した。
なお、ここにいう全炭化物とは、M23C6、M6C、M7C3、M3C、M2C、MCのことである。
(Carbide observation)
The test pieces for carbide observation were prepared by polishing the surface parallel to the forging direction of the samples after quenching and tempering, and using the extraction replica method. The test pieces were observed in a total area of 500 μm2 using a bright field image of a transmission electron microscope.
The type of carbide was determined from the results of electron beam diffraction and the shape of the carbide. The photographs were subjected to image analysis, and the total area ratio of M23C6 and M6C carbides to the total carbides was calculated as a percentage.
The total carbides referred to here include M23C6 , M6C , M7C3 , M3C , M2C , and MC.
(熱間加工性について)
熱間加工性は、グリーブル試験により評価を実施した。グリーブル試験には前記した直径8mmX100mmの試験片を用い、700℃~1300℃でグリーブル試験を実施した。結果を表3、表4に熱間加工性(%)として示す。鋼塊状態にてグリーブル試験を1100℃で実施したときの絞りが70%以上のことを高熱間加工性であると評価した。
(Regarding hot workability)
The hot workability was evaluated by a Gleeble test. The above-mentioned test pieces having a diameter of 8 mm and a length of 100 mm were used in the Gleeble test, and the test was carried out at temperatures of 700°C to 1300°C. The results are shown in Tables 3 and 4 as hot workability (%). When the Gleeble test was carried out on a steel ingot at 1100°C, a reduction of 70% or more was evaluated as high hot workability.
(熱伝導率の測定)
熱伝導率の測定には、レーザフラッシュ法を用いた。焼入焼戻し後の試料を直径10mm×1mmの円柱形状に仕上げ加工し、試験に供した。熱伝導率は、室温で測定した。結果を表3、表4に熱伝導率(W/m・K)として示す。焼入焼戻し後の室温での熱伝導率が25.0W/m・K以上のものを高熱伝導率であると評価した。
(Measurement of thermal conductivity)
The thermal conductivity was measured using a laser flash method. The samples after quenching and tempering were finished into a cylindrical shape of 10 mm diameter x 1 mm and subjected to testing. The thermal conductivity was measured at room temperature. The results are shown in Tables 3 and 4 as thermal conductivity (W/m·K). Samples with a thermal conductivity of 25.0 W/m·K or more at room temperature after quenching and tempering were evaluated as having high thermal conductivity.
(焼入焼戻し硬さ)
焼入焼戻し硬さはロックウェル硬さ試験機により室温で測定した。焼入焼戻状態の試料の鍛伸方向に垂直な面を硬さ測定した。結果を表3、表4に焼入焼戻し硬さ(HRC)として示す。焼入焼戻し後の室温での硬さが48.0HRC以上のことを高硬度であると評価した。
(Quenched and tempered hardness)
The quenched and tempered hardness was measured at room temperature using a Rockwell hardness tester. The hardness was measured on a surface perpendicular to the forging direction of the quenched and tempered sample. The results are shown as quenched and tempered hardness (HRC) in Tables 3 and 4. A hardness of 48.0 HRC or more at room temperature after quenching and tempering was evaluated as high hardness.
(靱性)
靱性は、室温でのシャルピー衝撃試験により評価を実施した。試験片は、焼入焼戻し後の試料から作製した。試験片形状は2mmUノッチシャルピー試験片であり、ノッチ方向は鍛伸方向に対して垂直な方向とした。得られたシャルピー衝撃値(J/cm2)を表3、表4に示す。焼入焼戻し後の室温でのシャルピー衝撃値が20J/cm2以上のものを高靱性であると評価した。
(Toughness)
The toughness was evaluated by a Charpy impact test at room temperature. Test pieces were prepared from samples after quenching and tempering. The test piece shape was a 2 mm U-notch Charpy test piece, and the notch direction was perpendicular to the forging direction. The obtained Charpy impact values (J/ cm2 ) are shown in Tables 3 and 4. Those having a Charpy impact value of 20 J/ cm2 or more at room temperature after quenching and tempering were evaluated as having high toughness.
(軟化抵抗性)
軟化抵抗性は、焼入焼戻し後の試料を600℃で100時間保持、空冷した後、室温での硬さをロックウェル硬さ試験機で測定することで評価した。結果を表3、表4に高温保持後の硬さ(HRC)として示す。焼入焼戻し後に600℃で100h保持後の室温での硬さが32.0HRC以上のものを高軟化抵抗性であると評価した。
(Softening resistance)
The softening resistance was evaluated by holding the quenched and tempered samples at 600°C for 100 hours, air-cooling, and then measuring the hardness at room temperature with a Rockwell hardness tester. The results are shown in Tables 3 and 4 as hardness (HRC) after high temperature holding. Samples that had a hardness of 32.0 HRC or more at room temperature after holding at 600°C for 100 hours after quenching and tempering were evaluated as having high softening resistance.
