[go: up one dir, main page]

JP7524629B2 - Coal and Biomass Operation Support System - Google Patents

Coal and Biomass Operation Support System Download PDF

Info

Publication number
JP7524629B2
JP7524629B2 JP2020108713A JP2020108713A JP7524629B2 JP 7524629 B2 JP7524629 B2 JP 7524629B2 JP 2020108713 A JP2020108713 A JP 2020108713A JP 2020108713 A JP2020108713 A JP 2020108713A JP 7524629 B2 JP7524629 B2 JP 7524629B2
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel consumption
coal
fuel
gas component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020108713A
Other languages
Japanese (ja)
Other versions
JP2021006997A (en
Inventor
聡一朗 鳥居
貴大 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Publication of JP2021006997A publication Critical patent/JP2021006997A/en
Application granted granted Critical
Publication of JP7524629B2 publication Critical patent/JP7524629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、石炭及びバイオマス運用支援システムに関する。 The present invention relates to a coal and biomass operation support system.

近年、石炭火力発電設備では燃料価格の上昇、需要の逼迫を背景として、瀝青炭等の高品位炭のみならず、亜瀝青炭等の低品位炭の利用が進んでいる。また、複数炭種の石炭を混合(混炭)して、又は石炭とバイオマス燃料とを混合(混炭)して、燃料として使用する方式も広く取り入れられている。 In recent years, due to rising fuel prices and tight demand, coal-fired power plants are increasingly using not only high-grade coal such as bituminous coal, but also low-grade coal such as sub-bituminous coal. In addition, a method of using a mixture of multiple coal types (coal blending) or coal and biomass fuel (coal blending) as fuel has also been widely adopted.

一方、石炭火力発電設備等のばい煙発生施設では、大気汚染防止法に基づき、使用燃料の成分値や排出ガス量、排出ガス濃度等が記載された、ばい煙に関する説明書(以下「説明書」という場合がある)の公的機関への届出を行っている。また、説明書に記載された燃料分析値等を基準として、石炭の燃料としての使用可否判断を行っている。 On the other hand, coal-fired power plants and other smoke-producing facilities, in accordance with the Air Pollution Control Act, submit smoke-related information (hereinafter sometimes referred to as "information") to public institutions, which includes information on the component values of the fuel used, the amount of exhaust gas, and the concentration of exhaust gas. In addition, the fuel analysis values and other information listed in the information are used as standards to determine whether or not coal can be used as fuel.

例えば、複数の炭種を混炭して石炭火力発電設備の燃料として用いる場合は、混炭後の石炭の成分値を算出し、算出された数値が、説明書に記載された燃料分析値等の基準を満たすか否かを判断することにより、石炭の使用可否判断を行っていた(例えば、特許文献1参照)。 For example, when multiple types of coal are blended and used as fuel for a coal-fired power plant, the component values of the blended coal are calculated, and a judgment is made as to whether the coal can be used by determining whether the calculated values meet the standards for fuel analysis values and other criteria described in the instructions (see, for example, Patent Document 1).

特開2007-115203号公報JP 2007-115203 A

しかし、説明書に記載された燃料分析値は、あくまで代表品位の石炭の成分値であり、成分値から算出される排ガス成分や排ガス量の理論値が、大気汚染防止法等の基準値を満たすことを示しているに過ぎない。従って、1種若しくは混炭した石炭、又はこれらの石炭とバイオマス燃料とを混合した燃料(以下、「石炭等燃料」と記載する場合がある)の成分値が、説明書に記載された燃料分析値等の基準を満たすことのみをもって、石炭の使用可否判断を行うことは必ずしも合理的とは言えない。 However, the fuel analysis values listed in the instructions are merely the component values of representative grade coal, and merely indicate that the theoretical values of exhaust gas components and exhaust gas volumes calculated from the component values meet the standards set out in the Air Pollution Control Act and other laws. Therefore, it is not necessarily reasonable to judge whether or not a coal can be used simply based on the fact that the component values of a single type or blended coal, or a fuel made by mixing such coal with biomass fuel (hereinafter sometimes referred to as "coal, etc. fuel") meet the standards of the fuel analysis values, etc. listed in the instructions.

つまり、説明書に記載された燃料分析値等の基準(届出値)を満たす石炭等燃料であっても、大気汚染防止法等の法定基準を満たさないことはあり得るし、届出値を満たさない石炭等燃料であっても、上記法定基準を満たす場合があり得る。しかし、他に基準が無い状況では、届出値に従って石炭等燃料の使用可否判定を行う他に選択肢が無かった。従って、届出値を満たさない石炭等燃料は一律的に使用不可と判断し、使用可能と判断した石炭等燃料についても、実際の排ガス成分や排ガス量が法定基準を満たしているか否かは運転時に監視して確認を行っているため、合理性を欠いていた。 In other words, even if a coal or other fuel meets the standards (reported values) for fuel analysis values, etc., listed in the instruction manual, it is possible that it does not meet the legal standards set out in the Air Pollution Control Act, etc., and even if a coal or other fuel does not meet the reported values, it may still meet the legal standards. However, in a situation where there were no other standards, there was no choice but to determine whether or not coal or other fuels could be used according to the reported values. Therefore, it was irrational to uniformly determine that any coal or other fuel that did not meet the reported values could not be used, and even for coal or other fuels that were determined to be usable, whether or not the actual exhaust gas components and exhaust gas volume met the legal standards was monitored and confirmed during operation.

本発明は、上記課題に鑑みてなされたものであり、大気汚染防止法等の法定基準を確実に遵守可能であり、かつ合理性のある石炭等燃料の運用を支援する、石炭及びバイオマス運用支援システムを提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide a coal and biomass operation support system that can reliably comply with statutory standards such as the Air Pollution Control Act and supports rational operation of coal and other fuels.

(1) 1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率の入力を受け付ける受付部と、前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率を記憶する記憶部と、前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率から、第1排ガス成分濃度予測値を算出する、排ガス成分濃度算出部と、前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率から、第2排ガス成分濃度及び排出ガス量がいずれも所定の閾値以内となる燃料消費量の最大予測値を算出する、燃料消費量算出部と、前記第1排ガス成分濃度予測値と、前記燃料消費量の最大予測値を出力する出力部と、を備える、石炭及びバイオマス運用支援システム。 (1) A coal and biomass operation support system comprising: a reception unit that receives input of property item values and blending ratios of one or more types of coal or biomass fuel; a storage unit that stores the property item values and blending ratios of the one or more types of coal or biomass fuel; an exhaust gas component concentration calculation unit that calculates a first exhaust gas component concentration prediction value from the property item values and blending ratios of the one or more types of coal or biomass fuel; a fuel consumption calculation unit that calculates a maximum prediction value of fuel consumption at which both a second exhaust gas component concentration and an exhaust gas amount are within a predetermined threshold value from the property item values and blending ratios of the one or more types of coal or biomass fuel; and an output unit that outputs the first exhaust gas component concentration prediction value and the maximum prediction value of fuel consumption.

(2) 前記石炭及びバイオマス運用支援システムは、前記第1排ガス成分濃度の測定値の取得手段と、前記燃料消費量の測定値の取得手段と、を備えることが好ましい。 (2) It is preferable that the coal and biomass operation support system includes a means for acquiring a measurement value of the first exhaust gas component concentration and a means for acquiring a measurement value of the fuel consumption amount.

(3) 前記石炭及びバイオマス運用支援システムは、前記第1排ガス成分濃度予測値が、所定の閾値以内であるか否かを判定する第1判定部と、前記燃料消費量の最大予測値が、所定の閾値以上であるか否かを判定する第2判定部と、を備え、前記出力部は、前記第1判定部及び第2判定部の判定結果を出力することが好ましい。 (3) The coal and biomass operation support system preferably includes a first determination unit that determines whether the first exhaust gas component concentration prediction value is within a predetermined threshold value, and a second determination unit that determines whether the maximum predicted value of the fuel consumption amount is equal to or greater than a predetermined threshold value, and the output unit preferably outputs the determination results of the first determination unit and the second determination unit.

(4) 前記第1排ガス成分は、窒素酸化物を含み、前記第2排ガス成分は、ばいじんを含むことが好ましい。 (4) It is preferable that the first exhaust gas component includes nitrogen oxides, and the second exhaust gas component includes soot and dust.

(5) 前記性状項目値は、炭素、水素、酸素、全硫黄、全水分、窒素、灰分及び固有水分を含むことが好ましい。 (5) The property item values preferably include carbon, hydrogen, oxygen, total sulfur, total moisture, nitrogen, ash, and inherent moisture.

(6) 前記1種若しくは2種以上の石炭、又はバイオマス燃料の炭種又は種類、及び混炭率の選定ステップと、前記第1排ガス成分濃度予測値及び前記燃料消費量の最大予測値と、それぞれ所定の閾値との比較から前記1種若しくは混炭した石炭、又は前記石炭と前記バイオマス燃料とを混合した燃料の使用可否を判定する、判定ステップと、を有する、上記(1)~(5)いずれかに記載の石炭及びバイオマス運用支援システムを使用する石炭及びバイオマス運用方法。 (6) A coal and biomass operation method using the coal and biomass operation support system described in any one of (1) to (5) above, comprising: a step of selecting the type or variety of the one or more types of coal, or the biomass fuel, and a blending ratio; and a step of determining whether or not the one or more types of coal, or the blended coal, or the fuel obtained by mixing the coal and the biomass fuel, can be used by comparing the first exhaust gas component concentration prediction value and the maximum predicted value of the fuel consumption amount with respective predetermined thresholds.

(7) 前記第1排ガス成分濃度の測定値、前記第2排ガス成分濃度の測定値、及び前記燃料消費量の測定値と、それぞれ所定の閾値との比較を行う監視ステップを有し、前記監視ステップの結果に基づき、前記第1排ガス成分濃度予測値の算出方法、又は前記燃料消費量の最大予測値の算出方法の見直しを行う、上記(2)~(5)いずれかに記載の石炭及びバイオマス運用支援システムを使用する石炭及びバイオマス運用方法。 (7) A coal and biomass operation method using the coal and biomass operation support system described in any one of (2) to (5) above, which includes a monitoring step of comparing the measured value of the first exhaust gas component concentration, the measured value of the second exhaust gas component concentration, and the measured value of the fuel consumption with respective predetermined thresholds, and revising the calculation method of the predicted value of the first exhaust gas component concentration or the calculation method of the maximum predicted value of the fuel consumption based on the results of the monitoring step.

(8) 1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率の入力受付機能と、前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率から、第1排ガス成分濃度予測値を算出する、排ガス成分濃度算出機能と、前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率から、第2排ガス成分濃度及び排出ガス量がいずれも所定の閾値以内となる燃料消費量の最大予測値を算出する、燃料消費量算出機能と、前記第1排ガス成分濃度予測値が、所定の閾値以内であるか否かを判定する第1判定機能と、前記燃料消費量の最大予測値が、所定の閾値以上であるか否かを判定する第2判定機能と、前記第1判定機能及び第2判定機能による判定結果の出力機能と、を備える、石炭及びバイオマス運用支援プログラム。 (8) A coal and biomass operation support program comprising: an input receiving function for inputting property item values and blending ratios of one or more types of coal or biomass fuel; an exhaust gas component concentration calculation function for calculating a first exhaust gas component concentration prediction value from the property item values and blending ratios of the one or more types of coal or biomass fuel; a fuel consumption calculation function for calculating a maximum predicted value of fuel consumption at which both a second exhaust gas component concentration and an exhaust gas amount are within a predetermined threshold from the property item values and blending ratios of the one or more types of coal or biomass fuel; a first judgment function for judging whether the first exhaust gas component concentration prediction value is within a predetermined threshold; a second judgment function for judging whether the maximum predicted value of fuel consumption is equal to or greater than a predetermined threshold; and an output function for the judgment results obtained by the first judgment function and the second judgment function.

本発明によれば、大気汚染防止法等で定められる法定基準を確実に遵守し、かつ合理的な石炭等燃料の運用を行うことができる。 This invention makes it possible to reliably comply with legal standards set forth in the Air Pollution Control Act and other laws, while also enabling rational use of coal and other fuels.

本発明の一実施形態における石炭及びバイオマス運用支援システム1の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a coal and biomass operation support system 1 according to an embodiment of the present invention. 本発明の一実施形態における石炭及びバイオマス運用支援プログラムの処理の流れを示すフローチャートである。1 is a flowchart showing a process flow of a coal and biomass operation support program in one embodiment of the present invention. 本発明の一実施形態における石炭及びバイオマス運用方法の流れを示すフローチャートである。1 is a flowchart showing a flow of a coal and biomass operation method in one embodiment of the present invention. 本発明の一実施形態における石炭及びバイオマス運用方法の流れを示すフローチャートである。1 is a flowchart showing a flow of a coal and biomass operation method in one embodiment of the present invention.

以下、本発明の実施形態について、図面を参照しながら説明する。
<石炭及びバイオマス運用支援システムの概略>
図1は、本発明の一実施形態における石炭及びバイオマス運用支援システム1の概略構成を示すブロック図である。このような石炭及びバイオマス運用支援システム1は、例えば微粉炭ボイラを備える石炭火力発電設備において好ましく用いられる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
<Outline of coal and biomass operation support system>
1 is a block diagram showing a schematic configuration of a coal and biomass operation support system 1 according to an embodiment of the present invention. Such a coal and biomass operation support system 1 is preferably used in, for example, a coal-fired power plant equipped with a pulverized coal boiler.

石炭及びバイオマス運用支援システム1は、管理端末2を備える。管理端末2は、中央処理部3と、受付部21と、記憶部22と、出力部23と、外部機器と無線又は有線で通信可能に接続されるI/F部24と、を備える。 The coal and biomass operation support system 1 includes a management terminal 2. The management terminal 2 includes a central processing unit 3, a reception unit 21, a memory unit 22, an output unit 23, and an I/F unit 24 that is connected to an external device so as to be able to communicate wirelessly or via wires.

管理端末2は、図示しないCPU、メモリ等を備えたコンピュータ装置であり、I/F部24を通じてネットワークや外部機器と接続可能な装置である。管理端末2は、石炭火力発電設備等において、石炭等燃料の燃料としての使用可否を判断する際に利用される。あるいは外部機器から取得した排ガス濃度測定値や燃料消費量測定値を表示させて、発電設備の運転状況を監視する際に利用される。 The management terminal 2 is a computer device equipped with a CPU, memory, etc. (not shown), and is a device that can be connected to a network or external devices via the I/F unit 24. The management terminal 2 is used when determining whether or not fuels such as coal can be used as fuel in coal-fired power generation facilities, etc. Alternatively, it is used when displaying exhaust gas concentration measurement values and fuel consumption measurement values obtained from external devices to monitor the operating status of the power generation facility.

受付部21は、ユーザが選定した石炭又はバイオマス燃料の性状項目値や混炭率(本明細書において、「混炭率」とは、2種以上の石炭を混合させる場合、各石炭の割合を意味し、1種以上の石炭及びバイオマス燃料を混合させる場合、各石炭及びバイオマス燃料の割合を意味する)の入力を受け付け、又はユーザによる石炭又はバイオマス燃料の性状項目値や混炭率に基づく排ガス濃度や燃料消費量の算出式の修正を受け付け、管理端末2に指示する。受付部21は、キーボードやマウス、タッチパネル等の入力装置からのユーザの入力を受け付ける。 The reception unit 21 receives input of the property item values and blending ratio of the coal or biomass fuel selected by the user (in this specification, "blend ratio" means the ratio of each coal when two or more types of coal are blended, and means the ratio of each coal and biomass fuel when one or more types of coal and biomass fuel are blended), or receives corrections made by the user to the calculation formula for exhaust gas concentration and fuel consumption based on the property item values and blending ratio of the coal or biomass fuel, and instructs the management terminal 2. The reception unit 21 receives user input from an input device such as a keyboard, mouse, or touch panel.

記憶部22は、例えばハードディスク等のストレージデバイスである。記憶部22には、ユーザが入力した石炭又はバイオマス燃料の性状項目値や混炭率、排ガス濃度や燃料消費量の算出式、排ガス濃度や燃料消費量の予測値の算出プログラムや各種閾値、また各種閾値に基づき石炭の使用可否を判定するプログラム等が記憶されている。 The memory unit 22 is a storage device such as a hard disk. The memory unit 22 stores property item values and blending ratios of coal or biomass fuel input by the user, calculation formulas for exhaust gas concentration and fuel consumption, calculation programs and various thresholds for predicted values of exhaust gas concentration and fuel consumption, and a program for determining whether coal can be used based on the various thresholds.

出力部23は、入力された石炭又はバイオマス燃料の性状項目値や混炭率、排ガス濃度や燃料消費量の予測値及び測定値の算出結果、判定プログラムによる石炭又はバイオマス燃料の使用可否判定結果等を出力する。出力部23は、各種情報や画像等を、ディスプレイ等の表示装置を介して表示する。 The output unit 23 outputs the input property item values and blending ratio of the coal or biomass fuel, the calculation results of the predicted and measured values of the exhaust gas concentration and fuel consumption, the judgment result of the usability of the coal or biomass fuel by the judgment program, etc. The output unit 23 displays various information, images, etc. via a display device such as a display.

I/F部24は、外部機器が接続可能なインターフェイスである。I/F部24に接続される外部機器としては、排ガス濃度計41、給炭機42等が挙げられる。また、上記以外に、I/F部24は各種石炭又はバイオマス燃料の性状項目値や貯蔵量等が記憶されたデータベースサーバと接続されていてもよい。
よって、管理端末2は、I/F部24を通じ、排ガス濃度計41や給炭機42の測定値を取得できる。
The I/F unit 24 is an interface to which external devices can be connected. Examples of external devices connected to the I/F unit 24 include an exhaust gas concentration meter 41 and a coal feeder 42. In addition to the above, the I/F unit 24 may be connected to a database server in which property item values and storage amounts of various coals or biomass fuels are stored.
Therefore, the management terminal 2 can acquire the measurement values of the exhaust gas concentration meter 41 and the coal feeder 42 through the I/F unit 24 .

排ガス濃度計41は、微粉炭ボイラ等で発生した排ガスの流通経路に設けられ、例えば窒素酸化物(以下、NOxと記載する場合がある)やばいじん、硫黄酸化物(以下、SOxと記載する場合がある)等の排ガス成分の濃度を測定し、測定結果を管理端末2に送信する通信機能を有する。
また、排ガス濃度計41は、測定対象によって設置位置が異なる。NOxを測定する排ガス濃度計41は、例えばNOxを触媒によって浄化する脱硝設備の出口側に設けられる。また、ばいじんを測定するばいじん濃度計は、例えばばいじんを除去する電気集じん機の出口側に設けられる。また、SOxを測定する排ガス濃度計41は、例えばSOxを触媒によって浄化する脱硫設備の出口側に設けられる。
The exhaust gas concentration meter 41 is provided in the flow path of exhaust gas generated by a pulverized coal boiler or the like, and has a communication function to measure the concentration of exhaust gas components such as nitrogen oxides (hereinafter sometimes referred to as NOx), soot, sulfur oxides (hereinafter sometimes referred to as SOx), etc., and transmits the measurement results to the management terminal 2.
The installation position of the exhaust gas concentration meter 41 varies depending on the measurement target. The exhaust gas concentration meter 41 that measures NOx is provided, for example, on the outlet side of a denitrification facility that purifies NOx with a catalyst. The dust concentration meter that measures dust is provided, for example, on the outlet side of an electric dust collector that removes dust. The exhaust gas concentration meter 41 that measures SOx is provided, for example, on the outlet side of a desulfurization facility that purifies SOx with a catalyst.

給炭機42は、微粉炭ボイラ等に石炭又はバイオマス燃料を供給する装置であり、石炭又はバイオマス燃料を粉砕する複数のミルの上流側に、ミルに対応して複数設けられる。給炭機42は、石炭又はバイオマス燃料を搬送するコンベヤと、石炭又はバイオマス燃料の荷重を検出するロードセルを有し、コンベヤ速度と荷重を検出できる。給炭機42は、これらの検出結果から、燃料消費量としての石炭又はバイオマス燃料の供給量を測定でき、測定結果を管理端末2に送信する通信機能を有する。 The coal feeder 42 is a device that supplies coal or biomass fuel to a pulverized coal boiler or the like, and is provided upstream of a number of mills that pulverize the coal or biomass fuel, corresponding to the mills. The coal feeder 42 has a conveyor that transports the coal or biomass fuel and a load cell that detects the load of the coal or biomass fuel, and can detect the conveyor speed and load. From these detection results, the coal feeder 42 can measure the supply amount of coal or biomass fuel as fuel consumption, and has a communication function that transmits the measurement results to the management terminal 2.

中央処理部3は、記憶部22に記憶された各種のプログラムを実行する。また、これらのプログラムは、排ガス成分濃度算出部31と、燃料消費量算出部32と、第1判定部33と、第2判定部34と、から構成される。 The central processing unit 3 executes various programs stored in the memory unit 22. These programs are composed of an exhaust gas component concentration calculation unit 31, a fuel consumption calculation unit 32, a first judgment unit 33, and a second judgment unit 34.

排ガス成分濃度算出部31は、ユーザが入力した石炭又はバイオマス燃料の性状項目値及び混炭率に基づき、石炭等燃料を燃料として燃焼させた場合の排ガス成分濃度を算出する。例えば、第1排ガス成分としてのNOxの、排ガス中の成分濃度(ppm)の予測値を算出する。なお、第1排ガス成分としては、法令で法定排出基準(濃度)が定められている他の物質、例えばSOx等を含んでいてもよい。 The exhaust gas component concentration calculation unit 31 calculates the exhaust gas component concentration when coal or other fuel is burned as fuel based on the property item values and blending ratio of coal or biomass fuel input by the user. For example, it calculates a predicted value of the component concentration (ppm) in the exhaust gas of NOx as the first exhaust gas component. Note that the first exhaust gas component may also include other substances for which legal emission standards (concentrations) are set by law, such as SOx.

燃料消費量算出部32は、ユーザが入力した石炭又はバイオマス燃料の性状項目値及び混炭率に基づき、石炭等燃料を燃料として燃焼させた場合に、第2排ガス成分としての、例えばばいじん濃度、及び排ガス量が、所定の閾値以内となる燃料消費量(t/h)の最大予測値を算出する。つまり、実際の燃料消費量が、上記算出された燃料消費量の最大予測値以内となることで、第2排ガス成分濃度、及び排ガス量が所定の閾値以内となることが見込まれる。 The fuel consumption calculation unit 32 calculates the maximum predicted value of fuel consumption (t/h) at which the second exhaust gas component, for example, the soot concentration and exhaust gas volume, are within a predetermined threshold value when coal or other fuel is burned as fuel, based on the property item values and blending ratio of coal or biomass fuel input by the user. In other words, when the actual fuel consumption is within the maximum predicted value of the calculated fuel consumption, it is expected that the second exhaust gas component concentration and exhaust gas volume will be within the predetermined threshold value.

第1判定部33は、排ガス成分濃度算出部31により算出された第1排ガス成分、例えばNOxの排ガス中の濃度(ppm)の予測値が、所定の閾値以内であるか否かを判定する。 The first determination unit 33 determines whether the predicted value of the concentration (ppm) of the first exhaust gas component, for example NOx, in the exhaust gas calculated by the exhaust gas component concentration calculation unit 31 is within a predetermined threshold value.

第2判定部34は、燃料消費量算出部32により算出された、燃料消費量(t/h)の最大予測値が、所定の閾値以上であるか否かを判定する。 The second determination unit 34 determines whether the maximum predicted value of fuel consumption (t/h) calculated by the fuel consumption calculation unit 32 is equal to or greater than a predetermined threshold value.

次に、各算出部31、32で行う予測値の算出方法について説明する。
[排ガス中NOx濃度の算出(排ガス成分濃度算出部31)]
第1排ガス成分としての、排ガス中NOx濃度(脱硝入口NOx濃度)の予測値は、次の計算式によって算出できる。
(式1)
排ガス中NOx濃度=19.3×燃料比×(1+燃料窒素分(%、CHベース))+97(ppm)
(上式中「CHベース」とは、湿度75%の恒湿状態の分析値を示す。また、燃料比は固定炭素と揮発分量の比から算出される。)
Next, a method for calculating the predicted values performed by each of the calculation units 31 and 32 will be described.
[Calculation of NOx concentration in exhaust gas (exhaust gas component concentration calculation unit 31)]
The predicted value of the NOx concentration in the exhaust gas (NOx concentration at the denitration inlet) as the first exhaust gas component can be calculated by the following calculation formula.
(Equation 1)
NOx concentration in exhaust gas = 19.3 x fuel ratio x (1 + fuel nitrogen content (%, CH base)) + 97 (ppm)
(In the above formula, "CH basis" indicates the analysis value at a constant humidity of 75%. The fuel ratio is calculated from the ratio of fixed carbon to volatile matter.)

上記(式1)によれば、仮に燃料窒素分が相対的に高い燃料であっても、燃料比が相対的に低い燃料であれば、NOxの予測値が相対的に変わらないか、低く算出される場合もありうる。 According to the above formula (1), even if the fuel nitrogen content is relatively high, if the fuel ratio is relatively low, the predicted NOx value may remain relatively unchanged or may be calculated to be low.

[排ガス量の算出(燃料消費量算出部32)]
排ガス量(排出口におけるガス量)(湿り、乾き)は、石炭又はバイオマス燃料の性状項目値としての炭素(C)、水素(H)、酸素(O)、全硫黄(S)、全水分(W1)、窒素(N)により、次の計算式によって計算できる。
(式2)
理論空気量((A0))=8.89C+26.7×(H-O/8)+3.33S
理論燃焼ガス量(Q0)=1.867C+0.7S+11.2H+1.24W1+0.8N+0.79A0
実際燃焼ガス量(湿り)(Q’)=Q0+(1.31-1)×A0
実際燃焼ガス量(乾き)(Q”)=Q’-(11.2H+1.24W1)
脱硫装置入口水蒸気量(Qs)=(Q’×燃料消費量×1000)-(Q”×燃料消費量×1000)
脱硫装置出口水蒸気量(Qc)=(Q’×燃料消費量×1000×1.3-Qs/1.244)×0.077×1.244
脱硝装置発生ガス量(Qa)=Qc-Qs+10000
排ガス量(湿り)=Q’×燃料消費量×1000+Qa
排ガス量(乾き)=(Q”×燃料消費量×1000)+10000
[Calculation of exhaust gas amount (fuel consumption calculation unit 32)]
The amount of exhaust gas (amount of gas at the exhaust port) (wet, dry) can be calculated using the following formula using the property item values of coal or biomass fuel: carbon (C), hydrogen (H), oxygen (O), total sulfur (S), total moisture (W1), and nitrogen (N).
(Equation 2)
Theoretical air volume ((A0)) = 8.89C + 26.7 x (HO/8) + 3.33S
Theoretical combustion gas amount (Q0) = 1.867C + 0.7S + 11.2H + 1.24W1 + 0.8N + 0.79A0
Actual combustion gas volume (wet) (Q') = Q0 + (1.31-1) x A0
Actual combustion gas volume (dry) (Q") = Q' - (11.2H + 1.24W1)
Desulfurization equipment inlet water vapor amount (Qs) = (Q' x fuel consumption x 1000) - (Q” x fuel consumption x 1000)
Amount of steam at the outlet of the desulfurization device (Qc) = (Q' x fuel consumption x 1000 x 1.3 - Qs/1.244) x 0.077 x 1.244
Amount of gas generated by the denitrification device (Qa) = Qc - Qs + 10000
Exhaust gas volume (wet) = Q' x fuel consumption x 1000 + Qa
Exhaust gas volume (dry) = (Q" x fuel consumption x 1000) + 10000

上記(式2)より、排ガス量(湿り、乾き)がいずれも所定の閾値以内となる燃料消費量の最大予測値(p1)を算出できる。すなわち、上記(式2)の排ガス量(湿り、乾き)をそれぞれ所定の閾値とした際に算出される燃料消費量のうち、より小さい値を、上記最大予測値(p1)として算出できる。なお、上記所定の閾値は、法定の排出基準に応じて定められる。 The above formula (2) can be used to calculate the maximum predicted value (p1) of fuel consumption when both exhaust gas amounts (wet, dry) are within a predetermined threshold value. In other words, the smaller of the fuel consumption amounts calculated when the exhaust gas amounts (wet, dry) in the above formula (2) are set to the respective predetermined threshold values can be calculated as the above maximum predicted value (p1). Note that the above predetermined threshold values are determined according to statutory emission standards.

[排ガス中ばいじん濃度の算出(燃料消費量算出部32)]
排ガス中ばいじん濃度(集じん装置入口ばいじん濃度)は、石炭又はバイオマス燃料の性状項目値として、上記に加え灰分(A)、固有水分(W2)により、次の計算式によって計算できる。
(式3)
排ガス中ばいじん濃度=A×((燃料消費量-(燃料消費量×(W1-W2))×1000/Q”×1000)
[Calculation of dust concentration in exhaust gas (fuel consumption calculation unit 32)]
The dust concentration in the exhaust gas (dust concentration at the dust collector inlet) can be calculated using the above-mentioned coal or biomass fuel property item values, as well as ash content (A) and specific moisture (W2), according to the following formula.
(Equation 3)
Dust concentration in exhaust gas = A x ((fuel consumption - (fuel consumption x (W1 - W2)) x 1000/Q" x 1000)

上記(式3)によれば、排ガス中のばいじん濃度は、灰分以外に燃料消費量とも相関する。
また、上記(式3)より、排ガス中ばいじん濃度が所定の閾値以内となる燃料消費量の最大予測値(p2)を算出できる。すなわち、上記(式3)の排ガス中ばいじん濃度を所定の閾値とした際の燃料消費量として、上記最大予測値(p2)を算出できる。なお、上記所定の閾値は、法定の排出基準に応じて定められる。
According to the above formula (3), the dust concentration in the exhaust gas is correlated with the fuel consumption amount as well as with the ash content.
Furthermore, the maximum predicted value (p2) of the fuel consumption amount at which the particulate matter concentration in the exhaust gas falls within a predetermined threshold value can be calculated from the above (Equation 3). That is, the maximum predicted value (p2) can be calculated as the fuel consumption amount when the particulate matter concentration in the exhaust gas in the above (Equation 3) is set to a predetermined threshold value. The predetermined threshold value is determined according to the statutory emission standard.

上記(式2)、(式3)により算出された燃料消費量の最大予測値(p1)、(p2)のうち、より小さい値を、第2排ガス成分としてのばいじん濃度、及び排ガス量が、所定の閾値以内となる燃料消費量の最大予測値(p3)として算出できる。 The smaller of the maximum predicted values (p1) and (p2) of fuel consumption calculated by the above (Equation 2) and (Equation 3) can be calculated as the maximum predicted value (p3) of fuel consumption at which the soot concentration as the second exhaust gas component and the exhaust gas volume are within a predetermined threshold value.

[第1判定部、第2判定部]
(閾値)
次に、第1判定部や第2判定部での判定に用いる閾値と、閾値に対応する評価について説明する。
[First judgment section, second judgment section]
(Threshold)
Next, the threshold values used for the judgment in the first judgment section and the second judgment section and the evaluation corresponding to the threshold values will be described.

Figure 0007524629000001
Figure 0007524629000001

表1は、従来の石炭等燃料の使用可否判定に用いていた閾値と、閾値に対応する評価結果の一例を示す表である。
閾値a1やa2は、説明書に記載される燃料分析値(以下、「届出値」と記載する場合がある)に基づいて定められる。表1に示す通り、例えば石炭等燃料の灰分の性状項目値を示す指標X1が、閾値であるa1を超過する場合、評価は×となっていた。窒素分の性状項目値を示す指標X2についても同様である。また、これらの指標のうち、いずれかの評価が×である場合、その石炭等燃料は運用不可との判断を行っていた。
Table 1 shows an example of threshold values conventionally used to determine whether or not fuels such as coal can be used, and the evaluation results corresponding to the threshold values.
The thresholds a1 and a2 are determined based on the fuel analysis values (hereinafter, sometimes referred to as "reported values") described in the instruction manual. As shown in Table 1, for example, when the index X1 indicating the property item value of the ash content of a fuel such as coal exceeds the threshold value a1, the evaluation is marked as "X." The same is true for the index X2 indicating the property item value of the nitrogen content. In addition, when any of these indicators is evaluated as "X," the fuel such as coal is determined to be unusable.

Figure 0007524629000002
Figure 0007524629000002

表2は、本発明の一実施形態における石炭等燃料使用可否判定に用いられる閾値と、閾値に対応する評価結果の一例を示す表である。
指標X1は、灰分の性状項目値を示す。表2に示す通り、指標X1に対する閾値として、新たに運用限界値b1を設け、指標X1が閾値a1以下である場合、評価は〇とし、指標X1が閾値a1超~b1である場合、評価は▲とし、指標X1が閾値b1を超過する場合、評価は×としている。評価▲は、届出値を超過するが、他の評価項目によっては運用可能との評価である。これは、灰分の性状項目値は、ばいじん濃度に相関するが、ばいじん濃度は燃料消費量にも相関するため、燃料消費量によっては、灰分が閾値a1を超過しても、ばいじん濃度の法定基準を遵守して運用可能な場合もあるためである。
Table 2 shows an example of thresholds used to determine whether or not fuel such as coal can be used in one embodiment of the present invention, and evaluation results corresponding to the thresholds.
The index X1 indicates the property item value of ash. As shown in Table 2, a new operational limit value b1 is set as a threshold value for the index X1, and when the index X1 is equal to or less than the threshold value a1, it is evaluated as ◯, when the index X1 is greater than the threshold value a1 to b1, it is evaluated as ▲, and when the index X1 exceeds the threshold value b1, it is evaluated as ×. The evaluation ▲ indicates that the notified value is exceeded, but operation is possible depending on other evaluation items. This is because the property item value of ash correlates with the dust concentration, but the dust concentration also correlates with the fuel consumption, so that depending on the fuel consumption, even if the ash exceeds the threshold value a1, operation may be possible while complying with the legal standard for the dust concentration.

指標X2は、窒素分の性状項目値を示す。指標X2についても同様に、閾値として新たに運用限界値b2を設け、閾値であるa2を超過し、運用限界値としての閾値b2以内となる場合、同様に評価は▲としている。これは、NOx濃度予測値は窒素分に相関するが、燃料比にも相関するため、窒素分が閾値a2を超過しても、NOx濃度の法定基準を遵守して運用可能な場合もあるためである。
なお、上記運用限界値b1、b2は、例えば他の相関値を考慮しても運用が不可能な数値として設定される。
The indicator X2 indicates the property item value of the nitrogen content. Similarly, for the indicator X2, a new operational limit value b2 is set as a threshold value, and if the threshold value a2 is exceeded but is within the operational limit value b2, the evaluation is similarly marked as ▲. This is because the NOx concentration prediction value correlates with the nitrogen content, but also correlates with the fuel ratio, so that even if the nitrogen content exceeds the threshold value a2, it may be possible to operate the vehicle while complying with the legal standard for the NOx concentration.
The operational limit values b1 and b2 are set as values that make operation impossible even when other correlation values are taken into consideration, for example.

指標X3は、脱硝入口NOx濃度を示す。指標X3としては、排ガス成分濃度算出部31で算出される、第1排ガス成分としての排ガス中NOx濃度の予測値が用いられる。表2に示す通り、指標X3が閾値a3以下である場合、評価は〇とし、閾値a3超~b3である場合、評価は△とし、閾値b3を超過する場合、評価は×としている。閾値b3は、法令で定められる法定基準により設定される。
評価△は、理論値である指標X3は法定基準を超過しておらず、当該石炭等燃料は運用可能であるが、監視上注意の必要あり、との評価を示す。つまり、閾値a3は法定基準に対して相当程度裕度を持たせた値として設定される。
The indicator X3 indicates the denitration inlet NOx concentration. As the indicator X3, a predicted value of the NOx concentration in the exhaust gas as the first exhaust gas component, calculated by the exhaust gas component concentration calculation unit 31, is used. As shown in Table 2, when the indicator X3 is equal to or less than the threshold value a3, it is evaluated as ◯, when it is greater than the threshold value a3 to b3, it is evaluated as △, and when it exceeds the threshold value b3, it is evaluated as ×. The threshold value b3 is set according to a statutory standard defined by laws and regulations.
The evaluation △ indicates that the theoretical value of the index X3 does not exceed the legal standard, and the fuel such as coal is operable, but caution is required in monitoring. In other words, the threshold value a3 is set as a value having a considerable margin of error with respect to the legal standard.

指標Yは、排ガス量遵守石炭等燃料消費量を示す。指標Yとしては、燃料消費量算出部32で算出される、燃料消費量の最大予測値(p3)が用いられる。表2に示す通り、指標Yが閾値a4以上である場合、評価は◎とし、閾値a4未満~b4である場合、評価は〇とし、閾値b4未満である場合、評価は▲としている。
従来、燃料消費量については、説明書に記載された数値(a4)を閾値とした運用を行っていたが、燃料消費量は、排ガス量やばいじん濃度に相関するため、排ガス量やばいじん濃度の法定基準を考慮した閾値を定めることが好ましい。
The index Y indicates the coal or other fuel consumption amount complying with the exhaust gas amount. As the index Y, the maximum predicted value of the fuel consumption amount (p3) calculated by the fuel consumption amount calculation unit 32 is used. As shown in Table 2, when the index Y is equal to or greater than the threshold value a4, the evaluation is made as ◎, when the index Y is less than the threshold value a4 to b4, the evaluation is made as ◯, and when the index Y is less than the threshold value b4, the evaluation is made as ▲.
Conventionally, the threshold value for fuel consumption has been the numerical value (A4) stated in the instruction manual. However, since fuel consumption correlates with exhaust gas volume and dust concentration, it is preferable to set a threshold value taking into account the statutory standards for exhaust gas volume and dust concentration.

そこで、本実施形態においては、燃料消費量の最大予測値(p3)が実際の燃料消費量の上限目安値として設定される閾値b4以上であるか否かにより石炭使用可否判定を行うこととした。これにより、排ガス量やばいじん濃度の法定基準をより確実に順守できるとともに、合理的な石炭等燃料の運用が可能となる。
なお、表2に示す通り、指標Yがb4未満であっても、評価は▲とし、他の条件によっては運用可能としている。これは、微粉炭ボイラ等の運転状況や、石炭等燃料の発熱量によっては、実際の燃料消費量がb4より低くなる場合もあり、指標Yがb4未満であっても運用可能な場合もあるためである。
Therefore, in this embodiment, the suitability of coal use is determined based on whether the maximum predicted value of fuel consumption (p3) is equal to or greater than a threshold value b4 set as an upper limit guideline value of actual fuel consumption, which makes it possible to more reliably comply with statutory standards for exhaust gas volume and particulate matter concentration, and to rationally operate coal and other fuels.
As shown in Table 2, even if the index Y is less than b4, the evaluation is ▲ and it is considered to be operable under other conditions. This is because, depending on the operating conditions of the pulverized coal boiler and the calorific value of the fuel such as coal, the actual fuel consumption may be lower than b4, and operation may be possible even if the index Y is less than b4.

(第1判定部、第2判定部における判定)
表2の閾値及び評価に従い、第1判定部は、第1排ガス成分としての脱硝入口NOx濃度の指標X3が閾値b3以内である場合、当該石炭等燃料は第2判定部の判定結果次第で運用可能である、との判定を行い、閾値b3を超過する場合、運用不可との判定を行う。
同様に、第2判定部は、燃料消費量の最大予測値としての排ガス量遵守石炭消費量の指標Yが閾値b4以上である場合、当該石炭等燃料は第1判定部の結果次第で運用可能との判定を行い、閾値b4未満である場合、運用には運転状況等、他の条件の確認が必要である、との判定を行う。
(Determination in the First Determination Unit and the Second Determination Unit)
According to the thresholds and evaluations in Table 2, if the index X3 of the denitration inlet NOx concentration as the first exhaust gas component is within the threshold b3, the first judgment unit judges that the coal or other fuel can be operated depending on the judgment result of the second judgment unit, and if the index X3 exceeds the threshold b3, it judges that the coal or other fuel cannot be operated.
Similarly, if the index Y of coal consumption in compliance with exhaust gas volume, as the maximum predicted value of fuel consumption, is equal to or greater than threshold value b4, the second judgment unit judges that the coal or other fuel can be operated depending on the result of the first judgment unit, and if it is less than threshold value b4, it judges that other conditions, such as operating conditions, need to be checked before operation.

次に、上記排ガス成分等の予測値の算出や閾値に基づく判定を、実際の石炭等燃料の運用の場面に適用した具体例について説明する。 Next, we will explain a specific example in which the calculation of predicted values of the above exhaust gas components and judgments based on thresholds are applied to actual operations using fuels such as coal.

<石炭及びバイオマス運用支援プログラム>
図2は、本発明の一実施形態における、中央処理部3が実行する石炭及びバイオマス運用支援プログラムの処理の流れを示すフローチャートである。図2に示す石炭及びバイオマス運用支援プログラムは、微粉炭ボイラ等で燃料として用いる、石炭等燃料の運用可否判定を行う際に用いられる。
<Coal and Biomass Operational Support Program>
Fig. 2 is a flowchart showing the flow of processing of a coal and biomass operation support program executed by the central processing unit 3 in one embodiment of the present invention. The coal and biomass operation support program shown in Fig. 2 is used when determining whether or not fuel such as coal can be used as fuel in a pulverized coal boiler or the like.

図2に示す通り、中央処理部3は、石炭又はバイオマス燃料の性状項目値及び炭種又は種類・混炭率の入力を、受付部21を介して受け付ける(S1、S2)。
次に、中央処理部3は、上記入力された値と(式1)により、第1排ガス成分濃度としての脱硝入口NOx濃度の予測値X3を算出する(S3)。なお、入力された炭種又は種類が複数である場合、中央処理部3は、混炭率から混炭後の石炭等燃料の性状項目値を算出し、その後上記S3の処理を行う。
次に、中央処理部3は、上記入力された値と(式2)、(式3)により、第2排ガス成分としてのばいじん濃度及び排出ガス量がいずれも所定の閾値以内となる、燃料消費量の最大予測値(p3)としての燃料消費量Yを算出する(S4)。
As shown in FIG. 2, the central processing unit 3 receives input of property item values and coal type or variety and coal blending ratio of coal or biomass fuel via the receiving unit 21 (S1, S2).
Next, the central processing unit 3 calculates a predicted value X3 of the denitration inlet NOx concentration as the first exhaust gas component concentration using the input values and (Equation 1) (S3). When multiple coal types or varieties are input, the central processing unit 3 calculates the property item values of the coal or other fuel after blending from the blending ratio, and then performs the process of S3.
Next, the central processing unit 3 calculates the fuel consumption Y as the maximum predicted value (p3) of fuel consumption at which the soot concentration as the second exhaust gas component and the exhaust gas amount are both within predetermined threshold values using the input values and (Equation 2) and (Equation 3) (S4).

次に、中央処理部3は、S3において算出した濃度X3と所定の閾値b3を比較し、濃度X3が閾値b3以内であるか否かを判定する(S5)。なお、所定の閾値b3は、法令で定められる法定基準により設定される。
濃度X3が閾値b3を超過する場合、中央処理部3は、当該石炭等燃料が運用不可との判定を行う。具体的には、表2に示すような、評価項目一覧を表示すると共に、脱硝入口濃度X3を示す欄に評価結果を表示して着色し、総合評価として運用不可である旨を、出力部23を介して出力する。濃度X3が閾値b3以内である場合、中央処理部3は、次のステップS6を実行する。
Next, the central processing unit 3 compares the concentration X3 calculated in S3 with a predetermined threshold b3 and judges whether the concentration X3 is within the threshold b3 (S5). The predetermined threshold b3 is set according to a legal standard stipulated by laws and regulations.
If the concentration X3 exceeds the threshold b3, the central processing unit 3 determines that the fuel such as coal is not suitable for use. Specifically, a list of evaluation items as shown in Table 2 is displayed, and the evaluation result is displayed and colored in the column showing the denitration inlet concentration X3, and a message indicating that the fuel is not suitable for use as a comprehensive evaluation is output via the output unit 23. If the concentration X3 is within the threshold b3, the central processing unit 3 executes the next step S6.

次に、中央処理部3は、S4において算出した燃料消費量Yと所定の閾値b4を比較し、燃料消費量Yが閾値b4以上であるか否かを判定する(S6)。なお、所定の閾値b4は、実際の燃料消費量の上限目安値として設定される。
燃料消費量Yが閾値b4以上である場合、中央処理部3は、当該石炭等燃料が運用可能との判定を行う。また、燃料消費量Yが閾値b4未満である場合、中央処理部3は、当該石炭等燃料の運用に際し、要確認との判定を行う。また、S6における判定結果の具体的な出力方法はS5と同様である。
Next, the central processing unit 3 compares the fuel consumption amount Y calculated in S4 with a predetermined threshold b4 to determine whether the fuel consumption amount Y is equal to or greater than the threshold b4 (S6). The predetermined threshold b4 is set as an upper limit guideline value for the actual fuel consumption amount.
When the fuel consumption amount Y is equal to or greater than the threshold value b4, the central processing unit 3 determines that the fuel such as coal is operable. When the fuel consumption amount Y is less than the threshold value b4, the central processing unit 3 determines that the operation of the fuel such as coal requires confirmation. The specific method of outputting the determination result in S6 is the same as in S5.

次に、本発明の一実施形態における、石炭及びバイオマス運用支援システム1を用いた石炭及びバイオマス運用方法について説明する。 Next, we will explain a coal and biomass management method using the coal and biomass management support system 1 in one embodiment of the present invention.

<石炭及びバイオマス運用方法(炭種又は種類・混炭率決定)>
図3は、石炭及びバイオマス運用支援システム1及び上記プログラムを使用する石炭及びバイオマス運用方法の流れを示すフローチャートである。この運用方法は、微粉炭ボイラ等で燃料として用いる、石炭又はバイオマス燃料の炭種又は種類及び混炭率を決定する際に用いられる。
<Coal and biomass operation method (coal type or variety and blending ratio determination)>
3 is a flowchart showing the flow of a coal and biomass operation method using the coal and biomass operation support system 1 and the above program. This operation method is used when determining the coal type or variety and blending ratio of coal or biomass fuel to be used as fuel in a pulverized coal boiler or the like.

まず、ユーザは各種石炭又はバイオマス燃料の性状を分析し、炭種又は種類、及び性状項目値を管理端末2に入力する(S7)。なお、予め分析された性状項目値を別途データベースサーバ等から取得し、上記入力を行ってもよい。
次に、ユーザは選定ステップS8において、S7で入力を行った炭種又は種類の中から、候補となる炭種又は種類、及び混炭率を選定し、管理端末2に入力する。
First, the user analyzes the properties of various coals or biomass fuels, and inputs the coal type or variety and property item values into the management terminal 2 (S7). Note that the property item values analyzed in advance may be separately acquired from a database server or the like, and the above input may be performed.
Next, in a selection step S8, the user selects candidate coal types or varieties and coal blend ratios from the coal types or varieties input in S7, and inputs them to the management terminal 2.

次に、ユーザは、管理端末2に対し、上記プログラムの実行を指示する。管理端末2は、排ガス成分濃度予測値X3及び燃料消費量予測値Yを算出し(S9,S10)、各閾値b3、b4と比較して判定を行い(S11、S12)、判定結果を出力する。 Next, the user instructs the management terminal 2 to execute the above program. The management terminal 2 calculates the exhaust gas component concentration prediction value X3 and the fuel consumption prediction value Y (S9, S10), compares them with the respective threshold values b3 and b4 to make a judgment (S11, S12), and outputs the judgment result.

次に、ユーザは、上記S11において、運用不可との判定結果が出力された場合、すなわち、予測値X3がb3を超過する場合、S8に戻り、石炭又はバイオマス燃料の炭種又は種類及び混炭率の再選定を行う。
また、ユーザは、上記S12において、要確認との判定結果が出力された場合、すなわち、予測値Yがb4未満である場合、判断ステップS13において、ボイラ運転状況や石炭又はバイオマス燃料の発熱量を考慮して運用可否判断を行う。ユーザは、S13において運用不可との判断を行った場合、S8に戻り、石炭又はバイオマス燃料の炭種又は種類及び混炭率の再選定を行う。
Next, if a determination result indicating that operation is not possible is output in S11 above, that is, if the predicted value X3 exceeds b3, the user returns to S8 and reselects the coal type or variety and blending ratio of coal or biomass fuel.
If the determination result indicates that confirmation is required in S12, that is, if the predicted value Y is less than b4, the user determines whether operation is possible in consideration of the boiler operating status and the heat value of the coal or biomass fuel in decision step S13. If the user determines that operation is not possible in S13, the process returns to S8 and reselects the type or variety of coal or biomass fuel and the blending ratio.

ユーザは、上記S12において、運用可能との判定結果が出力された場合、又は、上記S13において、運用可能との判断を行った場合、S8における選定内容に基づき炭種又は種類及び混炭率を決定する。 If the determination result in S12 above indicates that operation is possible, or if the determination in S13 above indicates that operation is possible, the user determines the coal type or variety and coal blend ratio based on the selection made in S8.

<石炭及びバイオマス運用方法(燃焼監視及び基準見直し)>
次に、本発明の一実施形態における、上記石炭及びバイオマス運用支援システム1を使用する石炭及びバイオマス運用方法について説明する。
図4は、石炭及びバイオマス運用支援システム1を用いた、本発明の一実施形態における石炭及びバイオマス運用方法の流れを示すフローチャートである。この運用方法は、炭種又は種類及び混炭率を決定した石炭等燃料を燃料として微粉炭ボイラ等を運転した際の、排ガス成分や排ガス量の監視に用いられる。また、監視結果に基づく算出式や判定基準の見直しに用いられる。
<Coal and biomass operation methods (combustion monitoring and review of standards)>
Next, a coal and biomass management method using the coal and biomass management support system 1 according to one embodiment of the present invention will be described.
4 is a flowchart showing the flow of a coal and biomass operation method in one embodiment of the present invention using the coal and biomass operation support system 1. This operation method is used to monitor exhaust gas components and exhaust gas volume when a pulverized coal boiler or the like is operated using coal or other fuel whose coal type or type and blending ratio have been determined. This operation method is also used to review calculation formulas and judgment criteria based on the monitoring results.

管理端末2は、ユーザの指示に従い、排ガス濃度計41を通じ、第1排ガス濃度としての、例えば脱硝設備の出口側NOx濃度の測定値X3’及び第2排ガス濃度としてのばいじん濃度の測定値X5’を取得する(S14)。また、同様に給炭機42を通じ、燃料消費量の測定値Y’を取得する(S15)。 In accordance with the user's instructions, the management terminal 2 acquires, via the exhaust gas concentration meter 41, a measured value X3' of the NOx concentration at the outlet side of the denitrification equipment as the first exhaust gas concentration, and a measured value X5' of the soot and dust concentration as the second exhaust gas concentration (S14). Similarly, the management terminal 2 acquires a measured value Y' of the fuel consumption amount via the coal feeder 42 (S15).

次に、管理端末2における中央処理部3は、上記測定値X3’、X5’と、所定の閾値b3’、b5’とを比較する監視ステップS16を実行し、測定値X3’、X5’がいずれもそれぞれ所定の閾値b3’、b5’以内であるか否かを判定する。なお、上記閾値b3’、b5’としては、法令で定められる法定基準が用いられる。
S16の結果、測定値X3’、X5’がいずれもそれぞれ所定の閾値b3’、b5’以内である場合、管理端末2は、次の監視ステップ(S17)を実行する。
Next, the central processing unit 3 in the management terminal 2 executes a monitoring step S16 in which the measured values X3', X5' are compared with the predetermined threshold values b3', b5' to determine whether the measured values X3', X5' are within the predetermined threshold values b3', b5', respectively. Note that the threshold values b3', b5' are legal standards set forth by laws and regulations.
If the result of S16 is that the measured values X3', X5' are both within the predetermined threshold values b3', b5' respectively, the management terminal 2 executes the next monitoring step (S17).

次に、中央処理部3は、上記測定値Y’と、所定の閾値b4’とを比較する監視ステップS17を実行し、測定値Y’が所定の閾値b4’以内であるか否かを判定する。なお、上記閾値b4’としては、実際の燃料消費量の上限目安値に、運転状況等を加味して設定された数値が用いられる。中央処理部3は、S16及びS17を実行した後、判定結果を、出力部23を介して出力する。
なお、上記S14~S17は、都度のユーザの指示を待つことなく、一定時間毎に自動的に繰り返して行われることが好ましい。
Next, the central processing unit 3 executes a monitoring step S17 in which the measured value Y' is compared with a predetermined threshold value b4' to determine whether the measured value Y' is within the predetermined threshold value b4'. Note that as the threshold value b4', a value set by taking into account the upper limit guide value of the actual fuel consumption amount and the driving conditions, etc. is used. After executing S16 and S17, the central processing unit 3 outputs the determination result via the output unit 23.
It is preferable that the above steps S14 to S17 are automatically repeated at regular intervals without waiting for a user's instruction each time.

上記監視ステップS16及びS17の結果、測定値X3’、X5’、Y’がいずれも所定の閾値b3’、b5’、b4’以内である場合、ユーザは出力部23により出力された判定結果を確認し、微粉炭ボイラ等の運転を継続する。 If the results of the above monitoring steps S16 and S17 show that the measured values X3', X5', and Y' are all within the predetermined threshold values b3', b5', and b4', the user checks the judgment result output by the output unit 23 and continues operation of the pulverized coal boiler, etc.

上記S16の結果、測定値X3’若しくはX5’のいずれかが、閾値b3’若しくはb5’を超過する場合、又はS17の結果、測定値Y’が閾値b4’を超過する場合、ユーザは、運転継続が可能であるか否かを判断する(S18)。
なお、ここでの運転継続が可能であるか否かの判断とは、具体的には以下のような判断を示す。
If the result of S16 shows that either the measured value X3' or X5' exceeds the threshold value b3' or b5', or if the result of S17 shows that the measured value Y' exceeds the threshold value b4', the user determines whether or not it is possible to continue driving (S18).
The judgment as to whether or not the operation can be continued specifically refers to the following judgment.

ユーザは、上記各測定値が各閾値を超過する場合、ユーザ自身の操作又は自動制御により、各測定値が各閾値以内となるような制御を行う。
例えば、脱硝設備の出口側NOx濃度の測定値X3’が所定の閾値b3’を超過する場合、脱硝設備におけるアンモニア注入量を増加させ、NOx濃度の設定値を低下させる。
また、ばいじん濃度の測定値X5’が所定の閾値b5’を超過する場合、EP(電気集じん機)の荷電制御変更、又は脱硫装置の吸収塔循環ポンプ動翼開度上昇により、ばいじん濃度を低下させる。
また、燃料消費量の測定値Y’が所定の閾値b4’を超過する場合、スートブロワ(すす噴装置)の停止、負荷変化率の減少、石炭スラリーの供給やミル切替等の燃料消費量が増加する作業の停止を行い、燃料消費量を低下させる。
When each of the above measured values exceeds each threshold value, the user performs control by the user's own operation or automatic control so that each measured value falls within each threshold value.
For example, when a measured value X3' of the NOx concentration on the outlet side of the denitration equipment exceeds a predetermined threshold value b3', the amount of ammonia injected into the denitration equipment is increased and the set value of the NOx concentration is reduced.
When the measured dust concentration value X5' exceeds a predetermined threshold value b5', the dust concentration is reduced by changing the charge control of the EP (electrostatic precipitator) or increasing the opening of the blades of the absorption tower circulation pump of the desulfurization device.
In addition, if the measured fuel consumption Y' exceeds a predetermined threshold value b4', the soot blower is stopped, the load change rate is reduced, and operations that increase fuel consumption, such as supplying coal slurry and switching the mill, are stopped to reduce fuel consumption.

しかし、上記制御によっても各測定値が各閾値を超過する頻度が高い場合、ユーザは、運転継続は不可能と判断し、炭種又は種類及び混炭率を変更する(S19)。上記変更には、例えば、上記実施形態において説明したプログラムが用いられる。
また、ユーザは、上記に併せて排ガス成分濃度の算出式や、燃料消費量の算出式の見直し、あるいは閾値(評価)の見直しを行う(S20)。上記見直しは、例えば超過項目の燃料分析値の確認、発熱量の確認、算出した理論値と測定値の比較等によって行われる。
However, if the measured values frequently exceed the thresholds even with the above control, the user determines that it is impossible to continue operation and changes the coal type or variety and the coal blending ratio (S19). For example, the program described in the above embodiment is used for the above changes.
In addition, the user reviews the calculation formulas for the exhaust gas component concentrations and the fuel consumption amount, or reviews the thresholds (evaluation) (S20). The reviews are performed, for example, by checking the fuel analysis values of the excess items, checking the heat generation amount, and comparing the calculated theoretical values with the measured values.

そして、再度管理端末2によってS14~S17が実行され、その結果に基づき上記判断S18や運転の継続を行う。 Then, steps S14 to S17 are executed again by the management terminal 2, and the above decision S18 or the continuation of operation is made based on the results.

以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されない。例えば、上記石炭及びバイオマス運用支援システム1を、微粉炭ボイラを備える発電設備以外の、石炭燃焼設備に適用してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, the coal and biomass operation support system 1 may be applied to coal combustion facilities other than power generation facilities equipped with pulverized coal boilers.

また、上記実施形態において、中央処理部3に第1判定部33及び第2判定部34を設ける構成としたが、これに限定されず、例えば算出された排ガス成分濃度や燃料消費量の予測値と閾値との比較を人が行うこととしてもよい。
同様に、燃焼監視時における各種測定値と閾値との比較を行う監視ステップ16及び17は、比較を管理端末2ではなく人が行うこととしてもよい。
In addition, in the above embodiment, the central processing unit 3 is configured to have the first judgment unit 33 and the second judgment unit 34, but this is not limited to this, and for example, the comparison of the calculated exhaust gas component concentration and predicted fuel consumption amount with a threshold value may be performed by a human being.
Similarly, the monitoring steps 16 and 17 in which various measurements made during combustion monitoring are compared with threshold values may be performed by a person rather than by the management terminal 2 .

また、燃料消費量Yの閾値b4は、石炭又はバイオマス燃料の発熱量を考慮した可変のものとしてもよい。例えば、算出された燃料消費量Yが閾値b4を下回る場合、評価は▲となるが、石炭又はバイオマス燃料の発熱量から想定される燃料消費量が上記算出値を下回る場合、その結果に応じて閾値b4を補正して評価を〇に変更してもよい。
あるいは、燃料消費量Yを算出する際に、石炭又はバイオマス燃料の発熱量を考慮して、燃料消費量Yを補正してもよい。
Furthermore, the threshold b4 of the fuel consumption Y may be variable, taking into account the calorific value of the coal or biomass fuel. For example, if the calculated fuel consumption Y falls below the threshold b4, the evaluation is ▲, but if the fuel consumption estimated from the calorific value of the coal or biomass fuel falls below the calculated value, the threshold b4 may be corrected according to the result and the evaluation may be changed to ◯.
Alternatively, when calculating the fuel consumption amount Y, the fuel consumption amount Y may be corrected by taking into account the calorific value of the coal or biomass fuel.

また、上記実施形態において、各種閾値のうちいくつかを、法定基準を用いるものとして説明したが、これに限定されず、法定基準に対して一定の裕度を持たせた値を上記閾値として用いてもよい。 In addition, in the above embodiment, some of the various thresholds are described as using legal standards, but this is not limited to this, and values that have a certain margin of error relative to the legal standards may be used as the above thresholds.

1 石炭及びバイオマス運用支援システム
2 管理端末
21 受付部
22 記憶部
23 出力部
24 I/F部
3 中央処理部
31 排ガス成分濃度算出部
32 燃料消費量算出部
33 第1判定部
34 第2判定部
41 排ガス濃度計
42 給炭機
REFERENCE SIGNS LIST 1 Coal and biomass operation support system 2 Management terminal 21 Reception unit 22 Memory unit 23 Output unit 24 I/F unit 3 Central processing unit 31 Exhaust gas component concentration calculation unit 32 Fuel consumption calculation unit 33 First judgment unit 34 Second judgment unit 41 Exhaust gas concentration meter 42 Coal feeder

Claims (6)

1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率の入力を受け付ける受付部と、
前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率を記憶する記憶部と、
前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率から、第1排ガス成分濃度予測値を算出する、排ガス成分濃度算出部と、
前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率から、第2排ガス成分濃度及び排出ガス量がいずれも所定の閾値以内となる燃料消費量の最大予測値を算出する、燃料消費量算出部と、
前記第1排ガス成分濃度予測値と、前記燃料消費量の最大予測値を出力する出力部と、を備え
前記第1排ガス成分は、窒素酸化物を含み、前記第2排ガス成分は、ばいじんを含み、
前記性状項目値は、炭素、水素、酸素、全硫黄、全水分、窒素、灰分及び固有水分を含み、
前記排ガス成分濃度算出部は、以下の(式1)によって前記第1排ガス成分濃度予測値を算出し、
(式1)排ガス中NOx濃度=19.3×燃料比×(1+燃料窒素分(%、CHベース))+97(ppm)
(前記(式1)中、「CHベース」とは、湿度75%の恒湿状態の分析値を示す。また、燃料比は固定炭素と揮発分量の比から算出される。)
前記燃料消費量算出部は、以下の(式2)によって燃料消費量の最大予測値(p1)を算出し、
(式2)理論空気量((A0))=8.89C+26.7×(H-O/8)+3.33S
理論燃焼ガス量(Q0)=1.867C+0.7S+11.2H+1.24W1+0.8N+0.79A0
実際燃焼ガス量(湿り)(Q’)=Q0+(1.31-1)×A0
実際燃焼ガス量(乾き)(Q”)=Q’-(11.2H+1.24W1)
脱硫装置入口水蒸気量(Qs)=(Q’×燃料消費量×1000)-(Q”×燃料消費量×1000)
脱硫装置出口水蒸気量(Qc)=(Q’×燃料消費量×1000×1.3-Qs/1.244)×0.077×1.244
脱硝装置発生ガス量(Qa)=Qc-Qs+10000
排ガス量(湿り)=Q’×燃料消費量×1000+Qa
排ガス量(乾き)=(Q”×燃料消費量×1000)+10000
(前記(式2)中、Cは炭素、Hは水素、Oは酸素、Sは全硫黄、W1は全水分、Nは窒素をそれぞれ意味する。)
前記燃料消費量算出部は、以下の(式3)によって前記第2排ガス成分濃度予測値、及び燃料消費量の最大予測値(p2)を算出し、
(式3)排ガス中ばいじん濃度=A×((燃料消費量-(燃料消費量×(W1-W2))×1000/Q”×1000)
(前記(式3)中、Aは灰分、W1は全水分、W2は固有水分をそれぞれ意味する。)
前記燃料消費量算出部は、前記燃料消費量の最大予測値(p1)、及び前記燃料消費量の最大予測値(p2)から、前記第2排ガス成分濃度及び前記排出ガス量がいずれも所定の閾値以内となる前記燃料消費量の最大予測値を算出する、石炭及びバイオマス運用支援システム。
A reception unit that receives input of property item values and a coal blending ratio of one or more types of coal or biomass fuel;
A memory unit that stores property item values and coal blending ratios of the one or more types of coal or biomass fuel;
an exhaust gas component concentration calculation unit that calculates a first exhaust gas component concentration prediction value from property item values and a coal blending ratio of the one or more types of coal or biomass fuel;
A fuel consumption calculation unit that calculates a maximum predicted value of fuel consumption at which both the second exhaust gas component concentration and the exhaust gas amount are within a predetermined threshold value based on the property item values and the coal blending ratio of the one or more types of coal or biomass fuel;
an output unit that outputs the first exhaust gas component concentration predicted value and the maximum predicted value of the fuel consumption amount ,
The first exhaust gas component includes nitrogen oxides, and the second exhaust gas component includes soot and dust,
The property item values include carbon, hydrogen, oxygen, total sulfur, total moisture, nitrogen, ash and inherent moisture;
The exhaust gas component concentration calculation unit calculates the first exhaust gas component concentration prediction value by the following (Equation 1),
(Equation 1) NOx concentration in exhaust gas = 19.3 x fuel ratio x (1 + fuel nitrogen content (%, CH base)) + 97 (ppm)
(In the above formula 1, "CH base" indicates an analysis value at a constant humidity of 75%. The fuel ratio is calculated from the ratio of fixed carbon to volatile matter.)
The fuel consumption calculation unit calculates a maximum predicted value (p1) of fuel consumption by the following (Equation 2):
(Formula 2) Theoretical air amount ((A0)) = 8.89C + 26.7 × (HO / 8) + 3.33S
Theoretical combustion gas amount (Q0) = 1.867C + 0.7S + 11.2H + 1.24W1 + 0.8N + 0.79A0
Actual combustion gas volume (wet) (Q') = Q0 + (1.31-1) x A0
Actual combustion gas volume (dry) (Q") = Q' - (11.2H + 1.24W1)
Desulfurization equipment inlet water vapor amount (Qs) = (Q' x fuel consumption x 1000) - (Q” x fuel consumption x 1000)
Amount of steam at the outlet of the desulfurization device (Qc) = (Q' x fuel consumption x 1000 x 1.3 - Qs/1.244) x 0.077 x 1.244
Amount of gas generated by the denitrification device (Qa) = Qc - Qs + 10000
Exhaust gas volume (wet) = Q' x fuel consumption x 1000 + Qa
Exhaust gas volume (dry) = (Q" x fuel consumption x 1000) + 10000
(In the above formula 2, C means carbon, H means hydrogen, O means oxygen, S means total sulfur, W1 means total water, and N means nitrogen.)
The fuel consumption calculation unit calculates the second exhaust gas component concentration prediction value and the maximum prediction value (p2) of the fuel consumption amount by the following (Equation 3),
(Formula 3) Dust concentration in exhaust gas = A x ((Fuel consumption - (Fuel consumption x (W1 - W2)) x 1000/Q" x 1000)
(In the above formula 3, A represents ash content, W1 represents total moisture, and W2 represents inherent moisture.)
The fuel consumption calculation unit calculates a maximum predicted value of fuel consumption from the maximum predicted value of fuel consumption (p1) and the maximum predicted value of fuel consumption (p2), such that the second exhaust gas component concentration and the exhaust gas amount are both within predetermined threshold values . A coal and biomass operation support system.
前記第1排ガス成分濃度の測定値の取得手段と、
前記燃料消費量の測定値の取得手段と、を備える、請求項1に記載の石炭及びバイオマス運用支援システム。
A means for acquiring a measurement value of the first exhaust gas component concentration;
The coal and biomass operation support system according to claim 1 , further comprising: a means for acquiring the measured value of the fuel consumption.
前記第1排ガス成分濃度予測値が、所定の閾値以内であるか否かを判定する第1判定部と、
前記燃料消費量の最大予測値が、所定の閾値以上であるか否かを判定する第2判定部と、を備え、
前記出力部は、前記第1判定部及び第2判定部の判定結果を出力する、請求項1又は2に記載の石炭及びバイオマス運用支援システム。
a first determination unit that determines whether the first exhaust gas component concentration prediction value is within a predetermined threshold value;
a second determination unit that determines whether the maximum predicted value of the fuel consumption is equal to or greater than a predetermined threshold value,
The coal and biomass management support system according to claim 1 or 2, wherein the output unit outputs the determination results of the first determination unit and the second determination unit.
前記1種若しくは2種以上の石炭、又はバイオマス燃料の炭種又は種類、及び混炭率の選定ステップと、
前記第1排ガス成分濃度予測値及び前記燃料消費量の最大予測値と、それぞれ所定の閾値との比較から前記1種若しくは混炭した石炭、又は前記石炭と前記バイオマス燃料とを混合した燃料の使用可否を判定する、判定ステップと、を有し
前記選定ステップ及び前記判定ステップは、コンピュータ装置により実行される、請求項1~いずれかに記載の石炭及びバイオマス運用支援システムを使用する石炭及びバイオマス運用方法。
A step of selecting the one or more types of coal or biomass fuel and a coal blending ratio;
and a determination step of determining whether or not the single type of coal or the blended coal, or the fuel obtained by mixing the coal and the biomass fuel, is usable by comparing the first exhaust gas component concentration prediction value and the maximum prediction value of the fuel consumption amount with respective predetermined threshold values ,
The coal and biomass operation method using the coal and biomass operation support system according to any one of claims 1 to 3 , wherein the selection step and the determination step are executed by a computer device .
前記第1排ガス成分濃度の測定値、前記第2排ガス成分濃度の測定値、及び前記燃料消費量の測定値と、それぞれ所定の閾値との比較を行う監視ステップを有し、
前記監視ステップの結果に基づき、前記第1排ガス成分濃度予測値の算出方法、又は前記燃料消費量の最大予測値の算出方法の見直しを行い、
前記監視ステップは、コンピュータ装置により実行され、
前記第1排ガス成分濃度予測値の算出方法、又は前記燃料消費量の最大予測値の算出方法の見直しは、ユーザにより実行される、請求項2又は3に記載の石炭及びバイオマス運用支援システムを使用する石炭及びバイオマス運用方法。
a monitoring step of comparing the measured value of the first exhaust gas component concentration, the measured value of the second exhaust gas component concentration, and the measured value of the fuel consumption amount with respective predetermined threshold values;
Based on the result of the monitoring step, a method for calculating the first exhaust gas component concentration predicted value or a method for calculating the maximum predicted value of the fuel consumption amount is reviewed;
The monitoring step is performed by a computer device;
The coal and biomass operation method using the coal and biomass operation support system according to claim 2 or 3 , wherein the calculation method of the first exhaust gas component concentration predicted value or the calculation method of the maximum predicted value of the fuel consumption amount is reviewed by a user .
1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率の入力受付機能と、
前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率から、第1排ガス成分濃度予測値を算出する、排ガス成分濃度算出機能と、
前記1種若しくは2種以上の石炭、又はバイオマス燃料の性状項目値及び混炭率から、第2排ガス成分濃度及び排出ガス量がいずれも所定の閾値以内となる燃料消費量の最大予測値を算出する、燃料消費量算出機能と、
前記第1排ガス成分濃度予測値が、所定の閾値以内であるか否かを判定する第1判定機能と、
前記燃料消費量の最大予測値が、所定の閾値以上であるか否かを判定する第2判定機能と、
前記第1判定機能及び第2判定機能による判定結果の出力機能と、を備え
前記第1排ガス成分は、窒素酸化物を含み、前記第2排ガス成分は、ばいじんを含み、
前記性状項目値は、炭素、水素、酸素、全硫黄、全水分、窒素、灰分及び固有水分を含み、
前記排ガス成分濃度算出機能は、以下の(式1)によって前記第1排ガス成分濃度予測値を算出し、
(式1)排ガス中NOx濃度=19.3×燃料比×(1+燃料窒素分(%、CHベース))+97(ppm)
(前記(式1)中、「CHベース」とは、湿度75%の恒湿状態の分析値を示す。また、燃料比は固定炭素と揮発分量の比から算出される。)
前記燃料消費量算出機能は、以下の(式2)によって燃料消費量の最大予測値(p1)を算出し、
(式2)理論空気量((A0))=8.89C+26.7×(H-O/8)+3.33S
理論燃焼ガス量(Q0)=1.867C+0.7S+11.2H+1.24W1+0.8N+0.79A0
実際燃焼ガス量(湿り)(Q’)=Q0+(1.31-1)×A0
実際燃焼ガス量(乾き)(Q”)=Q’-(11.2H+1.24W1)
脱硫装置入口水蒸気量(Qs)=(Q’×燃料消費量×1000)-(Q”×燃料消費量×1000)
脱硫装置出口水蒸気量(Qc)=(Q’×燃料消費量×1000×1.3-Qs/1.244)×0.077×1.244
脱硝装置発生ガス量(Qa)=Qc-Qs+10000
排ガス量(湿り)=Q’×燃料消費量×1000+Qa
排ガス量(乾き)=(Q”×燃料消費量×1000)+10000
(前記(式2)中、Cは炭素、Hは水素、Oは酸素、Sは全硫黄、W1は全水分、Nは窒素をそれぞれ意味する。)
前記燃料消費量算出機能は、以下の(式3)によって前記第2排ガス成分濃度予測値、及び燃料消費量の最大予測値(p2)を算出し、
(式3)排ガス中ばいじん濃度=A×((燃料消費量-(燃料消費量×(W1-W2))×1000/Q”×1000)
(前記(式3)中、Aは灰分、W1は全水分、W2は固有水分をそれぞれ意味する。)
前記燃料消費量算出機能は、前記燃料消費量の最大予測値(p1)、及び前記燃料消費量の最大予測値(p2)から、前記第2排ガス成分濃度及び前記排出ガス量がいずれも所定の閾値以内となる前記燃料消費量の最大予測値を算出する、石炭及びバイオマス運用支援プログラム。
A function for accepting input of property item values and blending ratios of one or more types of coal or biomass fuel;
An exhaust gas component concentration calculation function that calculates a first exhaust gas component concentration prediction value from the property item values and the coal blending ratio of the one or more types of coal or biomass fuel;
A fuel consumption calculation function that calculates a maximum predicted value of fuel consumption at which the second exhaust gas component concentration and the exhaust gas amount are both within a predetermined threshold value based on the property item values and the coal blending ratio of the one or more types of coal or biomass fuel;
a first determination function for determining whether the first exhaust gas component concentration prediction value is within a predetermined threshold value;
a second determination function for determining whether the maximum predicted value of the fuel consumption is equal to or greater than a predetermined threshold;
an output function of a determination result by the first determination function and the second determination function ;
The first exhaust gas component includes nitrogen oxides, and the second exhaust gas component includes soot and dust,
The property item values include carbon, hydrogen, oxygen, total sulfur, total moisture, nitrogen, ash, and inherent moisture;
The exhaust gas component concentration calculation function calculates the first exhaust gas component concentration prediction value by the following (Equation 1):
(Equation 1) NOx concentration in exhaust gas = 19.3 x fuel ratio x (1 + fuel nitrogen content (%, CH base)) + 97 (ppm)
(In the above formula 1, "CH base" indicates an analysis value at a constant humidity of 75%. The fuel ratio is calculated from the ratio of fixed carbon to volatile matter.)
The fuel consumption calculation function calculates a maximum predicted value (p1) of fuel consumption by the following (Equation 2):
(Formula 2) Theoretical air amount ((A0)) = 8.89C + 26.7 × (HO / 8) + 3.33S
Theoretical combustion gas amount (Q0) = 1.867C + 0.7S + 11.2H + 1.24W1 + 0.8N + 0.79A0
Actual combustion gas volume (wet) (Q') = Q0 + (1.31-1) x A0
Actual combustion gas volume (dry) (Q") = Q' - (11.2H + 1.24W1)
Desulfurization equipment inlet water vapor amount (Qs) = (Q' x fuel consumption x 1000) - (Q” x fuel consumption x 1000)
Amount of steam at the outlet of the desulfurization device (Qc) = (Q' x fuel consumption x 1000 x 1.3 - Qs/1.244) x 0.077 x 1.244
Amount of gas generated by the denitrification device (Qa) = Qc - Qs + 10000
Exhaust gas volume (wet) = Q' x fuel consumption x 1000 + Qa
Exhaust gas volume (dry) = (Q" x fuel consumption x 1000) + 10000
(In the above formula 2, C means carbon, H means hydrogen, O means oxygen, S means total sulfur, W1 means total water, and N means nitrogen.)
The fuel consumption calculation function calculates the second exhaust gas component concentration prediction value and the maximum prediction value (p2) of the fuel consumption amount by the following (Equation 3):
(Formula 3) Dust concentration in exhaust gas = A x ((Fuel consumption - (Fuel consumption x (W1 - W2)) x 1000/Q" x 1000)
(In the above formula 3, A represents ash content, W1 represents total moisture, and W2 represents inherent moisture.)
The fuel consumption calculation function calculates a maximum predicted value of fuel consumption from the maximum predicted value of fuel consumption (p1) and the maximum predicted value of fuel consumption (p2), such that the second exhaust gas component concentration and the exhaust gas amount are both within predetermined threshold values . A coal and biomass operation support program.
JP2020108713A 2019-06-27 2020-06-24 Coal and Biomass Operation Support System Active JP7524629B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019120280 2019-06-27
JP2019120280 2019-06-27

Publications (2)

Publication Number Publication Date
JP2021006997A JP2021006997A (en) 2021-01-21
JP7524629B2 true JP7524629B2 (en) 2024-07-30

Family

ID=74174586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020108713A Active JP7524629B2 (en) 2019-06-27 2020-06-24 Coal and Biomass Operation Support System

Country Status (1)

Country Link
JP (1) JP7524629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3079546C (en) 2018-09-17 2021-04-13 Datalog, LLC Log scaling system and related methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017018A (en) 2003-06-24 2005-01-20 Mitsubishi Heavy Ind Ltd Method and instrument for measuring waste material composition
JP2007115203A (en) 2005-10-24 2007-05-10 Chugoku Electric Power Co Inc:The Device, method and computer program for evaluating coal properties
JP2007271187A (en) 2006-03-31 2007-10-18 Hitachi Ltd Control device for control target with combustion device and control device for plant with boiler
JP2009275680A (en) 2008-05-19 2009-11-26 Central Res Inst Of Electric Power Ind Nox emission amount forecasting method, operation method for gasification power generation plant utilizing this method, and gasification power generation plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017018A (en) 2003-06-24 2005-01-20 Mitsubishi Heavy Ind Ltd Method and instrument for measuring waste material composition
JP2007115203A (en) 2005-10-24 2007-05-10 Chugoku Electric Power Co Inc:The Device, method and computer program for evaluating coal properties
JP2007271187A (en) 2006-03-31 2007-10-18 Hitachi Ltd Control device for control target with combustion device and control device for plant with boiler
JP2009275680A (en) 2008-05-19 2009-11-26 Central Res Inst Of Electric Power Ind Nox emission amount forecasting method, operation method for gasification power generation plant utilizing this method, and gasification power generation plant

Also Published As

Publication number Publication date
JP2021006997A (en) 2021-01-21

Similar Documents

Publication Publication Date Title
Zhang et al. Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data
JP5197032B2 (en) Combustion state simulation method, program, storage medium, and combustion state simulation apparatus
JP5642156B2 (en) Plant operation support system, plant operation support program, and plant operation support method
CN103257621B (en) The monitoring device of discharge of pollutant sources operating mode
CN109190967B (en) Carbon emission accounting method and system for thermal generator set
JP7524629B2 (en) Coal and Biomass Operation Support System
JPWO2019208773A1 (en) Boiler driving support device, boiler driving support method, and boiler learning model creation method
CN111651847A (en) Method and device for determining running oxygen amount of gas-fired boiler
CN110953574B (en) A method and device for determining the minimum peak load of a boiler
CN103977705B (en) A kind of reductant metering of cement clinker production line SNCR denitrating flue gas and control system and method
CN117350458A (en) Thermal power generating unit carbon emission analysis method based on-line monitoring
CN109237510A (en) A kind of Boiler Combustion Optimization System based on CO on-line monitoring
Li et al. Air pollutant emissions from coal-fired power plants
JP2017211235A (en) Exhaust gas analysis system, program for exhaust gas analysis, and exhaust gas analysis method
WO2008063796A2 (en) Method for estimating the impact of fuel distribution and furnace configuration on fossil fuel-fired furnace emissions and corrosion responses
CN105808902B (en) Qualitative method for operating condition analysis of wet desulfurization system
Chakrovorty et al. Modification of conventional rice parboiling boiler to enhance efficiency and achieve sustainability in the rice parboiling industries of Bangladesh
Gooty et al. Incorporation of market signals for the optimal design of post combustion carbon capture systems
CN106557078A (en) A kind of 1000MW units coal blending optimizing system
KR100695222B1 (en) Computer-readable recording media that records methods for evaluating coal operation costs and programs for realizing them
Traynor Pollutant emission factors from residential natural gas appliances: A literature review
Horák et al. Real measurement of carbon monoxide, total suspended particulate, and thermal efficiency in modern biomass household boilers
Zeng et al. How best management practices affect emissions in gas turbine power plants—An important factor to consider when strengthening emission standards
Evans et al. Modeling the Effects of Changes in New Source Review on National SO2 and NO x Emissions from Electricity-Generating Units
Guidance Direct Emissions from Stationary Combustion Sources

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240701

R150 Certificate of patent or registration of utility model

Ref document number: 7524629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150