JP2020140895A - Electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents
Electrode for lithium ion secondary battery and lithium ion secondary battery Download PDFInfo
- Publication number
- JP2020140895A JP2020140895A JP2019036667A JP2019036667A JP2020140895A JP 2020140895 A JP2020140895 A JP 2020140895A JP 2019036667 A JP2019036667 A JP 2019036667A JP 2019036667 A JP2019036667 A JP 2019036667A JP 2020140895 A JP2020140895 A JP 2020140895A
- Authority
- JP
- Japan
- Prior art keywords
- active material
- electrode active
- material layer
- secondary battery
- ion secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 112
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 109
- 239000007772 electrode material Substances 0.000 claims abstract description 191
- 239000011230 binding agent Substances 0.000 claims abstract description 66
- 239000002210 silicon-based material Substances 0.000 claims abstract description 59
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 42
- 239000010439 graphite Substances 0.000 claims abstract description 42
- 239000002245 particle Substances 0.000 claims description 50
- 239000000203 mixture Substances 0.000 description 62
- 239000007773 negative electrode material Substances 0.000 description 56
- 238000000034 method Methods 0.000 description 31
- 239000010419 fine particle Substances 0.000 description 29
- 238000000576 coating method Methods 0.000 description 23
- 239000011248 coating agent Substances 0.000 description 21
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 20
- 229910052744 lithium Inorganic materials 0.000 description 17
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000012752 auxiliary agent Substances 0.000 description 13
- 238000007600 charging Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- -1 polyethylene Polymers 0.000 description 11
- 230000008602 contraction Effects 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 238000007599 discharging Methods 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 239000007774 positive electrode material Substances 0.000 description 9
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 238000007611 bar coating method Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000007756 gravure coating Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000005033 polyvinylidene chloride Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000002482 conductive additive Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 238000000790 scattering method Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 2
- 229910052912 lithium silicate Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000011146 organic particle Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000131 polyvinylidene Polymers 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JHYPCEDZUTZPAB-UHFFFAOYSA-N B([O-])O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] Chemical compound B([O-])O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] JHYPCEDZUTZPAB-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013398 LiN(SO2CF2CF3)2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- 229910018058 Ni-Co-Al Inorganic materials 0.000 description 1
- 229910018144 Ni—Co—Al Inorganic materials 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- YDFRFVFUBOYQIX-UHFFFAOYSA-H [B+3].C([O-])([O-])=O.C([O-])([O-])=O.C([O-])([O-])=O.[B+3] Chemical compound [B+3].C([O-])([O-])=O.C([O-])([O-])=O.C([O-])([O-])=O.[B+3] YDFRFVFUBOYQIX-UHFFFAOYSA-H 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- NSUQCZRASCOCLD-UHFFFAOYSA-L [O-]OOO[O-].[Li+].[Li+] Chemical compound [O-]OOO[O-].[Li+].[Li+] NSUQCZRASCOCLD-UHFFFAOYSA-L 0.000 description 1
- RQQRTMXCTVKCEK-UHFFFAOYSA-N [Ta].[Mg] Chemical compound [Ta].[Mg] RQQRTMXCTVKCEK-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- RHDUVDHGVHBHCL-UHFFFAOYSA-N niobium tantalum Chemical compound [Nb].[Ta] RHDUVDHGVHBHCL-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000011242 organic-inorganic particle Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 235000011835 quiches Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池用電極及びリチウムイオン二次電池に関する。 The present invention relates to an electrode for a lithium ion secondary battery and a lithium ion secondary battery.
リチウムイオン二次電池は、電力貯蔵用の大型定置用電源、電気自動車用等の電源として利用されており、近年では電池のさらなる高容量化のため、エネルギー密度がさらに高いリチウムイオン二次電池が望まれている。このようなエネルギー密度の高いリチウムイオン二次電池を得る方法として、例えば、負極材料にSi系材料を用いる方法が挙げられる。Siの理論容量密度は4200mAh/gであり、カーボン系材料の理論容量密度(例えば、黒鉛の場合、372mAh/g)に比べて10倍以上高い。このため、負極材料にSi系材料を用いることによって、高容量のリチウムイオン二次電池を得ることができる。
しかし、Si系材料には、Liイオンを吸収すると体積が最大約4倍に増えるという問題がある。このため、Si系材料をそのまま負極材料として使用するとリチウムイオン二次電池の充放電サイクル特性が悪くなる。そこで、Si系材料の膨張収縮の影響を小さくするために、Si系材料及びカーボン系材料を混合して得られた混合物を負極材料として用いたリチウム二次電池用負極が従来技術として知られている(例えば、特許文献1参照)。
Lithium-ion secondary batteries are used as large-scale stationary power sources for power storage, power sources for electric vehicles, etc. In recent years, lithium-ion secondary batteries with even higher energy densities have been used to further increase the capacity of batteries. It is desired. As a method of obtaining such a lithium ion secondary battery having a high energy density, for example, a method of using a Si-based material as a negative electrode material can be mentioned. The theoretical volume density of Si is 4200 mAh / g, which is more than 10 times higher than the theoretical volume density of carbon-based materials (for example, 372 mAh / g in the case of graphite). Therefore, by using a Si-based material as the negative electrode material, a high-capacity lithium ion secondary battery can be obtained.
However, the Si-based material has a problem that the volume increases up to about 4 times when Li ions are absorbed. Therefore, if the Si-based material is used as it is as the negative electrode material, the charge / discharge cycle characteristics of the lithium ion secondary battery deteriorate. Therefore, in order to reduce the influence of expansion and contraction of the Si-based material, a negative electrode for a lithium secondary battery using a mixture obtained by mixing a Si-based material and a carbon-based material as a negative electrode material is known as a prior art. (See, for example, Patent Document 1).
しかしながら、従来のSi系材料及びカーボン系材料の混合物を使用した負極材料は、Si系材料の膨張収縮の影響を小さくするために、カーボン系材料の割合を大きくしなければならなかった。例えば、特許文献1に記載のリチウム二次電池用負極における黒鉛の含有率は体積比率で70〜100%であった。このため、リチウム二次電池の容量を大きくする目的で、負極材料におけるSi系材料の割合を大きくすると、Si系材料の膨張収縮の影響が大きくなり、充放電サイクル特性が悪くなるという問題があった。
そこで、本発明は、リチウムイオン二次電池の容量を大きくし、かつ充放電サイクル特性を良好にできる、Si系材料を含むリチウムイオン二次電池用電極及びそのリチウムイオン二次電池用電極を備えるリチウムイオン二次電池を提供することを課題とする。
However, in the negative electrode material using a mixture of a conventional Si-based material and a carbon-based material, the proportion of the carbon-based material must be increased in order to reduce the influence of expansion and contraction of the Si-based material. For example, the graphite content in the negative electrode for a lithium secondary battery described in Patent Document 1 was 70 to 100% by volume. Therefore, if the ratio of the Si-based material in the negative electrode material is increased for the purpose of increasing the capacity of the lithium secondary battery, there is a problem that the influence of expansion and contraction of the Si-based material becomes large and the charge / discharge cycle characteristics deteriorate. It was.
Therefore, the present invention includes an electrode for a lithium ion secondary battery containing a Si-based material and an electrode for the lithium ion secondary battery, which can increase the capacity of the lithium ion secondary battery and improve the charge / discharge cycle characteristics. An object of the present invention is to provide a lithium ion secondary battery.
本発明者らは、鋭意検討の結果、Si系材料を含む電極活物質層と集電体との間にカーボン系材料を含む電極活物質層を設けることによって、リチウムイオン二次電池の容量を大きくし、かつ充放電サイクル特性を良好にできることを見出し、以下の本発明を完成させた。本発明の要旨は、以下の[1]〜[7]である。
[1]集電体と、前記集電体の表面上に設けられる第1の電極活物質層と、前記集電体及び前記第1の電極活物質層との間に設けられる第2の電極活物質層とを備え、前記第1の電極活物質層がSi系材料及び第1の電極活物質層用バインダーを含み、前記第2の電極活物質層が黒鉛及び第2の電極活物質層用バインダーを含むリチウムイオン二次電池用電極。
[2]前記第1の電極活物質層の厚さが10〜70μmであり、前記第2の電極活物質層の厚さが5〜60μmである上記[1]に記載のリチウムイオン二次電池用電極。
[3]前記第2の電極活物質層の厚さ(D2)に対する前記第1の電極活物質層の厚さ(D1)の比(D1/D2)が0.1〜10である上記[1]又は[2]に記載のリチウムイオン二次電池用電極。
[4]前記第1の電極活物質層における前記Si系材料の平均粒子径が1〜30μmであり、前記第2の電極活物質層における前記黒鉛の平均粒子径が1〜30μmである上記[1]〜[3]のいずれか1つに記載のリチウムイオン二次電池用電極。
[5]前記第1の電極活物質層における前記Si系材料の含有量が95〜99質量%である上記[1]〜[4]のいずれか1つに記載のリチウムイオン二次電池用電極。
[6]前記第2の電極活物質層における前記黒鉛の含有量が95〜99質量%である上記[1]〜[5]のいずれか1つに記載のリチウムイオン二次電池用電極。
[7]上記[1]〜[6]のいずれか1つに記載のリチウムイオン二次電池用電極を負極として備えるリチウムイオン二次電池。
As a result of diligent studies, the present inventors have increased the capacity of the lithium ion secondary battery by providing an electrode active material layer containing a carbon-based material between the electrode active material layer containing the Si-based material and the current collector. We have found that the charge / discharge cycle characteristics can be made large and the charge / discharge cycle characteristics can be improved, and the following invention has been completed. The gist of the present invention is the following [1] to [7].
[1] A second electrode provided between the current collector, a first electrode active material layer provided on the surface of the current collector, and the current collector and the first electrode active material layer. It is provided with an active material layer, the first electrode active material layer contains a Si-based material and a binder for the first electrode active material layer, and the second electrode active material layer is graphite and a second electrode active material layer. Electrodes for lithium ion secondary batteries containing a binder for.
[2] The lithium ion secondary battery according to the above [1], wherein the thickness of the first electrode active material layer is 10 to 70 μm, and the thickness of the second electrode active material layer is 5 to 60 μm. Electrode for.
[3] The ratio (D1 / D2) of the thickness (D1) of the first electrode active material layer to the thickness (D2) of the second electrode active material layer is 0.1 to 10 [1]. ] Or [2]. The electrode for a lithium ion secondary battery.
[4] The average particle size of the Si-based material in the first electrode active material layer is 1 to 30 μm, and the average particle size of the graphite in the second electrode active material layer is 1 to 30 μm. 1] The electrode for a lithium ion secondary battery according to any one of [3].
[5] The electrode for a lithium ion secondary battery according to any one of the above [1] to [4], wherein the content of the Si-based material in the first electrode active material layer is 95 to 99% by mass. ..
[6] The electrode for a lithium ion secondary battery according to any one of the above [1] to [5], wherein the graphite content in the second electrode active material layer is 95 to 99% by mass.
[7] A lithium ion secondary battery comprising the electrode for the lithium ion secondary battery according to any one of the above [1] to [6] as a negative electrode.
本発明によれば、リチウムイオン二次電池の容量を大きくし、かつ充放電サイクル特性を良好にできる、Si系材料を含むリチウムイオン二次電池用電極及びそのリチウムイオン二次電池用電極を備えるリチウムイオン二次電池を提供することができる。 According to the present invention, an electrode for a lithium ion secondary battery containing a Si-based material and an electrode for the lithium ion secondary battery thereof, which can increase the capacity of the lithium ion secondary battery and improve the charge / discharge cycle characteristics, are provided. A lithium ion secondary battery can be provided.
<リチウムイオン二次電池用電極>
以下、本発明のリチウムイオン二次電池用電極について詳細に説明する。
図1に示すように、リチウムイオン二次電池用電極1は、集電体10と、集電体10の表面上に設けられる第1の電極活物質層20と、集電体10及び第1の電極活物質層20との間に設けられる第2の電極活物質層30とを備える。なお、第1の電極活物質層20及び第2の電極活物質層30は、集電体10の両表面に積層されてもよい。
<Electrodes for lithium-ion secondary batteries>
Hereinafter, the electrode for a lithium ion secondary battery of the present invention will be described in detail.
As shown in FIG. 1, the electrode 1 for a lithium ion secondary battery includes a current collector 10, a first electrode active material layer 20 provided on the surface of the current collector 10, and the current collector 10 and the first. A second electrode active material layer 30 provided between the electrode active material layer 20 and the electrode active material layer 20 is provided. The first electrode active material layer 20 and the second electrode active material layer 30 may be laminated on both surfaces of the current collector 10.
本発明のリチウムイオン二次電池用電極は、負極としてリチウムイオン二次電池に使用される。 The electrode for a lithium ion secondary battery of the present invention is used as a negative electrode in a lithium ion secondary battery.
(第1の電極活物質層)
第1の電極活物質層は、Si系材料及び第1の電極活物質層用バインダーを含む。上述したように、Si系材料は理論容量密度が高いので、第1の電極活物質層の電極活物質としてSi系材料を用いることにより、リチウムイオン二次電池の容量を大きくすることができる。
(First electrode active material layer)
The first electrode active material layer contains a Si-based material and a binder for the first electrode active material layer. As described above, since the Si-based material has a high theoretical capacity density, the capacity of the lithium ion secondary battery can be increased by using the Si-based material as the electrode active material of the first electrode active material layer.
Si系材料は、Liイオンを吸収すると膨張するものであれば特に限定されない。Si系材料には、例えば、Si、一般式SiOx(式中、xは0.5〜1.5の数)で表される化合物等が挙げられる。Si系材料の中でも比較的膨張収縮が小さいことから、これらの中で、一般式SiOx(式中、xは0.5〜1.5の数)で表される化合物が好ましい。ここで上記化合物を「SiO」単位で見た場合、このSiOは、アモルファス状のSiOであるか、又はSi:SiO2のモル比が約1:1となるように、ナノクラスターのSiの周囲にSiO2が存在する、Si及びSiO2の複合物である。SiO2は、充放電時におけるSiの膨張収縮に対して緩衝作用を有すると推測される。また、Si系材料は、一般式SiOx(式中、xは0.5〜1.5の数)で表される化合物の粒子をナノカーボン等のカーボンで被覆したものでもよい。 The Si-based material is not particularly limited as long as it expands when it absorbs Li ions. Examples of the Si-based material include Si, a compound represented by the general formula SiOx (where x is a number of 0.5 to 1.5), and the like. Among the Si-based materials, the compound represented by the general formula SiOx (x is a number of 0.5 to 1.5 in the formula) is preferable because the expansion and contraction is relatively small. Here, when the above compound is viewed in units of "SiO", this SiO is an amorphous SiO or is around the Si of the nanocluster so that the molar ratio of Si: SiO 2 is about 1: 1. It is a composite of Si and SiO 2 in which SiO 2 is present. It is presumed that SiO 2 has a buffering action against the expansion and contraction of Si during charging and discharging. Further, the Si-based material may be a material obtained by coating particles of a compound represented by the general formula SiOx (in the formula, x is a number of 0.5 to 1.5) with carbon such as nanocarbon.
Si系材料は、粒子状であることが好ましい。Si系材料の平均粒子径は、好ましくは1〜30μmである。Si系材料の平均粒子径が1μm以上であると、Si系材料粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。一方、Si系材料の平均粒子径が30μm以下であると、Si系材料の膨張収縮が抑制され、リチウムイオン二次電池の充放電サイクル特性を改善する。上述の観点から、Si系材料の平均粒子径は、より好ましくは2〜20μmであり、さらに好ましくは3〜10μmである。Si系材料の平均粒子径を所望の値に調節する方法として、ボールミル等を用いる公知の手法で粉砕する方法等が挙げられる。なお、平均粒子径は、レーザー回折散乱法によって求めたSi系材料の粒度分布において、体積積算が50%での粒径(D50)を意味する。 The Si-based material is preferably in the form of particles. The average particle size of the Si-based material is preferably 1 to 30 μm. When the average particle size of the Si-based material is 1 μm or more, the binding force between the Si-based material particles is increased, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the average particle size of the Si-based material is 30 μm or less, the expansion and contraction of the Si-based material is suppressed, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. From the above viewpoint, the average particle size of the Si-based material is more preferably 2 to 20 μm, still more preferably 3 to 10 μm. Examples of the method for adjusting the average particle size of the Si-based material to a desired value include a method of pulverizing by a known method using a ball mill or the like. The average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution of the Si-based material obtained by the laser diffraction / scattering method.
第1の電極活物質層におけるSi系材料の含有量は、95〜99質量%であることが好ましい。第1の電極活物質層におけるSi系材料の含有量が95質量%以上であると、リチウムイオン二次電池の容量を高めることができる。一方、第1の電極活物質層におけるSi系材料の含有量が99質量%以下であると、バインダー量を一定量以上にでき、それによりSi系材料粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。上述の観点から、第1の電極活物質層におけるSi系材料の含有量は96〜98質量%であることがより好ましい。 The content of the Si-based material in the first electrode active material layer is preferably 95 to 99% by mass. When the content of the Si-based material in the first electrode active material layer is 95% by mass or more, the capacity of the lithium ion secondary battery can be increased. On the other hand, when the content of the Si-based material in the first electrode active material layer is 99% by mass or less, the amount of the binder can be increased to a certain amount or more, thereby increasing the binding force between the Si-based material particles and lithium ion secondary. Improve the charge / discharge cycle characteristics of the next battery. From the above viewpoint, the content of the Si-based material in the first electrode active material layer is more preferably 96 to 98% by mass.
Si系材料の一部又は全部に、リチウム又はリチウムイオンを含ませるプレドープ処理を施していてもよい。プレドープ処理により、第1の電極活物質層中の二酸化ケイ素とリチウムとが不可逆的に反応し、リチウムシリケート(Li4SiO4)が生成される。この結果、初期充電工程において第1の電極活物質層にリチウムが吸蔵されたときにリチウムシリケートの生成が起こらないため、放電容量の低下が抑制される。 A part or all of the Si-based material may be pre-doped with lithium or lithium ions. By the pre-doping treatment, silicon dioxide and lithium in the first electrode active material layer react irreversibly to form lithium silicate (Li 4 SiO 4 ). As a result, when lithium is occluded in the first electrode active material layer in the initial charging step, lithium silicate is not generated, so that a decrease in discharge capacity is suppressed.
第1の電極活物質層に対するプレドープの方法は特に限定されず、従来のリチウムイオン二次電池に施されるプレドープ方法が適用可能である。例えば、スパッタリング法により第1の電極活物質層の表面にリチウム層を形成してもよい。また、第1の電極活物質層の表面にリチウム箔を設けてもよい。プレドープするリチウムの量は特に限定されず、例えば、第1の電極活物質層中の酸化ケイ素に対して、1〜4倍モル量であることが好ましい。 The predoping method for the first electrode active material layer is not particularly limited, and the predoping method applied to a conventional lithium ion secondary battery can be applied. For example, a lithium layer may be formed on the surface of the first electrode active material layer by a sputtering method. Further, a lithium foil may be provided on the surface of the first electrode active material layer. The amount of lithium to be pre-doped is not particularly limited, and is preferably 1 to 4 times the molar amount of silicon oxide in the first electrode active material layer, for example.
第1の電極活物質層は、導電性付与及びSi系材料の膨張収縮に対する緩和の観点から、導電助剤を含有してもよい。導電助剤は、Si系材料よりも導電性が高い材料が使用される。具体的には、導電助剤には、例えば、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、棒状カーボン等の炭素材料等が挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。
第1の電極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、電極活物質層全量基準で、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、2質量%以下であることがとくに好ましい。
The first electrode active material layer may contain a conductive auxiliary agent from the viewpoint of imparting conductivity and mitigating expansion and contraction of the Si-based material. As the conductive auxiliary agent, a material having higher conductivity than the Si-based material is used. Specifically, examples of the conductive auxiliary agent include carbon materials such as Ketjen black, acetylene black, carbon nanotubes, and rod-shaped carbon. These conductive auxiliaries may be used alone or in combination of two or more.
When the conductive auxiliary material is contained in the first electrode active material layer, the content of the conductive auxiliary agent is preferably 5% by mass or less, preferably 4% by mass or less, based on the total amount of the electrode active material layer. More preferably, it is more preferably 3% by mass or less, and particularly preferably 2% by mass or less.
第1の電極活物質層は、Si系材料が第1の電極活物質層用バインダーによって結着されて構成される。
第1の電極活物質層用バインダーは、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸リチウム、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVdF−HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロース(CMC)等は、ナトリウム塩等の塩の態様にて使用されていてもよい。
第1の電極活物質層における第1の電極活物質層用バインダーの含有量は、電極活物質層全量基準で、1〜5質量%であることが好ましい。第1の電極活物質層用バインダーの含有量が1質量%以上であると、Si系材料粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。一方、第1の電極活物質層用バインダーの含有量が5質量%以下であると、第1の電極活物質層中の抵抗の高い成分であるバインダーの量が減るのでリチウムイオン二次電池の出力特性が向上する。上述の観点から、第1の電極活物質層における第1の電極活物質層用バインダーの含有量は、電極活物質層全量基準で、2〜4質量%であることがより好ましい。
The first electrode active material layer is formed by binding Si-based materials with a binder for the first electrode active material layer.
The binder for the first electrode active material layer is poly (meth) acrylic acid, lithium poly (meth) acrylate, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), poly. Fluorine-containing resin such as tetrafluoroethylene (PTFE), acrylic resin such as polymethylacrylate (PMA) and polymethylmethacrylate (PMMA), polyvinylidene acetate, polyimide (PI), polyamide (PA), polyvinylidene chloride (PVC) ), Polyethernitrile (PEN), polyethylene (PE), polypropylene (PP), polyacrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose, polyvinyl alcohol, etc. Can be mentioned. These binders may be used alone or in combination of two or more. Further, carboxymethyl cellulose (CMC) or the like may be used in the form of a salt such as a sodium salt.
The content of the binder for the first electrode active material layer in the first electrode active material layer is preferably 1 to 5% by mass based on the total amount of the electrode active material layer. When the content of the binder for the first electrode active material layer is 1% by mass or more, the binding force between the Si-based material particles is increased, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the content of the binder for the first electrode active material layer is 5% by mass or less, the amount of the binder, which is a highly resistant component in the first electrode active material layer, decreases, so that the lithium ion secondary battery Output characteristics are improved. From the above viewpoint, the content of the binder for the first electrode active material layer in the first electrode active material layer is more preferably 2 to 4% by mass based on the total amount of the electrode active material layer.
第1の電極活物質層の厚さは、好ましくは集電体の片面当たり10〜70μmである。第1の電極活物質層の厚さが集電体の片面当たり10μm以上であると、電極において高容量成分であるSi系材料が増え、リチウムイオン二次電池の容量が向上する。一方、第1の電極活物質層の厚さが集電体の片面当たり70μm以下であると、リチウムイオン二次電池の充放電における電極の膨張量が減少し、リチウムイオン二次電池の充放電サイクル特性が向上する。上述の観点から、第1の電極活物質層の厚さは、集電体の片面当たり、20〜40μmがより好ましく、20〜38μmがさらに好ましい。 The thickness of the first electrode active material layer is preferably 10 to 70 μm per one side of the current collector. When the thickness of the first electrode active material layer is 10 μm or more per one side of the current collector, the amount of Si-based material which is a high-capacity component in the electrode increases, and the capacity of the lithium ion secondary battery is improved. On the other hand, when the thickness of the first electrode active material layer is 70 μm or less per one side of the current collector, the expansion amount of the electrode during charging / discharging of the lithium ion secondary battery decreases, and charging / discharging of the lithium ion secondary battery Cycle characteristics are improved. From the above viewpoint, the thickness of the first electrode active material layer is more preferably 20 to 40 μm and further preferably 20 to 38 μm per one side of the current collector.
第1の電極活物質層は、本発明の効果を損なわない範囲内において、Si系材料、導電助剤、及び電極用バインダー以外の他の任意成分を含んでもよい。ただし、電極活物質層の総質量のうち、Si系材料、導電助剤、及び電極用バインダーの総含有量は、96質量%以上であることが好ましく、98質量%以上であることがより好ましい。 The first electrode active material layer may contain an optional component other than the Si-based material, the conductive auxiliary agent, and the binder for the electrode as long as the effect of the present invention is not impaired. However, the total content of the Si-based material, the conductive auxiliary agent, and the binder for the electrode is preferably 96% by mass or more, and more preferably 98% by mass or more, based on the total mass of the electrode active material layer. ..
(第2の電極活物質層)
第2の電極活物質層は、黒鉛及び第2の電極活物質層用バインダーを含む。黒鉛がLiイオンを吸収しても、黒鉛には大きな膨張が起こらないので、第2の電極活物質層は、膨張収縮を起こす第1の電極活物質層に対して緩衝層としての機能を有する。
(Second electrode active material layer)
The second electrode active material layer contains graphite and a binder for the second electrode active material layer. Even if graphite absorbs Li ions, the graphite does not expand significantly, so that the second electrode active material layer functions as a buffer layer with respect to the first electrode active material layer that causes expansion and contraction. ..
黒鉛は、特に限定されず、黒鉛には、例えば、天然黒鉛、人造黒鉛、キッシュ黒鉛等が挙げられる。また、天然黒鉛には、例えば、鱗片状黒鉛、塊状黒鉛、土状黒鉛等が挙げられる。 Graphite is not particularly limited, and examples of graphite include natural graphite, artificial graphite, quiche graphite and the like. In addition, examples of natural graphite include scaly graphite, lump graphite, earth graphite and the like.
黒鉛の平均粒子径は、好ましくは1〜30μmである。黒鉛の平均粒子径が1μm以上であると、黒鉛粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。一方、黒鉛の平均粒子径が30μm以下であると、第2の電極活物質層を厚すぎないようにすることができ、リチウムイオン二次電池の容量を向上させることができる。上述の観点から、黒鉛の平均粒子径は、より好ましくは2〜20μmであり、さらに好ましくは5〜15μmである。黒鉛の平均粒子径を所望の値に調節する方法として、ボールミル等を用いる公知の手法で粉砕する方法等が挙げられる。平均粒子径は、レーザー回折散乱法によって求めた黒鉛の粒度分布において、体積積算が50%での粒径(D50)を意味する。 The average particle size of graphite is preferably 1 to 30 μm. When the average particle size of graphite is 1 μm or more, the binding force between the graphite particles is increased, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the average particle size of graphite is 30 μm or less, the second electrode active material layer can be prevented from being too thick, and the capacity of the lithium ion secondary battery can be improved. From the above viewpoint, the average particle size of graphite is more preferably 2 to 20 μm, still more preferably 5 to 15 μm. Examples of the method of adjusting the average particle size of graphite to a desired value include a method of pulverizing by a known method using a ball mill or the like. The average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution of graphite obtained by the laser diffraction / scattering method.
第2の電極活物質層における黒鉛の含有量は、95〜99質量%であることが好ましい。第2の電極活物質層における黒鉛の含有量が95質量%以上であると、リチウムイオン二次電池の容量を高めることができる。一方、第2の電極活物質層における黒鉛の含有量が99質量%以下であると、バインダー量を一定以上にでき、それにより黒鉛粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。上述の観点から、第2の電極活物質層における黒鉛の含有量は、96〜98質量%であることがより好ましい。 The graphite content in the second electrode active material layer is preferably 95 to 99% by mass. When the graphite content in the second electrode active material layer is 95% by mass or more, the capacity of the lithium ion secondary battery can be increased. On the other hand, when the graphite content in the second electrode active material layer is 99% by mass or less, the amount of the binder can be made constant or more, thereby increasing the binding force between the graphite particles and charging / discharging the lithium ion secondary battery. Improve cycle characteristics. From the above viewpoint, the graphite content in the second electrode active material layer is more preferably 96 to 98% by mass.
第2電極活物質層は、導電助剤を含有してもよい。導電助剤には、例えば、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、棒状カーボン等の炭素材料等が挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。
第1の電極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、電極活物質層全量基準で、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、2質量%以下であることがとくに好ましい。
The second electrode active material layer may contain a conductive auxiliary agent. Examples of the conductive auxiliary agent include carbon materials such as Ketjen black, acetylene black, carbon nanotubes, and rod-shaped carbon. These conductive auxiliaries may be used alone or in combination of two or more.
When the conductive auxiliary material is contained in the first electrode active material layer, the content of the conductive auxiliary agent is preferably 5% by mass or less, preferably 4% by mass or less, based on the total amount of the electrode active material layer. More preferably, it is more preferably 3% by mass or less, and particularly preferably 2% by mass or less.
第2の電極活物質層は、黒鉛が第2の電極活物質層用バインダーによって結着されて構成される。
第2の電極活物質層用バインダーには、第1の電極活物質層用バインダーに挙げられた樹脂と同様のものを使用することができる。なお、第2の電極活物質層用バインダーは、第1の電極活物質用バインダーと同じものであってもよいし、異なるものであってもよい。
第2の電極活物質層における第2の電極活物質層用バインダーの含有量は、電極活物質層全量基準で、1〜5質量%であることが好ましい。第2の電極活物質層用バインダーの含有量が1質量%以上であると、黒鉛粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。一方、第2の電極活物質層用バインダーの含有量が5質量%以下であると、第2の電極活物質層中の抵抗の高い成分であるバインダーの量が減るのでリチウムイオン二次電池の出力特性が向上する。上述の観点から、第2の電極活物質層における第2の電極活物質層用バインダーの含有量は、電極活物質層全量基準で、2〜4質量%であることがより好ましい。
The second electrode active material layer is formed by binding graphite with a binder for the second electrode active material layer.
As the binder for the second electrode active material layer, the same resin as that listed in the binder for the first electrode active material layer can be used. The binder for the second electrode active material layer may be the same as or different from the binder for the first electrode active material.
The content of the binder for the second electrode active material layer in the second electrode active material layer is preferably 1 to 5% by mass based on the total amount of the electrode active material layer. When the content of the binder for the second electrode active material layer is 1% by mass or more, the binding force between the graphite particles is increased, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the content of the binder for the second electrode active material layer is 5% by mass or less, the amount of the binder, which is a highly resistant component in the second electrode active material layer, decreases, so that the lithium ion secondary battery Output characteristics are improved. From the above viewpoint, the content of the binder for the second electrode active material layer in the second electrode active material layer is more preferably 2 to 4% by mass based on the total amount of the electrode active material layer.
第2の電極活物質層の厚さは、特に限定されないが、集電体の片面当たり、5〜60μmであることが好ましい。第2の電極活物質層の厚さが5μm以上であると、第1の電極活物質層と第2の電極活物質層との間の密着性が高まり、リチウムイオン二次電池の充放電サイクル特性が向上する。一方、第2の電極活物質層の厚さが60μm以下であると、電極における第1の電極活物質層の比率が増え、リチウムイオン二次電池の容量が向上する。上述の観点から、第2の電極活物質層の厚さは、集電体の片面当たり、15〜25μmであることがより好ましい。 The thickness of the second electrode active material layer is not particularly limited, but is preferably 5 to 60 μm per one side of the current collector. When the thickness of the second electrode active material layer is 5 μm or more, the adhesion between the first electrode active material layer and the second electrode active material layer is enhanced, and the charge / discharge cycle of the lithium ion secondary battery is increased. The characteristics are improved. On the other hand, when the thickness of the second electrode active material layer is 60 μm or less, the ratio of the first electrode active material layer in the electrode increases, and the capacity of the lithium ion secondary battery is improved. From the above viewpoint, the thickness of the second electrode active material layer is more preferably 15 to 25 μm per one side of the current collector.
集電体片面当たりの第2の電極活物質層の厚さ(D2)に対する集電体片面当たりの第1の電極活物質層の厚さ(D1)の比(D1/D2)は、好ましくは0.1〜10である。集電体片面当たりの第2の電極活物質層の厚さ(D2)に対する集電体片面当たりの第1の電極活物質層の厚さ(D1)の比(D1/D2)が0.1以上であると、電極におけるSi系材料の比率が高くなるのでリチウムイオン二次電池の容量が向上する。一方、集電体片面当たりの第2の電極活物質層の厚さ(D2)に対する集電体片面当たりの第1の電極活物質層の厚さ(D1)の比(D1/D2)が10以下であると、リチウムイオン二次電池の充放電における電極の膨張量が減り、リチウムイオン二次電池の充放電サイクル特性が向上する。上述の観点から、集電体片面当たりの第2の電極活物質層の厚さ(D2)に対する集電体片面当たりの第1の電極活物質層の厚さ(D1)の比(D1/D2)は、より好ましくは0.1〜5であり、さらに好ましくは1.2〜3である。 The ratio (D1 / D2) of the thickness (D1) of the first electrode active material layer per one side of the current collector to the thickness (D2) of the second electrode active material layer per one side of the current collector is preferably. It is 0.1 to 10. The ratio (D1 / D2) of the thickness (D1) of the first electrode active material layer per one side of the current collector to the thickness (D2) of the second electrode active material layer per one side of the current collector is 0.1. With the above, the ratio of the Si-based material in the electrode is high, so that the capacity of the lithium ion secondary battery is improved. On the other hand, the ratio (D1 / D2) of the thickness (D1) of the first electrode active material layer per one side of the current collector to the thickness (D2) of the second electrode active material layer per one side of the current collector is 10. When the following, the amount of expansion of the electrode during charging / discharging of the lithium ion secondary battery is reduced, and the charging / discharging cycle characteristics of the lithium ion secondary battery are improved. From the above viewpoint, the ratio (D1 / D2) of the thickness (D1) of the first electrode active material layer per one side of the current collector to the thickness (D2) of the second electrode active material layer per one side of the current collector. ) Is more preferably 0.1 to 5, and even more preferably 1.2 to 3.
第2の電極活物質層は、本発明の効果を損なわない範囲内において、黒鉛、導電助剤、及び第2の電極活物質層用バインダー以外の他の任意成分を含んでもよい。ただし、電極活物質層の総質量のうち、黒鉛、導電助剤、及び第2の電極活物質層用バインダーの総含有量は、96質量%以上であることが好ましく、98質量%以上であることがより好ましい。 The second electrode active material layer may contain arbitrary components other than graphite, a conductive auxiliary agent, and a binder for the second electrode active material layer as long as the effects of the present invention are not impaired. However, the total content of graphite, the conductive auxiliary agent, and the binder for the second electrode active material layer in the total mass of the electrode active material layer is preferably 96% by mass or more, preferably 98% by mass or more. Is more preferable.
(集電体)
集電体(電極集電体)を構成する材料としては、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられ、これらの中ではアルミニウム又は銅が好ましく、銅がより好ましい。集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1〜50μmが好ましい。
(Current collector)
Examples of the material constituting the current collector (electrode current collector) include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum or copper is preferable, and copper is preferable. Is more preferable. The current collector is generally made of a metal foil, and its thickness is not particularly limited, but is preferably 1 to 50 μm.
(絶縁層)
第1の電極活物質層の表面に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子と、絶縁層用バインダーとを含む。絶縁層は、絶縁性微粒子が絶縁層用バインダーによって結着されて構成される層であり、多孔質構造を有する。第1の電極活物質層の表面に絶縁層を設けることにより、第1の電極活物質層が膨張により面方向に広がることを抑制することができる。なお、第1の電極活物質層が膨張により面方向に広がると、リチウムイオン二次電池の充放電に寄与する第1の電極活物質層の割合が減少し、リチウムイオン二次電池の充放電サイクル特性が悪くなる。
(Insulation layer)
An insulating layer may be provided on the surface of the first electrode active material layer. The insulating layer includes insulating fine particles and a binder for the insulating layer. The insulating layer is a layer formed by binding insulating fine particles with a binder for an insulating layer, and has a porous structure. By providing the insulating layer on the surface of the first electrode active material layer, it is possible to prevent the first electrode active material layer from expanding in the plane direction due to expansion. When the first electrode active material layer expands in the plane direction due to expansion, the proportion of the first electrode active material layer that contributes to the charging / discharging of the lithium ion secondary battery decreases, and the charging / discharging of the lithium ion secondary battery The cycle characteristics deteriorate.
絶縁層の厚さは3〜15μmが好ましい。絶縁層の厚さを3μm以上であると、絶縁層が電極の膨張収縮を緩和し、リチウムイオン二次電池の充放電サイクル特性が向上する。一方、絶縁層の厚さが15μm以下であると、正極と負極との間の距離が小さくなるのでリチウムイオン二次電池の出力が向上する。上述の観点から、絶縁層の厚さは、3〜13μmがより好ましく、3〜10μmがさらに好ましい。 The thickness of the insulating layer is preferably 3 to 15 μm. When the thickness of the insulating layer is 3 μm or more, the insulating layer relaxes the expansion and contraction of the electrode, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the thickness of the insulating layer is 15 μm or less, the distance between the positive electrode and the negative electrode becomes small, so that the output of the lithium ion secondary battery is improved. From the above viewpoint, the thickness of the insulating layer is more preferably 3 to 13 μm, further preferably 3 to 10 μm.
絶縁層は、上記のように、多孔質構造を有するが、その空隙率は、30〜80%が好ましい。絶縁層の空隙率が30%以上であると、絶縁層におけるリチウムイオンの伝導経路を確保することができ、リチウムイオン二次電池の出力が向上する。一方、絶縁層の空隙率が80%以下であると、絶縁層における絶縁成分の比率が高まり、リチウムイオン二次電池の安全性が向上する。上述の観点から、絶縁層の空隙率は、40〜78%がより好ましく、50〜75%がさらに好ましい。なお、絶縁層の空隙率は、後述の実施例の記載の方法により測定することができる。 As described above, the insulating layer has a porous structure, and the porosity thereof is preferably 30 to 80%. When the porosity of the insulating layer is 30% or more, the conduction path of lithium ions in the insulating layer can be secured, and the output of the lithium ion secondary battery is improved. On the other hand, when the porosity of the insulating layer is 80% or less, the ratio of the insulating component in the insulating layer is increased, and the safety of the lithium ion secondary battery is improved. From the above viewpoint, the porosity of the insulating layer is more preferably 40 to 78%, further preferably 50 to 75%. The porosity of the insulating layer can be measured by the method described in Examples described later.
(絶縁性微粒子)
絶縁性微粒子は、絶縁性であれば特に限定されず、有機粒子、無機粒子の何れであってもよい。具体的な有機粒子としては、例えば、架橋ポリメタクリル酸メチル、架橋スチレン−アクリル酸共重合体、架橋アクリロニトリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸リチウム)、ポリアセタール樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂等の有機化合物から構成される粒子が挙げられる。無機粒子としては二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb2O5)、酸化タンタル(Ta2O5)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム等の無機化合物から構成される粒子が挙げられる。また、無機粒子は、ニオブ−タンタル複合酸化物、マグネシウム−タンタル複合酸化物等の公知の複合酸化物から構成される粒子であってもよい。
絶縁性微粒子は、上記した各材料が1種単独で使用される粒子であってもよいし、2種以上が併用される粒子であってもよい。また、絶縁性微粒子は、無機化合物と有機化合物の両方を含む微粒子であってもよい。例えば、有機化合物からなる粒子の表面に無機酸化物をコーティングした無機有機複合粒子であってもよい。
これらの中では、無機粒子が好ましく、中でもアルミナ粒子、ベーマイト粒子が好ましい。
(Insulating fine particles)
The insulating fine particles are not particularly limited as long as they are insulating, and may be either organic particles or inorganic particles. Specific organic particles include, for example, crosslinked polymethyl methacrylate, crosslinked styrene-acrylic acid copolymer, crosslinked acrylonitrile resin, polyamide resin, polyimide resin, poly (lithium 2-acrylamide-2-methylpropanesulfonate), and the like. Examples thereof include particles composed of organic compounds such as polyacetal resin, epoxy resin, polyester resin, phenol resin, and melamine resin. Inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, and foot. Examples thereof include particles composed of inorganic compounds such as lithium pentoxide, clay, zeolite, and calcium carbonate. Further, the inorganic particles may be particles composed of known composite oxides such as niobium-tantalum composite oxide and magnesium-tantalum composite oxide.
The insulating fine particles may be particles in which one type of each of the above materials is used alone, or particles in which two or more types are used in combination. Further, the insulating fine particles may be fine particles containing both an inorganic compound and an organic compound. For example, it may be an inorganic-organic composite particle in which the surface of a particle made of an organic compound is coated with an inorganic oxide.
Among these, inorganic particles are preferable, and alumina particles and boehmite particles are particularly preferable.
絶縁性微粒子の平均粒子径は、好ましくは0.1〜5.0μmである。絶縁性微粒子の平均粒子径が0.1μm以上であると、絶縁性微粒子間の結着性が向上し、リチウムイオン二次電池の安全性が向上する。一方、絶縁性微粒子の平均粒子径が5.0μm以下であると、絶縁層の空隙率低減を抑制し、リチウムイオン二次電池の安全性が向上する。上述の観点から、絶縁性微粒子の平均粒子径は、より好ましくは0.2〜3.0μmであり、さらに好ましくは0.3〜1.0μmである。
なお、平均粒子径は、レーザー回折散乱法によって求めた絶縁性微粒子の粒度分布において、体積積算が50%での粒径(D50)を意味する。
また、絶縁性微粒子は、平均粒子径が上記範囲内の1種が単独で使用されてもよいし、平均粒子径の異なる2種の絶縁性微粒子が混合されて使用されてもよい。
The average particle size of the insulating fine particles is preferably 0.1 to 5.0 μm. When the average particle size of the insulating fine particles is 0.1 μm or more, the binding property between the insulating fine particles is improved, and the safety of the lithium ion secondary battery is improved. On the other hand, when the average particle size of the insulating fine particles is 5.0 μm or less, the reduction of the porosity of the insulating layer is suppressed, and the safety of the lithium ion secondary battery is improved. From the above viewpoint, the average particle size of the insulating fine particles is more preferably 0.2 to 3.0 μm, still more preferably 0.3 to 1.0 μm.
The average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution of the insulating fine particles obtained by the laser diffraction scattering method.
Further, as the insulating fine particles, one type having an average particle diameter within the above range may be used alone, or two types of insulating fine particles having different average particle diameters may be mixed and used.
絶縁層に含有される絶縁性微粒子の含有量は、絶縁性微粒子及び絶縁層用バインダーの合計100体積%に対して、好ましくは50〜90体積%である。絶縁性微粒子の含有量が50体積%以上であると、耐熱成分である絶縁性微粒子の絶縁層中の比率が高まり、リチウムイオン二次電池の安全性が向上する。一方、絶縁性微粒子の含有量が90体積%以下であると、結着成分である絶縁層用バインダーの比率が高まり、絶縁層の強度が高くなり、リチウムイオン二次電池の安全性が向上する。上述の観点から、絶縁層に含有される絶縁性微粒子の含有量は、絶縁性微粒子及び絶縁層用バインダーの合計100体積%に対して、より好ましくは70〜85体積%である。 The content of the insulating fine particles contained in the insulating layer is preferably 50 to 90% by volume with respect to 100% by volume of the total of the insulating fine particles and the binder for the insulating layer. When the content of the insulating fine particles is 50% by volume or more, the ratio of the insulating fine particles, which is a heat-resistant component, in the insulating layer is increased, and the safety of the lithium ion secondary battery is improved. On the other hand, when the content of the insulating fine particles is 90% by volume or less, the ratio of the binder for the insulating layer, which is a binding component, is increased, the strength of the insulating layer is increased, and the safety of the lithium ion secondary battery is improved. .. From the above viewpoint, the content of the insulating fine particles contained in the insulating layer is more preferably 70 to 85% by volume with respect to 100% by volume of the total of the insulating fine particles and the binder for the insulating layer.
(絶縁層用バインダー)
絶縁層用バインダーは、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVdF−HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロース等は、ナトリウム塩等の塩の態様にて使用されていてもよい。
(Binder for insulating layer)
Binders for the insulating layer include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), fluorine-containing resin such as polytetrafluoroethylene (PTFE), polymethylacrylate (PMA), and poly. Acrylic resin such as methyl methacrylate (PMMA), polyvinylidene acetate, polyimide (PI), polyamide (PA), polyvinylidene chloride (PVC), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP), poly Examples thereof include acrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene butadiene rubber, poly (meth) acrylic acid, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol and the like. These binders may be used alone or in combination of two or more. Further, carboxymethyl cellulose and the like may be used in the form of a salt such as a sodium salt.
絶縁層に含有される絶縁層用バインダーの含有量は、絶縁性微粒子及び絶縁層用バインダーの合計100体積%に対して、好ましくは10〜50体積%である。絶縁層用バインダーの含有量が10体積%以上であると、結着成分である絶縁層用バインダーの比率が高まり、絶縁層の強度が高くなり、リチウムイオン二次電池の安全性が向上する。一方、絶縁層用バインダーの含有量が50体積%以下であると、耐熱成分である絶縁性微粒子の絶縁層中の比率が高まり、リチウムイオン二次電池の安全性が向上する。上述の観点から、絶縁層に含有される絶縁層用バインダーの含有量は、絶縁性微粒子及び絶縁層用バインダーの合計100体積%に対して、より好ましくは15〜30体積%である。
絶縁層は、本発明の効果を損なわない範囲内において、絶縁性微粒子及び絶縁層用バインダー以外の他の任意成分を含んでもよい。ただし、絶縁層の総質量のうち、絶縁性微粒子及び絶縁層用バインダーの総含有量は、85質量%以上であることが好ましく、90質量%以上であることがより好ましい。
The content of the binder for the insulating layer contained in the insulating layer is preferably 10 to 50% by volume with respect to 100% by volume of the total of the insulating fine particles and the binder for the insulating layer. When the content of the binder for the insulating layer is 10% by volume or more, the ratio of the binder for the insulating layer, which is a binding component, is increased, the strength of the insulating layer is increased, and the safety of the lithium ion secondary battery is improved. On the other hand, when the content of the binder for the insulating layer is 50% by volume or less, the ratio of the insulating fine particles, which are heat-resistant components, in the insulating layer increases, and the safety of the lithium ion secondary battery is improved. From the above viewpoint, the content of the binder for the insulating layer contained in the insulating layer is more preferably 15 to 30% by volume with respect to 100% by volume of the total of the insulating fine particles and the binder for the insulating layer.
The insulating layer may contain optional components other than the insulating fine particles and the binder for the insulating layer as long as the effects of the present invention are not impaired. However, of the total mass of the insulating layer, the total content of the insulating fine particles and the binder for the insulating layer is preferably 85% by mass or more, and more preferably 90% by mass or more.
<リチウムイオン二次電池用電極の製造方法>
次に、リチウムイオン二次電池用電極の製造方法の一実施形態について詳細に説明する。本発明のリチウムイオン二次電池用電極の製造方法では、まず、第2の電極活物質層を形成し、その電極活物質層の表面上に、第1の電極活物質層用組成物を塗布して第1の電極活物質層を形成する。また、第1の電極活物質層の表面上に絶縁層用組成物を塗布して絶縁層を形成してもよい。
<Manufacturing method of electrodes for lithium-ion secondary batteries>
Next, an embodiment of a method for manufacturing an electrode for a lithium ion secondary battery will be described in detail. In the method for producing an electrode for a lithium ion secondary battery of the present invention, first, a second electrode active material layer is formed, and the composition for the first electrode active material layer is applied on the surface of the electrode active material layer. To form the first electrode active material layer. Further, the insulating layer composition may be applied on the surface of the first electrode active material layer to form the insulating layer.
(第2の電極活物質層の形成)
第2の電極活物質層の形成においては、まず、黒鉛と、第2の電極活物質層用バインダーと、溶媒とを含む第2の電極活物質層用組成物を用意する。第2の電極活物質層用組成物は、必要に応じて配合される導電助剤等のその他成分を含んでもよい。黒鉛、第2の電極活物質層用バインダー、導電助剤等は上記で説明したとおりである。第2の電極活物質層用組成物は、スラリーとなる。
(Formation of the second electrode active material layer)
In the formation of the second electrode active material layer, first, a composition for the second electrode active material layer containing graphite, a binder for the second electrode active material layer, and a solvent is prepared. The composition for the second electrode active material layer may contain other components such as a conductive additive to be blended if necessary. Graphite, the binder for the second electrode active material layer, the conductive auxiliary agent and the like are as described above. The composition for the second electrode active material layer becomes a slurry.
第2の電極活物質層用組成物における溶媒は、好ましくは水を使用する。水を使用することで、上記した第2の電極活物質層用バインダーを第2の電極活物質層用組成物中に容易に溶解できる。
第2の電極活物質層用組成物の固形分濃度は、好ましくは5〜75質量%、より好ましくは20〜65質量%である。
Water is preferably used as the solvent in the composition for the second electrode active material layer. By using water, the binder for the second electrode active material layer described above can be easily dissolved in the composition for the second electrode active material layer.
The solid content concentration of the composition for the second electrode active material layer is preferably 5 to 75% by mass, more preferably 20 to 65% by mass.
第2の電極活物質層は、第2の電極活物質層用組成物を使用して公知の方法で形成すればよく、例えば、第2の電極活物質層用組成物を集電体の上に塗布し、乾燥することによって形成することができる。
また、第2の電極活物質層は、第2の電極活物質層用組成物を、集電体以外の基材上に塗布し、乾燥することにより形成してもよい。集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した第2の電極活物質層は、基材から第2の電極活物質層を剥がして集電体の上に転写すればよい。
集電体又は基材の上に形成した第2の電極活物質層は、好ましくは加圧プレスする。加圧プレスすることで、電極密度を高めることが可能になる。加圧プレスは、ロールプレス等により行えばよい。
The second electrode active material layer may be formed by a known method using the composition for the second electrode active material layer. For example, the composition for the second electrode active material layer may be formed on the current collector. It can be formed by applying to and drying.
Further, the second electrode active material layer may be formed by applying the composition for the second electrode active material layer on a base material other than the current collector and drying it. Examples of the base material other than the current collector include known release sheets. The second electrode active material layer formed on the base material may be transferred onto the current collector by peeling the second electrode active material layer from the base material.
The second electrode active material layer formed on the current collector or the base material is preferably pressure-pressed. By pressurizing, it becomes possible to increase the electrode density. The pressure press may be performed by a roll press or the like.
(第1の電極活物質層の形成)
第1の電極活物質層の形成に使用する第1の電極活物質層用組成物は、Si系材料と、第1の電極活物質層用バインダーと、溶媒とを含む。第1の電極活物質層用組成物は、必要に応じて配合される導電助剤等のその他成分を含んでもよい。Si系材料、第1の電極活物質層用バインダー、導電助剤等は上記で説明したとおりである。第1の電極活物質層用組成物はスラリーとなる。
(Formation of the first electrode active material layer)
The composition for the first electrode active material layer used for forming the first electrode active material layer contains a Si-based material, a binder for the first electrode active material layer, and a solvent. The composition for the first electrode active material layer may contain other components such as a conductive additive to be blended if necessary. The Si-based material, the binder for the first electrode active material layer, the conductive additive, and the like are as described above. The composition for the first electrode active material layer is a slurry.
第1の電極活物質層用組成物における溶媒は、好ましくは水を使用する。水を使用することで、上記した第1の電極活物質層用バインダーを第1の電極活物質層用組成物中に容易に溶解できる。
第1の電極活物質層用組成物の固形分濃度は、好ましくは5〜75質量%、より好ましくは20〜65質量%である。
Water is preferably used as the solvent in the composition for the first electrode active material layer. By using water, the above-mentioned binder for the first electrode active material layer can be easily dissolved in the composition for the first electrode active material layer.
The solid content concentration of the composition for the first electrode active material layer is preferably 5 to 75% by mass, more preferably 20 to 65% by mass.
第1の電極活物質層は、第1の電極活物質層用組成物を、第2の電極活物質層の上に塗布して乾燥することによって形成することができる。第1の電極活物質層用組成物を第2の電極活物質層の表面に塗布する方法は特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、バーコート法、グラビアコート法、スクリーン印刷法等が挙げられる。これらの中では、第1の電極活物質層用組成物を均一に塗布するという観点から、バーコート法又はグラビアコート法が好ましい。
また、乾燥温度は、上記溶媒を除去できれば特に限定されないが、例えば40〜120℃、好ましくは50〜90℃である。また、乾燥時間は、特に限定されないが、例えば、30秒〜10分間である。
The first electrode active material layer can be formed by applying the composition for the first electrode active material layer on the second electrode active material layer and drying. The method of applying the composition for the first electrode active material layer to the surface of the second electrode active material layer is not particularly limited, and for example, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, and a bar coating method are used. Examples include the method, the gravure coating method, and the screen printing method. Among these, the bar coating method or the gravure coating method is preferable from the viewpoint of uniformly applying the composition for the first electrode active material layer.
The drying temperature is not particularly limited as long as the solvent can be removed, but is, for example, 40 to 120 ° C, preferably 50 to 90 ° C. The drying time is not particularly limited, but is, for example, 30 seconds to 10 minutes.
(絶縁層の形成)
絶縁層の形成に使用する絶縁層用組成物は、絶縁性微粒子と、絶縁層用バインダーと、溶媒とを含む。絶縁層用組成物は、必要に応じて配合されるその他の任意成分を含んでいてもよい。絶縁性微粒子、絶縁層用バインダー等の詳細は上記で説明したとおりである。絶縁層用組成物はスラリーとなる。
(Formation of insulating layer)
The composition for an insulating layer used for forming the insulating layer contains insulating fine particles, a binder for the insulating layer, and a solvent. The composition for the insulating layer may contain other optional components to be blended as needed. Details of the insulating fine particles, the binder for the insulating layer, and the like are as described above. The composition for the insulating layer is a slurry.
絶縁層用組成物の固形分濃度は、好ましくは5〜75質量%、より好ましくは15〜50質量%である。また、絶縁層用組成物の粘度は、好ましくは1000〜3000mPa・s、より好ましくは1700〜2300mPa・sである。なお、粘度とは、B型粘度計で60rpm、25℃の条件で測定した粘度である。 The solid content concentration of the composition for the insulating layer is preferably 5 to 75% by mass, more preferably 15 to 50% by mass. The viscosity of the composition for the insulating layer is preferably 1000 to 3000 mPa · s, more preferably 1700 to 2300 mPa · s. The viscosity is a viscosity measured with a B-type viscometer under the conditions of 60 rpm and 25 ° C.
絶縁層は、絶縁層用組成物を、第1の電極活物質層の上に塗布して乾燥することによって形成することができる。絶縁層用組成物を第1の電極活物質層の表面に塗布する方法は特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、バーコート法、グラビアコート法、スクリーン印刷法等が挙げられる。これらの中では、絶縁層用組成物を均一に塗布して、絶縁層を薄くする観点から、バーコート法又はグラビアコート法が好ましい。
また、乾燥温度は、上記溶媒を除去できれば特に限定されないが、例えば40〜120℃、好ましくは50〜90℃である。また、乾燥時間は、特に限定されないが、例えば、30秒〜10分間である。
The insulating layer can be formed by applying the composition for an insulating layer on the first electrode active material layer and drying it. The method of applying the composition for the insulating layer to the surface of the first electrode active material layer is not particularly limited, and for example, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a bar coating method, and a gravure coating method. , Screen printing method and the like. Among these, the bar coating method or the gravure coating method is preferable from the viewpoint of uniformly applying the composition for the insulating layer to thin the insulating layer.
The drying temperature is not particularly limited as long as the solvent can be removed, but is, for example, 40 to 120 ° C, preferably 50 to 90 ° C. The drying time is not particularly limited, but is, for example, 30 seconds to 10 minutes.
<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、上記したリチウムイオン二次電池用電極を負極として備える。具体的には、本発明のリチウムイオン二次電池は、互いに対向するように配置された正極、及び負極を備え、負極が、上記した第1の電極活物質層及び第2の電極活物質層を有するリチウムイオン二次電池用電極となる。
<Lithium-ion secondary battery>
The lithium ion secondary battery of the present invention includes the above-mentioned electrode for a lithium ion secondary battery as a negative electrode. Specifically, the lithium ion secondary battery of the present invention includes a positive electrode and a negative electrode arranged so as to face each other, and the negative electrode is the first electrode active material layer and the second electrode active material layer described above. It becomes an electrode for a lithium ion secondary battery having.
(正極)
なお、本発明のリチウムイオン二次電池の正極は、特に限定されない。正極は、例えば、正極活物質層と集電体とを含み、正極活物質層は、正極活物質と正極用バインダーとを含む。
正極活物質としては、金属酸リチウム化合物が挙げられる。金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等が例示できる。また、オリビン型リン酸鉄リチウム(LiFePO4)等であってもよい。さらに、リチウム以外の金属を複数使用したものでもよく、三元系と呼ばれるNCM(ニッケルコバルトマンガン)系酸化物、NCA(ニッケルコバルトアルミニウム系)系酸化物等を使用してもよい。
正極用バインダーとしては、上述の第1の電極活物質層用バインダー若しくは第2の電極活物質用バインダーと同様のものを使用できる。
また、集電体となる材料は、上記負極集電体に使用される化合物と同様であるが、好ましくはアルミニウム又は銅、より好ましくはアルミニウムが使用される。
(Positive electrode)
The positive electrode of the lithium ion secondary battery of the present invention is not particularly limited. The positive electrode includes, for example, a positive electrode active material layer and a current collector, and the positive electrode active material layer contains a positive electrode active material and a binder for a positive electrode.
Examples of the positive electrode active material include lithium metallic acid compounds. Examples of the lithium metal acid compound include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Further, it may be olivine type lithium iron phosphate (LiFePO 4 ) or the like. Further, a plurality of metals other than lithium may be used, and NCM (nickel cobalt manganese) oxides, NCA (nickel cobalt aluminum) oxides and the like, which are called ternary oxides, may be used.
As the binder for the positive electrode, the same binder as the binder for the first electrode active material layer or the binder for the second electrode active material described above can be used.
The material used as the current collector is the same as that of the compound used for the negative electrode current collector, but aluminum or copper is preferably used, and aluminum is more preferable.
(セパレータ)
本発明のリチウムイオン二次電池は、好ましくは正極及び負極の間に配置されるセパレータをさらに備える。セパレータが設けられることで、正極及び負極の間の短絡がより一層効果的に防止される。また、セパレータは、後述する電解質を保持してもよい。
セパレータとしては、多孔性の高分子膜、不織布、ガラスファイバー等が挙げられ、これらの中では多孔性の高分子膜が好ましい。多孔性の高分子膜としては、オレフィン系多孔質フィルムが例示される。
(Separator)
The lithium ion secondary battery of the present invention preferably further includes a separator arranged between the positive electrode and the negative electrode. By providing the separator, a short circuit between the positive electrode and the negative electrode is more effectively prevented. Further, the separator may retain an electrolyte described later.
Examples of the separator include a porous polymer film, a non-woven fabric, and glass fiber, and among these, a porous polymer film is preferable. Examples of the porous polymer film include an olefin-based porous film.
リチウムイオン二次電池は、負極、正極がそれぞれ複数積層された多層構造であってもよい。この場合、負極及び正極は、積層方向に沿って交互に設けられればよい。また、セパレータが使用される場合、セパレータは各負極と各正極の間に配置されればよい。
リチウムイオン二次電池において、上記した負極及び正極、又は負極、正極、及びセパレータは、バッテリーセル内に収納される。バッテリーセルは、角型、円筒型、ラミネート型等のいずれでもよい。
The lithium ion secondary battery may have a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated. In this case, the negative electrode and the positive electrode may be provided alternately along the stacking direction. When a separator is used, the separator may be arranged between each negative electrode and each positive electrode.
In the lithium ion secondary battery, the negative electrode and the positive electrode, or the negative electrode, the positive electrode, and the separator described above are housed in the battery cell. The battery cell may be a square type, a cylindrical type, a laminated type or the like.
(電解質)
リチウムイオン二次電池は、電解質を備える。電解質は特に限定されず、リチウムイオン二次電池で使用される公知の電解質を使用すればよい。電解質としては例えば電解液を使用する。
電解液としては、有機溶媒と、電解質塩を含む電解液が例示できる。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトロヒドラフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、又はこれら溶媒の2種類以上の混合物が挙げられる。電解質塩としては、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3CO2、LiPF6SO3、LiN(SO2CF3)2、LiN(SO2CF2CF3)2、LiN(COCF3)2及びLiN(COCF2CF3)2、リチウムビスオキサレートボラート(LiB(C2O4)2等のリチウムを含む塩が挙げられる。また、有機酸リチウム塩−三フッ化ホウ素錯体、LiBH4等の錯体水素化物等の錯体が挙げられる。これらの塩又は錯体は、1種単独で使用してもよいが、2種以上の混合物であってもよい。
また、電解質は、上記電解液にさらに高分子化合物を含むゲル状電解質であってもよい。高分子化合物としては、例えば、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリ(メタ)アクリル酸メチル等のポリアクリル系ポリマーが挙げられる。なお、ゲル状電解質は、セパレータとして使用されてもよい。
電解質は、負極及び正極間に配置されればよく、例えば、電解質は、上記した負極及び正極、又は負極、正極、及びセパレータが内部に収納されたバッテリーセル内に充填される。また、電解質は、例えば、負極又は正極上に塗布されて負極及び正極間に配置されてもよい。
(Electrolytes)
Lithium ion secondary batteries include an electrolyte. The electrolyte is not particularly limited, and a known electrolyte used in a lithium ion secondary battery may be used. As the electrolyte, for example, an electrolytic solution is used.
Examples of the electrolytic solution include an organic solvent and an electrolytic solution containing an electrolyte salt. Examples of the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, and tetrohydra. Polar solvents such as furan, 2-methyltetraethane, dioxolane, and methylacetamide, or mixtures of two or more of these solvents can be mentioned. Electrolyte salts include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , Examples thereof include lithium-containing salts such as LiN (COCF 3 ) 2, LiN (COCF 2 CF 3 ) 2 , and lithium bisoxalate boronate (LiB (C 2 O 4 ) 2 ). Also, lithium organic acid salt-3 foot. Examples thereof include a boron carbonate complex, a complex such as a complex hydride such as LiBH 4, and the like. These salts or complexes may be used alone or as a mixture of two or more.
Further, the electrolyte may be a gel-like electrolyte in which the above-mentioned electrolyte solution further contains a polymer compound. Examples of the polymer compound include a fluorine-based polymer such as polyvinylidene fluoride and a polyacrylic polymer such as methyl poly (meth) acrylate. The gel electrolyte may be used as a separator.
The electrolyte may be arranged between the negative electrode and the positive electrode. For example, the electrolyte is filled in the above-mentioned negative electrode and positive electrode, or in a battery cell in which the negative electrode, the positive electrode, and the separator are housed. Further, the electrolyte may be applied on the negative electrode or the positive electrode and arranged between the negative electrode and the positive electrode, for example.
以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
得られたリチウムイオン二次電池は、以下の評価方法により評価した。
(容量)
作製したリチウムイオン二次電池を20℃で充放電を一度行い、放電容量を測定した。
測定した放電容量を、負極の厚みで割り、厚み当たりの容量を算出した。
なお、測定した放電容量を、負極の厚みで割り算したのは以下の理由による。
一般的に電池の容量は正極及び負極のうちの容量の小さい電極(通常、正極)で決まる。このため、負極の総厚みを一定にして負極の厚みを変更しても、電池の容量は正極で決まるため、電池の容量は変わらない。そこで、正極の容量に見合うように負極の厚みを設計し直し、測定した放電容量を、負極の厚みで割り算することによって、負極に起因する電池の容量特性を評価できるようにした。
放充電は以下の条件で行った。
充電条件:CCCV充電。CC条件は、4.2V、1.0Cとした。CV条件は、4.2V、0.05C終止とした。
放電条件:CC放電。CC条件は、2.5V、1.0Cとした。
算出した厚み当たりの容量について以下のように評価した。
A:3.5Ah/g/μm以上
B:3.1Ah/g/μm以上、3.5Ah/g/μm未満
C:2.9Ah/g/μm以上、3.1Ah/g/μm未満
D:2.9Ah/g/μm未満
The obtained lithium ion secondary battery was evaluated by the following evaluation method.
(capacity)
The prepared lithium ion secondary battery was charged and discharged once at 20 ° C., and the discharge capacity was measured.
The measured discharge capacity was divided by the thickness of the negative electrode to calculate the capacity per thickness.
The measured discharge capacity was divided by the thickness of the negative electrode for the following reasons.
Generally, the capacity of a battery is determined by an electrode having a smaller capacity (usually a positive electrode) among a positive electrode and a negative electrode. Therefore, even if the total thickness of the negative electrode is kept constant and the thickness of the negative electrode is changed, the capacity of the battery is determined by the positive electrode, so that the capacity of the battery does not change. Therefore, the thickness of the negative electrode was redesigned to match the capacity of the positive electrode, and the measured discharge capacity was divided by the thickness of the negative electrode so that the capacity characteristics of the battery caused by the negative electrode could be evaluated.
Discharging and charging was performed under the following conditions.
Charging conditions: CCCV charging. The CC conditions were 4.2V and 1.0C. The CV conditions were 4.2 V and 0.05 C termination.
Discharge condition: CC discharge. The CC conditions were 2.5V and 1.0C.
The calculated capacity per thickness was evaluated as follows.
A: 3.5Ah / g / μm or more B: 3.1Ah / g / μm or more, less than 3.5Ah / g / μm C: 2.9Ah / g / μm or more, less than 3.1Ah / g / μm D: Less than 2.9 Ah / g / μm
(サイクル特性)
作製したリチウムイオン二次電池を40℃の温度の環境下、充電レートを2C、放電レートを1Cとして充放電サイクルを繰り返した。
500サイクル後の放電容量を10サイクル後の放電容量で割り算して、容量維持率を算出した。容量維持率からサイクル特性を以下のように評価した。
A:容量維持率が50%以上
B:容量維持率が45%以上50%未満
C:容量維持率が30%以上45%未満
D:容量維持率が30%未満
(Cycle characteristics)
The prepared lithium ion secondary battery was subjected to a charge / discharge cycle under an environment of a temperature of 40 ° C. with a charge rate of 2C and a discharge rate of 1C.
The capacity retention rate was calculated by dividing the discharge capacity after 500 cycles by the discharge capacity after 10 cycles. The cycle characteristics were evaluated from the capacity retention rate as follows.
A: Capacity retention rate is 50% or more B: Capacity retention rate is 45% or more and less than 50% C: Capacity retention rate is 30% or more and less than 45% D: Capacity retention rate is less than 30%
得られたリチウムイオン二次電池用電極の物性は、以下の測定方法により測定した。
(空隙率)
イオンミリング方式で、リチウムイオン二次電池用電極の断面を露出させた。次に、露出させたリチウムイオン二次電池用電極の断面を、FE−SEM(電界放出型走査型電子顕微鏡)を用いて、第1の電極活物質層又は第2の電極活物質層の全体が観察できる倍率で観察し、第1の電極活物質層又は第2の電極活物質層の画像を得た。なお、倍率は5000〜25000倍であった。次に、画像解析ソフト「Image J」を使用して、第1の電極活物質層又は第2の電極活物質層の実部分が黒く表示され、空隙部分が白く表示されるように、得られた画像を2値化処理した。そして、画像解析ソフト「Image J」を使用して、白部分の面積の割合を測定した。この白部分の面積の割合が空間率(%)となる。
The physical properties of the obtained electrode for the lithium ion secondary battery were measured by the following measuring method.
(Porosity)
The cross section of the electrode for the lithium ion secondary battery was exposed by the ion milling method. Next, the cross section of the exposed electrode for the lithium ion secondary battery is shown as a whole of the first electrode active material layer or the second electrode active material layer by using FE-SEM (field emission scanning electron microscope). Was observed at an observable magnification, and an image of the first electrode active material layer or the second electrode active material layer was obtained. The magnification was 5000 to 25000 times. Next, using the image analysis software "Image J", the real part of the first electrode active material layer or the second electrode active material layer is displayed in black, and the void part is displayed in white. The image was binarized. Then, the ratio of the area of the white portion was measured using the image analysis software "Image J". The ratio of the area of this white part is the porosity (%).
(厚さ)
上述の空隙率の評価方法と同じ方法でリチウムイオン二次電池用電極の断面を露出させた。そして、上述のSEMを用いて電極活物質層の厚さを測定した。なお、厚さの測定には、上述のImageJを使用した。
(thickness)
The cross section of the electrode for the lithium ion secondary battery was exposed by the same method as the above-mentioned method for evaluating the porosity. Then, the thickness of the electrode active material layer was measured using the above-mentioned SEM. The above-mentioned ImageJ was used for measuring the thickness.
[実施例1]
(第2の負極活物質層の作製)
負極活物質として黒鉛(平均粒子径10μm)97質量部と、バインダーとしてスチレンブタジエンゴム(SBR)1.5質量部、カルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部と、溶媒として水とを混合して、固形分50質量%に調整し、第2の負極活物質層用組成物を得た。この組成物を、負極集電体としての厚さ8μmの銅箔の両面に塗布して100℃で真空乾燥した。その後、両面に第2の負極活物質層用組成物を塗布した負極集電体を、線圧400kN/mで加圧プレスして、第2の負極活物質層を有する負極1層目電極とした。第2の負極活物質層の密度は1.21g/ccであった。また、第2の負極活物質層の厚さは片面当たり23μmであった。
[Example 1]
(Preparation of the second negative electrode active material layer)
97 parts by mass of graphite (average particle diameter 10 μm) as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber (SBR) as a binder, 1.5 parts by mass of a sodium salt of carboxymethyl cellulose (CMC), and water as a solvent. Was mixed to adjust the solid content to 50% by mass to obtain a composition for a second negative electrode active material layer. This composition was applied to both sides of a copper foil having a thickness of 8 μm as a negative electrode current collector and vacuum dried at 100 ° C. Then, the negative electrode current collector coated with the composition for the second negative electrode active material layer on both sides is pressure-pressed at a linear pressure of 400 kN / m to obtain a negative electrode first layer electrode having the second negative electrode active material layer. did. The density of the second negative electrode active material layer was 1.21 g / cc. The thickness of the second negative electrode active material layer was 23 μm per side.
(第1の負極活物質層の作製)
負極活物質として一酸化ケイ素(SiO)(平均粒子径5μm)97質量部と、バインダーとしてスチレンブタジエンゴム(SBR)1.5質量部、カルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部と、溶媒として水とを混合して固形分50質量%に調整し、第1の負極活物質層用組成物を得た。この組成物を、負極1層目電極の両面に塗布して100℃で真空乾燥した。その後、両面に第1の負極活物質層用組成物を塗布した負極集電体を、線圧500kN/mで加圧プレスし負極電極とした。
第2の負極活物質層の厚さは23μmから18μmに変わった。第2の負極活物質層の密度は1.21g/ccから1.55g/ccに変わった。第1の負極活物質層の厚さは片面当たり35μmであった。第1の負極活物質層の密度は1.21g/ccであった。
(Preparation of the first negative electrode active material layer)
97 parts by mass of silicon monoxide (SiO) (average particle size 5 μm) as the negative electrode active material, 1.5 parts by mass of styrene butadiene rubber (SBR) as the binder, and 1.5 parts by mass of the sodium salt of carboxymethyl cellulose (CMC). , Water was mixed as a solvent to adjust the solid content to 50% by mass to obtain a first composition for the negative electrode active material layer. This composition was applied to both surfaces of the negative electrode first layer electrode and vacuum dried at 100 ° C. Then, the negative electrode current collector coated with the composition for the first negative electrode active material layer on both surfaces was pressure-pressed at a linear pressure of 500 kN / m to obtain a negative electrode.
The thickness of the second negative electrode active material layer changed from 23 μm to 18 μm. The density of the second negative electrode active material layer changed from 1.21 g / cc to 1.55 g / cc. The thickness of the first negative electrode active material layer was 35 μm per side. The density of the first negative electrode active material layer was 1.21 g / cc.
(絶縁層の形成)
平均粒子径500nmのアルミナを固形分当たり80体積%と、アクリル系樹脂20体積%とを含み、溶剤N―メチルー2−ピロリドンで希釈した、固形分濃度が40質量%である塗工液を用意した。塗工液の25℃における粘度は1500mPa・sであった。そして、バーコ−ター式塗工装置を用いて、塗工液の負極電極に対する塗工を実施した。塗工液を負極電極の両面に塗工した後、60℃で1時間乾燥し、絶縁層形成負極とした。乾燥後の絶縁層の厚みは、片面当たり8μmであった。絶縁層の空隙率は70%であった。
(Formation of insulating layer)
Prepare a coating solution containing 80% by volume of alumina having an average particle diameter of 500 nm per solid content and 20% by volume of an acrylic resin, diluted with a solvent N-methyl-2-pyrrolidone, and having a solid content concentration of 40% by mass. did. The viscosity of the coating liquid at 25 ° C. was 1500 mPa · s. Then, the negative electrode of the coating liquid was coated using a bar coater type coating device. After applying the coating liquid to both surfaces of the negative electrode, it was dried at 60 ° C. for 1 hour to obtain an insulating layer-forming negative electrode. The thickness of the insulating layer after drying was 8 μm per side. The porosity of the insulating layer was 70%.
(正極の作製)
正極活物質として平均粒子径10μmのLi(Ni−Co−Al)O2(NCA系酸化物)を100質量部と、導電助剤としてアセチレンブラックを4質量部と、電極用バインダーとしてポリフッ化ビニリデン(PVdF)4質量部と、溶媒としてのN−メチルピロリドン(NMP)とを混合し、固形分濃度60質量%に調整した正極活物質層用組成物を得た。この正極活物質層用組成物を、正極集電体としての厚さ15μmのアルミニウム箔の両面に塗布し、予備乾燥後、120℃で真空乾燥した。その後、両面に正極活物質層用組成物を塗布した正極集電体を、400kN/mで加圧プレスし、正極を作製した。正極活物質層の厚さは、片面あたり50μmであった。
(Preparation of positive electrode)
100 parts by mass of Li (Ni-Co-Al) O 2 (NCA-based oxide) having an average particle diameter of 10 μm as a positive electrode active material, 4 parts by mass of acetylene black as a conductive auxiliary agent, and polyvinylidene fluoride as an electrode binder. 4 parts by mass of (PVdF) and N-methylpyrrolidone (NMP) as a solvent were mixed to obtain a composition for a positive electrode active material layer adjusted to a solid content concentration of 60% by mass. This composition for a positive electrode active material layer was applied to both sides of an aluminum foil having a thickness of 15 μm as a positive electrode current collector, pre-dried, and then vacuum dried at 120 ° C. Then, a positive electrode current collector coated with the composition for a positive electrode active material layer on both sides was pressure-pressed at 400 kN / m to prepare a positive electrode. The thickness of the positive electrode active material layer was 50 μm per side.
(電解液の調製)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を3:7の体積比(EC:DEC)で混合した溶媒に、電解質塩としてLiPF6を1モル/リットルとなるように溶解して、電解液を調製した。
(Preparation of electrolyte)
LiPF 6 as an electrolyte salt was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 (EC: DEC) so as to be 1 mol / liter, and the electrolytic solution was prepared. Prepared.
(電池の製造)
上記で得た負極2枚と、PE製の微多孔膜セパレータ2枚、及び正極1枚を積層し仮積層体を得た。ここで、2枚の負極の間に1枚の正極を配置し、負極及び正極の間に1枚の微多孔膜セパレータを配置した。
各正極の正極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。同様に、各負極の負極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。
次いで、アルミラミネートフィルムで上記積層体を挟み、端子用タブを外部に突出させ、三辺をラミネート加工によって封止した。封止せずに残した一辺から、上記で得た電解液を注入し、真空封止することによってラミネート型のセルを製造した。
この際、正極の面積は50mm×50mm、負極の面積は55mm×55mmとなるようにした。
(Battery manufacturing)
A temporary laminate was obtained by laminating the two negative electrodes obtained above, two microporous membrane separators made of PE, and one positive electrode. Here, one positive electrode was placed between the two negative electrodes, and one microporous membrane separator was placed between the negative electrode and the positive electrode.
The exposed ends of the positive electrode current collectors of each positive electrode were joined together by ultrasonic fusion, and the terminal tabs protruding to the outside were joined. Similarly, the exposed ends of the negative electrode current collectors of each negative electrode were joined together by ultrasonic fusion, and the terminal tabs protruding to the outside were joined.
Next, the laminate was sandwiched between aluminum laminate films, the terminal tabs were projected to the outside, and the three sides were sealed by laminating. A laminated cell was manufactured by injecting the electrolytic solution obtained above from one side left unsealed and vacuum-sealing.
At this time, the area of the positive electrode was 50 mm × 50 mm, and the area of the negative electrode was 55 mm × 55 mm.
[実施例2]
第1の負極活物質層用組成物を塗布するときの塗工条件を変更して第1の負極活物質層の厚さを35μmから43μmに変更し、第2の負極活物質層用組成物を塗布するときの塗工条件を変更して第2の負極活物質層の厚さを18μmから8μmに変更した以外は、実施例1と同様に実施した。
[Example 2]
The coating conditions for applying the composition for the first negative electrode active material layer were changed to change the thickness of the first negative electrode active material layer from 35 μm to 43 μm, and the composition for the second negative electrode active material layer was changed. The same procedure as in Example 1 was carried out except that the coating conditions at the time of coating were changed and the thickness of the second negative electrode active material layer was changed from 18 μm to 8 μm.
[実施例3]
第1の負極活物質層用組成物を塗布するときの塗工条件を変更して第1の負極活物質層の厚さを35μmから13μmに変更し、第2の負極活物質層用組成物を塗布するときの塗工条件を変更して第2の負極活物質層の厚さを18μmから44μmに変更した以外は、実施例1と同様に実施した。
[Example 3]
The coating conditions for applying the composition for the first negative electrode active material layer were changed to change the thickness of the first negative electrode active material layer from 35 μm to 13 μm, and the composition for the second negative electrode active material layer was changed. The same procedure as in Example 1 was carried out except that the coating conditions at the time of coating were changed and the thickness of the second negative electrode active material layer was changed from 18 μm to 44 μm.
[実施例4]
第1の負極活物質層用組成物を塗布するときの塗工条件を変更して第1の負極活物質層の厚さを35μmから11μmに変更し、第2の負極活物質層用組成物を塗布するときの塗工条件を変更して第2の負極活物質層の厚さを18μmから49μmに変更した以外は、実施例1と同様に実施した。
[Example 4]
The coating conditions for applying the composition for the first negative electrode active material layer were changed to change the thickness of the first negative electrode active material layer from 35 μm to 11 μm, and the composition for the second negative electrode active material layer was changed. The same procedure as in Example 1 was carried out except that the coating conditions at the time of coating were changed and the thickness of the second negative electrode active material layer was changed from 18 μm to 49 μm.
[実施例5]
第1の負極活物質層用組成物を塗布するときの塗工条件を変更して第1の負極活物質層の厚さを35μmから39μmに変更し、第2の電極活物質層用組成物を塗布するときの塗工条件を変更して第2の負極活物質層の厚さを18μmから6μmに変更した以外は、実施例1と同様に実施した。
[Example 5]
The coating conditions for applying the composition for the first negative electrode active material layer were changed to change the thickness of the first negative electrode active material layer from 35 μm to 39 μm, and the composition for the second electrode active material layer was changed. The same procedure as in Example 1 was carried out except that the coating conditions at the time of coating were changed and the thickness of the second negative electrode active material layer was changed from 18 μm to 6 μm.
[比較例1]
第1の負極活物質層用組成物を塗布しなかった点、及び第2の負極活物質層用組成物を塗布するときの塗工条件を変更して第2の電極活物質層の厚さを18μmから70μmに変更した点以外は、実施例1と同様に実施した。
[Comparative Example 1]
The thickness of the second electrode active material layer was changed by changing the point that the composition for the first negative electrode active material layer was not applied and the coating conditions when applying the composition for the second negative electrode active material layer. Was changed from 18 μm to 70 μm, but the same procedure as in Example 1 was carried out.
[比較例2]
第1の負極活物質層用組成物を塗布するときの塗工条件を変更して第1の負極活物質層の厚さを35μmから53μmに変更した点、及び第2の負極活物質層用組成物を塗布しなかった点以外は、実施例1と同様に実施した。
[Comparative Example 2]
The coating conditions for applying the composition for the first negative electrode active material layer were changed to change the thickness of the first negative electrode active material layer from 35 μm to 53 μm, and for the second negative electrode active material layer. The procedure was carried out in the same manner as in Example 1 except that the composition was not applied.
[比較例3]
第1の負極活物質層及び第2の負極活物質層を備えた負極の代わりに、以下のように作製した負極を用いた以外は、実施例1と同様に実施した。
一酸化ケイ素(SiO)に対する黒鉛の比(黒鉛/SiO)が18/35体積%となるように黒鉛粉末とSiO粉末とを混合して混合物を作製した。混合物100質量部と、バインダーとしてのスチレンブタジエンゴム(SBR)1.5質量部及びカルボキシメチルセルロース(CMC)のナトリウム塩1.5質量部と、溶媒としての水と混合し、固形分50質量%に調整した負極活物質層用組成物を得た。この組成物を、負極集電体としての厚さ8μmの銅箔の両面に塗布して100℃で真空乾燥した。その後、両面に負極活物質層用組成物を塗布した負極集電体を、線圧500kN/mで加圧プレスして負極を得た。負極活物質層の厚さは片面当たり53μmであった。
[Comparative Example 3]
The same procedure as in Example 1 was carried out except that the negative electrode prepared as follows was used instead of the negative electrode provided with the first negative electrode active material layer and the second negative electrode active material layer.
A mixture was prepared by mixing graphite powder and SiO powder so that the ratio of graphite to silicon monoxide (SiO) (graphite / SiO) was 18/35% by volume. Mix 100 parts by mass of the mixture, 1.5 parts by mass of styrene-butadiene rubber (SBR) as a binder, 1.5 parts by mass of a sodium salt of carboxymethyl cellulose (CMC), and water as a solvent to obtain a solid content of 50% by mass. A prepared composition for the negative electrode active material layer was obtained. This composition was applied to both sides of a copper foil having a thickness of 8 μm as a negative electrode current collector and vacuum dried at 100 ° C. Then, the negative electrode current collector coated with the composition for the negative electrode active material layer on both sides was pressure-pressed at a linear pressure of 500 kN / m to obtain a negative electrode. The thickness of the negative electrode active material layer was 53 μm per side.
[比較例4]
第1の負極活物質層用組成物を塗布するときの塗工条件を変更して第1の電極活物質層の厚さを35μmから52μmに変更した点、及び第2の負極活物質層の代わりに、以下のように作製した導電材アンダーコートを形成した点以外は、実施例1と同様に実施した。
平均粒子径50nmのアセチレンブラック100質量部と、バインダーとしてのスチレンブタジエンゴム(SBR)5.0質量部及びカルボキシメチルセルロース(CMC)のナトリウム塩5.0質量部と、溶媒としての水とを混合し、固形分50質量%に調整した導電材アンダーコート用組成物を得た。この組成物を、負極集電体としての厚さ8μmの銅箔の両面に塗布して100℃で真空乾燥して負極を得た。負極活物質層の厚さは1.0μmであった。
[Comparative Example 4]
The coating conditions for applying the composition for the first negative electrode active material layer were changed to change the thickness of the first electrode active material layer from 35 μm to 52 μm, and the second negative electrode active material layer Instead, it was carried out in the same manner as in Example 1 except that the conductive material undercoat prepared as follows was formed.
100 parts by mass of acetylene black having an average particle diameter of 50 nm, 5.0 parts by mass of styrene-butadiene rubber (SBR) as a binder, 5.0 parts by mass of a sodium salt of carboxymethyl cellulose (CMC), and water as a solvent are mixed. , A composition for undercoating a conductive material adjusted to a solid content of 50% by mass was obtained. This composition was applied to both sides of a copper foil having a thickness of 8 μm as a negative electrode current collector and vacuum dried at 100 ° C. to obtain a negative electrode. The thickness of the negative electrode active material layer was 1.0 μm.
[比較例5]
絶縁層を設けなかった以外は、比較例2と同様に実施した。
[Comparative Example 5]
This was carried out in the same manner as in Comparative Example 2 except that the insulating layer was not provided.
実施例1〜5で製造した電池の評価結果を表1に、比較例1〜5で製造した電池の評価結果を表2にそれぞれ示す。 Table 1 shows the evaluation results of the batteries manufactured in Examples 1 to 5, and Table 2 shows the evaluation results of the batteries manufactured in Comparative Examples 1 to 5, respectively.
以上の実施例1〜5に示すように、Si系材料を含む第1の負極活物質層と負極集電体との間に黒鉛を含む第2の負極活物質層を設けることにより、リチウムイオン二次電池の容量を大きくし、かつ充放電サイクル特性を良好にできることがわかった。
比較例1より、Si系材料を含む第1の負極活物質層を設けないと、リチウムイオン二次電池の容量を大きくできないことが分かった。
比較例2、比較例4及び比較例5から、Si系材料を含む第1の負極活物質層と負極集電体との間に黒鉛を含む第2の負極活物質層を設けないと、リチウムイオン二次電池の充放電サイクル特性が悪くなることがわかった。
実施例1〜5と比較例3とを比較することにより、Si系材料にカーボン系材料を混合してSi系材料の膨張収縮を緩和する従来方法に比べて、Si系材料を含む第1の負極活物質層と負極集電体との間に黒鉛を含む第2の負極活物質層を設ける方法は、リチウムイオン二次電池の充放電サイクル特性をより良好にできることがわかった。
比較例2と比較例5とを比較することにより、絶縁層の有無は、リチウムイオン二次電池の容量及び充放電サイクル特性に大きな影響を与えないことがわかった。
As shown in Examples 1 to 5 above, lithium ions are provided by providing a second negative electrode active material layer containing graphite between the first negative electrode active material layer containing a Si-based material and the negative electrode current collector. It was found that the capacity of the secondary battery can be increased and the charge / discharge cycle characteristics can be improved.
From Comparative Example 1, it was found that the capacity of the lithium ion secondary battery could not be increased unless the first negative electrode active material layer containing the Si-based material was provided.
From Comparative Example 2, Comparative Example 4 and Comparative Example 5, if a second negative electrode active material layer containing graphite is not provided between the first negative electrode active material layer containing the Si-based material and the negative electrode current collector, lithium is used. It was found that the charge / discharge cycle characteristics of the ion secondary battery deteriorated.
By comparing Examples 1 to 5 with Comparative Example 3, the first method containing the Si-based material is compared with the conventional method of mixing the carbon-based material with the Si-based material to alleviate the expansion and contraction of the Si-based material. It was found that the method of providing the second negative electrode active material layer containing graphite between the negative electrode active material layer and the negative electrode current collector can improve the charge / discharge cycle characteristics of the lithium ion secondary battery.
By comparing Comparative Example 2 and Comparative Example 5, it was found that the presence or absence of the insulating layer did not significantly affect the capacity and charge / discharge cycle characteristics of the lithium ion secondary battery.
1 リチウムイオン二次電池用電極
10 集電体
20 第1の電極活物質層
30 第2の電極活物質層
1 Electrode for lithium ion secondary battery 10 Current collector 20 First electrode active material layer 30 Second electrode active material layer
Claims (7)
前記第1の電極活物質層がSi系材料及び第1の電極活物質層用バインダーを含み、
前記第2の電極活物質層が黒鉛及び第2の電極活物質層用バインダーを含むリチウムイオン二次電池用電極。 A second electrode active material layer provided between the current collector, a first electrode active material layer provided on the surface of the current collector, and the current collector and the first electrode active material layer. With and
The first electrode active material layer contains a Si-based material and a binder for the first electrode active material layer.
An electrode for a lithium ion secondary battery in which the second electrode active material layer contains graphite and a binder for the second electrode active material layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019036667A JP2020140895A (en) | 2019-02-28 | 2019-02-28 | Electrode for lithium ion secondary battery and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019036667A JP2020140895A (en) | 2019-02-28 | 2019-02-28 | Electrode for lithium ion secondary battery and lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020140895A true JP2020140895A (en) | 2020-09-03 |
Family
ID=72280541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019036667A Pending JP2020140895A (en) | 2019-02-28 | 2019-02-28 | Electrode for lithium ion secondary battery and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020140895A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114284466A (en) * | 2021-12-27 | 2022-04-05 | 珠海冠宇电池股份有限公司 | Negative plate, battery and electronic equipment |
JP2023157080A (en) * | 2022-04-14 | 2023-10-26 | プライムプラネットエナジー&ソリューションズ株式会社 | Negative electrode and non-aqueous electrolyte secondary battery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007179864A (en) * | 2005-12-28 | 2007-07-12 | Hitachi Maxell Ltd | Non-aqueous secondary battery negative electrode, method for producing the same, and non-aqueous secondary battery |
JP2015018663A (en) * | 2013-07-10 | 2015-01-29 | 株式会社豊田自動織機 | Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery |
-
2019
- 2019-02-28 JP JP2019036667A patent/JP2020140895A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007179864A (en) * | 2005-12-28 | 2007-07-12 | Hitachi Maxell Ltd | Non-aqueous secondary battery negative electrode, method for producing the same, and non-aqueous secondary battery |
JP2015018663A (en) * | 2013-07-10 | 2015-01-29 | 株式会社豊田自動織機 | Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114284466A (en) * | 2021-12-27 | 2022-04-05 | 珠海冠宇电池股份有限公司 | Negative plate, battery and electronic equipment |
JP2023157080A (en) * | 2022-04-14 | 2023-10-26 | プライムプラネットエナジー&ソリューションズ株式会社 | Negative electrode and non-aqueous electrolyte secondary battery |
JP7592043B2 (en) | 2022-04-14 | 2024-11-29 | プライムプラネットエナジー&ソリューションズ株式会社 | Negative electrode and non-aqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6871342B2 (en) | Electrodes, electrode manufacturing methods, and secondary batteries and their manufacturing methods | |
JP6805374B2 (en) | Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries | |
JP6545663B2 (en) | Graphite-based negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6903260B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6841971B2 (en) | Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery | |
JPWO2011115247A1 (en) | Lithium ion secondary battery | |
JP6995738B2 (en) | Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery | |
WO2015152114A1 (en) | Graphite-based active material, negative electrode, and negative ion secondary cell | |
JP2020140896A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2018063756A (en) | Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery arranged by use thereof | |
JP6567289B2 (en) | Lithium ion secondary battery | |
JP2019175657A (en) | Lithium ion secondary battery | |
JP2019153557A (en) | Lithium ion secondary battery electrode, manufacturing method thereof, and lithium ion secondary battery | |
JP6849863B2 (en) | Lithium-ion secondary battery, its manufacturing method, and positive electrode for lithium-ion secondary battery | |
JP2020140895A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6826240B2 (en) | Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries | |
WO2020184713A1 (en) | Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP2017162693A (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same | |
JP2020126733A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2019220356A (en) | Positive electrode material for lithium ion secondary battery, method for manufacturing the same and positive electrode active substance layer containing the same, and lithium ion secondary battery arranged by use thereof | |
JP6832474B2 (en) | Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery | |
JP7160573B2 (en) | Electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2018060611A (en) | Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6701801B2 (en) | Positive electrode active material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP2020155378A (en) | Electrolyte for lithium ion secondary battery, and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220906 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230307 |