発明鋼No.1~44は、いずれも熱間工具鋼は、鋼塊状態にてグリーブル試験を1100℃で実施したときの絞りが70%以上の高熱間加工性を示し、焼入焼戻し後の室温での熱伝導率が25.0W/m・K以上の高熱伝導率であって、焼入焼戻し後の室温での硬さが48.0HRC以上と高硬度であって、焼入焼戻し後の室温でのシャルピー衝撃値が20J/cm2以上の高靱性であって、焼入焼戻し後に600℃で100h保持後の室温での硬さが32.0HRC以上といった高軟化抵抗性を示すものとなり、これらの全ての特性を兼ね備えるものとなった。 All of the hot work tool steels of the invention steels No. 1 to 44 exhibit high hot workability with a reduction of 70% or more when a Gleeble test is performed at 1100 ° C. in the steel ingot state, a high thermal conductivity of 25.0 W / m · K or more at room temperature after quenching and tempering, a high hardness of 48.0 HRC or more at room temperature after quenching and tempering, a high toughness of 20 J / cm 2 or more at room temperature after quenching and tempering, and a high softening resistance of 32.0 HRC or more at room temperature after quenching and tempering after holding at 600 ° C. for 100 h.
比較鋼No.45では、C量が少なく、十分な焼入焼戻硬さが得られなかった。
比較鋼No.46では、C量が過剰であり、熱間加工性が悪く、また十分な靭性が得られなかった。
比較鋼No.47では、Si量が過剰であり、熱伝導率が低下した。
比較鋼No.48では、Mn量が過剰であり、熱伝導率が低下した。
比較鋼No.49では、Cr量が少なく、マルテンサイトの割合が低かったので、十分な靭性が得られなかった。
比較鋼No.50では、Cr量が過剰であり、熱伝導率が低下し、軟化抵抗性も低下した。
比較鋼No.51では、Cu量が少なく、マルテンサイトの割合が低かったので、十分な靭性が得られなかった。
比較鋼No.52では、Cu量が過剰であり、熱伝導率が低下した。
比較鋼No.53では、Ni量が過剰であり、熱伝導率が低下した。
比較鋼No.54では、Mo量が過剰であり、熱伝導率が低下した。
比較鋼No.55では、W量が過剰であり、熱伝導率が低下した。
比較鋼No.56では、Mo+1/2Wの量が少なく、十分な焼入焼戻硬さが得られなかった。
比較鋼No.57では、Mo+1/2Wの量が過剰であり、熱伝導率が低下した。
比較鋼No.58では、V量が少なく、十分な焼入焼戻硬さが得られなかった。
比較鋼No.59では、V量が過剰であり、熱伝導率が低下した。
比較鋼No.60では、N量が過剰であり、熱間加工性が悪化した。
比較鋼No.61では、O量が過剰であり、熱間加工性が悪化した。
比較鋼No.62では、Ti量が過剰であり、十分な靭性が得られなかった。
比較鋼No.63では、Al量が過剰であり、熱間加工性が悪く、また十分な靭性が得られなかった。
比較鋼No.64では、Bが含有されておらず、マルテンサイトの割合が低かったので、十分な靱性が得られなかった。
比較鋼No.65では、B量が過剰であり、熱間加工性が悪く、また十分な靭性が得られなかった。
比較鋼No.66では、B+O+Nの量が過剰であり、熱間加工性が悪化した。
比較鋼No.67では、成分組成は本発明の範囲を充たしているものの、式Kの値が低いものであるところ、熱間加工性が低いものであった。
In the comparative steel No. 45, the C content was small, and sufficient quench-tempered hardness was not obtained.
In the comparative steel No. 46, the C content was excessive, the hot workability was poor, and sufficient toughness was not obtained.
In the comparative steel No. 47, the amount of Si was excessive, and the thermal conductivity was reduced.
In the comparative steel No. 48, the Mn amount was excessive, and the thermal conductivity was reduced.
In comparative steel No. 49, the Cr content was small and the proportion of martensite was low, so sufficient toughness was not obtained.
In the comparative steel No. 50, the Cr amount was excessive, and the thermal conductivity was decreased and the softening resistance was also decreased.
In comparative steel No. 51, the Cu content was small and the proportion of martensite was low, so sufficient toughness was not obtained.
