JP7533428B2 - All-solid-state battery - Google Patents
All-solid-state battery Download PDFInfo
- Publication number
- JP7533428B2 JP7533428B2 JP2021189323A JP2021189323A JP7533428B2 JP 7533428 B2 JP7533428 B2 JP 7533428B2 JP 2021189323 A JP2021189323 A JP 2021189323A JP 2021189323 A JP2021189323 A JP 2021189323A JP 7533428 B2 JP7533428 B2 JP 7533428B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- negative electrode
- active material
- electrode active
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 99
- 229910002804 graphite Inorganic materials 0.000 claims description 99
- 239000010439 graphite Substances 0.000 claims description 97
- 239000007773 negative electrode material Substances 0.000 claims description 50
- 239000007784 solid electrolyte Substances 0.000 claims description 28
- 239000007774 positive electrode material Substances 0.000 claims description 20
- 239000002409 silicon-based active material Substances 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 9
- 238000003475 lamination Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 83
- 238000011156 evaluation Methods 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 12
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000004020 conductor Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000011149 active material Substances 0.000 description 7
- 239000011247 coating layer Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000002134 carbon nanofiber Substances 0.000 description 6
- 239000002203 sulfidic glass Substances 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 230000000452 restraining effect Effects 0.000 description 5
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 4
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002241 glass-ceramic Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000676 Si alloy Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005056 compaction Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- -1 LiVO 2 Inorganic materials 0.000 description 2
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000011871 silicon-based negative electrode active material Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 102100028667 C-type lectin domain family 4 member A Human genes 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 101000766908 Homo sapiens C-type lectin domain family 4 member A Proteins 0.000 description 1
- 229910004043 Li(Ni0.5Mn1.5)O4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本開示は、全固体電池に関する。 This disclosure relates to all-solid-state batteries.
全固体電池は、正極層および負極層の間に固体電解質層を有する電池であり、可燃性の有機溶媒を含む電解液を有する液系電池に比べて、安全装置の簡素化が図りやすいという利点を有する。 All-solid-state batteries are batteries that have a solid electrolyte layer between a positive electrode layer and a negative electrode layer, and have the advantage that safety devices can be simplified more easily than liquid batteries that have an electrolyte solution that contains flammable organic solvents.
例えば特許文献1には、Si系活物質を含有した負極を備えた全固体電池が開示されている。 For example, Patent Document 1 discloses an all-solid-state battery equipped with a negative electrode containing a Si-based active material.
特許文献1に示されるように、全固体電池の負極においてSi系活物質を用いることが知られている。Si系活物質は、理論容量が大きく電池の高エネルギー密度化に有効である。一方、Si系活物質は、充放電時の体積変化が大きく、全固体電池の拘束圧の変動が大きくなる恐れがある。 As shown in Patent Document 1, it is known to use Si-based active materials in the negative electrodes of all-solid-state batteries. Si-based active materials have a large theoretical capacity and are effective in increasing the energy density of batteries. However, Si-based active materials undergo large volume changes during charging and discharging, which may lead to large fluctuations in the confining pressure of all-solid-state batteries.
本開示は、上記実情に鑑みてなされたものであり、拘束圧の変動が抑制された全固体電池を提供することを主目的とする。 This disclosure was made in consideration of the above-mentioned circumstances, and its main objective is to provide an all-solid-state battery in which fluctuations in confining pressure are suppressed.
上記課題を解決するために、本開示においては、正極集電体、正極活物質層、固体電解質層、負極活物質層および負極集電体をこの順に積層した全固体電池であって、上記負極活物質層が、Si系活物質および黒鉛を含有し、上記黒鉛の(002)面の面方向と、上記負極集電体の積層方向の面とのなす角が45°以上、90°以下である黒鉛を交差黒鉛とした場合に、上記黒鉛における上記交差黒鉛の割合が、20質量%よりも大きい、全固体電池を提供する。 In order to solve the above problems, the present disclosure provides an all-solid-state battery in which a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are laminated in this order, and the negative electrode active material layer contains a Si-based active material and graphite, and when the graphite is cross-graphite, the angle between the surface direction of the (002) plane of the graphite and the surface in the stacking direction of the negative electrode current collector is 45° or more and 90° or less, the proportion of the cross-graphite in the graphite is greater than 20 mass%.
本開示によれば、交差黒鉛の割合が所定の値よりも大きいため、拘束圧の変動が抑制された全固体電池となる。 According to the present disclosure, the proportion of cross-graphite is greater than a predetermined value, resulting in an all-solid-state battery with suppressed fluctuations in confining pressure.
上記開示においては、上記交差黒鉛の割合が、50質量%以上であってもよい。 In the above disclosure, the proportion of the cross-graphite may be 50% by mass or more.
上記開示においては、上記Si系活物質に対する上記黒鉛の質量比が、0.05以上、0.3以下であってもよい。 In the above disclosure, the mass ratio of the graphite to the Si-based active material may be 0.05 or more and 0.3 or less.
上記開示においては、上記負極活物質層の厚さをx(μm)、上記黒鉛の平均粒子径(D50)をy(μm)とした場合に、y/xが、0.16以上、0.56以下であってもよい。 In the above disclosure, when the thickness of the negative electrode active material layer is x (μm) and the average particle diameter (D 50 ) of the graphite is y (μm), y/x may be 0.16 or more and 0.56 or less.
本開示においては、拘束圧の変動が抑制された全固体電池を提供できるという効果を奏する。 The present disclosure has the effect of providing an all-solid-state battery in which fluctuations in confining pressure are suppressed.
以下、本開示における全固体電池について、詳細に説明する。図1は、本開示における全固体電池の一例を示す概略図である。図1に示す全固体電池10では、正極集電体1、正極活物質層2、固体電解質層3、負極活物質層4および負極集電体5がこの順に積層されている。また、負極活物質層4は、Si系活物質および黒鉛を含有する。そして、負極活物質層4においては、上記黒鉛の内、交差黒鉛の割合が所定の値より大きい。なお、本願明細書において単に「黒鉛」と記載した場合には、負極活物質層が含む黒鉛全体を意味する。つまり、本願明細書における「黒鉛」の用語は「交差黒鉛」も包含する。 The all-solid-state battery of the present disclosure will be described in detail below. FIG. 1 is a schematic diagram showing an example of an all-solid-state battery of the present disclosure. In the all-solid-state battery 10 shown in FIG. 1, a positive electrode collector 1, a positive electrode active material layer 2, a solid electrolyte layer 3, a negative electrode active material layer 4, and a negative electrode collector 5 are laminated in this order. The negative electrode active material layer 4 contains a Si-based active material and graphite. In the negative electrode active material layer 4, the proportion of cross graphite in the graphite is greater than a predetermined value. In this specification, when the term "graphite" is simply used, it means the entire graphite contained in the negative electrode active material layer. In other words, the term "graphite" in this specification also includes "cross graphite".
ここで、図を用いて上記交差黒鉛について説明する。図2は、本開示における交差黒鉛を説明するための図である。図2(a)に示されるように、交差黒鉛6は、負極活物質層4に含まれ、負極集電体5の積層方向の面と交差している。より詳細に説明すると、図2(b)に示すように、交差黒鉛6は、負極活物質層4に含まれる黒鉛の内、その(002)面の面方向Aと、負極集電体5の積層方向D2の面とのなす角θが45°以上、90°以下である黒鉛をいう。また、本願明細書において「(002)面」とは、層状構造の黒鉛の層面(黒鉛層と水平な面)であって黒鉛を構成するグラフェンシートの炭素ネットワークと水平な面をいう。また、「(002)面の面方向」とは、図2(b)に示すように黒鉛の各層の積層方向D1と直交する方向Aをいう。一方、「負極集電体の積層方向の面」とは、負極集電体の主面をいい、図2(b)に示すように電池を構成する各層の積層方向D2を法線方向とする面をいう。すなわち、本開示における交差黒鉛は、負極集電体の主面に対する、黒鉛の(002)面の面方向の角度が、45°以上、90°以下である黒鉛に該当する。 Here, the cross graphite is described with reference to the drawings. FIG. 2 is a diagram for explaining the cross graphite in the present disclosure. As shown in FIG. 2(a), the cross graphite 6 is included in the negative electrode active material layer 4 and crosses the plane of the stacking direction of the negative electrode current collector 5. To explain in more detail, as shown in FIG. 2(b), the cross graphite 6 refers to graphite included in the negative electrode active material layer 4, in which the angle θ between the plane direction A of the (002) plane and the plane of the stacking direction D2 of the negative electrode current collector 5 is 45° or more and 90° or less. In addition, in this specification, the "(002) plane" refers to the layer plane (plane horizontal to the graphite layer) of the graphite having a layered structure, which is horizontal to the carbon network of the graphene sheet constituting the graphite. In addition, the "plane direction of the (002) plane" refers to the direction A perpendicular to the stacking direction D1 of each layer of graphite as shown in FIG. 2(b). On the other hand, the "surface in the stacking direction of the negative electrode current collector" refers to the main surface of the negative electrode current collector, and refers to a surface having a normal direction in the stacking direction D2 of each layer constituting the battery as shown in FIG. 2(b). In other words, the intersecting graphite in this disclosure corresponds to graphite in which the angle of the (002) plane of the graphite with respect to the main surface of the negative electrode current collector is 45° or more and 90° or less.
本開示によれば、交差黒鉛の割合が所定の値よりも大きいため、拘束圧の変動が抑制された全固体電池となる。これは、交差黒鉛は、負極活物質層においてピラーとして機能するためと考えられる。 According to the present disclosure, since the proportion of cross-linked graphite is greater than a predetermined value, the result is an all-solid-state battery in which fluctuations in the confining pressure are suppressed. This is believed to be because the cross-linked graphite functions as pillars in the negative electrode active material layer.
1.負極活物質層
本開示における負極活物質層は、Si系活物質および黒鉛を含有する。また、黒鉛の内、交差黒鉛の割合が所定の値よりも大きい。
1. Negative Electrode Active Material Layer The negative electrode active material layer in the present disclosure contains a Si-based active material and graphite, and the proportion of cross graphite in the graphite is greater than a predetermined value.
本開示における負極活物質層は黒鉛を含有する。黒鉛の含有量は、例えば5質量%以上であり、10質量%以上であってもよく、20質量%以上であってもよい。一方、黒鉛の含有量は、例えば40質量%以下であり、30質量%以下であってもよい。 The negative electrode active material layer in the present disclosure contains graphite. The graphite content is, for example, 5% by mass or more, and may be 10% by mass or more, or 20% by mass or more. On the other hand, the graphite content is, for example, 40% by mass or less, and may be 30% by mass or less.
また、負極活物質層では、黒鉛の(002)面の面方向と、上記負極集電体の積層方向の面とのなす角が45°以上、90°以下である黒鉛を交差黒鉛とした場合に、上記黒鉛における上記交差黒鉛の割合が所定の値よりも大きい。交差黒鉛の割合(交差比率)は、20質量%よりも大きく、30質量%以上であってもよく、40質量%以上であってもよく、50質量%以上であってもよい。一方で、交差比率は、例えば100質量%以下であり、90質量%以下であってもよく、80質量%以下であってもよく、70質量%以下であってもよい。交差黒鉛の割合が少なすぎると、拘束圧の変動抑制効果が十分に得られない場合がある。交差比率の算出方法は、後述する実施例で説明する。また、黒鉛を負極集電体に対して交差させる方法および比率の調整方法についても後述する。 In addition, in the negative electrode active material layer, when graphite in which the angle between the surface direction of the (002) plane of the graphite and the surface in the stacking direction of the negative electrode current collector is 45° or more and 90° or less is considered as cross graphite, the ratio of the cross graphite in the graphite is greater than a predetermined value. The ratio of cross graphite (cross ratio) is greater than 20% by mass, and may be 30% by mass or more, 40% by mass or more, or 50% by mass or more. On the other hand, the cross ratio is, for example, 100% by mass or less, 90% by mass or less, 80% by mass or less, or 70% by mass or less. If the ratio of cross graphite is too small, the effect of suppressing the fluctuation of the binding pressure may not be sufficiently obtained. A method for calculating the cross ratio will be described in the examples described later. A method for crossing graphite with respect to the negative electrode current collector and a method for adjusting the ratio will also be described later.
また、負極集電体の積層方向の面と直交している交差黒鉛を直交黒鉛とした場合に、交差黒鉛においては直交黒鉛が主であることが好ましい。「負極集電体の積層方向の面と直交している交差黒鉛」とは、図2に(b)に示したような面方向Aと負極集電体の積層方向の面とのなす角θが、80°以上、90°以下である交差黒鉛をいう。また、「交差黒鉛においては直交黒鉛が主である」とは、交差黒鉛の全量に対する直交黒鉛の割合が50質量%以上であることをいう。直交黒鉛の割合は、70質量%以上であってもよく、90質量%以上であってもよく、100質量%であってもよい。 In addition, when cross graphite perpendicular to the surface of the stacking direction of the negative electrode current collector is defined as orthogonal graphite, it is preferable that the cross graphite is mainly orthogonal graphite. "Cross graphite perpendicular to the surface of the stacking direction of the negative electrode current collector" refers to cross graphite in which the angle θ between the surface direction A and the surface of the stacking direction of the negative electrode current collector as shown in FIG. 2(b) is 80° or more and 90° or less. In addition, "cross graphite is mainly orthogonal graphite" means that the ratio of orthogonal graphite to the total amount of cross graphite is 50% by mass or more. The ratio of orthogonal graphite may be 70% by mass or more, 90% by mass or more, or 100% by mass.
黒鉛の平均粒子径(D50)は、例えば5μm以上であり、7μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよい。一方、D50は、例えば50μm以下であり、45μm以下であってもよく、40μm以下であってもよく、30μm以下であってもよい。平均粒子径(D50)は、レーザー回折散乱法による粒度分布測定の結果から求めることができる。 The average particle diameter ( D50 ) of graphite is, for example, 5 μm or more, and may be 7 μm or more, 10 μm or more, or 20 μm or more. On the other hand, D50 is, for example, 50 μm or less, 45 μm or less, 40 μm or less, or 30 μm or less. The average particle diameter ( D50 ) can be determined from the results of particle size distribution measurement by a laser diffraction scattering method.
本開示における負極活物質層はSi系活物質を含有する。Si系活物質は、Si単体であってもよく、Si化合物であってもよい。Si化合物としては、例えば、Si合金、Si酸化物が挙げられる。Si合金は、Si元素を主成分として含有することが好ましい。
Si合金中のSi元素の割合は、例えば50at%以上であり、70at%以上であってもよく、90at%以上であってもよい。Si酸化物としては、例えばSiOが挙げられる。
The negative electrode active material layer in the present disclosure contains a Si-based active material. The Si-based active material may be a simple substance of Si or a Si compound. Examples of the Si compound include a Si alloy and a Si oxide. The Si alloy preferably contains a Si element as a main component.
The ratio of the Si element in the Si alloy is, for example, 50 at % or more, or may be 70 at % or more, or may be 90 at % or more. An example of the Si oxide is SiO.
Si系活物質の含有量は、例えば20質量%以上であり、30質量%以上であってもよく、40質量%以上であってもよい。一方、Si系活物質の含有量は、例えば80質量%以下であり、70質量%以下であってもよく、60質量%以下であってもよい。 The content of the Si-based active material is, for example, 20% by mass or more, may be 30% by mass or more, or may be 40% by mass or more. On the other hand, the content of the Si-based active material is, for example, 80% by mass or less, may be 70% by mass or less, or may be 60% by mass or less.
また、負極活物質層においては、上記Si系活物質に対する上記黒鉛の質量比が所定の範囲であることが好ましい。上記質量比は、例えば0.05以上であり、0.1以上であってもよく、0.15以上であってもよい。一方、上記質量比は、例えば0.3以下であり、0.25以下であってもよく、0.2以下であってもよい。上記質量比が低すぎると電池の内部抵抗が増加する恐れがあり、上記質量比が大きすぎると負極活物質層の圧密性が低下する恐れがある。 In addition, in the negative electrode active material layer, it is preferable that the mass ratio of the graphite to the Si-based active material is within a predetermined range. The mass ratio is, for example, 0.05 or more, and may be 0.1 or more, or 0.15 or more. On the other hand, the mass ratio is, for example, 0.3 or less, and may be 0.25 or less, or 0.2 or less. If the mass ratio is too low, the internal resistance of the battery may increase, and if the mass ratio is too high, the compaction property of the negative electrode active material layer may decrease.
また、負極活物質層においては、後述する負極活物質層の厚さをx(μm)とし、上記黒鉛のD50をy(μm)とした場合に、y/xが所定の範囲であることが好ましい。y/xは、例えば0.16以上であり、0.20以上であってもよい。一方、y/xは、例えば0.56以下であり、0.40以下であってもよく、0.30以下であってもよい。
y/xの値が小さすぎると電池の内部抵抗が増加する恐れがあり、y/xの値が大きすぎると負極活物質層の圧密性が低下する恐れがある。
In the negative electrode active material layer, when the thickness of the negative electrode active material layer described later is x (μm) and the D50 of the graphite is y (μm), it is preferable that y/x is in a predetermined range. y/x is, for example, 0.16 or more, and may be 0.20 or more. On the other hand, y/x is, for example, 0.56 or less, and may be 0.40 or less, or may be 0.30 or less.
If the value of y/x is too small, the internal resistance of the battery may increase, whereas if the value of y/x is too large, the compaction property of the negative electrode active material layer may decrease.
また、本開示における負極活物質層は、必要に応じて、黒鉛以外の導電材、バインダーおよび固体電解質の少なくとも一つを更に含有していてもよい。なお、負極活物質層は、黒鉛以外の導電材、特に炭素材料を、含有していなくてもよい。黒鉛以外の導電材としては、従来公知の導電材を挙げることができる。また、バインダーとしては、例えば、ブチレンゴム(BR)、スチレンブタジエンゴム(SBR)等のゴム系バインダー、ポリフッ化ビニリデン(PVDF)等のフッ化物系バインダーが挙げられる。固体電解質については、「3.固体電解質層」で説明する。また、負極活物質層の厚さは、例えば0.1μm以上1000μm以下である。 In addition, the negative electrode active material layer in this disclosure may further contain at least one of a conductive material other than graphite, a binder, and a solid electrolyte, as necessary. The negative electrode active material layer may not contain a conductive material other than graphite, particularly a carbon material. Examples of conductive materials other than graphite include conventionally known conductive materials. Examples of binders include rubber-based binders such as butylene rubber (BR) and styrene butadiene rubber (SBR), and fluoride-based binders such as polyvinylidene fluoride (PVDF). The solid electrolyte will be described in "3. Solid electrolyte layer". The thickness of the negative electrode active material layer is, for example, 0.1 μm or more and 1000 μm or less.
ここで、本開示における黒鉛を負極集電体に対して交差させる方法の一例について説明する。まず、本開示においては、Si系活物質および黒鉛を少なくとも含有する負極組成物を準備し、この組成物を負極集電体に塗工して塗工層を形成する。そして、この塗工層に磁場を印加する。磁場の印加による配向制御により、黒鉛を負極集電体に対して交差させることができる。なお、本開示における負極活物質層は、上記磁場印加後の塗工層を乾燥させることで形成することができる。 Here, an example of a method for crossing the graphite with respect to the negative electrode current collector in the present disclosure will be described. First, in the present disclosure, a negative electrode composition containing at least a Si-based active material and graphite is prepared, and this composition is applied to the negative electrode current collector to form a coating layer. Then, a magnetic field is applied to this coating layer. The graphite can be crossed with respect to the negative electrode current collector by controlling the orientation by applying a magnetic field. The negative electrode active material layer in the present disclosure can be formed by drying the coating layer after the magnetic field is applied.
磁場の印加方法を、図を用いてより詳細に説明する。図3は、本開示において黒鉛を負極集電体に交差させる方法の一例を説明するための図である。まず、図3(a)に示すように、負極集電体5および塗工層7をはさむように対向して配置された一対の磁場発生体20を用いて、負極集電体5の面方向と並行な磁力線が発生する磁場を印加する。これにより、図2(b)に示したような黒鉛の(002)面の面方向Aを、負極集電体5の積層方向の面と平行にする(つまり、θ=0°)。そして、図3(b)および(c)に示すように、磁場発生体20の角度を段階的に調整することで磁力線の角度を調整し、黒鉛6を負極集電体5に対して交差させる。 The method of applying the magnetic field will be described in more detail with reference to the drawings. FIG. 3 is a diagram for explaining an example of a method of intersecting the graphite with the negative electrode current collector in the present disclosure. First, as shown in FIG. 3(a), a pair of magnetic field generators 20 arranged opposite to each other so as to sandwich the negative electrode current collector 5 and the coating layer 7 are used to apply a magnetic field that generates magnetic lines of force parallel to the surface direction of the negative electrode current collector 5. As a result, the surface direction A of the (002) surface of the graphite as shown in FIG. 2(b) is made parallel to the surface of the stacking direction of the negative electrode current collector 5 (i.e., θ=0°). Then, as shown in FIGS. 3(b) and (c), the angle of the magnetic field generator 20 is adjusted stepwise to adjust the angle of the magnetic lines of force, and the graphite 6 is made to intersect with the negative electrode current collector 5.
磁場発生体としては、磁石およびコイル等の従来公知の部材を用いることができる。また、磁場の強さおよび印加時間等の条件は特に限定されず、所望の交差比率および負極組成物の粘度に応じて適宜調整することができる。例えば、磁場の強さは0.3T以上1T以下であり、印加時間は5秒以上2分以下である。交差比率はこれらの条件を変更することで調整することができる。 As the magnetic field generator, conventionally known components such as magnets and coils can be used. In addition, the conditions such as the strength of the magnetic field and the application time are not particularly limited, and can be appropriately adjusted according to the desired cross ratio and the viscosity of the negative electrode composition. For example, the strength of the magnetic field is 0.3 T or more and 1 T or less, and the application time is 5 seconds or more and 2 minutes or less. The cross ratio can be adjusted by changing these conditions.
2.正極活物質層
正極活物質層は、少なくとも正極活物質を含有し、必要に応じて導電材および固体電解質の少なくとも一方を含有していてもよい。正極活物質としては例えば、酸化物活物質が挙げられる。酸化物活物質としては、例えば、LiCoO2、LiMnO2、LiNiO2、LiVO2、LiNi1/3Co1/3Mn1/3O2等の岩塩層状型活物質、LiMn2O4、Li4Ti5O12、Li(Ni0.5Mn1.5)O4等のスピネル型活物質、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4等のオリビン型活物質が挙げられる。正極活物質の表面には、イオン伝導性酸化物が被覆されていてもよい。イオン伝導性酸化物としては、例えばLiNbO3が挙げられる。導電材および固体電解質は、上記と同様である。
2. Positive electrode active material layer The positive electrode active material layer contains at least a positive electrode active material, and may contain at least one of a conductive material and a solid electrolyte as necessary. Examples of the positive electrode active material include oxide active materials. Examples of the oxide active material include rock salt layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , and LiNi 1/3 Co 1/3 Mn 1/3 O 2 , spinel active materials such as LiMn 2 O 4 , Li 4 Ti 5 O 12 , and Li (Ni 0.5 Mn 1.5 ) O 4 , and olivine active materials such as LiFePO 4 , LiMnPO 4 , LiNiPO 4 , and LiCoPO 4 . The surface of the positive electrode active material may be coated with an ion-conductive oxide, such as LiNbO 3. The conductive material and the solid electrolyte are the same as those described above.
正極活物質層における正極活物質の割合は、例えば20質量%以上であり、30質量%以上であってもよく、40質量%以上であってもよい。一方、正極活物質の割合は、例えば80質量%以下であり、70質量%以下であってもよく、60質量%以下であってもよい。また、正極活物質層の厚さは、例えば0.1μm以上1000μm以下である。 The proportion of the positive electrode active material in the positive electrode active material layer is, for example, 20% by mass or more, may be 30% by mass or more, or may be 40% by mass or more. On the other hand, the proportion of the positive electrode active material is, for example, 80% by mass or less, may be 70% by mass or less, or may be 60% by mass or less. In addition, the thickness of the positive electrode active material layer is, for example, 0.1 μm or more and 1000 μm or less.
3.固体電解質層
固体電解質層は、上記正極活物質層および上記負極活物質層の間に形成される層であり、少なくとも固体電解質を含有する層である。また、固体電解質層は、固体電解質のみを含有していてもよく、さらにバインダーを含有していてもよい。
3. Solid Electrolyte Layer The solid electrolyte layer is a layer formed between the positive electrode active material layer and the negative electrode active material layer, and is a layer containing at least a solid electrolyte. The solid electrolyte layer may contain only a solid electrolyte, or may further contain a binder.
固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質等の無機固体電解質;ポリマー電解質等の有機高分子電解質が挙げられる。これらの中でも、特に、硫化物固体電解質が好ましい。固体電解質層の厚さは、例えば0.1μm以上1000μm以下である。 Examples of solid electrolytes include inorganic solid electrolytes such as sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, and halide solid electrolytes; and organic polymer electrolytes such as polymer electrolytes. Among these, sulfide solid electrolytes are particularly preferred. The thickness of the solid electrolyte layer is, for example, 0.1 μm or more and 1000 μm or less.
4.正極集電体および負極集電体
本開示における全固体電池は、上記正極活物質層の電子を集電する正極集電体および上記負極活物質層の電子を集電する負極集電体を有する。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボンが挙げられる。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボンが挙げられる。また、正極集電体および負極集電体の厚さや形状等については、全固体電池の用途等に応じて適宜選択することが好ましい。
4. Positive electrode current collector and negative electrode current collector The all-solid-state battery in the present disclosure has a positive electrode current collector that collects electrons from the positive electrode active material layer and a negative electrode current collector that collects electrons from the negative electrode active material layer. Examples of the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon. On the other hand, examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon. In addition, it is preferable to appropriately select the thickness, shape, etc. of the positive electrode current collector and the negative electrode current collector according to the application of the all-solid-state battery.
5.全固体電池
また、本開示における全固体電池は、正極集電体、正極活物質層、固体電解質層、負極活物質層および負極集電体に対して、厚さ方向に沿って拘束圧を付与する拘束治具をさらに有していてもよい。拘束治具としては、公知の治具を用いることができる。拘束圧は、例えば0.1MPa以上であり、1MPa以上であってもよい。一方、拘束圧は、例えば50MPa以下であり、20MPa以下であってもよい。
5. All-solid-state battery The all-solid-state battery of the present disclosure may further include a restraining tool that applies a restraining pressure to the positive electrode current collector, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector along the thickness direction. A known tool may be used as the restraining tool. The restraining pressure is, for example, 0.1 MPa or more, and may be 1 MPa or more. On the other hand, the restraining pressure is, for example, 50 MPa or less, and may be 20 MPa or less.
本開示における全固体電池の種類は特に限定されないが、典型的にはリチウムイオン電池である。また、本開示における全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。 The type of all-solid-state battery in this disclosure is not particularly limited, but is typically a lithium-ion battery. In addition, the all-solid-state battery in this disclosure may be a primary battery or a secondary battery, but is preferably a secondary battery. This is because it can be repeatedly charged and discharged, and is useful, for example, as an in-vehicle battery.
本開示における全固体電池は、単電池であってもよく、積層電池であってもよい。積層電池は、モノポーラ型積層電池(並列接続型の積層電池)であってもよく、バイポーラ型積層電池(直列接続型の積層電池)であってもよい。電池の形状としては、例えば、コイン型、ラミネート型、円筒型、角型が挙げられる。 The all-solid-state battery in the present disclosure may be a single cell or a stacked battery. The stacked battery may be a monopolar stacked battery (a stacked battery connected in parallel) or a bipolar stacked battery (a stacked battery connected in series). The shape of the battery may be, for example, a coin type, a laminate type, a cylindrical type, or a square type.
なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示における特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示における技術的範囲に包含される。 This disclosure is not limited to the above-mentioned embodiments. The above-mentioned embodiments are merely examples, and anything that has substantially the same configuration as the technical ideas described in the claims of this disclosure and has similar effects is included within the technical scope of this disclosure.
[比較例1]
(負極活物質層の形成)
Si系負極活物質(Si単体)と、分散媒(酪酸ブチル)と、バインダー(PVdF系バインダーの5wt%酪酸ブチル溶液)と、硫化物固体電解質(LiBr、LiIを含有するLi2S-P2S5系ガラスセラミック)と、導電材(VGCF)とを混合することでペースト状の負極組成物を調製した。なお、Si単体:VGCFは質量比で100:15となるよう秤量した。この組成物をニッケル箔(負極集電体)上に塗工して乾燥させることで、負極活物質層を形成した。なお、VGCFは黒鉛の(002)面に相当する結晶面を有しないため、磁場の印加による配向制御を行うことはできない。
[Comparative Example 1]
(Formation of negative electrode active material layer)
A paste-like negative electrode composition was prepared by mixing a Si-based negative electrode active material (Si simple substance), a dispersion medium (butyl butyrate), a binder (a 5 wt% butyl butyrate solution of a PVdF-based binder), a sulfide solid electrolyte (Li 2 S-P 2 S 5 -based glass ceramic containing LiBr and LiI), and a conductive material (VGCF). The Si simple substance:VGCF was weighed out to a mass ratio of 100:15. This composition was applied on a nickel foil (negative electrode current collector) and dried to form a negative electrode active material layer. Note that VGCF does not have a crystal plane equivalent to the (002) plane of graphite, so orientation control by application of a magnetic field is not possible.
(評価用セルの作製)
正極活物質(LiNi1/3Co1/3Mn1/3O2)と、分散媒(酪酸ブチル)と、バインダー(PVdF系バインダーの5wt%酪酸ブチル溶液)と、硫化物固体電解質(LiBr、LiIを含有するLi2S-P2S5系ガラスセラミック)と、導電材(VGCF)とを混合することで、ペースト状の正極成物を調製した。この組成物をアルミ箔(正極集電体)上に塗工して乾燥させることで、正極活物質層を形成した。
(Preparation of evaluation cells)
A paste-like positive electrode composition was prepared by mixing a positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), a dispersion medium (butyl butyrate), a binder (a 5 wt % butyl butyrate solution of a PVdF-based binder), a sulfide solid electrolyte (Li 2 S-P 2 S 5 -based glass ceramic containing LiBr and LiI), and a conductive material (VGCF). This composition was applied onto an aluminum foil (positive electrode current collector) and dried to form a positive electrode active material layer.
分散媒(ヘプタン)、バインダー(ブタジエンゴムの5wt%ヘプタン溶液)と、硫化物固体電解質(LiBr、LiIを含有するLi2S-P2S5系ガラスセラミック)とを混合することで、固体電解質組成物を調製した。この組成物をアルミ箔(基板)に塗工して乾燥することで固体電解質層を形成した。 A solid electrolyte composition was prepared by mixing a dispersion medium (heptane), a binder (a 5 wt % heptane solution of butadiene rubber), and a sulfide solid electrolyte ( Li2S - P2S5 -based glass ceramic containing LiBr and LiI). This composition was applied to an aluminum foil (substrate) and dried to form a solid electrolyte layer.
固体電解質層が正極活物質層と接するように、固体電解質層を正極活物質層に積層してプレスを行った。そして、固体電解質層の基板(アルミ箔)を剥がして、固体電解質層が負極活物質層と接するように負極活物質層を積層してプレスを行った。このようにして図4(a)(b)に示すような評価用セルを作製した。なお、電極面積は1cm2とし、正極に対する負極の容量比が3となるように評価セルを作製した。 The solid electrolyte layer was laminated on the positive electrode active material layer so that the solid electrolyte layer was in contact with the positive electrode active material layer, and pressed. Then, the substrate (aluminum foil) of the solid electrolyte layer was peeled off, and the negative electrode active material layer was laminated on the negative electrode active material layer so that the solid electrolyte layer was in contact with the negative electrode active material layer, and pressed. In this way, an evaluation cell as shown in Figure 4 (a) and (b) was produced. The evaluation cell was produced so that the electrode area was 1 cm2 and the capacity ratio of the negative electrode to the positive electrode was 3.
[比較例2]
導電材としてVGCFの代わりに黒鉛(D50=7μm)を用いた。このこと以外は比較例1と同様に評価セルを作製した。
[Comparative Example 2]
An evaluation cell was fabricated in the same manner as in Comparative Example 1 except that graphite (D 50 =7 μm) was used as the conductive material instead of VGCF.
[実施例1-1]
負極活物質層を以下のように形成したこと以外は、比較例2と同様に評価用セルを作製した。まず、Si系負極活物質(Si単体)と、分散媒(酪酸ブチル)と、バインダー(PVdF系バインダーの5wt%酪酸ブチル溶液)と、硫化物固体電解質(LiBr、LiIを含有するLi2S-P2S5系ガラスセラミック)と、導電材(黒鉛、D50=7μm)とを混合することでペースト状の負極組成物を調製した。この組成物をニッケル箔(負極集電体)上に塗工して塗工層を形成した。そして、この塗工層に対して磁場を印加することで、黒鉛を負極集電体に対して交差させた。磁場の印加方法は、磁場の強さを0.495Tとし、図3(a)から図3(c)に示すように磁力線の方向を段階的に変化させることで行った。その後、塗工層を乾燥させることで、負極活物質層を形成した。
[Example 1-1]
Except for forming the negative electrode active material layer as follows, an evaluation cell was prepared in the same manner as in Comparative Example 2. First, a Si-based negative electrode active material (Si simple substance), a dispersion medium (butyl butyrate), a binder (5 wt% butyl butyrate solution of PVdF-based binder), a sulfide solid electrolyte (Li 2 S-P 2 S 5 -based glass ceramic containing LiBr and LiI), and a conductive material (graphite, D 50 = 7 μm) were mixed to prepare a paste-like negative electrode composition. This composition was applied onto a nickel foil (negative electrode current collector) to form a coating layer. Then, a magnetic field was applied to this coating layer to cross the graphite with respect to the negative electrode current collector. The magnetic field was applied by setting the magnetic field strength to 0.495 T and gradually changing the direction of the magnetic field lines as shown in FIG. 3(a) to FIG. 3(c). Then, the coating layer was dried to form a negative electrode active material layer.
[実施例1-2および1-3]
全黒鉛の量に対する交差黒鉛の量(交差比率)が表2の値になるように、磁場の強さを変更した。このこと以外は、実施例1-1と同様に評価セルを作製した。
[Examples 1-2 and 1-3]
The strength of the magnetic field was changed so that the amount of crossed graphite relative to the amount of total graphite (cross ratio) became the value shown in Table 2. Except for this, an evaluation cell was prepared in the same manner as in Example 1-1.
[実施例2-1~2-5]
負極活物質層の膜厚(μm)に対する黒鉛の平均粒子径(D50、μm)が表3に示す値となるよう、黒鉛のD50を変更した。このこと以外は、実施例1-1と同様に評価セルを作製した。なお、負極活物質層の膜厚とはプレス後の負極活物質層の膜厚をいう。
[Examples 2-1 to 2-5]
The D50 of the graphite was changed so that the average particle diameter ( D50 , μm) of the graphite relative to the film thickness (μm) of the negative electrode active material layer was the value shown in Table 3. Except for this, an evaluation cell was produced in the same manner as in Example 1-1. Note that the film thickness of the negative electrode active material layer refers to the film thickness of the negative electrode active material layer after pressing.
[実施例3-1~3-6]
負極活物質層における黒鉛とSi系活物質の質量比が表4に示す値となるよう、黒鉛の量を変更した。このこと以外は、実施例1-1と同様に評価セルを作製した。
[Examples 3-1 to 3-6]
The amount of graphite was changed so that the mass ratio of graphite to Si-based active material in the negative electrode active material layer was a value shown in Table 4. Except for this, an evaluation cell was produced in the same manner as in Example 1-1.
[評価]
(交差比率)
各実施例および各比較例で作製した評価セルにおける負極活物質層に対して、イオンミリング加工により断面出しを行った。そして断面をSEM(走査型電子顕微鏡)で観察することで交差比率(全黒鉛に対する交差黒鉛の質量比率)を算出した。結果を表1から表4に示す。交差比率は具体的には以下のようにして求めた。まず、取得した負極活物質層の断面SEM画像を画像分析して、黒鉛全粒子の、面積、長辺と短編の長さ比(アスペクト比)および負極集電体に対する粒子長辺方向((002)面の面方向)の角度をデータ化した。そして、上記角度が45°以上、90°以下である黒鉛粒子の総面積を、黒鉛全粒子の面積で除した値を交差比率(質量比率)とした。
[evaluation]
(Cross Ratio)
The negative electrode active material layer in the evaluation cells prepared in each Example and Comparative Example was subjected to a cross-section by ion milling. The cross-section was observed with a SEM (scanning electron microscope) to calculate the cross-ratio (mass ratio of cross-graphite to total graphite). The results are shown in Tables 1 to 4. The cross-ratio was specifically determined as follows. First, the cross-sectional SEM image of the obtained negative electrode active material layer was analyzed, and the area, the ratio of the long side to the short side (aspect ratio), and the angle of the particle long side direction (plane direction of the (002) plane) with respect to the negative electrode current collector were converted into data. Then, the total area of graphite particles with the above angle of 45° or more and 90° or less was divided by the area of all graphite particles to obtain the cross-ratio (mass ratio).
(拘束圧変動)
図4(c)に示すような冶具に上記評価セルを4つセットし、ロードセルにより拘束圧の変動を測定し、拘束圧変動の抑制効果について評価した。具体的には、以下の式から拘束圧変動を規格化して評価した。結果を表1から表4に示す。
(充電終了時の拘束圧(MPa)-充電開始時の拘束圧(MPa))/(セル数×充電終了時の容量(mAh))
(Confining pressure fluctuation)
Four of the above evaluation cells were set in a jig as shown in Fig. 4(c), and the fluctuation of the confining pressure was measured using a load cell to evaluate the suppression effect of the confining pressure fluctuation. Specifically, the confining pressure fluctuation was normalized and evaluated using the following formula. The results are shown in Tables 1 to 4.
(Confinement pressure at the end of charging (MPa) - Confinement pressure at the start of charging (MPa)) / (Number of cells x Capacity at the end of charging (mAh))
(負極活物質層の圧密性)
評価セルにおける負極活物質層の厚さ(つまり、プレス後の負極活物質層の厚さ)を測定することで、負極活物質層の厚さが45μm(密度が1.8g/cc)まで圧密化できているか否かを相対評価した。結果を表1から表4に示す。
(Compactability of negative electrode active material layer)
The thickness of the negative electrode active material layer in the evaluation cell (i.e., the thickness of the negative electrode active material layer after pressing) was measured to relatively evaluate whether the negative electrode active material layer was compacted to a thickness of 45 μm (density of 1.8 g/cc). The results are shown in Tables 1 to 4.
(電池抵抗)
実施例1-1、2-1、3-1および3-2で作製した評価セルに対して、DCIR測定を行い、電池抵抗を求めた。測定は、25℃において、SOC(state of charge)20%から0.1秒間1.7C放電することで行った。その結果を表3および4に示す。
(Battery Resistance)
DCIR measurements were performed on the evaluation cells prepared in Examples 1-1, 2-1, 3-1, and 3-2 to determine the battery resistance. The measurements were performed at 25° C. by discharging at 1.7 C for 0.1 seconds from a state of charge (SOC) of 20%. The results are shown in Tables 3 and 4.
表1に示されるように、磁場を印加せずに負極活物質層を形成した比較例2は、VGCFを用いた比較例1と同様の拘束圧変動値を示し、拘束圧の変動を抑制できていないことが確認された。なお、SEM画像から、磁場を印加せずとも20質量%の黒鉛は負極集電体に交差していることが確認された。一方、表2~4に示すように、磁場を印加することで交差比率を20質量%より大きくすることができ、拘束圧の変動が顕著に抑制されていた。 As shown in Table 1, Comparative Example 2, in which the negative electrode active material layer was formed without applying a magnetic field, showed the same confining pressure fluctuation value as Comparative Example 1, in which VGCF was used, and it was confirmed that the fluctuation in the confining pressure could not be suppressed. In addition, the SEM image confirmed that 20 mass% of the graphite crossed the negative electrode current collector even without applying a magnetic field. On the other hand, as shown in Tables 2 to 4, the crossing ratio could be increased to more than 20 mass% by applying a magnetic field, and the fluctuation in the confining pressure was significantly suppressed.
また、表2に示すように、交差比率が大きいほど拘束圧の変動抑制の効果が大きいことが確認された。また、表3および表4に示した実施例1-1、2-1、3-1、3-2の結果から、負極活物質層の厚さに対する黒鉛のD50の比(D50/膜厚)および、Si系活物質に対する黒鉛の質量比(黒鉛/活物質)が大きくなることで、電池抵抗が小さくなることが確認された。一方、実施例2-5および3-6の結果から、D50/膜厚および黒鉛の質量比(黒鉛/活物質)が大きすぎる場合には、プレス圧密性が劣ることが示唆された。 In addition, as shown in Table 2, it was confirmed that the effect of suppressing the fluctuation of the confining pressure is greater as the cross ratio is larger. In addition, from the results of Examples 1-1, 2-1, 3-1, and 3-2 shown in Tables 3 and 4, it was confirmed that the battery resistance is reduced by increasing the ratio of the D 50 of graphite to the thickness of the negative electrode active material layer (D 50 /film thickness) and the mass ratio of graphite to the Si-based active material (graphite /active material). On the other hand, from the results of Examples 2-5 and 3-6, it was suggested that when the D 50 /film thickness and the mass ratio of graphite (graphite /active material) are too large, the press compaction property is inferior.
1 …正極集電体
2 …正極活物質層
3 …固体電解質層
4 …負極活物質層
5 …負極集電体
6 …交差黒鉛
10 …全固体電池
Reference Signs List 1 positive electrode current collector 2 positive electrode active material layer 3 solid electrolyte layer 4 negative electrode active material layer 5 negative electrode current collector 6 cross-sectional graphite 10 all-solid-state battery
Claims (3)
前記負極活物質層が、Si系活物質および黒鉛を含有し、
前記黒鉛の(002)面の面方向と、前記負極集電体の積層方向の面とのなす角が45°以上、90°以下である黒鉛を交差黒鉛とした場合に、
前記黒鉛における前記交差黒鉛の割合が、20質量%よりも大きく、
前記負極活物質層の厚さをx(μm)、前記黒鉛の平均粒子径(D 50 )をy(μm)とした場合に、y/xが、0.16以上、0.56以下である、全固体電池。 An all-solid-state battery in which a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are laminated in this order,
the negative electrode active material layer contains a Si-based active material and graphite,
When graphite in which the angle between the plane direction of the (002) plane of the graphite and the plane in the lamination direction of the negative electrode current collector is 45° or more and 90° or less is defined as cross graphite,
The proportion of the intersecting graphite in the graphite is greater than 20% by mass,
An all-solid-state battery , wherein y/x is 0.16 or more and 0.56 or less, where x (μm) is the thickness of the negative electrode active material layer and y (μm) is the average particle diameter (D 50 ) of the graphite.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210174930A KR102744329B1 (en) | 2020-12-14 | 2021-12-08 | All solid state battery |
CN202111496525.5A CN114695889A (en) | 2020-12-14 | 2021-12-09 | All-solid-state battery |
DE102021132631.1A DE102021132631A1 (en) | 2020-12-14 | 2021-12-10 | SOLID STATE BATTERY |
US17/549,215 US12230805B2 (en) | 2020-12-14 | 2021-12-13 | All solid state battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020206463 | 2020-12-14 | ||
JP2020206463 | 2020-12-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022094317A JP2022094317A (en) | 2022-06-24 |
JP7533428B2 true JP7533428B2 (en) | 2024-08-14 |
Family
ID=82081360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021189323A Active JP7533428B2 (en) | 2020-12-14 | 2021-11-22 | All-solid-state battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7533428B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7609147B2 (en) | 2022-09-26 | 2025-01-07 | トヨタ自動車株式会社 | Anode active material layer and solid-state battery |
JP2025068633A (en) * | 2023-10-17 | 2025-04-30 | 富士通商株式会社 | Double-sided negative electrode all-solid-state battery |
JP2025068634A (en) * | 2023-10-17 | 2025-04-30 | 富士通商株式会社 | All-solid-state lithium battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080268338A1 (en) | 2007-04-24 | 2008-10-30 | Samsung Sdi Co., Ltd. | Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same |
WO2013088540A1 (en) | 2011-12-14 | 2013-06-20 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery |
JP2018129212A (en) | 2017-02-09 | 2018-08-16 | トヨタ自動車株式会社 | Negative electrode for secondary battery |
JP2018139214A (en) | 2018-04-12 | 2018-09-06 | 古河機械金属株式会社 | Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery |
JP2019185943A (en) | 2018-04-05 | 2019-10-24 | トヨタ自動車株式会社 | Method for manufacturing lithium secondary battery negative electrode |
-
2021
- 2021-11-22 JP JP2021189323A patent/JP7533428B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080268338A1 (en) | 2007-04-24 | 2008-10-30 | Samsung Sdi Co., Ltd. | Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same |
WO2013088540A1 (en) | 2011-12-14 | 2013-06-20 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery |
JP2018129212A (en) | 2017-02-09 | 2018-08-16 | トヨタ自動車株式会社 | Negative electrode for secondary battery |
JP2019185943A (en) | 2018-04-05 | 2019-10-24 | トヨタ自動車株式会社 | Method for manufacturing lithium secondary battery negative electrode |
JP2018139214A (en) | 2018-04-12 | 2018-09-06 | 古河機械金属株式会社 | Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JP2022094317A (en) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110010903B (en) | Positive pole piece and battery | |
JP7533428B2 (en) | All-solid-state battery | |
WO2014115604A1 (en) | Positive electrode for secondary cell, method for manufacturing positive electrode for secondary cell, and whole solid secondary cell | |
JP7230849B2 (en) | Anode for lithium-ion batteries | |
WO2020241691A1 (en) | All-solid-state battery and method for producing same | |
Deng et al. | Development of a LiFePO4-based high power lithium secondary battery for HEVs applications | |
CN113036084A (en) | All-solid-state battery and method for manufacturing all-solid-state battery | |
JP2020129519A (en) | All-solid battery | |
JP7218751B2 (en) | All-solid battery | |
JP2020140896A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP7248043B2 (en) | All-solid battery | |
JP7484790B2 (en) | All-solid-state battery | |
JP2020140895A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP7552638B2 (en) | All-solid-state battery and method for producing the same | |
JP7494870B2 (en) | All-solid-state batteries and all-solid-state battery systems | |
JP7484850B2 (en) | All-solid-state battery | |
JP7334759B2 (en) | All-solid battery | |
JP7380636B2 (en) | All solid state battery | |
KR102744329B1 (en) | All solid state battery | |
JP7428156B2 (en) | All solid state battery | |
JP7517242B2 (en) | All-solid-state battery | |
JP7347454B2 (en) | Negative electrode active material layer | |
JP7420469B2 (en) | Negative electrode mixture | |
JP7245100B2 (en) | lithium ion secondary battery | |
JP7159665B2 (en) | All-solid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240715 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7533428 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |