[go: up one dir, main page]

JP7529051B2 - Construction method of steel pipe soil cement composite pile, steel pipe pile, and steel pipe soil cement composite pile - Google Patents

Construction method of steel pipe soil cement composite pile, steel pipe pile, and steel pipe soil cement composite pile Download PDF

Info

Publication number
JP7529051B2
JP7529051B2 JP2022574165A JP2022574165A JP7529051B2 JP 7529051 B2 JP7529051 B2 JP 7529051B2 JP 2022574165 A JP2022574165 A JP 2022574165A JP 2022574165 A JP2022574165 A JP 2022574165A JP 7529051 B2 JP7529051 B2 JP 7529051B2
Authority
JP
Japan
Prior art keywords
steel pipe
pile
soil cement
cement composite
pipe pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022574165A
Other languages
Japanese (ja)
Other versions
JPWO2023037855A1 (en
Inventor
邦彦 恩田
和臣 市川
雄登 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2023037855A1 publication Critical patent/JPWO2023037855A1/ja
Application granted granted Critical
Publication of JP7529051B2 publication Critical patent/JP7529051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/30Prefabricated piles made of concrete or reinforced concrete or made of steel and concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Description

本発明は、ソイルセメント柱内に鋼管杭を配置することによって形成される鋼管ソイルセメント合成杭、鋼管杭、鋼管、及び鋼管ソイルセメント合成杭の施工方法に関する。 The present invention relates to a construction method for a steel pipe soil cement composite pile, a steel pipe pile, a steel pipe, and a steel pipe soil cement composite pile formed by placing a steel pipe pile in a soil cement column.

特許文献1には、ソイルセメント柱と鋼管杭との間の一体性を高め、鋼管ソイルセメント合成杭の支持力を増大させる方法として、鋼管杭の外周面に窪みを形成する方法が記載されている。Patent document 1 describes a method of forming a depression on the outer surface of a steel pipe pile as a way to improve the integrity between the soil cement column and the steel pipe pile and increase the bearing capacity of the steel pipe soil cement composite pile.

特開2008-175055号公報JP 2008-175055 A

鋼管ソイルセメント合成杭工法:一般社団法人鋼管杭鋼矢板技術協会Steel Pipe Soil Cement Composite Pile Method: Steel Pipe Pile and Steel Sheet Pile Technology Association

特許文献1に記載の方法によれば、地震等の要因によって鋼管杭に水平方向の変位が発生した場合、弾性係数の違いにより鋼管杭の挙動に対してソイルセメント柱が弾性的に追随できない。このため、鋼管杭とソイルセメント柱との間に肌離れが発生し、鋼管ソイルセメント合成杭の鉛直支持力が低下する可能性がある。According to the method described in Patent Document 1, when horizontal displacement occurs in the steel pipe pile due to factors such as an earthquake, the soil cement column cannot elastically follow the behavior of the steel pipe pile due to the difference in elastic modulus. This can cause separation between the steel pipe pile and the soil cement column, reducing the vertical bearing capacity of the steel pipe soil cement composite pile.

本発明は、以上の問題を解決すべくなされたものであり、鋼管杭に水平方向の変位が発生した場合であっても鋼管ソイルセメント合成杭の鉛直支持力が低下することを抑制可能な鋼管ソイルセメント合成杭、鋼管杭、鋼管、及び鋼管ソイルセメント合成杭の施工方法を提供することを目的とする。 The present invention has been made to solve the above problems, and aims to provide a construction method for steel pipe soil cement composite piles, steel pipe piles, steel pipes, and steel pipe soil cement composite piles that can suppress a decrease in the vertical bearing capacity of the steel pipe soil cement composite pile even if horizontal displacement occurs in the steel pipe pile.

本発明に係る鋼管ソイルセメント合成杭は、地表面から地中に延伸するソイルセメント柱と、前記ソイルセメント柱内にある鋼管杭と、を備える鋼管ソイルセメント合成杭であって、前記鋼管ソイルセメント合成杭の杭頭部領域における前記鋼管杭の外周面に形成された高さ15mm以上の複数の第1突起部と、前記鋼管ソイルセメント合成杭の鉛直方向下端部から少なくとも距離3D(Dは鋼管杭の外径)の範囲内において、75mm以下の配置間隔で前記鋼管杭の外周面に形成された複数の第2突起部と、を備える。The steel pipe soil cement composite pile of the present invention is a steel pipe soil cement composite pile comprising a soil cement column extending from the ground surface into the ground and a steel pipe pile within the soil cement column, and is provided with a plurality of first protrusions having a height of 15 mm or more formed on the outer peripheral surface of the steel pipe pile in the pile head region of the steel pipe soil cement composite pile, and a plurality of second protrusions formed on the outer peripheral surface of the steel pipe pile at intervals of 75 mm or less within a range of at least a distance 3D (D is the outer diameter of the steel pipe pile) from the vertical lower end of the steel pipe soil cement composite pile.

前記第1突起部は前記鋼管杭の外周面に鉄筋を溶接することにより形成されているとよい。The first protrusion portion may be formed by welding a reinforcing bar to the outer peripheral surface of the steel pipe pile.

本発明に係る鋼管杭は、鋼管ソイルセメント合成杭を形成する鋼管杭であって、前記鋼管ソイルセメント合成杭の杭頭部領域における前記鋼管杭の外周面に形成された高さ15mm以上の複数の第1突起部と、前記鋼管ソイルセメント合成杭の鉛直方向下端部から少なくとも距離3D(Dは鋼管杭の外径)の範囲内において、75mm以下の配置間隔で外周面に形成された複数の第2突起部と、を備える。The steel pipe pile of the present invention is a steel pipe pile forming a steel pipe soil cement composite pile, and is provided with a plurality of first protrusions having a height of 15 mm or more formed on the outer peripheral surface of the steel pipe pile in the pile head region of the steel pipe soil cement composite pile, and a plurality of second protrusions formed on the outer peripheral surface at intervals of 75 mm or less within a range of at least a distance 3D (D is the outer diameter of the steel pipe pile) from the vertical lower end of the steel pipe soil cement composite pile.

本発明に係る鋼管は、鋼管ソイルセメント合成杭の杭頭部領域用の鋼管であって、鋼管の外周面に形成された高さ15mm以上の複数の突起部を備える。The steel pipe of the present invention is a steel pipe for use in the pile head region of a steel pipe soil cement composite pile, and has a plurality of protrusions having a height of 15 mm or more formed on the outer surface of the steel pipe.

本発明に係る鋼管ソイルセメント合成杭の施工方法は、セメントミルクを土中に注入しながら原位置土と撹拌することにより地表面から地中に延伸するソイルセメント柱を地盤に造成する工程と、前記ソイルセメント柱内に鋼管杭を配置する工程と、を含む鋼管ソイルセメント合成杭の施工方法であって、前記鋼管杭を配置する工程は、前記鋼管ソイルセメント合成杭の杭頭部領域における前記鋼管杭の外周面に形成された第1突起部の高さが15mm以上、且つ、前記鋼管ソイルセメント合成杭の鉛直方向下端部から少なくとも距離3D(Dは鋼管杭の外径)の範囲内において、前記鋼管杭の外周面に形成された第2突起部の配置間隔が75mm以下となるように鋼管杭を配置する工程を含む。The construction method of the steel pipe soil cement composite pile according to the present invention is a construction method of the steel pipe soil cement composite pile including the steps of: creating a soil cement pillar in the ground that extends from the ground surface into the ground by injecting cement milk into the soil and mixing it with the in-situ soil; and placing a steel pipe pile in the soil cement pillar, wherein the step of placing the steel pipe pile includes the step of placing the steel pipe pile so that the height of the first protrusion formed on the outer peripheral surface of the steel pipe pile in the pile head region of the steel pipe soil cement composite pile is 15 mm or more, and the spacing of the second protrusions formed on the outer peripheral surface of the steel pipe pile is 75 mm or less within a range of at least a distance 3D (D is the outer diameter of the steel pipe pile) from the vertical lower end of the steel pipe soil cement composite pile.

本発明に係る鋼管ソイルセメント合成杭、鋼管杭、鋼管、及び鋼管ソイルセメント合成杭の施工方法によれば、鋼管杭に水平方向の変位が発生した場合であっても鋼管ソイルセメント合成杭の鉛直支持力が低下することを抑制できる。 According to the construction method of the steel pipe soil cement composite pile, steel pipe pile, steel pipe, and steel pipe soil cement composite pile of the present invention, a decrease in the vertical bearing capacity of the steel pipe soil cement composite pile can be suppressed even if horizontal displacement occurs in the steel pipe pile.

図1は、本発明の一実施形態である鋼管ソイルセメント合成杭の構成を示す軸方向断面図である。FIG. 1 is an axial cross-sectional view showing the configuration of a steel-pipe soil-cement composite pile according to one embodiment of the present invention. 図2は、本発明の一実施形態である鋼管ソイルセメント合成杭の構成を示す軸方向断面図である。FIG. 2 is an axial cross-sectional view showing the configuration of a steel-pipe soil-cement composite pile according to one embodiment of the present invention. 図3は、本発明の一実施形態である鋼管ソイルセメント合成杭の変形例の構成を示す軸方向断面図である。FIG. 3 is an axial cross-sectional view showing the configuration of a modified example of a steel-pipe soil-cement composite pile according to one embodiment of the present invention. 図4は、本発明の一実施形態である鋼管ソイルセメント合成杭の変形例の構成を示す軸方向断面図である。FIG. 4 is an axial cross-sectional view showing the configuration of a modified example of a steel-pipe soil-cement composite pile according to one embodiment of the present invention. 図5は、本発明の一実施形態である鋼管ソイルセメント合成杭の変形例の構成を示す軸方向断面図である。FIG. 5 is an axial cross-sectional view showing the configuration of a modified example of a steel-pipe soil-cement composite pile according to one embodiment of the present invention.

以下、図面を参照して、本発明の一実施形態である鋼管ソイルセメント合成杭について説明する。 Below, with reference to the drawings, we will explain one embodiment of the present invention, a steel pipe soil cement composite pile.

〔構成〕
まず、図1及び図2を参照して、本発明の一実施形態である鋼管ソイルセメント合成杭の構成について説明する。
〔composition〕
First, the configuration of a steel-pipe soil-cement composite pile according to one embodiment of the present invention will be described with reference to Figs. 1 and 2 .

図1(a)に示すように、本発明の一実施形態である鋼管ソイルセメント合成杭1は、ソイルセメント柱2と、鋼管杭3と、を備えている。本実施形態の場合、鋼管ソイルセメント合成杭1は、地表から地中にある支持地盤の中まで延伸している。以下の説明において、鋼管ソイルセメント合成杭1の杭径とはソイルセメント柱2の外径を意味し、鋼管ソイルセメント合成杭1の杭長とは鋼管杭3の上端部から下端部までの長さを意味する。As shown in FIG. 1(a), a steel pipe soil cement composite pile 1 according to one embodiment of the present invention comprises a soil cement column 2 and a steel pipe pile 3. In this embodiment, the steel pipe soil cement composite pile 1 extends from the ground surface to the supporting ground underground. In the following description, the pile diameter of the steel pipe soil cement composite pile 1 refers to the outer diameter of the soil cement column 2, and the pile length of the steel pipe soil cement composite pile 1 refers to the length from the upper end to the lower end of the steel pipe pile 3.

ソイルセメント柱2は、セメントミルクを土中に注入しながら原位置土と攪拌混合することにより造成される構造物であり、地表面から地中に延伸している。本実施形態においては、ソイルセメント柱2は鉛直方向に沿って延伸している。The soil cement column 2 is a structure constructed by injecting cement milk into the soil while stirring and mixing it with the in-situ soil, and extends from the ground surface into the ground. In this embodiment, the soil cement column 2 extends vertically.

鋼管杭3は、ソイルセメント柱2の中央部に圧入および/または沈設等により配置されている。本実施形態においては、鋼管杭3は鉛直方向に沿ってソイルセメント柱2内にある。図1(a),(b)に示すように、鋼管杭3の少なくとも杭頭部領域R1の外周面には、高さH1が15mm以上の突起部4が複数形成されている。本実施形態では、杭頭部領域R1とは、鋼管杭3の鉛直方向上端部(図1(a)では地表部)から鉛直方向に距離1D以上(D:鋼管杭の外径、以下鋼管杭径とする)の領域を意味する。突起部4は、本発明に係る第1突起部として機能する。地表面から地中に斜めに延伸する杭である「斜杭」の場合も同様に突起部4を形成することができる。但し、この場合、杭頭部領域R1の起点は鋼管ソイルセメント合成杭1の杭軸上とする。The steel pipe pile 3 is placed in the center of the soil cement column 2 by pressing and/or sinking. In this embodiment, the steel pipe pile 3 is in the soil cement column 2 along the vertical direction. As shown in Figures 1(a) and (b), a plurality of protrusions 4 with a height H1 of 15 mm or more are formed on the outer circumferential surface of at least the pile head region R1 of the steel pipe pile 3. In this embodiment, the pile head region R1 means a region that is a distance of 1D or more (D: outer diameter of the steel pipe pile, hereinafter referred to as the steel pipe pile diameter) in the vertical direction from the vertical upper end of the steel pipe pile 3 (the ground surface in Figure 1(a)). The protrusions 4 function as the first protrusions according to the present invention. The protrusions 4 can also be formed in the case of a "slanted pile" that extends diagonally from the ground surface into the ground. In this case, however, the starting point of the pile head region R1 is on the pile axis of the steel pipe soil cement composite pile 1.

一般に、地震等の要因によって発生する水平方向の変位は地上に近づくほど大きくなる。このため、水平方向の変位が発生した場合、ソイルセメント柱と鋼管杭との間の肌離れによって鋼管ソイルセメント合成杭の鉛直支持力が低下するリスクは杭頭部に近いほど高くなる。また、一般に、鋼管ソイルセメント合成杭は、鋼管ソイルセメント合成杭に作用する水平方向の変位が鋼管ソイルセメント合成杭の直径(杭径)の1%以下の大きさ(但し、杭径が1500mm以下である場合は15mm)となるように設計されている。さらに、変位発生時の慣性力によって鋼管杭に瞬間的に発生した最大変位は鋼管杭の弾性挙動によって多少元に戻るため、変位発生後の残留変位は最大変位に比べて小さくなる。 In general, horizontal displacement caused by factors such as earthquakes becomes larger the closer to the ground. For this reason, when horizontal displacement occurs, the risk of the vertical bearing capacity of the steel pipe soil cement composite pile decreasing due to separation of the soil cement column from the steel pipe pile increases the closer to the pile head. In addition, steel pipe soil cement composite piles are generally designed so that the horizontal displacement acting on the steel pipe soil cement composite pile is 1% or less of the diameter (pile diameter) of the steel pipe soil cement composite pile (however, 15 mm if the pile diameter is 1500 mm or less). Furthermore, the maximum displacement that occurs instantaneously in the steel pipe pile due to the inertial force when the displacement occurs returns to its original state somewhat due to the elastic behavior of the steel pipe pile, so the residual displacement after the displacement occurs is smaller than the maximum displacement.

従って、鋼管杭3の少なくとも杭頭部領域R1の外周面に高さH1が15mm以上の突起部4を形成することにより、仮に地表面においてソイルセメント柱2と鋼管杭3との間に15mmの肌離れが発生しても、地表面以深においてはソイルセメント柱2と突起部4との接触が保たれる。これにより、水平方向の変位が発生した場合であっても、鋼管ソイルセメント合成杭1の鉛直支持力が低下することを抑制できる。Therefore, by forming a protrusion 4 with a height H1 of 15 mm or more on the outer circumferential surface of at least the pile head region R1 of the steel pipe pile 3, even if a 15 mm separation occurs between the soil cement column 2 and the steel pipe pile 3 at the ground surface, contact between the soil cement column 2 and the protrusion 4 is maintained below the ground surface. This makes it possible to prevent a decrease in the vertical bearing capacity of the steel pipe soil cement composite pile 1 even if horizontal displacement occurs.

本実施形態は、鋼管ソイルセメント合成杭の通常適用範囲である鋼管杭径1500mm以下のサイズを想定しているが、さらに大径サイズの鋼管ソイルセメント合成杭にも適用可能である。変位発生時の鋼管杭の変位量や変位発生後の鋼管杭の残留変位を精度よく評価できる場合には、評価結果に基づいて杭頭部領域R1の大きさを変更してもよい。突起部4の高さは、高くしすぎてもメリットはなく、逆にソイルセメント柱2の中に鋼管杭3を配置する際に抵抗が増えて施工が困難となる等のリスクも考えられることから、鋼管杭径Dの5%以下とするとよい。 This embodiment assumes a steel pipe pile diameter of 1500 mm or less, which is the normal application range of steel pipe soil cement composite piles, but can also be applied to steel pipe soil cement composite piles of larger diameter sizes. If the displacement amount of the steel pipe pile when displacement occurs and the residual displacement of the steel pipe pile after displacement can be accurately evaluated, the size of the pile head region R1 may be changed based on the evaluation results. There is no benefit to making the height of the protrusion 4 too high, and conversely, there is a risk that resistance will increase when placing the steel pipe pile 3 in the soil cement column 2, making construction difficult, etc., so it is recommended to make the height 5% or less of the steel pipe pile diameter D.

ソイルセメント柱2と鋼管杭3との間の定着構造の破壊強度は以下に示す(a)支圧破壊強度及び(b)剪断強度の低い方で定まることから、突起部4の高さとその配置間隔P1(図1(b)参照)のバランスが重要となる。条件によってばらつきはあるものの、ソイルセメント柱2の支圧破壊強度は剪断強度の5倍程度の大きさと考えられる。このため、突起部4の高さH1は、突起部4の配置間隔P1の1/5以下とするとよい。 The fracture strength of the anchorage structure between the soil cement column 2 and the steel pipe pile 3 is determined by the lower of (a) the bearing fracture strength and (b) the shear strength shown below, so the balance between the height of the protrusions 4 and their arrangement spacing P1 (see Figure 1 (b)) is important. Although there are variations depending on the conditions, the bearing fracture strength of the soil cement column 2 is thought to be about five times its shear strength. For this reason, it is recommended that the height H1 of the protrusions 4 be no more than 1/5 of the arrangement spacing P1 of the protrusions 4.

(a)突起部4との接触面におけるソイルセメント柱2の支圧破壊。支圧破壊強度は突起部4の高さH1×ソイルセメント柱2の支圧破壊強度で評価可能。
(b)ソイルセメント柱2の剪断破壊。剪断破壊強度は突起部4の配置間隔P1×ソイルセメント柱2の剪断強度で評価可能。
(a) Bearing failure of the soil cement column 2 at the contact surface with the protrusion 4. The bearing failure strength can be evaluated by multiplying the height H1 of the protrusion 4 by the bearing failure strength of the soil cement column 2.
(b) Shear failure of the soil cement pillar 2. The shear failure strength can be evaluated by multiplying the arrangement spacing P1 of the protrusions 4 by the shear strength of the soil cement pillar 2.

突起部4は、ソイルセメント柱2と鋼管杭3との間の定着機能が有効に働くように、鋼管杭3の周方向に形成することが好適であるが、周方向に対して角度をつけて螺旋状に形成してもよい。突起部4は工場において鋼管を圧延成形することにより形成してもよいし、鉄筋やフラットバーを鋼管に溶接することにより形成してもよい。溶接ビードにより突起部4を成形してもよい。 The protrusions 4 are preferably formed in the circumferential direction of the steel pipe pile 3 so that the anchoring function between the soil cement column 2 and the steel pipe pile 3 works effectively, but they may also be formed in a spiral shape at an angle to the circumferential direction. The protrusions 4 may be formed by rolling the steel pipe in a factory, or by welding reinforcing bars or flat bars to the steel pipe. The protrusions 4 may also be formed by a weld bead.

図2(a),(b)に示すように、鋼管ソイルセメント合成杭1の鉛直方向下端部から軸方向に距離3D以上の領域(杭先端部領域R2)における鋼管杭3の外周面には、軸方向の配置間隔P2を75mm以下として複数の突起部5が形成されている。突起部5は、本発明に係る第2突起部として機能する。地表面から地中に斜めに延伸する杭である「斜杭」の場合も同様に突起部5を形成することができる。但し、この場合、鉛直方向下端部の起点は鋼管ソイルセメント合成杭1の杭軸上とする。 As shown in Figures 2(a) and (b), a plurality of protrusions 5 are formed on the outer peripheral surface of the steel pipe pile 3 in a region (pile tip region R2) that is a distance 3D or more in the axial direction from the vertical lower end of the steel pipe soil cement composite pile 1, with an axial spacing P2 of 75 mm or less. The protrusions 5 function as second protrusions according to the present invention. Protrusions 5 can also be formed in the same manner in the case of "inclined piles," which are piles that extend obliquely from the ground surface into the ground. However, in this case, the starting point of the vertical lower end is on the pile axis of the steel pipe soil cement composite pile 1.

地中深部に位置する鋼管ソイルセメント合成杭の鉛直方向下端部では、水平方向の変位は僅かであることから、ソイルセメント柱と鋼管杭との間の肌離れを抑制するための突起高さを確保する必要性はない。一方、鉛直方向下端部は支持層と呼ばれる比較的強固な地盤に根入れされるが、支持層となり得る地盤は砂や石の混ざった砂礫地盤となることが多い。このため、特に径の大きい石が上下方向に複数段配置される突起部の間に混入する又は挟まることによって、ソイルセメントが十分充填されない空隙が生じ、鋼管ソイルセメント合成杭1の鉛直支持力が低下する可能性がある。 At the vertical lower end of a steel pipe soil cement composite pile located deep underground, horizontal displacement is slight, so there is no need to ensure a protrusion height to prevent separation between the soil cement column and the steel pipe pile. Meanwhile, the vertical lower end is embedded in a relatively solid ground called the support layer, but the ground that can become the support layer is often gravel ground mixed with sand and stones. For this reason, when stones, particularly large in diameter, get mixed in or get stuck between the protrusions arranged in multiple layers in the vertical direction, voids that are not sufficiently filled with soil cement can occur, and the vertical bearing capacity of the steel pipe soil cement composite pile 1 can be reduced.

これに対して、鋼管杭3の外周面に軸方向の配置間隔P2が75mm以下である突起部5によれば、固い支持地盤に対して鋼管杭3を根入れする際、粒径75mm以上に分類される石が上下方向に複数段配置される突起部5の間に混入する又は挟まる。これにより、鋼管ソイルセメント合成杭1の鉛直支持力が低下することを抑制できる。非特許文献1には、支持層が位置する杭先端固化部への鋼管杭の根入れ長は1.5D以上が標準であると記載されているが、実際の支持層はその上に位置する地盤層との境界に遷移区間を有する。このため、本実施形態では、鋼管ソイルセメント合成杭1の鉛直方向下端部から少なくとも距離3Dの範囲内における突起部5の配置間隔を75mm以下とした。In contrast, when the protrusions 5 on the outer circumferential surface of the steel pipe pile 3 have an axial spacing P2 of 75 mm or less, stones classified as 75 mm or more in particle size are mixed in or sandwiched between the protrusions 5 arranged in multiple vertical rows when the steel pipe pile 3 is embedded in the hard supporting ground. This makes it possible to prevent a decrease in the vertical bearing capacity of the steel pipe soil cement composite pile 1. Non-Patent Document 1 states that the standard embedment length of the steel pipe pile into the pile tip solidification part where the supporting layer is located is 1.5 D or more, but the actual supporting layer has a transition section at the boundary with the ground layer located above it. For this reason, in this embodiment, the spacing of the protrusions 5 within a range of at least a distance of 3 D from the vertical lower end of the steel pipe soil cement composite pile 1 is set to 75 mm or less.

突起部5は、上記機能が有効に働くように、鋼管杭3の周方向に形成することが好適であるが、周方向に対して角度をつけて螺旋状に形成してもよい。突起部5は工場において鋼管を圧延成形することにより形成してもよいし、鉄筋やフラットバーを鋼管に溶接することにより形成してもよい。溶接ビードにより突起部5を成形してもよい。本実施形態においては、鋼管杭3の内周面に突起のない場合で説明したが、本発明はそれに限定されない。鋼管ソイルセメント合成杭1の仕様や性能により、鋼管杭3の内周面に適宜突起が備えられてもよい。 The protrusion 5 is preferably formed in the circumferential direction of the steel pipe pile 3 so that the above-mentioned function can be effectively performed, but it may also be formed in a spiral shape at an angle to the circumferential direction. The protrusion 5 may be formed by rolling the steel pipe in a factory, or by welding reinforcing bars or flat bars to the steel pipe. The protrusion 5 may also be formed by a weld bead. In this embodiment, the case where there are no protrusions on the inner surface of the steel pipe pile 3 has been described, but the present invention is not limited to this. Depending on the specifications and performance of the steel pipe soil cement composite pile 1, appropriate protrusions may be provided on the inner surface of the steel pipe pile 3.

本実施形態のおいては、地表面から地中に鉛直方向に沿って延伸する「鉛直杭」の場合で説明をしたが、本発明はこれに限定されない。例えば地表面から地中に斜めに延伸する杭である「斜杭」の場合でも、同様の効果を得ることができる。水平力及び/又は鉛直力等の外力に対し、斜杭の場合は、鋼管ソイルセメント合成杭1の杭軸直角方向と杭軸方向の2つの分力で抵抗すると見なせる。このため、「鉛直杭」の抵抗条件と同じと考えることができる。 In this embodiment, the case of a "vertical pile" that extends vertically from the ground surface into the ground has been described, but the present invention is not limited to this. For example, a similar effect can be obtained in the case of an "inclined pile", which is a pile that extends diagonally from the ground surface into the ground. In the case of an inclined pile, resistance to external forces such as horizontal and/or vertical forces can be considered to be provided by two component forces, one perpendicular to the pile axis of the steel pipe soil cement composite pile 1 and the other in the pile axial direction. For this reason, the resistance conditions can be considered to be the same as those of a "vertical pile".

〔変形例〕
次に、図3~図5を参照して、本発明の一実施形態である鋼管ソイルセメント合成杭の変形例の構成について説明する。
[Modifications]
Next, the configuration of a modified example of the steel-pipe soil-cement composite pile according to one embodiment of the present invention will be described with reference to Figs.

一般に、杭頭部から深さ1/β前後の領域では鋼管杭3の水平方向の変位の増加割合が大きくなる。βは以下に示す数式(1)により求められる鋼管杭3の特性値である。数式(1)において、kは横方向地盤反力係数、Dは鋼管杭の外径、Elは鋼管杭の曲げ剛性を示す。従って、図3に示すように、杭頭部から深さ1/β前後の領域を杭頭部領域R1とし、この杭頭部領域R1の外周面に高さH1が15mm以上の突起部4を形成してもよい。 In general, the rate of increase in the horizontal displacement of the steel pipe pile 3 increases in the region from the pile head to a depth of about 1/β. β is a characteristic value of the steel pipe pile 3 calculated by the following formula (1). In formula (1), kC is the lateral subgrade reaction coefficient, D is the outer diameter of the steel pipe pile, and El is the bending rigidity of the steel pipe pile. Therefore, as shown in Figure 3, the region from the pile head to a depth of about 1/β is set as the pile head region R1, and a protrusion 4 with a height H1 of 15 mm or more may be formed on the outer peripheral surface of this pile head region R1.

Figure 0007529051000001
Figure 0007529051000001

一般に、杭頭部から深さ3/β前後の領域では鋼管杭3の曲げ歪の変化が大きくなる。従って、図4に示すように、杭頭部から深さ3/β前後の領域を杭頭部領域R1とし、この杭頭部領域R1の外周面に高さH1が15mm以上の突起部4を形成してもよい。通常、杭頭部領域R1より深い位置においては、鋼管杭3の水平方向の変位や曲げ歪の発生レベルが低くなることから、突起部の高さを15mm以上とする必要はない。逆に大深度位置に高さの高い突起が形成されている場合、ソイルセメント柱2内に鋼管杭3を配置する際に抵抗が増えて施工が困難となる等のリスクがあることから、突起部の高さは5mm以下とするとよい。In general, the change in bending strain of the steel pipe pile 3 increases in the region from the pile head to a depth of about 3/β. Therefore, as shown in FIG. 4, the region from the pile head to a depth of about 3/β may be defined as the pile head region R1, and a protrusion 4 with a height H1 of 15 mm or more may be formed on the outer periphery of this pile head region R1. Normally, at a position deeper than the pile head region R1, the horizontal displacement and bending strain of the steel pipe pile 3 are low, so there is no need to make the height of the protrusion 15 mm or more. On the other hand, if a high protrusion is formed at a deep depth, there is a risk that resistance will increase when placing the steel pipe pile 3 in the soil cement column 2, making construction difficult, and so on, so the height of the protrusion should be 5 mm or less.

〔施工方法〕
最後に、本発明の一実施形態である鋼管ソイルセメント合成杭の施工方法について説明する。
[Construction method]
Finally, a method for constructing a steel-pipe soil-cement composite pile according to one embodiment of the present invention will be described.

本発明の一実施形態である鋼管ソイルセメント合成杭1を施工する際は、まず、セメントミルクを土中に注入しながら原位置土と攪拌混合してソイルセメント柱2を造成する。次に、外周面に突起部4を有する鋼管杭3をソイルセメント柱2内に配置する。実際の鋼管杭の施工では、運搬できる鋼管杭の長さは限られることから、複数の鋼管を鉛直方向に接続しながら鋼管杭3を構築することが一般的である。具体的には、図5に示すように、鉛直方向に上杭3a、中杭3b、及び下杭3cを接続して鋼管杭3を構築する。従って、この場合には、杭頭部領域R1を通る上杭3aの外周面に高さH1が15mm以上の突起部4を形成し、中杭3b及び下杭3cの外周面(領域R3)には高さ2mm以上5mm以下の突起部を形成するとよい。上杭3aは、本発明に係る鋼管として機能する。When constructing a steel pipe soil cement composite pile 1, which is one embodiment of the present invention, first, cement milk is injected into the soil while being stirred and mixed with the in-situ soil to create a soil cement column 2. Next, a steel pipe pile 3 having a protrusion 4 on its outer periphery is placed in the soil cement column 2. In actual steel pipe pile construction, since the length of a steel pipe pile that can be transported is limited, it is common to construct a steel pipe pile 3 by connecting multiple steel pipes vertically. Specifically, as shown in FIG. 5, the upper pile 3a, the middle pile 3b, and the lower pile 3c are connected vertically to construct the steel pipe pile 3. Therefore, in this case, a protrusion 4 having a height H1 of 15 mm or more is formed on the outer periphery of the upper pile 3a passing through the pile head region R1, and protrusions having a height of 2 mm to 5 mm are formed on the outer periphery of the middle pile 3b and the lower pile 3c (region R3). The upper pile 3a functions as a steel pipe according to the present invention.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 Although the above describes an embodiment of the invention made by the present inventors, the present invention is not limited by the description and drawings that form part of the disclosure of the present invention according to this embodiment. In other words, other embodiments, examples, operational techniques, etc. made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

本発明によれば、鋼管杭に水平方向の変位が発生した場合であっても鋼管ソイルセメント合成杭の鉛直支持力が低下することを抑制可能な鋼管ソイルセメント合成杭、鋼管杭、鋼管、及び鋼管ソイルセメント合成杭の施工方法を提供することができる。 According to the present invention, it is possible to provide a construction method for steel pipe soil cement composite piles, steel pipe piles, steel pipes, and steel pipe soil cement composite piles that can suppress a decrease in the vertical bearing capacity of the steel pipe soil cement composite pile even if horizontal displacement occurs in the steel pipe pile.

1 鋼管ソイルセメント合成杭
2 ソイルセメント柱
3 鋼管杭
4,5 突起部
1 Steel pipe soil cement composite pile 2 Soil cement column 3 Steel pipe pile 4, 5 Projection part

Claims (4)

地表面から地中に延伸するソイルセメント柱と、前記ソイルセメント柱内にある鋼管杭と、を備え、前記ソイルセメント柱の径が延伸方向で変化しない鋼管ソイルセメント合成杭であって、
前記鋼管ソイルセメント合成杭の杭頭部領域における前記鋼管杭の外周面に形成された高さ15mm以上の複数の第1突起部と、
前記鋼管ソイルセメント合成杭の鉛直方向下端部から少なくとも距離3D(Dは鋼管杭の外径)の範囲内において、75mm以下の配置間隔で前記鋼管杭の外周面に形成された高さ2mm以上5mm以下の複数の第2突起部と、
を備える、鋼管ソイルセメント合成杭。
A steel pipe soil cement composite pile comprising a soil cement column extending from the ground surface into the ground and a steel pipe pile within the soil cement column, the diameter of the soil cement column not changing in the extension direction,
A plurality of first protrusions having a height of 15 mm or more formed on the outer peripheral surface of the steel pipe pile in the pile head region of the steel pipe soil cement composite pile;
A plurality of second protrusions having a height of 2 mm to 5 mm formed on the outer peripheral surface of the steel pipe pile at intervals of 75 mm or less within a range of at least a distance 3D (D is the outer diameter of the steel pipe pile) from the vertical lower end of the steel pipe soil cement composite pile;
A steel pipe soil cement composite pile comprising:
前記第1突起部は前記鋼管杭の外周面に鉄筋を溶接することにより形成されている、請求項1に記載の鋼管ソイルセメント合成杭。 The steel pipe soil cement composite pile according to claim 1, wherein the first protrusion is formed by welding a reinforcing bar to the outer circumferential surface of the steel pipe pile. 地表面から地中に延伸するソイルセメント柱と、前記ソイルセメント柱内にある鋼管杭と、を備え、前記ソイルセメント柱の径が延伸方向で変化しない鋼管ソイルセメント合成杭を形成する鋼管杭であって、
前記鋼管ソイルセメント合成杭の杭頭部領域における前記鋼管杭の外周面に形成された高さ15mm以上の複数の第1突起部と、
前記鋼管ソイルセメント合成杭の鉛直方向下端部から少なくとも距離3D(Dは鋼管杭の外径)の範囲内において、75mm以下の配置間隔で外周面に形成された高さ2mm以上5mm以下の複数の第2突起部と、
を備える、鋼管杭。
A steel pipe pile forming a steel pipe soil cement composite pile comprising a soil cement column extending from the ground surface into the ground and a steel pipe pile located within the soil cement column, the diameter of the soil cement column not changing in the extension direction,
A plurality of first protrusions having a height of 15 mm or more formed on the outer peripheral surface of the steel pipe pile in the pile head region of the steel pipe soil cement composite pile;
A plurality of second protrusions having a height of 2 mm to 5 mm formed on the outer peripheral surface at intervals of 75 mm or less within a range of at least a distance 3D (D is the outer diameter of the steel pipe pile) from the vertical lower end of the steel pipe soil cement composite pile;
A steel pipe pile comprising:
セメントミルクを土中に注入しながら原位置土と撹拌することにより地表面から地中に延伸するソイルセメント柱を地盤に造成する工程と、前記ソイルセメント柱内に鋼管杭を配置する工程と、を含み、前記ソイルセメント柱の径が延伸方向で変化しない鋼管ソイルセメント合成杭の施工方法であって、
前記鋼管杭を配置する工程は、前記鋼管ソイルセメント合成杭の杭頭部領域における前記鋼管杭の外周面に形成された第1突起部の高さが15mm以上、且つ、前記鋼管ソイルセメント合成杭の鉛直方向下端部から少なくとも距離3D(Dは鋼管杭の外径)の範囲内において、前記鋼管杭の外周面に形成された第2突起部の高さが2mm以上5mm以下、配置間隔が75mm以下となるように鋼管杭を配置する工程を含む、鋼管ソイルセメント合成杭の施工方法。
A method for constructing a soil cement column extending from the ground surface into the ground by injecting cement milk into the soil and mixing it with the in-situ soil, and a method for constructing a steel pipe pile in the soil cement column, the diameter of the soil cement column not changing in the extension direction,
The step of placing the steel pipe pile includes a step of placing the steel pipe pile so that a height of a first protrusion formed on the outer peripheral surface of the steel pipe pile in the pile head region of the steel pipe soil cement composite pile is 15 mm or more, and a height of a second protrusion formed on the outer peripheral surface of the steel pipe pile is 2 mm or more and 5 mm or less, and the placement interval is 75 mm or less, within a range of at least a distance 3D (D is the outer diameter of the steel pipe pile) from the vertical lower end of the steel pipe soil cement composite pile.
JP2022574165A 2021-09-10 2022-08-22 Construction method of steel pipe soil cement composite pile, steel pipe pile, and steel pipe soil cement composite pile Active JP7529051B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021147394 2021-09-10
JP2021147394 2021-09-10
PCT/JP2022/031545 WO2023037855A1 (en) 2021-09-10 2022-08-22 Steel pipe soil-cement composite pile, steel pipe pile, steel pipe, and method for constructing steel pipe soil-cement composite pile

Publications (2)

Publication Number Publication Date
JPWO2023037855A1 JPWO2023037855A1 (en) 2023-03-16
JP7529051B2 true JP7529051B2 (en) 2024-08-06

Family

ID=85506566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022574165A Active JP7529051B2 (en) 2021-09-10 2022-08-22 Construction method of steel pipe soil cement composite pile, steel pipe pile, and steel pipe soil cement composite pile

Country Status (2)

Country Link
JP (1) JP7529051B2 (en)
WO (1) WO2023037855A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512503B2 (en) 1987-11-13 1996-07-03 川崎製鉄株式会社 Drill steel pipe pile
JP2005083151A (en) 2003-09-11 2005-03-31 Geotop Corp Steel pipe pile construction method and foundation structure using steel pipe pile
JP2006249928A (en) 2001-03-29 2006-09-21 Jfe Steel Kk Supporting structure of foundation pile and construction method of foundation pile
JP2007032044A (en) 2005-07-26 2007-02-08 Sumitomo Metal Ind Ltd Support structure for foundation pile and steel pipe pile
JP2009068326A (en) 2007-08-17 2009-04-02 Jfe Steel Kk Friction pile
JP2009114846A (en) 2007-10-17 2009-05-28 Jfe Steel Corp Friction pile
JP2009191453A (en) 2008-02-12 2009-08-27 Jfe Steel Corp Composite friction pile
JP2009191452A (en) 2008-02-12 2009-08-27 Jfe Steel Corp Composite friction pile

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512503B2 (en) 1987-11-13 1996-07-03 川崎製鉄株式会社 Drill steel pipe pile
JP2006249928A (en) 2001-03-29 2006-09-21 Jfe Steel Kk Supporting structure of foundation pile and construction method of foundation pile
JP2005083151A (en) 2003-09-11 2005-03-31 Geotop Corp Steel pipe pile construction method and foundation structure using steel pipe pile
JP2007032044A (en) 2005-07-26 2007-02-08 Sumitomo Metal Ind Ltd Support structure for foundation pile and steel pipe pile
JP2009068326A (en) 2007-08-17 2009-04-02 Jfe Steel Kk Friction pile
JP2009114846A (en) 2007-10-17 2009-05-28 Jfe Steel Corp Friction pile
JP2009191453A (en) 2008-02-12 2009-08-27 Jfe Steel Corp Composite friction pile
JP2009191452A (en) 2008-02-12 2009-08-27 Jfe Steel Corp Composite friction pile

Also Published As

Publication number Publication date
WO2023037855A1 (en) 2023-03-16
JPWO2023037855A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
KR101620380B1 (en) Spiral steel pipe pile
JP5407266B2 (en) Friction pile
JP5296585B2 (en) Soil cement improved structure and piled raft foundation
JP7529051B2 (en) Construction method of steel pipe soil cement composite pile, steel pipe pile, and steel pipe soil cement composite pile
KR101714610B1 (en) Steel pipe pile construction method of sacrificial steel pipe casing partial pullout
JP5077857B1 (en) Seismic reinforcement structure of existing structure foundation by composite ground pile foundation technology
JP6274552B2 (en) Foundation pile structure
JP5894421B2 (en) Composite pile and composite pile construction method
JP2004285698A (en) Deformed precast pile
JP5282965B2 (en) Structure liquefaction countermeasure structure and structure liquefaction countermeasure construction method
KR101672391B1 (en) Slipping Pile for Civil and Building Structure
JP5551943B2 (en) Foundation structure using ground improvement body
JP2023001572A (en) Pile foundation and its design method
JP5747516B2 (en) Shield tunnel
JP7090051B2 (en) Foundation pile and foundation pile structure
JP4713277B2 (en) Pile foundation reinforcement structure
KR100661123B1 (en) Head extension concrete pile using reinforcement plate
KR101687657B1 (en) Separable steel pipe pile for small horizontal displacement
KR100374200B1 (en) Reinforcement method fot tip of still pile
JP3742417B2 (en) Construction method of improved column
JP2010209605A (en) Piled-raft foundation
KR20130107172A (en) Constructing method for foundation pile
JP7506964B2 (en) Ground improvement composite pile foundation, ground improvement composite pile combined independent footing foundation, and design method for ground improvement composite pile combined independent footing foundation
JP7358089B2 (en) Lightweight embankment structure and lightweight embankment manufacturing method
JP5633525B2 (en) Pile head joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240708

R150 Certificate of patent or registration of utility model

Ref document number: 7529051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150