In the comparative steel No. 52, the Cu amount was excessive, and the thermal conductivity was reduced.
In the comparative steel No. 53, the amount of Ni was excessive, and the thermal conductivity was reduced.
In the comparative steel No. 54, the amount of Mo was excessive, and the thermal conductivity was reduced.
In the comparative steel No. 55, the amount of W was excessive, and the thermal conductivity was reduced.
In the comparative steel No. 56, the amount of Mo+1/2W was small, and sufficient quench-tempered hardness was not obtained.
In the comparative steel No. 57, the amount of Mo+1/2W was excessive, and the thermal conductivity was reduced.
In the comparative steel No. 58, the amount of V was small, and sufficient quench-tempered hardness was not obtained.
In the comparative steel No. 59, the amount of V was excessive, and the thermal conductivity was reduced.
In the comparative steel No. 60, the N amount was excessive, and the hot workability was deteriorated.
In the comparative steel No. 61, the amount of O was excessive, and the hot workability was deteriorated.
In comparative steel No. 62, the Ti content was excessive, and sufficient toughness was not obtained.
In the comparative steel No. 63, the amount of Al was excessive, and the hot workability was poor and sufficient toughness was not obtained.
In the comparative steel No. 64, since B was not contained and the proportion of martensite was low, sufficient toughness was not obtained.
In the comparative steel No. 65, the B content was excessive, and the hot workability was poor and sufficient toughness was not obtained.
In the comparative steel No. 66, the amount of B+O+N was excessive, and the hot workability was deteriorated.
In the comparative steel No. 67, the composition satisfies the range of the present invention, but the value of the formula K is low, and the hot workability is poor.
Claims (6)
B+O+N:0.0420%以下を充たし、さらに、次の式に示すKの値が15.6以上であること、を特徴とする熱間工具鋼。
式:K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(ただし、この式の右辺の各元素記号には、鋼を構成する元素成分の百分率の数値を代入する。) a steel containing, in mass %, C: more than 0.35% to 0.70%, Si: 0.01% to 1.20%, Mn: 0.01% to 1.50%, Cr: 0.35% to 4.00%, Cu: 0.10% to 2.50%, Ni: 0.10% to 2.99%, V: more than 0.10% to 0.55%, B: 0.0001% to 0.0100%, and O: 0.0050% or less, and containing either one or both of Mo and W, and further containing Mo: 3.00% or less, W: 6.00% or less, Mo+1/2W: 0.50% to 3.00%, with the balance being Fe and unavoidable impurities;
A hot work tool steel characterized in that B+O+N is 0.0420% or less, and further, the value of K represented by the following formula is 15.6 or more.
Formula: K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(However, the percentage of each element that makes up the steel is substituted for each element symbol on the right side of this formula.)
B+O+N:0.0420%以下を充たし、さらに、次の式に示すKの値が15.6以上である熱間工具鋼。
式:K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(ただし、この式の右辺の各元素記号には、鋼を構成する元素成分の百分率の数値を代入する。) In addition to the components described in claim 1, further containing N: 0.0001% to 0.0400%,
A hot work tool steel satisfying B+O+N: 0.0420% or less, and further having a K value represented by the following formula of 15.6 or more.
Formula: K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(However, the percentage of each element that makes up the steel is substituted for each element symbol on the right side of this formula.)
B+O+N:0.0420%以下を充たし、さらに、次の式に示すKの値が15.6以上である熱間工具鋼。
式:K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(ただし、この式の右辺の各元素記号には、鋼を構成する元素成分の百分率の数値を代入する。) In addition to the components according to claim 1 or 2, the composition further contains Ti: 0.001% to 0.150%,
A hot work tool steel satisfying B+O+N: 0.0420% or less, and further having a K value represented by the following formula of 15.6 or more.
Formula: K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(However, the percentage of each element that makes up the steel is substituted for each element symbol on the right side of this formula.)
B+O+N:0.0420%以下を充たし、さらに、次の式に示すKの値が15.6以上である熱間工具鋼。
式:K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(ただし、この式の右辺の各元素記号には、鋼を構成する元素成分の百分率の数値を代入する。) In addition to the components according to any one of claims 1 to 3, further containing Al: 0.001% or more and 0.200% or less,
A hot work tool steel satisfying B+O+N: 0.0420% or less, and further having a K value represented by the following formula of 15.6 or more.
