JP7521165B2 - 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物 - Google Patents
積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物 Download PDFInfo
- Publication number
- JP7521165B2 JP7521165B2 JP2021504098A JP2021504098A JP7521165B2 JP 7521165 B2 JP7521165 B2 JP 7521165B2 JP 2021504098 A JP2021504098 A JP 2021504098A JP 2021504098 A JP2021504098 A JP 2021504098A JP 7521165 B2 JP7521165 B2 JP 7521165B2
- Authority
- JP
- Japan
- Prior art keywords
- based alloy
- alloy member
- additive manufacturing
- segregation
- crystal grains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 100
- 229910045601 alloy Inorganic materials 0.000 title claims description 70
- 239000000956 alloy Substances 0.000 title claims description 70
- 239000000654 additive Substances 0.000 claims description 81
- 230000000996 additive effect Effects 0.000 claims description 81
- 238000010438 heat treatment Methods 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 48
- 238000005204 segregation Methods 0.000 claims description 47
- 239000013078 crystal Substances 0.000 claims description 34
- 238000002844 melting Methods 0.000 claims description 21
- 230000008018 melting Effects 0.000 claims description 21
- 229910052750 molybdenum Inorganic materials 0.000 claims description 21
- 229910052804 chromium Inorganic materials 0.000 claims description 20
- 210000002777 columnar cell Anatomy 0.000 claims description 19
- 238000010894 electron beam technology Methods 0.000 claims description 17
- 210000003850 cellular structure Anatomy 0.000 claims description 13
- 238000007711 solidification Methods 0.000 claims description 11
- 230000008023 solidification Effects 0.000 claims description 11
- 239000004065 semiconductor Substances 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 60
- 239000000843 powder Substances 0.000 description 47
- 230000007797 corrosion Effects 0.000 description 43
- 238000005260 corrosion Methods 0.000 description 43
- 239000011651 chromium Substances 0.000 description 42
- 210000004027 cell Anatomy 0.000 description 38
- 239000000047 product Substances 0.000 description 37
- 229910052760 oxygen Inorganic materials 0.000 description 21
- 230000032683 aging Effects 0.000 description 20
- 239000010408 film Substances 0.000 description 20
- 239000001301 oxygen Substances 0.000 description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 19
- 239000007789 gas Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 14
- 238000000369 bright-field scanning transmission electron microscopy Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 239000002344 surface layer Substances 0.000 description 13
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000002003 electron diffraction Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 238000005498 polishing Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000001465 metallisation Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 229910000423 chromium oxide Inorganic materials 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000009689 gas atomisation Methods 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910001182 Mo alloy Inorganic materials 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000007712 rapid solidification Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910020323 ClF3 Inorganic materials 0.000 description 2
- 101100441092 Danio rerio crlf3 gene Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- JOHWNGGYGAVMGU-UHFFFAOYSA-N trifluorochlorine Chemical compound FCl(F)F JOHWNGGYGAVMGU-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001485 argon Chemical class 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000110 selective laser sintering Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/64—Treatment of workpieces or articles after build-up by thermal means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Automation & Control Theory (AREA)
- Powder Metallurgy (AREA)
- Laminated Bodies (AREA)
Description
そこで本発明は、積層造形を利用することにより、ネットシェイプまたはニアネットシェイプで三次元形状の製品を得ることに加えて、機械的特性に優れるNi基合金部材、Ni基合金部材の製造方法およびNi基合金部材を用いた製造物を提供することを目的とする。
本発明のNi基合金部材において、好ましくは、結晶粒は複数の柱状セル組織を有し、隣接する複数の柱状セル組織の間にMoの偏析がある。
Moの偏析のMo濃度は、好ましくは、結晶粒内の母相のMo濃度よりも3at%以上高い。
柱状セル組織を透過電子顕微鏡によって断面観察したとき、転位長さ/評価体積(但し、評価体積は観察面積×試料厚み)で求められる転位密度が、好ましくは1012m-2以上である。
本発明のNi基合金部材において、好ましくは、結晶粒の平均粒径は80~150μmである。
また、本発明のNi基合金部材において、好ましくは、引張強さが850MPa以上であり、伸びが50%以上である。
本発明のNi基合金部材の製造方法において、柱状セル組織は、横断面における円相当径の平均直径が1000nm以下であることが好ましい。
本発明のNi基合金部材の製造方法において、積層造形体に、800℃以上1300℃以下で熱処理を行うことができる。この熱処理は、0.5時間以上3時間以下で行うことが好ましい。
また、本発明のNi基合金部材の製造方法において、600℃以上800℃未満で時効熱処理を行うことができる。この時効熱処理は、20時間以上100時間以下で行うことが好ましい。時効熱処理によって、金属間化合物が析出される。
以下では、この積層造形体について説明する。先ずネットシェイプまたはニアネットシェイプの部材に対応できる積層造形について説明し、本実施形態に係る積層造形体によれば、鍛造および圧延を経た同じ組成のNi基合金と比べて、高い強度を得ることができることを説明する。また、本実施形態に係る積層造形体は、表層にCrを主体とする酸化膜を形成することにより、耐食性を向上できることについても説明する。なお、本明細書において、「~」を用いて表される数値範囲は「~」の前後に記載される数値を下限値及び上限値として含むことを意味する。
金属材料を対象とする積層造形としては、粉末床溶融結合方式(PBF:Powder Bed Fusion)と指向性エネルギー堆積方式(DED:Directed Energy Deposition)に区分することができるが、本実施形態の積層造形体はいずれの方式でも造形できる。
レーザビーム熱源方式は、敷き詰められた金属粉材料にレーザビームを照射して、溶融・凝固させて積層造形するものであり、粉末レーザ溶融法(Selective Laser Melting:SLM)と粉末レーザ焼結法(Selective Laser Sintering:SLS)が知られている。レーザビーム熱源方式は窒素などの不活性雰囲気中で溶融・凝固がなされる。
電子ビーム熱源方式は、敷き詰められた金属粉末に電子ビームを高真空中で照射し衝突させることで、運動エネルギーを熱に変換し粉末を溶融させる。電子ビーム方式は真空中で溶融・凝固がなされる。電子ビーム熱源方式は、粉末電子ビーム溶融法(Selective Electron Beam Melting:SEBM)あるいは単に電子ビーム溶融法(EBM)と称される。
また、図1(b-4)に示すように、X走査方式で先の層を造形し、次いで、Y走査方式で次の層を造形するという、XY走査方式と称する走査経路を採用することができる。一軸走査方式を互いに交差する方向で造形する場合には、交差走査方式と称することができ、XY走査方式は交差走査方式の一形態ということができる。
さらに、図示を省略するが、本実施形態においては、渦巻き状の走査経路を採用することができる。
さらにまた、本実施形態は、これらの走査方式を組み合わせることもできる。つまり、図1に示される積層造形体1は、直方体状の単純な構造を有しているが、ネットシェイプまたはニアネットシェイプで三次元形状の部材を造形する場合には、当該部材の構造に適した走査方式を採用することが肝要である。つまり、本発明における積層造形体とは最も広義に解釈されるべきであって、その形状、寸法および具体的な部品、物品などの用途は限定されない。
また、図1に示される積層造形体1において、上端面であるXY面および側面であるZ面は、レーザビーム等の熱源の走査が2回以上(例えば2回)行われることが寸法精度や表面精度を向上する上で好ましい。なお、2回目以降の走査では金属粉末は供給せずに、レーザビーム等の走査だけが行われる。XY面およびZ面は、積層造形体1の外表面を構成する。この複数回のレーザビーム等の走査は、後述する積層造形体1の耐食性向上に寄与しうる。
本実施形態に係る積層造形体は、同じ化学組成を有するNi基合金であって、鍛造および圧延を経た材料である鍛圧体に比べて、後掲する実施例に示されるように、耐力、引張強さ、硬さが向上する。これらの機械的特性が向上した積層造形体は、その組織においてMoの偏析、つまり周囲に比べてMoの濃度が高い領域がある。このMo偏析が、転位(dislocation)のピン止め効果として機能することにより、機械的特性を向上させているものと解される。Moが偏析している箇所におけるMo濃度は、結晶粒内の母相のMo濃度よりも3at%以上高く、より具体的には3~5at%程度高い。なお、Mo偏析が形成されることにより、周囲にはMoの濃度の低いMo欠乏領域が生じる。
上述のとおり、本願では、レーザビームまたは電子ビームを用いた積層造形を採用する。レーザビームまたは電子ビームを用いて溶融・凝固が行われるため、極めて凝固速度が高く、急速凝固により微細で柱状のセル組織が結晶粒内に生成される。
凝固後の組織を観察すると、図4(d)に模式的に示すように、多数の柱状のセルCLが集合して結晶粒を構成している。図4(d)において、円形に見えるのもセルCLであるが、このセルCLは図の紙面の奥の方向に延びているために円形に見えるが、実際には柱状である。
そして、Mo偏析は、隣接するセル組織の間(セルCLの境界)に存在している。積層造形工程における急速凝固により、セル組織内に転位(筋のようなもの)が生じる。セル組織内の転位はエネルギー的に安定になろうとして移動し転位結合を図ろうとするが、Mo偏析によりそれが阻害される。その結果、積層造形工程における急速凝固で生じた多数の転位がセル組織内であまり減少せずに残存するため、セル組織内の転位密度(dislocation density)が高いまま維持される。転位密度が高いことにより、積層造形体の機械的特性向上につながると考えられる。
なお、STEM試料作製手順およびSTEM観察の条件は以下のとおりである。
<STEM試料作製手順>
研磨で薄片を準備したのちFIB(日立ハイテクノロジーズ社製 FB-2100型)でマイクロサンプリングした。
<STEM観察の条件>
試料の厚さ:目標値80nm
装置の機種:日本電子株式会社製 型式JEM-ARM200F
加速電圧:200kV
そして、DF-STEM像ではセル組織内に白い筋が多数存在しており、BF-STEM像ではセル組織内に黒い筋が多数存在していることがわかる。これらが、上述したセル組織内に生じた転位である。ここで筋が多いほど転位密度が高いことを示している。
図3は、Mo偏析がセル組織内の転位の移動結合を阻害することを説明するための図であり、この図は図2に示したBF-STEM像を簡略したイメージ図である。例えば、セル組織内の正負の転位が移動して、同一すべり面上で出会うと、転位が消滅することが知られている。ところが、本実施の形態に係る積層造形体では、セル境界の少なくとも一部にMo偏析が存在しているために、上記のような転位の移動結合による消滅が生じにくい。したがって、転位密度が高いまま維持された積層造形体を得ることができるため、最終的に機械的特性、特に硬さが高い積層造形体を得ることができる。転位密度は、例えば「転位長さ/評価体積」で測定できる。本願においては、評価体積は、観察面積に試料厚みを乗じることで、算出される。
一般的には、完全に焼きなまされた金属材料中の転位密度ρは109~1011m-2程度である。また、強加工された金属材料中の転位密度ρは1014~1016m-2程度であることが知られている。本実施の形態に係る積層造形体は、強加工を伴うことなく、転位密度ρを1014m-2以上、さらには1016m-2以上とすることができる。
適度のMo偏析を含む本実施形態に係る積層造形体は、好ましくは400MPa以上、より好ましくは500MPa以上、さらに好ましくは600MPa以上の耐力を有することができる。
また、引張強さについては、本実施形態に係る積層造形体は、好ましくは800MPa以上、より好ましくは900MPa以上、さらに好ましくは950MPa以上の値を示すことができる。
ビッカース硬さ(HV10)については、本実施形態に係る積層造形体は、好ましくは200HV以上、より好ましくは250HV以上、さらに好ましくは300HV以上の値を示すことができる。
本実施形態に係る積層造形体は、好ましくは40%以上、より好ましくは60%以上、さらに好ましくは70%以上の伸びを有することができる。
また、絞りについては、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは60%以上の値を示すことができる。
なお、上記した機械的特性のうち、耐力、および引張強さは強度を判断するための指標であり、伸びおよび絞りは延性を判断するための指標である。ビッカース硬さ(HV)は字義どおり、硬さを判断するための指標である。
柱状セル組織は、横断面の平均直径が2500~3500nm、さらには300~1000nm程度である(なお、ここでの寸法は熱処理後の寸法である。)。柱状セル組織の横断面は真円ではないため、柱状セル組織の横断面の平均直径は、円相当径の平均直径として算出される。
Mo偏析の度合いは、柱状セル組織の大きさと関連している。柱状セル組織が微細なほど、セル境界に存在するMo偏析による転位のピン止め効果が効果的に発揮されるため、その結果、高強度を有する積層造形体を得ることができる。
柱状セル組織の長さは、30~80μm、さらには10~30μm程度である。
1つの結晶粒は、その内部に柱状セル組織を50~1000個程度有している。
但し、本願の積層造形体を構成するすべての結晶粒が、柱状セル組織を有していることが必須ではない。
なお、鍛圧体については、結晶粒の平均粒径が通常100~数百μmであることを考慮すると、積層造形体が微細な組織を有していることがわかる。
次に、Moの偏析を有する本願の積層造形体の好ましい製造方法について説明する。
この製造方法は、レーザビームまたは電子ビームを用いた積層造形によって、質量比でNiの含有量が最も多く、次いでCrおよびMoの含有量が多いNi基合金からなる積層造形体を得る工程を有する。積層造形に伴う溶融・凝固の際に、複数の柱状セル組織を有する結晶粒を形成するとともに、結晶粒の内部であって隣接する複数の柱状セル組織の間に、Moの偏析を形成することが、この製造方法の基本的なコンセプトである。
そして、以下の熱処理および/または時効熱処理を積層造形体に施すことによって、積層造形体の機械的特性を、適宜調整することができる。
本願では、Moの偏析をあえて結晶粒内にある柱状セルの境界に残すことで、上記のメカニズムに基づき、積層造形体の機械的特性を向上させる。このため、専ら機械的特性の向上を期待する場合には、Moの偏析が完全に消失してしまうような、高温かつ長時間の熱処理は採用しないことが望ましい。
また、以下の熱処理および/または時効熱処理は、任意で行うものであり、必須の工程ではない。後述するように、熱処理や時効熱処理を施さない、造形ままの積層造形体(後述する実施例では「造形体1」)は、600MPa以上の耐力と250HV以上のビッカース硬さを兼備しており、鍛圧体の機械的特性を凌駕している。造形ままの積層造形体は、他の機械的特性(引張強さ、伸び、および絞り)の値も必要十分であり、用途によっては造形ままの積層造形体を用いることができる。
積層造形体は、熱処理を施すことにより、後述する実施例に示すように機械的特性を調節できる。この熱処理は、大気中、800℃以上1300℃以下、より好ましくは800℃以上1200℃以下、さらに好ましくは900℃以上1200℃以下で行われる。熱処理は、積層造形体のサイズに応じて、上記温度範囲で10分以上10時間以下、好ましくは0.5時間以上3時間以下で保持すればよい。
熱処理の条件を上記の範囲内とすることにより、機械的特性の向上に寄与する適度のMo偏析をセル境界に残しつつ、積層造形体の歪をとることができる。積層造形体の歪とりは、積層造形体の耐食性向上に寄与する。
熱処理温度が1300℃を超えるほどの高温になると、成分均質化が充分進み、機械的特性の向上に寄与するMo偏析が消失してしまう。このため、熱処理温度の上限は1300℃、より好ましくは1200℃とする。
なお、以下では、1100℃以上1300℃以下の範囲内での熱処理を、溶体化処理ということがある。この範囲で熱処理を行うことにより、材料の合金成分を母相の中に溶かし込むプロセスが進行するからである。
熱処理温度の下限は、800℃、好ましくは900℃、より好ましくは1000℃である。800℃以上であると、造形体ひずみを除去する効果が得られ、かつ時間調整によりMo偏析の効果を残すことが可能となる。
また、熱処理の時間は、熱処理温度に基づき適宜設定する必要がある。例えば、熱処理温度を1200℃以上1300℃以下の範囲に設定する場合には、保持時間を10分以上20分以下とすることができる。熱処理温度を1100℃以上1200℃未満の範囲に設定する場合には、保持時間を20分以上40分以下とすることができる。熱処理温度を800℃以上1100℃未満の範囲に設定する場合には、保持時間を30分以上2時間以下とすることができる。
また、上記の熱処理に代えて、または上記の熱処理に加えて、600℃以上800℃未満の温度範囲で所定時間保持する時効処理を行うことができる。この時効処理により、積層造形体の強度および硬さをさらに向上できる。
時効処理の時間は、時効処理の温度に応じて適宜調整される。時効処理の温度が600℃以上700℃未満の場合には、20時間以上100時間以下、さらには50時間以上保持することが好ましい。一方、時効処理の温度が700℃以上800℃未満の場合には、保持時間は30時間以上40時間以下であってもよい。本時効処理によりナノサイズの金属間化合物(Ni2(Cr,Mo))を析出させることができ、析出硬化によって、より強度を向上させることが可能となる。
本実施形態に係る積層造形体は、Crを構成元素とする酸化物(Cr2O3)からなる膜を表層に備えることにより、耐食性を向上させることができる。この酸化膜は、積層造形体の表面から、1nm~20nmの範囲で形成されており、好ましくは1nm~10nmの厚さを有する。酸化膜の厚さは、より好ましくは2~8nmであり、さらに好ましくは3~5nmまでの厚さに形成される。
パウダーベッド方式のレーザビーム熱源式において、前述したように、窒素、アルゴンなどの不活性雰囲気で積層造形が行われるが、この不活性ガス中に微量の酸素を含有させれば、原料合金粉末が溶融・凝固する積層造形法の過程で酸化処理を行うことができる。
また、本実施形態における酸化処理における温度は、300~1000℃の範囲とすることが好ましく、400~800℃の範囲とすることがより好ましく、500~600℃の範囲とすることがさらに好ましい。
以上の酸素濃度の範囲において、低酸素濃度で酸化処理することが緻密な酸化膜を得る上で好ましいが、例えば酸素濃度が21%であっても、200~300℃近傍の低い温度を選択すれば、緻密な酸化膜を生成することができる。
積層造形体1は、質量比でNiの含有量が最も多く、次いでCrおよびMoの含有量が多いNi基合金から構成される。つまり、積層造形体1は、Ni-Cr-Mo系合金部材である。本実施形態におけるNi基合金においてCr、MoおよびNiを主構成元素という。主構成元素のなかで、CrおよびMoは、質量%で、Cr:14.5%~24.5%、Mo:12.0%~23.0%の範囲で含有されるのが好ましい。なお、Niの含有量はCrおよびMoに加えて他の元素に対して残部として特定される。
本発明は、CrおよびMoを含むNi基合金であれば、その合金組成は限定されないが、例えば、過酷な腐食環境で使用される半導体製造装置の構成部材に好適な組成の例を以下に述べる。金属元素の含有量を示す%は質量%を意味するものとする。また、上限値と下限値は任意に組み合わせることができる。
Crは、半導体製造装置に用いられるHCl,Cl2,HF,F2,NF3,ClF3およびHBrなどのハロゲン系ガスに対して、耐食性を向上させる効果がある。特に、半導体製造装置の構成部材が、開放時に一旦外気に触れた際に、金属表面に大気起源の水分が吸着し、吸着した水分とハロゲン系プロセスガスが水和すると、電気化学的腐食が発生する。水和した酸に対して、Crは特に比較的濃度が希薄な領域でその耐食性を発揮する。その場合、Crは14.5%以上含有することが必要であるが、24.5%を超えて含有するとMoとの組み合わせにおいて、積層造形時に相安定性を損ない単一相維持が困難となる。そうすると、粗大なμ相が形成されてしまい耐食性劣化をもたらすので、その含有量を14.5%~24.5%とするのが好ましい。
より好ましいCrの上限は、22.5%であり、さらに好ましくは20.5%である。また、より好ましいCrの下限は、15.0%であり、さらに好ましくは18.0%である。
Moは、Crと同様に、HCl,Cl2,HF,F2,NF3,ClF3およびHBrなどのハロゲン系ガスに対して、耐食性を向上させる効果がある。特に、Moは水和した酸に対して中~高濃度領域でその耐食性を発揮する。これに対応するために、Moは12.0%以上含有することが好ましい。ただし、23.0%を超えて含有すると、Moは高温における酸化性が劣る。そのため、ガスアトマイズ法によって粉末を製造すると、個々の粉末表面に形成される酸化膜が厚くなり、この粉末を用いて製造された積層造形品に酸化物起因の欠陥が顕在化するおそれがある。そのため、その含有量を12.0%~23.0%とすることが好ましい。
好ましいMoの上限は、20.5%であり、さらに好ましくは19.5%である。また、好ましいMoの下限は、14.0%であり、さらに好ましくは16.0%である。
本実施形態の積層造形体におけるNi基合金は、Cr:14.5%~24.5%、Mo:12.0%~23.0%および残部Niおよび不可避的不純物を基本組成とする。本実施形態に係るNi基合金はCr、MoおよびNiからなる場合、及び、主構成元素以外に他の任意元素、例えばTaなどを必要に応じて含むことができる。以下、この任意元素について説明する。
Taは、還元性酸や酸化性酸での耐食性や、孔食やすきま腐食に対する耐食性を改善する効果があるため、必要に応じて1.0%~2.5%の範囲で含有される。
Wは、Moと同様に還元性酸に対する耐食性を向上させる効果があると同時に、融点を高めることで溶湯の粘度を高め粉末を製造する際に、粒径制御が容易になるとともに、積層造形が困難となりやすい微粉(粒径5μm未満)の生成を抑制できる。そのため、必要に応じて2%~5%の範囲で含有される。
また、これら不可避不純物の含有量は少ないほうが好ましく、0%であっても良い。
本実施形態に係るNi基合金は以上の組成を有するが、積層造形体を造形するために以上の組成を有する原料合金粉末が用意される。原料合金粉末の化学組成は基本的に積層造形体の化学組成と同じであるが、積層造形体が耐食性に優れる酸化膜を表層に備える場合には、積層造形体の酸素含有量が原料合金粉末よりも多い。酸化膜については後述する。
原料合金粉末及び積層造形体の化学組成は、蛍光X線分析や高周波誘導結合プラズマ(ICP)分析することにより、測定できる。また、C、S、N、Oについては、燃焼法によるガス分析を行って、その含有量を求めることができる。
本実施形態に係る積層造形体の用途は任意である。積層造形のままでも高強度高耐食の用途に使用することもできるし、熱処理あるいは時効熱処理を行うか行わないかによって用途に応じた機械的特性を得ることができる。
用途の一例として、HCl,Cl2,HF,F2,NF3,ClF3およびHBrなどに代表される強い腐食性を有するハロゲン系ガスを扱う半導体製造装置に、本実施形態に係る積層造形体を適用できる。特に、これらのガスが直接接触する半導体製造装置の部材に適用されるのが好ましい。また、本実施形態に係る積層造形体は、他の用途として、射出成形用のスクリューやシリンダー、油井の掘削装置や腐食性流体が流れる化学プラントのバルブや継手、熱交換機、ポンプ、発電機などのタービンホール、圧縮機のインペラ等に適用されるのが好ましい。本発明ではこれらの機械、機器、部材、部品等を総称して製造物と言う。
本実施形態において、酸化膜が形成された表面は、研磨・切削等の機械加工が施されていない積層造形のままの面(asbuilt面)である。
表1に示される化学組成を有する付加製造用の原料合金粉末を用意した。この原料合金粉末は、溶解原料を準備し、通常の高周波真空溶解炉を用いて溶解して母合金を作製し、アルゴン雰囲気中、ガスアトマイズ法により作製された。なお、アトマイズ粉末から粒径10~60μmの粉末を分級して付加製造に供した。分級された粉末のd10、d50、d90は、それぞれd10:15.6μm、d50:25.3μm、d90:50.2μmである。
積層造形装置:EOS M290(SLM方式)
積層造形条件:
エネルギー密度:20~200J/mm3となるように、
エネルギー密度
=レーザパワー(W)/(走査速度(mm/s)×走査ピッチ(mm)×層厚(mm))を設定する。
実施例では、レーザパワー300W、走査速度800mm/s、走査ピッチ0.1mm、層厚さ0.04mm、よって、エネルギー密度は94J/mm3であった。
雰囲気:Ar(O2<0.10%)
走査方式:交差走査方式(但し、表面のXY面およびZ面は、レーザビームを2回走査)
なお、Mo、CrおよびTaについての組成分析は、蛍光X線分析装置であるSimultix10(株式会社リガク製)によって行われた。また、O(酸素)についての組成分析は、酸素窒素分析装置であるON-836(LECOジャパン合同会社製)によって行われた。
次に、造形体1、造形体1に熱処理を施した造形体2~4、および造形体1と同じ化学組成の鍛造および圧延を経た鍛圧体を用意して、機械的特性および転位密度を測定した。その結果を表2に示す。
なお、造形体2、3、4に関して、熱処理の条件は、以下のとおりである。
造形体2:1180℃で30分だけ大気中で保持。
この熱処理により溶体化が進むため、造形体2についての熱処理を、「溶体化熱処理」という。
造形体3:900℃で30分だけ大気中で保持。
この造形体3についての熱処理は、主には歪取りを目的としたものである。
造形体4:650℃で60時間、大気中で保持。
造形体4についての熱処理を、「時効熱処理」という。
また、機械的特性はJIS(JIS Z 2244)に準拠して測定した。ビッカース硬さHVは、荷重10Kgでの測定値である。また、表2におけるXY面、Z面は図1を用いて説明した定義による。以下も同様である。
各サンプルの転位密度は、「転位長さ/評価体積」によって求めた。
転位長さは、STEM像(観察面積:4.32μm2 (1.44μm2x3枚))で観察可能な各転位を実測し、それらの合計長さとして求めた。
評価体積は「観察面積×試料厚み」によって求めた。各サンプルについて、STEM試料の作製条件は上記と同じであり、試料厚みは80nmである。
造形体2(1180℃×30分)と造形体3(900℃×30分)とを比較すると、造形体3の方が耐力およびビッカース硬さが高い。よって、これらの機械的特性を重視する場合には、800℃以上1000℃以下、さらには850℃以上950℃以下の温度範囲での熱処理が有効であることが確認できた。
造形体4(650℃×60時間)は、表2におけるすべてのサンプルの中で最もビッカース硬さが高く、その値は350HV以上に達している。造形体4は延性(伸び、絞り)についても必要なレベルを維持しつつ、650MPa以上の耐力、1000MPa以上の引張強さ、および350HV以上のビッカース硬さを兼備している。
つまり、熱処理の有無および熱処理の条件を適宜選択すれば、必要とされる機械的特性を満たすことができる。
また、溶体化熱処理を行った造形体2(1180℃×30分)に対して、さらに造形体4と同じ条件で時効熱処理を施したところ、HV10(荷重10Kg)で300HV程度の硬さが得られた。
造形体2(1180℃×30分)と造形体3(900℃×30分)は、造形体1および造形体4よりは転位密度が低いが、依然として1012m-2以上の転位密度を示しており、鍛圧体よりも耐力、引張強さおよびビッカース硬さの値が高い。
次に、造形体1および鍛圧体を用いて耐食性の評価を行った。
耐食性の評価は、塩酸水溶液へ浸漬することによる耐食性試験と孔食試験の2種類で行った。なお、耐食性の評価試験において、XY面、45°面およびZ面とは、図1の積層造形体に示されるXY面、45°面およびZ面のことをいう。
(1)塩酸浸漬試験
2種類の腐食溶液(1%塩酸水溶液(沸騰)、5%塩酸水溶液(沸騰))に24時間浸漬して、腐食速度(mm/year)を求めた。結果を図5に示す。なお、研磨ありの場合は1000番の研磨紙を用いて、いずれの試験片についても研磨を行ったうえで腐食溶液に浸漬した。
図5(a)に示すように、造形体1と鍛圧体とで腐食速度に有意な差異はない。また、図5(b)より、耐食性について積層方向に依存性はない。
(2)孔食試験
JIS G0578に準拠し、塩化第二鉄水溶液に試験片を浸漬して、孔食が発生する臨界温度を求めた。結果を表3に示すが、研磨をしないほうの臨界温度が5~10℃程度高くなる。なお、研磨をしない造形体1を造形体1Aといい、研磨をした造形体1を造形体1Bというものとする。
また、同様に隙間腐食試験を行ったが、表3と同様の結果が得られた。
(1)機械的特性
鍛圧体に比べて積層造形体は耐力、引張強さおよび硬さが顕著に向上する。
表2に示したように、本実施形態の積層造形体(造形体1)によれば、熱処理を施していない状態で、600MPa以上の耐力、850MPa以上の引張強さ、および250HV以上のビッカース硬さを兼備することができた。
また、溶体化熱処理を行った積層造形体(造形体2)によれば、70%以上の伸びを維持しつつ、400MPa以上の耐力、850MPa以上の引張強さ、および200HV以上のビッカース硬さを兼備することができた。
歪取りのための熱処理を行った積層造形体(造形体3)によれば、50%以上の伸びを維持しつつ、500MPa以上の耐力、850MPa以上の引張強さ、および250HV以上のビッカース硬さを兼備することができた。
時効熱処理を行った積層造形体(造形体4)については、硬さが著しく向上し、350HV以上のビッカース硬さを得ることができた。それと同時に、600MPa以上の耐力、1000MPa以上の引張強さ、40%以上の伸びおよび絞りを得ることができた。
なお、表2に示した鍛圧体は、溶体化されているものであることを考慮すると、この鍛圧体に本願が推奨する800℃以上1300℃以下での熱処理をさらに施したとしても、機械的特性の飛躍的な向上は期待できない。
同じ化学組成、積層条件による積層造形体であっても、研磨をしない方の耐食性が優れる。
以下では、上記の機械的特性および耐食性についての評価結果が得られる要因を明らかにすべく行った観察を説明する。
造形体1の組織を観察した結果を説明する。この観察は主に機械的な強度が向上する理由を認識するために行われた。
図4(a)、(b)に光学顕微鏡で観察した研磨およびエッチング後の造形体1のXY面およびZ面の観察結果を示す。
XY面には、図4(a)に示すように、およそ100μmの間隔の直線状の境界が観察された。これはXY面をレーザビームが走査した際の他の走査パスとの境界に相当すると解される。図4(a)において、直線状の境界は破線で示され、レーザビームの走査の向きを矢印で示してある。
次に、Z面には、図4(b)に示すように、半円状の境界が観察された。この境界はレーザビームの走査時に形成された溶融池の底面側の境界に相当すると解される。半円状の境界は破線で示されている。
図4(c)は、研磨、エッチング後の造形体1のZ面におけるSEM(走査型電子顕微鏡:ScanningElectron Microscope)像を示し、図4(d)は図4(c)を参照して描いた組織の模式図である。図4(c),(d)に示すように、ナノオーダーのセルCLが観察された。図4(d)において、細長い柱状のものがセルCLであり、図4(b)で観察された結晶粒はこのセルCLが集合して形成されていると推測される。図4(d)において、円形に見えるのもセルCLであるが、このセルCLは図の紙面の奥の方向に延びているために、円形に見える。また、図4(c),(d)に示される組織の形態としては、一般的に溶接で形成される組織に似ているものの、単体のセルの厚みはおよそ1μm以下、長さは数100μm程度であり、溶接組織と比較すれば3~6桁程度小さいセルで構成されている。
図6(a)に鍛圧体のSEMによる反射電子像を、また、図6(b)に造形体1のSEMによる反射電子像を示す。鍛圧体(図6(a))では観察されない微細な白色領域が造形体1(図6(b))において観察された。また、図6(c)の左側にSEMで観察した造形体1のMoのSEM像を示し、図6(c)の右側にEDX(Energy Dispersive X-ray Spectroscopy:エネルギー分散型X線分光法)で観察した造形体1のMoのEDX像を示す。図6(b)と図6(c)を照合することにより、図6(b)で観察される白色領域は、他の領域よりもMoが富化されたMo偏析であることが確認される。このMo偏析は、隣接するセル組織の間、つまりセル境界に形成されているものと推測される。
1180℃で30分保持する熱処理を経た造形体2をSTEM(ScanningTransmission Electron Microscopy:走査透過電子顕微鏡)で観察したSTEM像を、図7に示す。
図7中、左側のDF-STEM像では白色領域として示されている部分が、右側のBF-STEM像では黒色領域として示されている。右側のBF-STEM像において、中央にくっきりと延びる黒線がセル境界であり、このセル境界にMo偏析が存在していると考えられる。
なお、電子回折の条件は以下の通りである。
装置の機種:日本電子格式会社製 型式JEM-ARM200F
加速電圧:200kV
制限視野回折法 絞り径0.5μmφ カメラ長80cm
電子回折像A~Cを比較すると、回折パターンが等しいことがわかる。これは、セル境界に位置する領域Bにおいても、母相とは異なる金属間化合物が積層造形体(造形体1)には形成されていないことを示している。よって、造形体1におけるMo偏析は、上記のμ相ではないことが確認できた。造形体1におけるMo偏析は、Mo単体を主成分としていると推察される。微細なMo偏析が隣接する柱状セル組織の間、つまりセル境界に適度に存在することによって、転位結合が阻害され、その結果、セル組織内の転位密度が高い状態が維持されて機械的特性が向上していると解される。
また、図10は、図2に示した造形体1のSTEM像(BF-STEM像)に、セル境界のEDX分析位置を示す符号1、2、3、4を追加した図である。
母相およびセル境界のEDX分析結果を、表4にまとめて示す。
表4中、Moの値に着目すると、セル境界ではMo濃度が16.7~19.4at%であり、母相のMo濃度(13.7at%)よりも3.0~5.7at%高い。この結果から、複数の柱状セル組織が隣接するセル境界では、Mo濃度が母相よりも高い領域が存在していることが確認できた。すなわち、積層造形体1を構成する結晶粒において、Mo濃度が母相よりも3.0at%以上、さらには5.0at%以上高いMo偏析がセル境界に存在していることが確認できた。
次に、造形体1A(研磨なし)と造形体1B(研磨あり)について、表層部の元素の挙動を観察した。それぞれの結果を図11(a)、(b)に示す。この観察は主に耐食性が向上する理由を認識するために行われた。なお、観察条件は以下の通りである。
装置:アルバック・ファイ社製 ESCA-5400R(3057カスタマイズ)
X-Ray(Mgkα) :15.0kV 26.7mA (400W)
検出深さ:20nm(取り出し角 45°)
分析領域:800μmφ
スパッタ条件(Ar+):加速電圧;2kV, ラスターサイズ;3×3mm
スパッタ速度:約2.0nm/min(SiO2換算値)
この表層部におけるCrとNiの含有量について着目すると、表面から3nm程度の範囲まではCr含有量がNi含有量よりも多い。この領域にはNiの酸化物(NiO)が含まれているものと推察されるが、CrとNiの含有量からすると、酸化クロムの生成量が多く、この領域において酸化クロムと酸化ニッケルを含むが、Crを主体とする酸化膜が形成されていると解される。
積層造形の後に研磨をしない造形体1Aが研磨をした造形体1Bよりも高い耐食性を示し、造形体1Aは表層のごく浅い範囲に酸化物が形成されている。
この酸化物は、積層造形の際に形成されたものと解されるが、これはシールドガスであるアルゴンガス(Arガス)に酸素(O2)が含まれていることに起因する。このアルゴンガスにおける酸素の含有量は、前述したように10~2000ppm程度と、例えば大気中の酸素量である21%程度と比べると微量である。この微量に含まれる酸素が、積層造形時には合金粉末が溶融する1300℃~1800℃の高温な雰囲気に曝されることで、緻密な酸化物が形成される。しかも、耐食性が評価された積層造形体のXY面およびZ面、つまり表面は同じ走査パスについてレーザビームの走査が2回行われる。この2回繰り返されるレーザビームの走査が、より緻密な酸化物の生成に寄与しているものと解される。
Claims (9)
- 質量比でNiの含有量が最も多く、次いでCrおよびMoの含有量が多いNi基合金部材であって、
前記Ni基合金部材は積層造形体であり、かつ結晶粒の少なくとも一部にMoの偏析を有し、
前記結晶粒は複数の柱状セル組織を有し、
隣接する前記複数の柱状セル組織の間に前記Moの偏析があり、
前記Moの偏析のMo濃度は、前記結晶粒内の母相のMo濃度よりも3at%以上高く、
前記積層造形体の耐力が400MPa以上、引張強さが850MPa以上、ビッカース硬さが200HV10以上である、Ni基合金部材。 - 前記柱状セル組織は、横断面における円相当径の平均直径が1000nm以下である、
請求項1に記載のNi基合金部材。 - 前記柱状セル組織を透過電子顕微鏡によって断面観察したとき、転位長さ/評価体積(但し、評価体積は観察面積×試料厚み)で求められる転位密度が1012m-2以上である、請求項1または2に記載のNi基合金部材。
- 前記結晶粒の平均粒径が80~150μmである、
請求項1から請求項3のいずれか一項に記載のNi基合金部材。 - 伸びが50%以上である、
請求項1から請求項4のいずれか一項に記載のNi基合金部材。 - 請求項1~請求項5のいずれか一項に記載のNi基合金部材を用いた製造物。
- 前記製造物は、半導体製造装置である、請求項6に記載の製造物。
- レーザビームまたは電子ビームを用いた積層造形によって、質量比でNiの含有量が最も多く、次いでCrおよびMoの含有量が多いNi基合金からなる積層造形体を得る工程を有し、
前記積層造形に伴う溶融・凝固の際、複数の柱状セル組織を有する結晶粒を形成し、前記結晶粒の内部であって隣接する前記複数の柱状セル組織の間に、前記結晶粒内の母相のMo濃度よりも3at%以上高いMoの偏析を形成し、当該Moの偏析を消失しないように、前記積層造形体に対して熱処理を施さないことで、耐力が400MPa以上、引張強さが850MPa以上、ビッカース硬さが200HV10以上である前記積層造形体を得る、Ni基合金部材の製造方法。 - 前記柱状セル組織は、横断面における円相当径の平均直径が1000nm以下である、
請求項8に記載のNi基合金部材の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022090627A JP7323010B2 (ja) | 2019-03-04 | 2022-06-03 | 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019038724 | 2019-03-04 | ||
JP2019038724 | 2019-03-04 | ||
PCT/JP2020/008832 WO2020179766A1 (ja) | 2019-03-04 | 2020-03-03 | 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022090627A Division JP7323010B2 (ja) | 2019-03-04 | 2022-06-03 | 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020179766A1 JPWO2020179766A1 (ja) | 2021-11-11 |
JP7521165B2 true JP7521165B2 (ja) | 2024-07-24 |
Family
ID=72337443
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021504098A Active JP7521165B2 (ja) | 2019-03-04 | 2020-03-03 | 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物 |
JP2022090627A Active JP7323010B2 (ja) | 2019-03-04 | 2022-06-03 | 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022090627A Active JP7323010B2 (ja) | 2019-03-04 | 2022-06-03 | 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220001449A1 (ja) |
EP (1) | EP3936259A4 (ja) |
JP (2) | JP7521165B2 (ja) |
CN (1) | CN113165077A (ja) |
SG (1) | SG11202109038PA (ja) |
TW (1) | TWI820307B (ja) |
WO (1) | WO2020179766A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4479581A1 (en) * | 2022-02-19 | 2024-12-25 | Massachusetts Institute of Technology | Directional recrystallization processing of additively manufactured metal alloys |
EP4495282A1 (en) | 2022-03-17 | 2025-01-22 | Proterial, Ltd. | Ni-cr alloy member comprising additively manufactured article, method for manufacturing ni-cr alloy member, and product using ni-cr alloy member |
JPWO2023214567A1 (ja) * | 2022-05-02 | 2023-11-09 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008121048A (ja) | 2006-11-10 | 2008-05-29 | Mitsubishi Materials Corp | 耐食性および耐摩耗性に優れたNi基合金およびそのNi基合金からなるコンダクターロール |
JP2010001558A (ja) | 2008-05-22 | 2010-01-07 | Mitsubishi Materials Corp | ハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材 |
WO2016158687A1 (ja) | 2015-03-31 | 2016-10-06 | 山陽特殊製鋼株式会社 | 球状粒子からなる金属粉末 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5311776B2 (ja) | 2006-10-10 | 2013-10-09 | 株式会社日立国際電気 | 基板処理装置及び半導体装置の製造方法 |
BR112015008352B1 (pt) | 2012-11-01 | 2020-02-18 | General Electric Company | Método de manufatura aditiva de fabricação de um objeto |
JP5725630B1 (ja) | 2014-02-26 | 2015-05-27 | 日立金属Mmcスーパーアロイ株式会社 | 熱間鍛造性および耐食性に優れたNi基合金 |
JP6620029B2 (ja) * | 2015-03-31 | 2019-12-11 | 山陽特殊製鋼株式会社 | 球状粒子からなる金属粉末 |
JP6499546B2 (ja) * | 2015-08-12 | 2019-04-10 | 山陽特殊製鋼株式会社 | 積層造形用Ni基超合金粉末 |
US10378087B2 (en) * | 2015-12-09 | 2019-08-13 | General Electric Company | Nickel base super alloys and methods of making the same |
DE102016121531B4 (de) * | 2016-11-10 | 2019-07-11 | Voestalpine Böhler Welding UTP Maintenance GmbH | Werkstoff sowie Verwendung eines solchen |
JP6353978B1 (ja) * | 2016-12-26 | 2018-07-04 | 技術研究組合次世代3D積層造形技術総合開発機構 | 金属積層造形用粉末およびその製造方法 |
CN107127343A (zh) * | 2017-05-05 | 2017-09-05 | 桂林电子科技大学 | 一种镍基合金结构件的电子束增材制造方法 |
CN107119270B (zh) * | 2017-05-24 | 2019-07-30 | 首钢集团有限公司 | 一种穿孔顶尖激光3d打印再制造方法 |
CN107119211B (zh) * | 2017-06-29 | 2019-06-21 | 西安欧中材料科技有限公司 | 一种3D打印用Ni3Al基合金粉末的制备方法 |
JP6519961B2 (ja) * | 2017-09-07 | 2019-05-29 | 日立金属株式会社 | 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法 |
CN108480629B (zh) * | 2018-03-23 | 2020-08-25 | 山东矿机集团股份有限公司 | 一种汽轮机空心叶片的激光增材制造方法 |
-
2020
- 2020-03-03 US US17/432,787 patent/US20220001449A1/en active Pending
- 2020-03-03 CN CN202080006940.5A patent/CN113165077A/zh active Pending
- 2020-03-03 TW TW109106969A patent/TWI820307B/zh active
- 2020-03-03 WO PCT/JP2020/008832 patent/WO2020179766A1/ja unknown
- 2020-03-03 JP JP2021504098A patent/JP7521165B2/ja active Active
- 2020-03-03 SG SG11202109038PA patent/SG11202109038PA/en unknown
- 2020-03-03 EP EP20766485.5A patent/EP3936259A4/en active Pending
-
2022
- 2022-06-03 JP JP2022090627A patent/JP7323010B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008121048A (ja) | 2006-11-10 | 2008-05-29 | Mitsubishi Materials Corp | 耐食性および耐摩耗性に優れたNi基合金およびそのNi基合金からなるコンダクターロール |
JP2010001558A (ja) | 2008-05-22 | 2010-01-07 | Mitsubishi Materials Corp | ハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材 |
WO2016158687A1 (ja) | 2015-03-31 | 2016-10-06 | 山陽特殊製鋼株式会社 | 球状粒子からなる金属粉末 |
Non-Patent Citations (3)
Title |
---|
Fan Zhang et al., Effect of heat treatment of the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion, Acta mater., 2018年06月01日, 152, 200-214 |
G.LINDWALL et al.,Simulation of TTT Curves for additively Manufactured Inconel 625, METALLURGICAL AND MATERIALS TRANSACTIONS A, 2018年10月17日, VOLUME50, 457-467 |
Trevor Kellar et al., Application of Finite Element,Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys, Acta mater., 2018年10月15日,139, 244-253 |
Also Published As
Publication number | Publication date |
---|---|
TW202033784A (zh) | 2020-09-16 |
CN113165077A (zh) | 2021-07-23 |
TWI820307B (zh) | 2023-11-01 |
WO2020179766A1 (ja) | 2020-09-10 |
JP7323010B2 (ja) | 2023-08-08 |
JPWO2020179766A1 (ja) | 2021-11-11 |
EP3936259A1 (en) | 2022-01-12 |
SG11202109038PA (en) | 2021-09-29 |
EP3936259A4 (en) | 2022-11-30 |
JP2022130403A (ja) | 2022-09-06 |
US20220001449A1 (en) | 2022-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7323010B2 (ja) | 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物 | |
Kim et al. | Selective compositional range exclusion via directed energy deposition to produce a defect-free Inconel 718/SS 316L functionally graded material | |
JP6690789B2 (ja) | 合金材、該合金材を用いた製造物、および該製造物を有する流体機械 | |
CN111050957B (zh) | 层叠造型用Ni基耐腐蚀合金粉末、使用其的层叠造型品和半导体制造装置用构件的制造方法 | |
JP7521174B2 (ja) | 積層造形体および積層造形体の製造方法 | |
CN113862543A (zh) | 合金部件的制造方法 | |
KR20210118131A (ko) | 알루미늄 합금 부품 제조 방법 | |
US20230106938A1 (en) | Powder made of a cobalt-chromium alloy | |
CN113490560B (zh) | 层叠造型用镍基耐腐蚀合金粉末及层叠造型品的制造方法 | |
EP4048463A1 (en) | Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof | |
CN113490558B (zh) | 层叠造型用镍基耐腐蚀合金粉末及层叠造型品的制造方法 | |
KR102429733B1 (ko) | 내부식성 물체 및 그 제조 방법 | |
Marchese et al. | Inconel 625 by direct metal laser sintering: Effects of the process parameters and heat treatments on microstructure and hardness | |
US12209298B2 (en) | Ni—Cr—Mo-based alloy member, Ni—Cr—Mo-based alloy powder, and composite member | |
JP7487458B2 (ja) | 粉末材料、積層造形物、および粉末材料の製造方法 | |
WO2024075443A1 (ja) | 積層造形用Fe-Cr-Al系合金粉末、Fe-Cr-Al系合金部材およびFe-Cr-Al系合金部材の製造方法 | |
CN116917066A (zh) | 新粉末、用于从该新粉末制造组件的增材制造方法以及由其制成的制品 | |
WO2023176650A1 (ja) | 積層造形体からなるNi-Cr合金部材、Ni-Cr合金部材の製造方法、およびNi-Cr合金部材を用いた製造物 | |
WO2020222695A1 (en) | Process for producing a steel workpiece by additive powder bed fusion manufacturing, and steel workpiece obtained therefrom | |
JP7355189B2 (ja) | Ni基合金積層造形物 | |
WO2024190499A1 (ja) | ニッケル基超合金、ニッケル基超合金粉末および造形体の製造方法 | |
WO2024162379A1 (ja) | ニッケル基超合金、ニッケル基超合金粉末および造形体の製造方法 | |
WO2023095805A1 (ja) | 複合材及び複合材の製造方法並びに金型 | |
WO2022260044A1 (ja) | 合金材、合金材を用いた合金製造物、及び合金製造物を備える機械装置 | |
CN114340820A (zh) | 合金部件的制造方法、以及合金部件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220603 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20221011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230105 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230105 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230119 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230124 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20230317 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20230322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7521165 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |