[go: up one dir, main page]

JP6800532B2 - Hot tool steel with excellent thermal conductivity - Google Patents

Hot tool steel with excellent thermal conductivity Download PDF

Info

Publication number
JP6800532B2
JP6800532B2 JP2017010738A JP2017010738A JP6800532B2 JP 6800532 B2 JP6800532 B2 JP 6800532B2 JP 2017010738 A JP2017010738 A JP 2017010738A JP 2017010738 A JP2017010738 A JP 2017010738A JP 6800532 B2 JP6800532 B2 JP 6800532B2
Authority
JP
Japan
Prior art keywords
less
thermal conductivity
hot tool
tool steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017010738A
Other languages
Japanese (ja)
Other versions
JP2018119177A (en
Inventor
康政 武藤
康政 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2017010738A priority Critical patent/JP6800532B2/en
Priority to PCT/JP2018/000197 priority patent/WO2018139185A1/en
Publication of JP2018119177A publication Critical patent/JP2018119177A/en
Application granted granted Critical
Publication of JP6800532B2 publication Critical patent/JP6800532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、金型用鋼に関して、特にダイカストやホットスタンピングなどの、500℃以上の熱環境下で使用される金型用鋼に関する。 The present invention relates to a mold steel, particularly a mold steel used in a thermal environment of 500 ° C. or higher, such as die casting or hot stamping.

近年、ダイカスト分野において、自動車の軽量化を目的としたアルミ部品の高強度化や、生産性向上を目的とした部品成形加工ピッチの短縮化から、ダイカスト金型への機械的および熱的負荷が増大している。その結果、金型には摩耗、大割れ、ヒートチェックといった問題が生じやすくなっている。これらの問題に対応するため、金型材料には、硬度および靭性に優れる材料が求められている。また、ダイカスト・ホットプレス金型は内部に冷却回路が作製されており、ここを流れる冷却水による冷却効率が生産サイクルスピードに大きく影響する。冷却効率を高める方法としては、金型の高熱伝導率化がある。そのため、前述した生産性向上を目的とした、生産サイクルスピードの向上に対する要求に応えるためには、材料の特性として高い熱伝導率が必要である。これらの点に着目した従来技術や類似技術として、以下の技術が挙げられる。本発明とは異なるものである。 In recent years, in the die casting field, mechanical and thermal loads on die casting dies have been increasing due to the increase in strength of aluminum parts for the purpose of reducing the weight of automobiles and the shortening of the parts molding processing pitch for the purpose of improving productivity. It is increasing. As a result, the mold is prone to problems such as wear, large cracks, and heat check. In order to deal with these problems, the mold material is required to have excellent hardness and toughness. In addition, a cooling circuit is manufactured inside the die-cast hot press die, and the cooling efficiency of the cooling water flowing through this circuit greatly affects the production cycle speed. As a method of increasing the cooling efficiency, there is a method of increasing the thermal conductivity of the mold. Therefore, in order to meet the above-mentioned demand for improvement of production cycle speed for the purpose of improving productivity, high thermal conductivity is required as a characteristic of the material. The following techniques can be mentioned as conventional techniques and similar techniques focusing on these points. It is different from the present invention.

従来技術として、金型用鋼として、質量%で、C:0.25%超え0.38%未満、Si:0.01%超え0.30%未満、Mn:0.92%超え1.80%未満、Cr:0.8%超え2.2%未満、Mo:0.8%超え1.4%未満、V:0.25%超え0.58%未満を含有する金型用鋼が提案されている(例えば、特許文献1参照。)。しかし、この提案の金型用鋼は、Mn量が本願発明と異なり、Mnの過剰添加によって熱伝導率が低下する問題がある。 As a conventional technique, as a mold steel, in terms of mass%, C: 0.25% or more and less than 0.38%, Si: 0.01% or more and less than 0.30%, Mn: 0.92% or more and 1.80. Proposed mold steel containing less than%, Cr: more than 0.8% and less than 2.2%, Mo: more than 0.8% and less than 1.4%, V: more than 0.25% and less than 0.58% (See, for example, Patent Document 1). However, the mold steel of this proposal has a problem that the amount of Mn is different from that of the present invention and the thermal conductivity is lowered due to excessive addition of Mn.

さらに、高い熱伝導率を有する金型用鋼が提案されている(例えば、特許文献2参照。)。しかし、この提案の金型用鋼はMoまたはWの過剰添加によって熱伝導率が低下する問題がある。 Further, a mold steel having a high thermal conductivity has been proposed (see, for example, Patent Document 2). However, the mold steel of this proposal has a problem that the thermal conductivity is lowered due to the excessive addition of Mo or W.

フェライト・パーライトの二相組織としたプラスチック成形金型用鋼が提案されている(例えば、特許文献3参照。)。しかし、V量が本発明と異なり、焼入焼戻し硬さが不足する問題がある。 Steels for plastic molding dies having a two-phase structure of ferrite and pearlite have been proposed (see, for example, Patent Document 3). However, the amount of V is different from that of the present invention, and there is a problem that the quenching and tempering hardness is insufficient.

焼入れ加熱時にオーステナイト結晶粒の粗粒化を防止して焼入れ焼戻し後の靱性を高くして得て、熱伝導性能が高い金型用鋼および金型の発明が提供されている(例えば、特許文献4参照。)。しかし、この発明はV量が本発明と異なり、Vの過剰添加によって熱伝導率が低下する問題がある。 Inventions of mold steels and dies having high thermal conductivity performance have been provided, which are obtained by preventing coarsening of austenite crystal grains during quenching and heating to increase toughness after quenching and tempering (for example, Patent Documents). See 4.). However, this invention has a problem that the amount of V is different from that of the present invention and the thermal conductivity is lowered due to excessive addition of V.

特開2015−209588号公報JP-A-2015-209588 特表2010−500471号公報Japanese Patent Publication No. 2010-500471 特開2010−013716号公報Japanese Unexamined Patent Publication No. 2010-013716 特開2016−132797号公報Japanese Unexamined Patent Publication No. 2016-132977

本願発明が解決しようとする課題は、高硬度、高靭性、高熱伝導率を兼ね備えており、ダイカストやホットスタンピングなどに適用可能な金型用鋼を提供することである。 An object to be solved by the present invention is to provide a mold steel which has high hardness, high toughness, and high thermal conductivity and can be applied to die casting, hot stamping, and the like.

発明者らは鋭意開発を進めた結果、本願の請求項に示す合金成分とし、かつ限定式を満たすことにより、高硬度、高靭性、高熱伝導率を兼備した熱間工具鋼が得られることを見出したことに基づくものである。 As a result of diligent development, the inventors have determined that a hot tool steel having high hardness, high toughness, and high thermal conductivity can be obtained by using the alloy component shown in the claims of the present application and satisfying the limited formula. It is based on what we have found.

課題を解決するための本発明の手段は、第1の手段では、質量%で、C:0.20〜0.50%、Si:0.50%以下、Mn:0.92%以下、Cr:4.00%以下、Ni:2.00%以下、2Mo+W:1.80%未満(ただし、Mo:0.90%未満、かつ、W:1.80%未満)、V:0.10超〜0.61%、N:0.040%以下、Al:0.080%以下を含有し、残部Feおよび不可避不純物からなり、TC=68.0−6.5Mn−5.7Cr−3.1V−4.4Mo−2.2W−24.7C−21.2N−6.5Ni−1.7Si+3.2A≧32.5を満足することを特徴とする熱伝導率に優れた熱間工具鋼である。
ただし、TCの式中の各元素記号は質量%を示し、かつ式中のAは焼戻し状態での全炭化物の総面積率(%)を示す。
The means of the present invention for solving the problem is, in the first means, in terms of mass%, C: 0.20 to 0.50%, Si: 0.50% or less, Mn: 0.92% or less, Cr. : 4.00% or less, Ni: 2.00% or less, 2Mo + W: less than 1.80% (however, Mo: less than 0.90% and W: less than 1.80%), V: more than 0.10. It contains ~ 0.61%, N: 0.040% or less, Al: 0.080% or less, and consists of the balance Fe and unavoidable impurities. TC = 68.0-6.5Mn-5.7Cr-3.1V -4.4Mo-2.2W-24.7C-21.2N-6.5Ni-1.7Si + 3.2A ≧ 32.5 is a hot tool steel with excellent thermal conductivity. ..
However, each element symbol in the TC formula indicates mass%, and A in the formula indicates the total area ratio (%) of all carbides in the tempered state.

第2の手段では、第1の手段の熱間工具鋼の構成要件に加えて、該鋼の焼入焼戻し状態の室温における熱伝導率が30.0(W/m・K)以上であることを特徴とする熱伝導率に優れた熱間工具鋼である。 In the second means, in addition to the constituent requirements of the hot tool steel of the first means, the thermal conductivity of the steel in the quenched and tempered state at room temperature is 30.0 (W / m · K) or more. It is a hot tool steel with excellent thermal conductivity.

第3の手段では、第1の手段および第2の手段の熱間工具鋼の構成要件に加えて焼入焼戻し状態での硬さが40.0HRC以上であることを特徴とする熱伝導率に優れた熱間工具鋼である。 In the third means, in addition to the constituent requirements of the hot tool steel of the first means and the second means, the thermal conductivity in the quenched and tempered state is 40.0 HRC or more. Excellent hot tool steel.

第4の手段では、第1の手段、第2の手段および第3の手段の熱間工具鋼の構成要件に加えて焼入焼戻し状態での2mmUノッチ試験片でのシャルピー衝撃値が30J/cm2以上であることを特徴とする熱伝導率に優れた熱間工具鋼である。 In the fourth means, in addition to the constituent requirements of the hot tool steel of the first means, the second means and the third means, the Charpy impact value of the 2 mm U notch test piece in the quenching and tempering state is 30 J / cm. It is a hot tool steel with excellent thermal conductivity, which is characterized by having 2 or more.

上記の手段とすることで、ダイカストやホットスタンピングなどに適用可能な500℃以上の熱環境下で使用される40.0HRC以上の高硬度、シャルピー衝撃値が30J/cm2以上の高靭性、30.0W/m・K以上の高熱伝導率を兼ね備えた金型用鋼を得ることができる。 By using the above means, high hardness of 40.0 HRC or more, high toughness of Charpy impact value of 30 J / cm 2 or more, used in a thermal environment of 500 ° C or more, which can be applied to die casting and hot stamping, 30 It is possible to obtain a mold steel having a high thermal conductivity of .0 W / m · K or more.

発明を実施するための形態の説明に先立って、本願の発明の手段における化学成分の限定理由および各特性の限定理由について説明する。なお、化学成分は質量%である。 Prior to the description of the embodiment for carrying out the invention, the reasons for limiting the chemical components and the reasons for limiting each property in the means of the present invention will be described. The chemical component is mass%.

C:0.20〜0.50%
Cは、固溶することでマトリックスを強化し、さらに、炭化物を形成し、析出効果を促進する元素である。Cが0.20%より少ないと十分な焼入焼戻し硬さが得られない。一方、Cが0.50%より多すぎるとミクロ偏析を助長し、靱性を低下させる。さらに、固溶C量が増加して鋼の熱伝導率を低下する。そこで、Cは0.20〜0.50%とする。望ましくは、Cは0.35〜0.50%とする。
C: 0.20 to 0.50%
C is an element that strengthens the matrix by solid solution, further forms carbides, and promotes the precipitation effect. If C is less than 0.20%, sufficient quenching and tempering hardness cannot be obtained. On the other hand, if C is more than 0.50%, microsegregation is promoted and toughness is lowered. Further, the amount of solid solution C increases and the thermal conductivity of the steel decreases. Therefore, C is set to 0.25 to 0.50%. Desirably, C is 0.35 to 0.50%.

Si:0.50%以下
Siは、マトリックスに固溶することで、硬さを向上させる元素である。ところで、Siが0.50%より多いと、炭化物を形成することなくマトリックスに溶け込むため、熱伝導率を大きく低下させる。そこで、Siは0.50%以下とし、望ましくは、0.30%以下とする。
Si: 0.50% or less Si is an element that improves hardness by being dissolved in the matrix. By the way, when Si is more than 0.50%, it dissolves in the matrix without forming carbides, so that the thermal conductivity is greatly lowered. Therefore, Si is 0.50% or less, and preferably 0.30% or less.

Mn:0.92%以下
Mnは、焼入性を向上させ、ベイナイト形成による靱性の低下を抑制する元素である。ところで、Mnが0.92%より多すぎると、マトリックスに固溶して熱伝導率を低下させる。そこで、Mnは0.92%以下とし、望ましくは、0.80%以下とする。
Mn: 0.92% or less Mn is an element that improves hardenability and suppresses a decrease in toughness due to bainite formation. By the way, if Mn is more than 0.92%, it dissolves in the matrix and lowers the thermal conductivity. Therefore, Mn is set to 0.92% or less, and preferably 0.80% or less.

Cr:4.00%以下
Crは、焼入性を向上させ、ベイナイト形成による靱性の低下を抑制する元素である。ところで、Crが4.00%より多すぎると、マトリックスに固溶して熱伝導率を低下させる。そこで、Crは4.00%以下とし、望ましくは、2.00%未満とする。
Cr: 4.00% or less Cr is an element that improves hardenability and suppresses a decrease in toughness due to bainite formation. By the way, if Cr is more than 4.00%, it dissolves in the matrix and lowers the thermal conductivity. Therefore, Cr is set to 4.00% or less, and preferably less than 2.00%.

Ni:2.00%以下
Niは、焼入性を向上させ、ベイナイト形成による靱性の低下を抑制する元素である。
ところで、Niは炭化物を形成せずにマトリックスに固溶し、熱伝導率を低下させる。Niが2.00%より多いと、熱伝導率は大きく低下する。そこで、Niは2.00%以下とし、望ましくは1.50%以下とする。
Ni: 2.00% or less Ni is an element that improves hardenability and suppresses a decrease in toughness due to bainite formation.
By the way, Ni dissolves in the matrix without forming carbides and lowers the thermal conductivity. If the amount of Ni is more than 2.00%, the thermal conductivity is greatly reduced. Therefore, Ni is set to 2.00% or less, preferably 1.50% or less.

Mo:0.90%未満、かつW:1.80%未満の範囲内で、2Mo+W:1.80%未満
MoとWは、焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高める元素である。ところで、Moが0.90%以上で多すぎる、またはWが1.80%以上で多すぎると、マトリックスに残存するMoやWが増加し、熱伝導率を低下する。さらに、Moが0.90%未満で、かつWが1.80%未満の範囲内でも、2Mo+Wが1.80%以上で多すぎると、マトリックスに残存するMoやWが増加し、熱伝導率が低下する。そこで、Moは0.90%未満、かつWは1.80%未満の範囲内で、2Mo+Wは1.80%未満とする。望ましくは、Moは0.85%未満、かつWは1.70%未満の範囲内で、2Mo+Wは1.70%未満とする。
Mo: less than 0.90% and W: less than 1.80%, 2Mo + W: less than 1.80% Mo and W promote secondary hardening during tempering and increase quenching and tempering hardness. It is an element. By the way, if Mo is 0.90% or more and too much, or W is 1.80% or more and too much, Mo and W remaining in the matrix increase and the thermal conductivity decreases. Further, even if Mo is less than 0.90% and W is less than 1.80%, if 2Mo + W is 1.80% or more and too much, Mo and W remaining in the matrix increase and the thermal conductivity Decreases. Therefore, Mo is less than 0.90%, W is less than 1.80%, and 2Mo + W is less than 1.80%. Desirably, Mo is less than 0.85%, W is less than 1.70%, and 2Mo + W is less than 1.70%.

V:0.10超〜0.61%
Vは、焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高める元素である。ところでVが0.61%より多すぎると、マトリックスに残存するVが増加し、熱伝導率が低下する。そこで、Vは0.10超〜1.80%とし、望ましくは0.25〜0.45%とする。
V: Over 0.10 to 0.61%
V is an element that promotes secondary curing during tempering and enhances quenching and tempering hardness. By the way, if V is more than 0.61%, V remaining in the matrix increases and the thermal conductivity decreases. Therefore, V is set to more than 0.10 to 1.80%, preferably 0.25 to 0.45%.

N:0.040%以下
Nは、固溶することでマトリックスを強化し、さらに窒化物を形成することで、析出硬化を促進し、焼入焼戻し硬さを大きくする元素である。ところで、Nは、0.040%より過剰に添加すると、マトリックス中のN量が増加し、熱伝導率を低下する。そこで、Nは0.040%以下とし、望ましくは0.030%以下とする。
N: 0.040% or less N is an element that strengthens the matrix by solid solution and further forms nitride to promote precipitation hardening and increase quenching and tempering hardness. By the way, when N is added in excess of 0.040%, the amount of N in the matrix increases and the thermal conductivity decreases. Therefore, N is 0.040% or less, and preferably 0.030% or less.

Al:0.080%以下
Alは、窒化物を形成し焼入れにおける結晶粒の粗大化を抑制する元素である。ところで、Alは0.080%よりも多く添加すると、過剰のAl窒化物の形成により、靱性が低下する。そこで、Alは0.080%以下とし、望ましくは0.060%以下とする。
Al: 0.080% or less Al is an element that forms a nitride and suppresses the coarsening of crystal grains during quenching. By the way, when Al is added in an amount of more than 0.080%, the toughness is lowered due to the formation of excess Al nitride. Therefore, Al is set to 0.080% or less, and preferably 0.060% or less.

TC(熱伝導率の指標):32.5以上
TCは、請求項1の限定条件であり、32.5未満であると、マトリックスに残存する合金元素量が増加し、熱伝導率を低下させる。そこで、TCは32.5以上とし、望ましくは37.5以上とする。
なお、TC=68.0−6.5Mn−5.7Cr−3.1V−4.4Mo−2.2W−24.7C−21.2N−6.5Ni−1.7Si+3.2Aとする。ここで、各元素記号は質量%を示す。Aは焼戻し状態での全炭化物の総面積率を示す。このTCの式は熱伝導率の指標となるものであり、TCが大きいほど熱伝導率は大きくなる。各元素の添加量が増加すると、TCの値は小さくなり、炭化物量が大きくなるほどTCは大きくなる。
TC (Indicator of Thermal Conductivity): 32.5 or more TC is a limiting condition of claim 1, and if it is less than 32.5, the amount of alloying elements remaining in the matrix increases and the thermal conductivity decreases. .. Therefore, TC is set to 32.5 or more, and preferably 37.5 or more.
It should be noted that TC = 68.0-6.5Mn-5.7Cr-3.1V-4.4Mo-2.2W-24.7C-21.2N-6.5Ni-1.7Si + 3.2A. Here, each element symbol indicates mass%. A indicates the total area ratio of all carbides in the tempered state. This TC formula is an index of thermal conductivity, and the larger the TC, the larger the thermal conductivity. As the amount of each element added increases, the TC value decreases, and as the amount of carbide increases, the TC increases.

焼入焼戻し状態の室温の熱伝導率(請求項2の限定条件):30.0W/m・K以上
焼入焼戻し状態の室温の熱伝導率は、ホットスタンピングやダイカスト工程における生産性に関係する値であり、これらの向上のためには、30.0W/m・K以上が必要であり、望ましくは35.0W/m・K以上が必要である。
Thermal conductivity at room temperature in the tempered and tempered state (limited condition of claim 2): 30.0 W / m · K or more The thermal conductivity at room temperature in the tempered and tempered state is related to productivity in the hot stamping and die casting processes. It is a value, and in order to improve these, 30.0 W / m · K or more is required, and preferably 35.0 W / m · K or more is required.

焼入焼戻し状態の硬さ(請求項3の限定条件):40.0HRC以上
焼入焼戻し状態の硬さは、ホットスタンピングやダイカストの金型として使われる際に、十分な金型寿命を得るために必要な値であり、そのためには40.0HRC以上の硬さが必要であり、望ましくは45.0HRC以上が必要である。
Hardness in the tempered and tempered state (limited condition of claim 3): 40.0 HRC or more The hardness in the tempered and tempered state is to obtain a sufficient mold life when used as a mold for hot stamping or die casting. This is a value required for the above, and for that purpose, a hardness of 40.0 HRC or more is required, and preferably 45.0 HRC or more is required.

焼入焼戻し状態における2mmUノッチ試験片でのシャルピー衝撃値(請求項4の限定条件):30J/cm2以上
焼入焼戻し状態における2mmUノッチ試験片でのシャルピー衝撃値はホットスタンピングやダイカストの金型として使われる際に、十分な金型寿命を得るために必要な値であり、そのためには、シャルピー衝撃値は30J/cm2以上が必要であり、望ましくは40J/cm2以上が必要である。
Charpy impact value with 2 mm U notch test piece in quenching and tempering state (limited condition of claim 4): 30 J / cm 2 or more Charpy impact value with 2 mm U notch test piece in quenching and tempering state is hot stamping or die casting mold It is a value required to obtain a sufficient mold life when used as a charpy impact value of 30 J / cm 2 or more, and preferably 40 J / cm 2 or more. ..

ここで、本願の発明を実施するための形態について以下に説明する。 Here, a mode for carrying out the invention of the present application will be described below.

表1に示す本願の発明鋼の各No.の鋼および表2に示す比較鋼の各No.化学成分の鋼を、真空溶解炉で溶製し、得られた各100kgの鋼塊を、幅65mm、高さ30mmのブロックに熱間鍛伸した。この鍛伸材を870℃で焼なまし後、表面と中心の中間位置から試料を採取した。これらの試料を1030℃で焼入れし、600℃で2回の焼戻しを行った後、それらの鋼の炭化物面積率と特性を調査した。表1に本願の発明鋼の成分、炭化物面積率、TCについて記載し、表2に比較鋼の成分、炭化物面積率、TCについて示した。 Each No. 1 of the invention steel of the present application shown in Table 1. No. 1 of the steel and the comparative steel shown in Table 2. Steel having a chemical component was melted in a vacuum melting furnace, and the obtained steel ingots of 100 kg each were hot-stretched into blocks having a width of 65 mm and a height of 30 mm. After annealing this forged material at 870 ° C., a sample was taken from an intermediate position between the surface and the center. These samples were quenched at 1030 ° C. and tempered twice at 600 ° C., after which the carbide area ratio and properties of the steels were investigated. Table 1 describes the composition, carbide area ratio, and TC of the invention steel of the present application, and Table 2 shows the composition, carbide area ratio, and TC of the comparative steel.

この場合、炭化物の面積率は、焼入焼戻し状態の鍛伸方向に平行な面を研磨して炭化物面積率の測定用の試験片とした。これらの試験片を用いて、走査型電子顕微鏡の反射電子像から、総面積10000μm2の領域における炭化物を観察した後、画像解析により面積率を算出した。 In this case, the area ratio of carbides was determined by polishing a surface parallel to the forging direction in the quenching and tempering state to obtain a test piece for measuring the area ratio of carbides. Using these test pieces, carbides in a region having a total area of 10000 μm 2 were observed from the reflected electron images of a scanning electron microscope, and then the area ratio was calculated by image analysis.

Figure 0006800532
Figure 0006800532

Figure 0006800532
Figure 0006800532

さらに、表3に本願の発明鋼の各No.の熱伝導率、焼入焼戻し硬さおよびシャルピー衝撃値を示し、表4に比較鋼の各No.の熱伝導率、焼入焼戻し硬さおよびシャルピー衝撃値を示した。 Further, Table 3 shows the No. 1 of the invention steel of the present application. The thermal conductivity, quenching and tempering hardness, and Charpy impact value of each of the comparative steels are shown in Table 4. The thermal conductivity, quenching and tempering hardness, and Charpy impact value were shown.

Figure 0006800532
Figure 0006800532

Figure 0006800532
Figure 0006800532

熱伝導率の測定には、レーザーフラッシュ法を用い、焼入焼戻し状態の試料を直径10mmで厚さ1mmの円板形状に仕上げ加工し、試験に供した。 For the measurement of thermal conductivity, a laser flash method was used, and a sample in a quenched and tempered state was finished into a disk shape having a diameter of 10 mm and a thickness of 1 mm and subjected to a test.

焼入焼戻し硬さは、ロックウェル硬さ試験機で、焼入焼戻し状態の試料の鍛伸方向に垂直な面の硬さを測定した。 For the quenching and tempering hardness, the hardness of the surface perpendicular to the forging direction of the sample in the quenching and tempering state was measured with a Rockwell hardness tester.

靱性は、シャルピー衝撃値は靱性により評価を実施した。試験片は、焼入焼戻し状態の試料から作製した。試験片の形状は2mmUノッチシャルピー試験片であり、ノッチ方向は鍛伸方向に対して垂直な方向とした。 The toughness was evaluated based on the Charpy impact value. The test piece was prepared from a sample in a quenched and tempered state. The shape of the test piece was a 2 mm U notch Charpy test piece, and the notch direction was perpendicular to the forging direction.

以上のように、表1および表3に示す本願の発明鋼のNo.1〜25は、TCの値が32.5以上であり熱伝導率がいずれも30.0W/m・K以上と大きく、焼入焼戻し硬さがいずれも40.0HRC以上であり、シャルピー衝撃値がいずれも30J/cm2以上であり、優れた高熱伝導率、高硬度、高靱性の熱間工具鋼である。 As described above, No. 1 of the invention steel of the present application shown in Tables 1 and 3. 1 to 25 have a TC value of 32.5 or more, a large thermal conductivity of 30.0 W / m · K or more, a quenching and tempering hardness of 40.0 HRC or more, and a Charpy impact value. Is 30 J / cm 2 or more, and is a hot tool steel with excellent high thermal conductivity, high hardness, and high toughness.

一方、表2および表4に示す比較鋼のNo.26〜39について以下に検討する。
表2のNo.26ではC量が0.19%と0.20%より少ないので、表4のNo.26の焼入焼戻し硬さが39.1HRCと40.0HRCより低い。
No.27はC量が0.53%と0.50%より多いので、TCの値が29.5と32.5より低くかつ表4の熱伝導率が29.0W/mKと30.0W/mKより低い。
No.28はSi量が0.52%と0.50%より多いので、TCの値が29.4と32.5より低くかつ表4の熱伝導率が26.2W/mKと30.0W/mKより低い。
No.29はMn量が0.94%と0.92%より多いので、TCの値が32.2と32.5より低くかつ表4の熱伝導率が29.7W/mKと30.0W/mKより低い。
No.30はCr量が4.11%と4.00%より多いので、TCの値が28.4と32.5より低くかつ表4の熱伝導率が25.4W/mKと30.0W/mKより低い。
No.31はNi量が2.09%と2.00%より多いので、TCの値が26.8と32.5より低くかつ表4の熱伝導率が25.3W/mKと30.0W/mKより低い。
No.32はMo量が0.93%と0.90%より多いので、2Mo+Wの量が1.89%と1.80%より多くかつTCの値が29.9と32.5より低く、表4の熱伝導率が29.5W/mKと30.0W/mKより低い。
No.33はW量が1.82%と1.80%より多いので、2Mo+Wの量が1.88%と1.80%より多くかつTCの値が31.0と32.5より低く、表4の熱伝導率が25.7W/mKと30.0W/mKより低い。
No.34は2Mo+Wの量が1.82%と1.80%より多くかつTCの値が30.5と32.5より低く、表4の熱伝導率が28.5W/mKと30.0W/mKより低い。
No.35はV量が0.09%と0.10%より少ないので、表4の焼入焼戻し硬さが37.6HRCと40.0より低い。
No.36はV量が0.62%と0.61%より多いので、TCの値が32.3と32.5より低くかつ表4の熱伝導率が29.4W/mKと30.0W/mKより低い。
No.37はN量が0.061%と0.040%より多いので、TCの値が29.7と32.5より低くかつ表4の熱伝導率が29.1W/mKと30.0W/mKより低い。
No.38はAl量が0.093%と0.080%より多いので、表4のシャルピー衝撃値が26J/cm2と30J/cm2より低い。
No.39は化学成分の量は規定の範囲内であるが、TCの値が32.2と32.5より低いので、表4の熱伝導率が29.4W/mKと30.0W/mKより低い。
On the other hand, No. 1 of the comparative steels shown in Tables 2 and 4. 26-39 will be considered below.
No. in Table 2 In No. 26, the amount of C was 0.19%, which was less than 0.20%. The quenching and tempering hardness of 26 is lower than 39.1 HRC and 40.0 HRC.
No. Since the amount of C in 27 is 0.53% and more than 0.50%, the TC value is lower than 29.5 and 32.5 and the thermal conductivity in Table 4 is 29.0 W / mK and 30.0 W / mK. Lower.
No. Since the amount of Si in 28 is 0.52% and more than 0.50%, the TC value is lower than 29.4 and 32.5 and the thermal conductivity in Table 4 is 26.2 W / mK and 30.0 W / mK. Lower.
No. Since the amount of Mn of 29 is 0.94% and more than 0.92%, the TC value is lower than 32.2 and 32.5 and the thermal conductivity in Table 4 is 29.7 W / mK and 30.0 W / mK. Lower.
No. Since the amount of Cr in 30 is 4.11%, which is larger than 4.00%, the TC value is lower than 28.4 and 32.5, and the thermal conductivity in Table 4 is 25.4 W / mK and 30.0 W / mK. Lower.
No. Since the amount of Ni in 31 is 2.09%, which is higher than 2.00%, the TC value is lower than 26.8 and 32.5, and the thermal conductivity in Table 4 is 25.3 W / mK and 30.0 W / mK. Lower.
No. Since 32 has a Mo amount of 0.93% and more than 0.90%, the amount of 2Mo + W is 1.89% and more than 1.80% and the TC value is lower than 29.9 and 32.5, Table 4 The thermal conductivity of is 29.5 W / mK, which is lower than 30.0 W / mK.
No. Since 33 has a W amount of 1.82% and more than 1.80%, the amount of 2Mo + W is 1.88% and more than 1.80% and the TC value is lower than 31.0 and 32.5, Table 4 The thermal conductivity of is 25.7 W / mK, which is lower than 30.0 W / mK.
No. In 34, the amount of 2Mo + W is 1.82%, which is more than 1.80%, the TC value is lower than 30.5 and 32.5, and the thermal conductivity of Table 4 is 28.5 W / mK and 30.0 W / mK. Lower.
No. Since the amount of V of 35 is 0.09%, which is less than 0.10%, the quenching and tempering hardness in Table 4 is 37.6 HRC, which is lower than 40.0.
No. Since the V amount of 36 is 0.62%, which is larger than 0.61%, the TC value is lower than 32.3 and 32.5, and the thermal conductivity in Table 4 is 29.4 W / mK and 30.0 W / mK. Lower.
No. Since the amount of N in 37 is 0.061%, which is larger than 0.040%, the TC value is lower than 29.7 and 32.5, and the thermal conductivity in Table 4 is 29.1 W / mK and 30.0 W / mK. Lower.
No. Since the Al content of 38 is 0.093%, which is larger than 0.080%, the Charpy impact values in Table 4 are lower than 26 J / cm 2 and 30 J / cm 2 .
No. In 39, the amount of chemical components is within the specified range, but the TC value is lower than 32.2 and 32.5, so the thermal conductivity in Table 4 is lower than 29.4 W / mK and 30.0 W / mK. ..

Claims (4)

質量%で、C:0.20〜0.50%、Si:0.50%以下、Mn:0.92%以下、Cr:4.00%以下、Ni:2.00%以下、2Mo+W:1.80%未満(ただし、Mo:0.90%未満、かつ、W:1.80%未満)、V:0.10超〜0.61%、N:0.040%以下、Al:0.080%以下を含有し、残部Feおよび不可避不純物からなり、TC=68.0−6.5Mn−5.7Cr−3.1V−4.4Mo−2.2W−24.7C−21.2N−6.5Ni−1.7Si+3.2A≧32.5を満足することを特徴とする熱伝導率に優れた熱間工具鋼。
ただし、TCの式中の各元素記号は質量%を示し、かつ式中のAは焼戻し状態での全炭化物の総面積率(%)を示す。
By mass%, C: 0.25 to 0.50%, Si: 0.50% or less, Mn: 0.92% or less, Cr: 4.00% or less, Ni: 2.00% or less, 2Mo + W: 1 .80% (however, Mo: less than 0.90% and W: less than 1.80%), V: more than 0.10 to 0.61%, N: 0.040% or less, Al: 0. It contains 080% or less, and consists of the balance Fe and unavoidable impurities. TC = 68.0-6.5Mn-5.7Cr-3.1V-4.4Mo-2.2W-24.7C-21.2N-6 A hot tool steel having excellent thermal conductivity, which satisfies .5Ni-1.7Si + 3.2A ≧ 32.5.
However, each element symbol in the TC formula indicates mass%, and A in the formula indicates the total area ratio (%) of all carbides in the tempered state.
請求項1に記載の熱間工具鋼の構成要件に加えて、該鋼の焼入焼戻し状態の室温における熱伝導率が30.0(W/m・K)以上であることを特徴とする熱伝導率に優れた熱間工具鋼。 In addition to the constituent requirements of the hot tool steel according to claim 1, the heat conductivity of the steel in a quenched and tempered state at room temperature is 30.0 (W / m · K) or more. Hot tool steel with excellent conductivity. 請求項1または請求項2に記載の熱間工具鋼の構成要件に加えて、焼入焼戻し状態での硬さが40.0HRC以上であることを特徴とする熱伝導率に優れた熱間工具鋼。 In addition to the constituent requirements of the hot tool steel according to claim 1 or 2, the hot tool having excellent thermal conductivity is characterized in that the hardness in the quenching and tempering state is 40.0 HRC or more. steel. 請求項1、請求項2または請求項3の熱間工具鋼の構成要件に加えて、焼入焼戻し状態での2mmUノッチ試験片でのシャルピー衝撃値が30J/cm2以上であることを特徴とする熱伝導率に優れた熱間工具鋼。 In addition to the constituent requirements of the hot tool steel of claim 1, claim 2 or claim 3, the Charpy impact value of the 2 mm U notch test piece in the quenching and tempering state is 30 J / cm 2 or more. Hot tool steel with excellent thermal conductivity.
JP2017010738A 2017-01-24 2017-01-24 Hot tool steel with excellent thermal conductivity Active JP6800532B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017010738A JP6800532B2 (en) 2017-01-24 2017-01-24 Hot tool steel with excellent thermal conductivity
PCT/JP2018/000197 WO2018139185A1 (en) 2017-01-24 2018-01-09 Hot work tool steel with excellent thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017010738A JP6800532B2 (en) 2017-01-24 2017-01-24 Hot tool steel with excellent thermal conductivity

Publications (2)

Publication Number Publication Date
JP2018119177A JP2018119177A (en) 2018-08-02
JP6800532B2 true JP6800532B2 (en) 2020-12-16

Family

ID=62979203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017010738A Active JP6800532B2 (en) 2017-01-24 2017-01-24 Hot tool steel with excellent thermal conductivity

Country Status (2)

Country Link
JP (1) JP6800532B2 (en)
WO (1) WO2018139185A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172275B2 (en) * 2018-08-17 2022-11-16 日立金属株式会社 Hot stamping die steel, hot stamping die and manufacturing method thereof
JP7277426B2 (en) 2020-12-10 2023-05-19 山陽特殊製鋼株式会社 Shaped body made from powder
JP7108014B2 (en) * 2020-12-10 2022-07-27 山陽特殊製鋼株式会社 Fe-based alloy powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197784A (en) * 2006-01-27 2007-08-09 Daido Steel Co Ltd Alloy steel
EP1887096A1 (en) * 2006-08-09 2008-02-13 Rovalma, S.A. Hot working steel
JP6396731B2 (en) * 2014-09-19 2018-09-26 株式会社豊田中央研究所 Volatile component generator and volatile component evaluation method
JP6714334B2 (en) * 2015-09-24 2020-06-24 山陽特殊製鋼株式会社 Hot work tool steel with excellent thermal conductivity and toughness

Also Published As

Publication number Publication date
JP2018119177A (en) 2018-08-02
WO2018139185A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6714334B2 (en) Hot work tool steel with excellent thermal conductivity and toughness
JP5815946B2 (en) Hardening method of steel
JP7083242B2 (en) Hot tool steel with excellent thermal conductivity
JP6925781B2 (en) Hot tool steel with excellent high temperature strength and toughness
JP7479787B2 (en) Hot work tool steel with excellent thermal conductivity
JP5534482B2 (en) Mold steel excellent in rust resistance and thermal conductivity and method for producing the same
JP5881276B2 (en) Hot tool steel with excellent toughness, short-time and long-term softening resistance
KR20170026220A (en) Steel for mold and mold
JP6800532B2 (en) Hot tool steel with excellent thermal conductivity
WO2016075951A1 (en) Hot work tool steel
JP7629269B2 (en) Hot work tool steel with excellent thermal conductivity
JP2020132891A (en) Mold steel having excellent thermal conductivity
JP6156670B2 (en) Hot tool and manufacturing method thereof
JP6654328B2 (en) High hardness and high toughness cold tool steel
JP4605695B2 (en) Pre-hardened steel for die casting molds
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP2022130746A (en) Non-heat-treated forged component and non-heat-treated forging steel
JP7149250B2 (en) Hot work tool steel with excellent high temperature strength and toughness
JP4302480B2 (en) High hardness steel with excellent cold workability
WO2015050151A1 (en) Age-hardening steel
JP2021011618A (en) Hot tool steel with excellent thermal conductivity
JP7544488B2 (en) Hot work tool steel with excellent manufacturability and thermal conductivity
KR20210035238A (en) Hot tool steel and hot tool
JP6177694B2 (en) Steel for cold press dies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R150 Certificate of patent or registration of utility model

Ref document number: 6800532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250