Formula: K=36.04-12.65C-1.58Mo-0.79W-9.34Mn-19.01Al+0.69Ni-0.34Cu
(However, the percentage of each element that makes up the steel is substituted for each element symbol on the right side of this formula.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020022074A JP7544488B2 (en) | 2020-02-13 | 2020-02-13 | Hot work tool steel with excellent manufacturability and thermal conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020022074A JP7544488B2 (en) | 2020-02-13 | 2020-02-13 | Hot work tool steel with excellent manufacturability and thermal conductivity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021127486A JP2021127486A (en) | 2021-09-02 |
JP7544488B2 true JP7544488B2 (en) | 2024-09-03 |
Family
ID=77488072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020022074A Active JP7544488B2 (en) | 2020-02-13 | 2020-02-13 | Hot work tool steel with excellent manufacturability and thermal conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7544488B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000328195A (en) | 1999-05-20 | 2000-11-28 | Daido Steel Co Ltd | Tool steel excellent in short time hardenability |
JP2008121032A (en) | 2006-11-08 | 2008-05-29 | Daido Steel Co Ltd | Die steel superior in spheroidizing annealing property and hardenability |
JP2008169411A (en) | 2007-01-10 | 2008-07-24 | Daido Steel Co Ltd | Steel for die materials |
JP2009013465A (en) | 2007-07-04 | 2009-01-22 | Daido Steel Co Ltd | Tool steel, member for forming using the same, and method for verifying quality of tool steel |
JP2009024260A (en) | 2002-04-03 | 2009-02-05 | Industeel France | Bulk steel for production of injection mold for plastic material or for production of component for working metal |
JP2011074427A (en) | 2009-09-29 | 2011-04-14 | Daido Steel Co Ltd | Hollow drill steel rod |
-
2020
- 2020-02-13 JP JP2020022074A patent/JP7544488B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000328195A (en) | 1999-05-20 | 2000-11-28 | Daido Steel Co Ltd | Tool steel excellent in short time hardenability |
JP2009024260A (en) | 2002-04-03 | 2009-02-05 | Industeel France | Bulk steel for production of injection mold for plastic material or for production of component for working metal |
JP2008121032A (en) | 2006-11-08 | 2008-05-29 | Daido Steel Co Ltd | Die steel superior in spheroidizing annealing property and hardenability |
JP2008169411A (en) | 2007-01-10 | 2008-07-24 | Daido Steel Co Ltd | Steel for die materials |
JP2009013465A (en) | 2007-07-04 | 2009-01-22 | Daido Steel Co Ltd | Tool steel, member for forming using the same, and method for verifying quality of tool steel |
JP2011074427A (en) | 2009-09-29 | 2011-04-14 | Daido Steel Co Ltd | Hollow drill steel rod |
Also Published As
Publication number | Publication date |
---|---|
JP2021127486A (en) | 2021-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7479787B2 (en) | Hot work tool steel with excellent thermal conductivity | |
JP6366326B2 (en) | High toughness hot work tool steel and manufacturing method thereof | |
US20180066344A1 (en) | Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt | |
JP6631640B2 (en) | Case hardened steel, carburized parts and method of manufacturing case hardened steel | |
JP6468366B2 (en) | Steel, carburized steel parts, and method of manufacturing carburized steel parts | |
JP6468365B2 (en) | Steel, carburized steel parts, and method of manufacturing carburized steel parts | |
JP7083242B2 (en) | Hot tool steel with excellent thermal conductivity | |
JP2017155306A (en) | Hot tool steel having excellent high temperature strength and toughness | |
JP2011195917A (en) | Hot work tool steel excellent in toughness | |
JP7629269B2 (en) | Hot work tool steel with excellent thermal conductivity | |
JPWO2018061101A1 (en) | steel | |
JP2020132891A (en) | Mold steel having excellent thermal conductivity | |
CA3032083C (en) | Seamless steel pipe and method for producing same | |
JP6800532B2 (en) | Hot tool steel with excellent thermal conductivity | |
JP2017133052A (en) | Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor | |
JP7214313B2 (en) | High toughness cold work tool steel with high wear resistance | |
JP2017066460A (en) | Age hardening steel | |
JP7544488B2 (en) | Hot work tool steel with excellent manufacturability and thermal conductivity | |
JP5017937B2 (en) | Wear-resistant steel plate with excellent bending workability | |
JP7149250B2 (en) | Hot work tool steel with excellent high temperature strength and toughness | |
JP2021011618A (en) | Hot tool steel with excellent thermal conductivity | |
JP2022130746A (en) | Non-heat-treated forged component and non-heat-treated forging steel | |
JP2022143564A (en) | Hot work tool steel having excellent softening resistance and quenchability | |
JP2018131654A (en) | Hot work tool steel having excellent toughness and softening resistance | |
JP7220750B1 (en) | Hot work tool steel with excellent high-temperature strength and toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240117 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7544488 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |