[go: up one dir, main page]

JP7517341B2 - Manufacturing method of laminate - Google Patents

Manufacturing method of laminate Download PDF

Info

Publication number
JP7517341B2
JP7517341B2 JP2021539109A JP2021539109A JP7517341B2 JP 7517341 B2 JP7517341 B2 JP 7517341B2 JP 2021539109 A JP2021539109 A JP 2021539109A JP 2021539109 A JP2021539109 A JP 2021539109A JP 7517341 B2 JP7517341 B2 JP 7517341B2
Authority
JP
Japan
Prior art keywords
resin film
laminate
support material
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021539109A
Other languages
Japanese (ja)
Other versions
JPWO2022024655A1 (en
Inventor
年矢 兒玉
龍太郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2022024655A1 publication Critical patent/JPWO2022024655A1/ja
Priority to JP2024072077A priority Critical patent/JP2024102166A/en
Application granted granted Critical
Publication of JP7517341B2 publication Critical patent/JP7517341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、フレキシブルなタッチセンサーや画面表示器等に使用される積層体の製造方法に関する。 The present invention relates to a method for manufacturing a laminate used in flexible touch sensors, screen displays, etc.

近年、スマートフォンやタブレット等の電子端末について、フレキシブルな用途が検討されており、屈曲性を高めるために、タッチセンサー機能を有する樹脂膜や、有機発光ダイオードパネル、液晶パネル、電子ペーパー等の画像表示部材を薄くすることが要求されている。その製造方法として、ガラス等の支持材上に、ポリイミドやCOP(シクロオレフィンポリマー)などの樹脂膜を形成して、その上にタッチセンサー用の電極等を形成し、ガラスと樹脂膜との界面で剥離し、その後、PETフィルム、OLEDパネル、偏光板、カラーフィルター、TFT基板、カバーガラス等の基材に貼り合わせることで、薄くて屈曲性の高い電子端末を作製する方法が知られている(特許文献1~3)。In recent years, flexible applications for electronic devices such as smartphones and tablets have been considered, and there is a demand for thinner resin films with touch sensor functions, as well as image display materials such as organic light-emitting diode panels, liquid crystal panels, and electronic paper, in order to increase flexibility. A known manufacturing method for such devices is to form a resin film such as polyimide or COP (cycloolefin polymer) on a support material such as glass, form electrodes for touch sensors on the film, peel the resin film at the interface between the glass and the film, and then bond the film to a substrate such as a PET film, an OLED panel, a polarizing plate, a color filter, a TFT substrate, or a cover glass, thereby producing a thin and flexible electronic device (Patent Documents 1 to 3).

特開2018-116859号公報JP 2018-116859 A 特開2018-132768号公報JP 2018-132768 A 特開2014-34590号公報JP 2014-34590 A

しかしながら、近年、タッチセンサーや画像表示部材の更なる薄肉化への要求が高まっており、これらに使用される樹脂膜および基材について、さらに薄いものを用いる必要がある。従来技術に知られたガラス基板にポリイミドやCOP(シクロオレフィンポリマー)などの樹脂膜を形成し、これをガラス基板から剥がしてPETフィルム等に積層する方法では樹脂膜が薄くなると剥離時の応力で樹脂膜自身が裂けてしまったり、コシが無いためにハンドリングが困難になるという課題がある。However, in recent years, there has been an increasing demand for thinner touch sensors and image display components, necessitating the use of thinner resin films and substrates. In the conventional method of forming a resin film such as polyimide or COP (cycloolefin polymer) on a glass substrate, peeling it off from the glass substrate, and laminating it on a PET film or the like, there are problems with the resin film itself tearing due to the stress caused by peeling when it becomes thin, or handling becomes difficult due to its lack of stiffness.

そこで、目的とするPETフィルム等に直接にポリイミドやCOP(シクロオレフィンポリマー)などの樹脂膜を形成することが考えられる。しかし、例えば、ポリイミドフィルムは、溶媒に溶かしたポリイミドをPETフィルム上に塗布・乾燥し、必要に応じて閉環させて得るのが一般的であるが、溶媒の蒸発や閉環に伴う脱水反応により体積が収縮し、ポリイミドフィルム中に収縮応力が発生する。このポリイミドフィルムの収縮応力によって、薄いPETフィルムとともに積層体が反るという課題があった。これはポリオレフィン膜などで用いられる溶融キャストによる積層においても同様であり、溶融された樹脂が冷却・固化される時の体積収縮によって、やはり樹脂膜中に収縮応力が発生し、PETフィルムとの積層体に反りが生じるという課題がある。 It is therefore conceivable to form a resin film such as polyimide or COP (cycloolefin polymer) directly on the desired PET film. However, for example, polyimide film is generally obtained by applying polyimide dissolved in a solvent onto a PET film, drying it, and then ring-closing it as necessary. However, the volume shrinks due to the evaporation of the solvent and the dehydration reaction accompanying the ring-closing, and shrinkage stress occurs in the polyimide film. There was a problem that the laminate warped together with the thin PET film due to this shrinkage stress of the polyimide film. This is also the case with lamination by melt casting used for polyolefin film, etc., and there is a problem that the shrinkage stress occurs in the resin film due to the volume shrinkage when the molten resin cools and solidifies, causing warping of the laminate with the PET film.

そこで、本発明は、収縮性の強い材料が用いられたときであっても積層体の反りを抑制させて積層体を製造する方法を提供することを目的とする。 Therefore, the present invention aims to provide a method for manufacturing a laminate that suppresses warping of the laminate even when a highly shrinkable material is used.

上記課題を解決するため、本発明は、主として以下の構成を有する。 In order to solve the above problems, the present invention mainly has the following configuration.

本発明は、樹脂膜と該樹脂膜との積層を目的とされた基材(基材A)との積層体を得る積層体の製造方法であって、
樹脂膜を、支持材(支持材A)上に形成する工程(工程A)と、
前記樹脂膜の前記支持材Aとは反対側が設けられた側の面に、他の支持材(支持材B)を貼り合わせて積層体を得る工程(工程B)と、
前記工程Bで得られた積層体について、前記支持材Aと前記樹脂膜との界面で剥離して、樹脂膜と支持材Bの積層体を得る工程(工程C)と、
前記工程Cで得られた積層体の前記支持材Bが設けられた側とは反対側の面に基材Aを貼り合わせて積層体を得る工程(工程D)と、
前記工程Dで得られた積層体について、前記支持材Bと前記樹脂膜との界面で剥離して、樹脂膜と基材Aとの積層体を得る工程(工程E)とを含み、
前記樹脂膜の弾性率をEa、前記支持材Bの弾性率をEbとしたときのEb/(Ea+Eb)が0.04以下である、積層体の製造方法である。
The present invention is a method for producing a laminate comprising the steps of: obtaining a laminate of a resin film and a substrate (substrate A) on which the resin film is to be laminated;
A step (step A) of forming a resin film on a support material (support material A);
A step (step B) of bonding another support material (support material B) to the surface of the resin film opposite to the support material A to obtain a laminate;
A step (step C) of peeling the laminate obtained in the step B at the interface between the support material A and the resin film to obtain a laminate of the resin film and the support material B;
A step (step D) of obtaining a laminate by bonding a substrate A to the surface of the laminate obtained in the step C opposite to the surface on which the support material B is provided;
and a step (step E) of peeling the laminate obtained in the step D at an interface between the support material B and the resin film to obtain a laminate of the resin film and the substrate A,
In the method for producing a laminate, when the elastic modulus of the resin film is Ea and the elastic modulus of the supporting material B is Eb, Eb/(Ea+Eb) is 0.04 or less.

本発明によれば、収縮性の強い材料が用いられたときであっても積層体の反りを高度に抑制できる。 According to the present invention, warping of the laminate can be suppressed to a high degree even when a highly shrinkable material is used.

第一の実施形態に係る積層体の製造方法を示す概略図である。1A to 1C are schematic diagrams illustrating a method for producing a laminate according to a first embodiment. 第二の実施形態に係る支持材Bを引き延ばすための治具の一例を示す概略図であり、(a)は正面図、(b)はA-A’での断面図である。10A and 10B are schematic diagrams showing an example of a jig for stretching the support material B according to the second embodiment, where (a) is a front view and (b) is a cross-sectional view along A-A'. 実施例13で作製したタッチセンサーにおける導電ペーストの塗布パターンを説明する図である。FIG. 13 is a diagram illustrating the application pattern of the conductive paste in the touch sensor produced in Example 13. 実施例13で作製したタッチセンサーをモデル的に表した図であり、(a)は上面図、(b)はA側からみた側面図である。13A and 13B are diagrams showing a model of the touch sensor produced in Example 13, in which (a) is a top view and (b) is a side view seen from side A.

発明者らは検討の結果、収縮応力を緩和するための特別な処理を行えば、収縮性の強い材料が用いられたときであっても、積層体の反りを抑制でき、かつ、良好なハンドリング性もあわせ持った積層体の製造方法を発明するに到った。As a result of their research, the inventors have come up with a method for manufacturing a laminate that can suppress warping of the laminate and also has good handling properties, even when a highly shrinkable material is used, by performing a special treatment to relieve shrinkage stress.

以下、本発明に係る積層体の製造方法を実施するための形態(以下、「実施形態」という)を説明する。なお、図面は模式的なものである。また、本発明は、以下に説明する実施の形態によって限定されるものではない。 The following describes the form (hereinafter, "embodiment") for carrying out the method for manufacturing a laminate according to the present invention. Note that the drawings are schematic. Furthermore, the present invention is not limited to the embodiment described below.

[第一の実施形態]
本実施形態に係る積層体の製造方法は
樹脂膜と該樹脂膜との積層を目的とされた基材(基材A)との積層体を得る積層体の製造方法であって、
樹脂膜を、支持材(支持材A)上に形成する工程(工程A)と、
前記樹脂膜の前記支持材Aが設けられた側とは反対側の面に、他の支持材(支持材B)を貼り合わせて積層体を得る工程(工程B)と、
前記工程Bで得られた積層体について、前記支持材Aと前記樹脂膜との界面で剥離して、樹脂膜と支持材Bの積層体を得る工程(工程C)と、
前記工程Cで得られた積層体の前記支持材Bが設けられた側とは反対側の面に基材Aを貼り合わせて積層体を得る工程(工程D)と、
前記工程Dで得られた積層体について、前記支持材Bと前記樹脂膜との界面で剥離して、樹脂膜と基材Aとの積層体を得る工程(工程E)とを含み、
前記樹脂膜の弾性率をEa、前記支持材Bの弾性率をEbとしたときのEb/(Ea+Eb)が0.04以下である。
[First embodiment]
The method for producing a laminate according to the present embodiment is a method for producing a laminate including a resin film and a substrate (substrate A) on which the resin film is to be laminated, and
A step (step A) of forming a resin film on a support material (support material A);
A step (step B) of laminating another supporting material (supporting material B) to the surface of the resin film opposite to the surface on which the supporting material A is provided to obtain a laminate;
A step (step C) of peeling the laminate obtained in the step B at the interface between the support material A and the resin film to obtain a laminate of the resin film and the support material B;
A step (step D) of obtaining a laminate by bonding a substrate A to the surface of the laminate obtained in the step C opposite to the surface on which the support material B is provided;
and a step (step E) of peeling the laminate obtained in the step D at an interface between the support material B and the resin film to obtain a laminate of the resin film and the substrate A,
When the elastic modulus of the resin film is Ea and the elastic modulus of the support material B is Eb, Eb/(Ea+Eb) is 0.04 or less.

本実施形態に係る積層体の製造方法は、樹脂膜と該樹脂膜との積層を目的とされた基材(基材A)との積層体を得る積層体の製造方法である。The method for manufacturing a laminate according to this embodiment is a method for manufacturing a laminate for obtaining a laminate of a resin film and a substrate (substrate A) on which the resin film is intended to be laminated.

樹脂膜としては、例えば、ポリイミド、COP、PEN(ポリエチレンナフタレート)、PET(ポリエチレンテレフタラート)、PC(ポリカーボネート)、アクリル等が挙げられる。中でも、屈曲性や光学特性の観点からポリイミドが好ましい。また、黄色度(YI値)が0.0以上2.0以下、好ましく0.0以上1.5以下、である透明ポリイミドが好ましい。これらが二層以上積層されていてもよく、樹脂膜の上に電極、発光層、無機薄膜等が形成されていてもよい。Examples of resin films include polyimide, COP, PEN (polyethylene naphthalate), PET (polyethylene terephthalate), PC (polycarbonate), and acrylic. Among them, polyimide is preferred from the viewpoint of flexibility and optical properties. Transparent polyimide having a yellowness index (YI value) of 0.0 to 2.0, preferably 0.0 to 1.5, is also preferred. Two or more of these may be laminated, and an electrode, a light-emitting layer, an inorganic thin film, etc. may be formed on the resin film.

樹脂膜の弾性率Eaは、後述するEb/(Ea+Eb)が0.04以下となればよいが、通常とりうる樹脂膜の弾性率に鑑みれば108.5Pa~109.8Paとできる。 The elastic modulus Ea of the resin film should be such that Eb/(Ea+Eb), which will be described later, is 0.04 or less.

樹脂膜の弾性率Eaは引張り試験機を用いて、応力―歪曲線の傾きから実施例に記載の方法により求めることができる。樹脂膜が、二層以上の層が積層されたものであっても同様に求めることができる。The elastic modulus Ea of the resin film can be determined from the slope of the stress-strain curve using a tensile tester by the method described in the Examples. It can be determined in the same way even if the resin film is a laminate of two or more layers.

樹脂膜の厚さは3~50μmが好ましい。樹脂膜の厚さが3μm以上であることで、樹脂膜の強度が向上し工程Cにおいて樹脂膜を剥離する時に樹脂膜に亀裂がはいるのを防ぐことができる。また、樹脂膜の厚さが50μm以下であることで高い屈曲性を得ることができる。The thickness of the resin film is preferably 3 to 50 μm. When the thickness of the resin film is 3 μm or more, the strength of the resin film is improved, and it is possible to prevent the resin film from cracking when peeling off the resin film in step C. Furthermore, when the thickness of the resin film is 50 μm or less, high flexibility can be obtained.

基材Aとしては、PETフィルム、PP(ポリプロピレン)フィルム、PE(ポリエチレン)フィルム、OLED(Organic Light Emitting Diode)パネル、偏光板、カラーフィルター、TFT(Thin Film Transistor)基板、カバーガラス等が挙げられる。 Examples of substrate A include PET film, PP (polypropylene) film, PE (polyethylene) film, OLED (Organic Light Emitting Diode) panel, polarizing plate, color filter, TFT (Thin Film Transistor) substrate, cover glass, etc.

<工程A>
本実施形態に係る積層体の製造方法は、樹脂膜を、支持材(支持材A)上に形成する工程を有する。上述したように樹脂膜は収縮しようとするが支持材Aに固定されているため収縮できず、樹脂膜には残留応力が生じ、残留応力は膜内に残存する。
<Step A>
The method for manufacturing a laminate according to this embodiment includes a step of forming a resin film on a support material (support material A). As described above, the resin film tries to shrink but cannot because it is fixed to support material A, and residual stress occurs in the resin film, and the residual stress remains in the film.

樹脂膜の形成方法としては、例えば、支持材A上にワニスを塗布し、塗布されたワニスを乾燥させ、得られた乾燥膜を露光し、露光後の膜を加熱する方法が挙げられる。 Methods for forming a resin film include, for example, applying a varnish onto support material A, drying the applied varnish, exposing the resulting dried film to light, and heating the exposed film.

支持材A上にワニスを塗布する際、ワニスは樹脂又は樹脂前駆体を含み、溶剤を含有してもよい。溶剤の種類にとくに限定はなく、使用する樹脂の溶解性や塗布方法に応じて、適宜選択することができ、エステル系溶剤、ケトン系、グリコールエーテル系、脂肪族系、脂環族系、芳香族系、アルコール系、水系のうち1種または2種以上混合したものを用いることができる。具体的には、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ジメチルスルホキシド、γ-ブチロラクトン、乳酸エチル、2-ジメチルアミノエタノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、エチレングリコールモノ-n-プロピルエーテル、ジアセトンアルコール、テトラヒドロフルフリルアルコール、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。When the varnish is applied onto the support material A, the varnish contains a resin or a resin precursor, and may contain a solvent. There is no particular limitation on the type of solvent, and it can be appropriately selected according to the solubility of the resin used and the application method. One or a mixture of two or more of ester-based solvents, ketone-based, glycol ether-based, aliphatic, alicyclic, aromatic, alcohol-based, and water-based solvents can be used. Specific examples include N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide, γ-butyrolactone, ethyl lactate, 2-dimethylaminoethanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, ethylene glycol mono-n-propyl ether, diacetone alcohol, tetrahydrofurfuryl alcohol, and propylene glycol monomethyl ether acetate.

ワニスの塗布方法としては、例えば、スピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーターまたはバーコーターを用いた塗布などが挙げられる。 Methods for applying varnish include, for example, rotary application using a spinner, spray application, roll coating, screen printing, and application using a blade coater, die coater, calendar coater, meniscus coater or bar coater.

塗布されたワニスを乾燥させる方法としては、例えば、オーブン、ホットプレート、赤外線等による加熱乾燥や、真空乾燥などが挙げられる。加熱乾燥は50℃から180℃の範囲で1分間から数時間行うのが好ましい。Methods for drying the applied varnish include, for example, heat drying using an oven, a hot plate, infrared rays, etc., and vacuum drying. Heat drying is preferably performed at a temperature in the range of 50°C to 180°C for one minute to several hours.

得られた乾燥膜に対して、露光による光硬化を実施する。露光を行う際は光源として水銀灯、LED、LD、キセノンランプ等を用いることができる。熱キュアする方法としては、オーブン、イナートオーブン、ホットプレート、赤外線などによる加熱乾燥や真空乾燥などが挙げられる。The resulting dried film is then photocured by exposure to light. When performing exposure, a mercury lamp, LED, LD, xenon lamp, etc. can be used as the light source. Methods for thermal curing include heating and drying using an oven, inert oven, hot plate, infrared rays, etc., and vacuum drying.

さらに、露光後の膜に対して加熱を行う。加熱温度は100~300℃の範囲が好ましい。Furthermore, the exposed film is heated. The heating temperature is preferably in the range of 100 to 300°C.

樹脂膜が二層以上の層によって形成される場合には、同様な操作を繰り返して積層させることができる。また、本発明に用いられる樹脂膜は、樹脂製の膜を具備していれば良く、発明の効果を阻害しない範囲において樹脂製の膜上に樹脂以外の材料による構造物が設けられていてもよい。樹脂膜の上に電極、発光層、無機薄膜等を形成する場合は、スパッタ、蒸着、イオンプレーティング、スクリーン印刷、スピンコーター、スリットダイコーター、グラビア印刷、フレキソ印刷等により形成することができる。When the resin film is formed of two or more layers, the same operation can be repeated to laminate them. The resin film used in the present invention may be a resin film, and may have a structure made of a material other than resin on the resin film as long as it does not impair the effects of the invention. When an electrode, a light-emitting layer, an inorganic thin film, etc. are formed on the resin film, they can be formed by sputtering, vapor deposition, ion plating, screen printing, spin coater, slit die coater, gravure printing, flexographic printing, etc.

支持材Aとしては、ガラス、石英、アルミナ、ジルコニア、SUS、ポリイミド、アクリル等を用いることができる。後述する工程Cにおいて、支持材Aと樹脂膜とを、レーザーを用いて剥離をする場合は、光の透過性が高く、耐熱性が高いガラスが好ましい。また、支持材Aの表面に剥離層を設けてあっても構わない。剥離層を設けることで、支持材Aと樹脂膜との密着力が低下するため、工程Cにて僅かな力で剥離することができ、簡単に剥離することができる。 Support material A can be glass, quartz, alumina, zirconia, SUS, polyimide, acrylic, etc. When using a laser to peel support material A from the resin film in step C described below, glass is preferred because of its high light transmittance and heat resistance. A peeling layer may also be provided on the surface of support material A. By providing a peeling layer, the adhesion between support material A and the resin film is reduced, allowing it to be peeled off with little force in step C, making it easy to peel off.

<工程B>
本実施形態に係る積層体の製造方法は、樹脂膜の支持材Aが設けられた側とは反対側の面に、他の支持材(支持材B)を貼り合わせて積層体を得る工程を有する。
<Step B>
The method for producing a laminate according to this embodiment includes a step of laminating another support material (support material B) to the surface of the resin film opposite to the surface on which support material A is provided, to obtain a laminate.

支持材Bとしては、例えば、インテリマー(登録商標)テープCS2350NA4、CS2325NA4、CS2325NA3(いずれもニッタ株式会社製)等が挙げられる。Examples of support material B include Intelimer (registered trademark) tape CS2350NA4, CS2325NA4, and CS2325NA3 (all manufactured by Nitta Corporation).

支持材Bの弾性率Ebは、後述するEb/(Ea+Eb)が0.04以下となればよいが、通常とりうる樹脂膜の弾性率に鑑みれば106.0Pa~108.5Paとできる。支持材Bの弾性率Ebが106.0Pa以上であることにより、樹脂膜を変形させることなく支持することができる。一方、支持材Bの弾性率Ebが108.5Pa以下であることにより、工程Cにおいて樹脂膜と支持材Bの積層体を得た際に、樹脂膜とともに収縮して、樹脂膜の残留応力をより低減させることができる。支持材Bの弾性率Ebは、より好ましくは106.8Pa以下である。 The elastic modulus Eb of the support material B should be 0.04 or less, as described below, but can be 10 6.0 Pa to 10 8.5 Pa in consideration of the elastic modulus of the resin film that can usually be taken. When the elastic modulus Eb of the support material B is 10 6.0 Pa or more, the resin film can be supported without being deformed. On the other hand, when the elastic modulus Eb of the support material B is 10 8.5 Pa or less, when a laminate of the resin film and the support material B is obtained in step C, the support material B shrinks together with the resin film, and the residual stress of the resin film can be further reduced. The elastic modulus Eb of the support material B is more preferably 10 6.8 Pa or less.

支持材Bの厚さは15μm~500μmが好ましい。支持材Bの厚さが15μm以上であることにより、取り扱いが容易となる。一方、支持材Bの厚さが500μm以下であることにより、工程Cにおいて樹脂膜が支持材Bとともに収縮しやすくなり、樹脂膜の残留応力をより低減させることができる。支持材Bの厚さは、より好ましくは30μm以下である。The thickness of support material B is preferably 15 μm to 500 μm. When the thickness of support material B is 15 μm or more, it becomes easier to handle. On the other hand, when the thickness of support material B is 500 μm or less, the resin film is more likely to shrink together with support material B in step C, and the residual stress of the resin film can be further reduced. The thickness of support material B is more preferably 30 μm or less.

本実施形態に係る積層体の製造方法は、樹脂膜の弾性率をEa、支持材Bの弾性率をEbとしたときのEb/(Ea+Eb)が0.04以下である。Eb/(Ea+Eb)が0.04より大きいと、後述する工程Cにおいて、樹脂膜と支持材Bの積層体が十分に収縮せず、樹脂膜の残留応力が大きくなる。結果として、工程Eにおいて、樹脂膜と基材Aとの積層体を形成した後に反りが発生する。In the method for manufacturing a laminate according to this embodiment, when the elastic modulus of the resin film is Ea and the elastic modulus of the support material B is Eb, Eb/(Ea+Eb) is 0.04 or less. If Eb/(Ea+Eb) is greater than 0.04, the laminate of the resin film and the support material B does not shrink sufficiently in step C described below, and the residual stress in the resin film becomes large. As a result, warping occurs after the laminate of the resin film and the substrate A is formed in step E.

<工程C>
本実施形態に係る積層体の製造方法は、工程Bで得られた積層体からと支持材Aと樹脂膜との界面で剥離して、樹脂膜と支持材Bの積層体を得る工程を有する。本工程において、樹脂膜は支持材Aから離れ、残留応力により支持材Bとともに収縮する。収縮が十分でない場合には樹脂膜内に応力が残る。
<Step C>
The method for producing a laminate according to this embodiment includes a step of peeling the interface between support material A and the resin film from the laminate obtained in step B to obtain a laminate of the resin film and support material B. In this step, the resin film separates from support material A and shrinks together with support material B due to residual stress. If the shrinkage is insufficient, stress remains in the resin film.

剥離方法としては、機械的に剥離する方法、支持材Aの裏面より、支持材Aと樹脂膜の界面にレーザーを照射する方法などが挙げられる。Peeling methods include mechanical peeling and irradiating the interface between support material A and the resin film with a laser from the back side of support material A.

<工程D>
本実施形態に係る積層体の製造方法は、工程Cで得られた積層体の支持材Bが設けられた側とは反対側の面に基材Aを貼り合わせて積層体を得る工程を有する。
<Step D>
The method for producing a laminate according to this embodiment includes a step of bonding a substrate A to the surface of the laminate obtained in step C opposite to the surface on which the support material B is provided, to obtain a laminate.

工程Cで得られた積層体と基材Aとは、貼り合わせ装置を用いて、それぞれの貼り合わせるべき面とは反対側の面を吸着ステージで固定し、貼り合わせる面同士を接合した後に固定を解除することで貼り合わせることができる。貼り合わせる際に、吸着ステージとしてスクリーンメッシュ等の容易に変形できる部材を用いて、ローラー又はブレード等で擦りながら貼り合わせることで泡や皺の発生を防止することができる。貼り合わせをする装置として、例えば、手動枚葉貼合機SE650n(クライムプロダクツ製)等が挙げられる。The laminate obtained in step C and the substrate A can be bonded together using a bonding device by fixing the surfaces opposite to those to be bonded on an adsorption stage, joining the surfaces to be bonded together, and then releasing the fixation. When bonding, an easily deformable member such as a screen mesh can be used as the adsorption stage, and the layers can be bonded while rubbing with a roller or blade to prevent the generation of bubbles and wrinkles. Examples of devices for bonding include the manual sheet bonding machine SE650n (manufactured by Climb Products).

<工程E>
本実施形態に係る積層体の製造方法は、工程Dで得られた積層体からと前記支持材Bと前記樹脂膜との界面で剥離して、樹脂膜と基材Aとの積層体を得る工程を有する。本工程において、樹脂膜の残留応力が大きい場合には、樹脂膜と基材Aとの積層体に反りが生じるが、樹脂膜の残留応力が小さい場合には、反りを抑制することができる。
<Step E>
The method for producing a laminate according to this embodiment includes a step of obtaining a laminate of a resin film and a substrate A by peeling the interface between the support material B and the resin film from the laminate obtained in step D. In this step, if the residual stress of the resin film is large, warping occurs in the laminate of the resin film and the substrate A, but if the residual stress of the resin film is small, warping can be suppressed.

[第二の実施形態]
本実施形態に係る積層体の製造方法は、樹脂膜と該樹脂膜との積層を目的とされた基材(基材A)との積層体を得る積層体の製造方法であって、
樹脂膜を、支持材(支持材A)上に形成する工程(工程A)と、
前記樹脂膜の前記支持材Aが設けられた側とは反対側の面に、他の支持材(支持材B)を貼り合わせて積層体を得る工程(工程B)と、
前記工程Bで得られた積層体からと前記支持材Aと前記樹脂膜との界面で剥離して、樹脂膜と支持材Bの積層体を得る工程(工程C)と、
樹脂膜と支持材Bの積層体を2000ppm以上収縮させる工程(工程F)と、
前記工程Fの後、前記工程Cで得られた積層体の前記支持材Bが設けられた側とは反対側の面に基材Aを貼り合わせて積層体を得る工程(工程D’)と、
前記工程D’で得られた積層体からと前記支持材Bと前記樹脂膜との界面で剥離して、樹脂膜と基材Aとの積層体を得る工程(工程E’)とを含む。
[Second embodiment]
The method for producing a laminate according to the present embodiment is a method for producing a laminate including a resin film and a substrate (substrate A) on which the resin film is to be laminated, the method comprising the steps of:
A step (step A) of forming a resin film on a support material (support material A);
A step (step B) of laminating another supporting material (supporting material B) to the surface of the resin film opposite to the surface on which the supporting material A is provided to obtain a laminate;
A step (step C) of peeling the support material A and the resin film from the laminate obtained in the step B at the interface thereof to obtain a laminate of the resin film and the support material B;
A step (step F) of shrinking the laminate of the resin film and the support material B by 2000 ppm or more;
After the step F, a step (step D') of bonding a substrate A to the surface of the laminate obtained in the step C opposite to the surface on which the support material B is provided to obtain a laminate;
The method includes a step (step E') of obtaining a laminate of the resin film and the substrate A by peeling the support material B and the resin film from the laminate obtained in the step D' at the interface between them.

本実施形態に係る積層体の製造方法は、工程Cの後、樹脂膜と支持材Bの積層体を2000ppm以上収縮させる工程(工程F)を有する。本工程により、樹脂膜の残留応力が緩和される。樹脂膜と支持材Bの積層体の収縮量が2000ppm未満であると、工程Eにおいて、樹脂膜と基材Aとの積層体を得た際に、反りが生じやすい。樹脂膜と支持材Bの積層体の収縮量はより好ましくは4000ppm以上である。The method for manufacturing a laminate according to this embodiment includes, after step C, a step (step F) of shrinking the laminate of the resin film and the support material B by 2000 ppm or more. This step relieves the residual stress in the resin film. If the amount of shrinkage of the laminate of the resin film and the support material B is less than 2000 ppm, warping is likely to occur when a laminate of the resin film and the substrate A is obtained in step E. The amount of shrinkage of the laminate of the resin film and the support material B is more preferably 4000 ppm or more.

樹脂膜と支持材Bの積層体を収縮させる方法としては、樹脂膜と支持材Bの積層体の温度を低下させる方法や、予め延ばしておいた支持材Bに支持材Aと樹脂膜との積層体を貼り合わせ、さらに支持材Aが剥離した状態とし、ついで樹脂膜が貼り合わされた支持材Bを収縮させることによって行う方法等が挙げられる。なおここで、支持材Bを伸ばすことの意義は、熱あるいは外力を印加してその表面積を拡大し、当該熱あるいは外力が除かれたときの復元によって、貼りあわされる樹脂膜の残留応力を取り除くことといえる。 Methods for shrinking the laminate of the resin film and supporting material B include lowering the temperature of the laminate of the resin film and supporting material B, and laminating a laminate of supporting material A and the resin film to supporting material B that has been stretched in advance, then allowing supporting material A to peel off, and then shrinking supporting material B to which the resin film has been laminated. The significance of stretching supporting material B here is that it expands its surface area by applying heat or external force, and then removes residual stress in the resin film that is laminated by the restoration of its original shape when the heat or external force is removed.

樹脂膜と支持材Bの積層体の温度を低下させる場合、支持材Bの熱膨張係数に応じて低下させる温度を調整することにより、樹脂膜と支持材Bの積層体を2000ppm以上とすることができる。支持材Bとしては、例えば、ウレタンゲル、シリコンゲル、PMMA(ポリメチルメタクリレート)、マグネシウム合金AZ91等が挙げられる。また、支持材Bには別途粘着層を設けても構わない。これにより粘着性を有さない材質であっても、支持材Bとして用いることができる。When lowering the temperature of the laminate of the resin film and the support material B, the laminate of the resin film and the support material B can be made 2000 ppm or more by adjusting the temperature to be lowered according to the thermal expansion coefficient of the support material B. Examples of the support material B include urethane gel, silicon gel, PMMA (polymethyl methacrylate), magnesium alloy AZ91, etc. In addition, a separate adhesive layer may be provided on the support material B. This allows even a material that does not have adhesive properties to be used as the support material B.

工程Bにおいて、支持材Aと樹脂膜の温度と支持材Bの温度を一定にして貼り合わせた後、工程Fにおいて樹脂膜と支持材Bの積層体を収縮させる場合、支持材Bの熱膨張係数は、20ppm/K~230ppm/Kであることが好ましい。支持材Bの熱膨張係数を20ppm/K以上にすることにより、小さな温度変化でも熱膨張による容易に寸法変化を大きくすることがきる。一方、支持材Bの熱膨張係数を230ppm/K以下にすることにより、支持材Bの温度バラつきに伴う寸法変化のバラつきを小さくすることができる。In step B, when supporting material A and the resin film are bonded together while maintaining constant temperatures for supporting material B, and then the laminate of the resin film and supporting material B is shrunk in step F, it is preferable that supporting material B has a thermal expansion coefficient of 20 ppm/K to 230 ppm/K. By making supporting material B's thermal expansion coefficient 20 ppm/K or more, it is possible to easily increase the dimensional change due to thermal expansion even with a small temperature change. On the other hand, by making supporting material B's thermal expansion coefficient 230 ppm/K or less, it is possible to reduce the variation in dimensional change associated with temperature variation in supporting material B.

冷却する際に降下させる温度は10℃以上150℃以下であることが好ましい。10℃以上とすることで熱膨張係数の小さな材質を支持材Bとして用いることができる。より好ましくは30℃以上である。また、150℃以下とすることで、支持材Bの熱劣化を抑制することができる。また、支持材Bの昇温及び降温を短時間で行うことができる。より好ましくは100℃以下である。The temperature to which it is lowered during cooling is preferably 10°C or higher and 150°C or lower. By setting the temperature at 10°C or higher, a material with a small thermal expansion coefficient can be used as support material B. It is more preferable that the temperature be 30°C or higher. Furthermore, by setting the temperature at 150°C or lower, it is possible to suppress thermal deterioration of support material B. Furthermore, it is possible to raise and lower the temperature of support material B in a short period of time. It is more preferable that the temperature be 100°C or lower.

予め延ばしておいた支持材Bに支持材Aと樹脂膜との積層体を貼り合わせ、さらに支持材Aが剥離された状態とし、ついで樹脂膜が貼り合わされた支持材Bを収縮させることによって、樹脂膜と支持材Bの積層体を2000ppm以上収縮させる場合において、支持材Bを予め延ばし、貼り合わせ後に収縮させる方法としては、治具を用いて支持材Bを引き延ばし、貼り合わせ後に引き延ばしを解除する方法が挙げられる。この時の引き延ばし量は0.2~1.5%が好ましい。引き延ばし量が0.2%以上であることにより、工程Eにおいて、樹脂膜と基材Aとの積層体を得た際に反りをより抑制することができる。一方、引き延ばし量が1.5%以下であることにより、工程Fにおいて、収縮時に樹脂膜に皺や亀裂が発生するのを防ぐことができる。In the case where a laminate of a support material A and a resin film is laminated to a support material B that has been stretched in advance, the support material A is peeled off, and then the support material B with the laminated resin film is shrunk to shrink the laminate of the resin film and the support material B by 2000 ppm or more, a method of stretching the support material B in advance and shrinking it after lamination includes a method of stretching the support material B using a jig and releasing the stretching after lamination. The stretching amount at this time is preferably 0.2 to 1.5%. By setting the stretching amount to 0.2% or more, warping can be further suppressed when a laminate of the resin film and the substrate A is obtained in step E. On the other hand, by setting the stretching amount to 1.5% or less, it is possible to prevent wrinkles and cracks from occurring in the resin film during shrinkage in step F.

支持材Bを引き延ばす治具としては例えば図2に示すものを使用することができる。本治具は、ガイド22を固定しながらネジ21を回すことにより、クランプ23をガイド22の中心から外側に向かって動かすことができる機能を有する。ネジ21とクランプ23の間に潤滑油により湿潤させた鋼球を挟むことによりクランプ23の回転が防止される。支持材B24をクランプ23により固定することにより、支持材B24を中心から外側に向かって引き延ばすことができる。支持材B24の引き延ばしは全方位に均等にするのが好ましい。 As a jig for stretching the support material B, for example, the one shown in Figure 2 can be used. This jig has the function of moving the clamp 23 from the center of the guide 22 toward the outside by turning the screw 21 while fixing the guide 22. Rotation of the clamp 23 is prevented by placing a steel ball moistened with lubricating oil between the screw 21 and the clamp 23. By fixing the support material B24 with the clamp 23, the support material B24 can be stretched from the center toward the outside. It is preferable to stretch the support material B24 evenly in all directions.

支持材Bとしては、ウレタンゲルシート等が挙げられる。 Examples of support material B include urethane gel sheets.

<工程D’、工程E’>
工程Fを経た後の積層体について、前記工程Dおよび工程Eの項で説明したと同様の方法を適用することができる。そして、樹脂膜と基材Aとの積層体を得ることができる。
<Step D' and Step E'>
The laminate after step F can be subjected to the same methods as those described in the sections on steps D and E. Then, a laminate of the resin film and the substrate A can be obtained.

本発明において、工程Aにおいて得た樹脂膜上に導電パターンなどの機能性をもった構成を設けることができる。導電性パターンが設けられた樹脂膜はタッチセンサー用の部材として好適に利用することができる。導電性パターンとしては、インジウムスズ酸化物(ITO)といった透明な導電パターンとすることや、樹脂に銀粒子が分散された導電ペーストを付与することで不透明な導電パターンをとすることが挙げられる。銀粒子が分散された導電ペーストは感光性を付与することで多様なパターンが形成でき、また、導電パターン自体の柔軟性や樹脂膜への接着性の点において有利である。導電パターンの線幅は1μm~9μmとすることが好ましく、より好ましくは1μm~5μmである。In the present invention, a functional structure such as a conductive pattern can be provided on the resin film obtained in step A. The resin film provided with the conductive pattern can be suitably used as a member for a touch sensor. Examples of the conductive pattern include a transparent conductive pattern such as indium tin oxide (ITO), and an opaque conductive pattern formed by applying a conductive paste in which silver particles are dispersed to a resin. A conductive paste in which silver particles are dispersed can be photosensitive to form a variety of patterns, and is advantageous in terms of the flexibility of the conductive pattern itself and its adhesion to the resin film. The line width of the conductive pattern is preferably 1 μm to 9 μm, and more preferably 1 μm to 5 μm.

以下に本発明を実施例及び比較例を挙げて詳細に説明するが、本発明の態様はこれらに限定されるものではない。The present invention will be described in detail below with reference to examples and comparative examples, but the aspects of the present invention are not limited to these.

<弾性率の測定>
実施例に記載する手順と同様な方法により、無アルカリガラス基板上に厚み7μmのポリイミド膜および厚み3μmの保護膜の二層の合計厚み10μmの樹脂膜を形成した後、樹脂膜に片刃カミソリを用いて長さ50.4mm×幅10.1mmの短冊状に切れ込みを入れ、これを基板から剥離することで長さ約50mm×幅約10mm×厚み約10μmの樹脂膜の試験片を得た。
<Measurement of Elastic Modulus>
Using a method similar to that described in the Examples, a resin film having a total thickness of 10 μm was formed on an alkali-free glass substrate, consisting of two layers: a 7 μm-thick polyimide film and a 3 μm-thick protective film. Then, a single-edged razor was used to make a rectangular cut in the resin film measuring 50.4 mm in length and 10.1 mm in width, and the cut was peeled off from the substrate to obtain a resin film test piece measuring approximately 50 mm in length, approximately 10 mm in width, and approximately 10 μm in thickness.

弾性率の測定は、まず、ノギスにより試験片の幅を求め、マイクロメーターにより試験片の厚みを求め、次いで、得られた短冊状試験片について、恒温槽内引張試験装置AG-5kNI(株式会社島津製作所製)を用いて、試験片の上下約10mmずつをチャックで固定することにより試験長さ30mmにして、50mm/minで引っ張り、伸び量が0~2%の範囲の応力-歪曲線の傾きから弾性率を算出した。試験は10回行い、その算術平均値を求めた。To measure the elastic modulus, first the width of the test piece was measured using a vernier caliper, and then the thickness of the test piece was measured using a micrometer. Next, the obtained rectangular test piece was chucked at approximately 10 mm above and below the test piece to give a test length of 30 mm, and pulled at 50 mm/min using an in-temperature bath tensile tester AG-5kNI (manufactured by Shimadzu Corporation), and the elastic modulus was calculated from the slope of the stress-strain curve in the elongation range of 0 to 2%. The test was performed 10 times, and the arithmetic average value was calculated.

支持材Bについても、長さ約50mm×幅約10mmの短冊状に切り出した短冊状試験片を作製し、同様にして弾性率を測定した。For support material B, strip-shaped test pieces measuring approximately 50 mm in length and 10 mm in width were cut to prepare strips, and the elastic modulus was measured in the same manner.

<反りの評価>
各実施例及び比較例により得られたPETフィルムと樹脂膜の積層体をPETフィルム側が下になるようにステージに乗せて、ステージからの最大高さをノギスで測定した。下に凸の場合に反り量をプラス、上に凸の場合に反り量をマイナスとした。測定は10枚実施して算術平均値を求めた。
<Warpage evaluation>
The laminate of the PET film and the resin film obtained in each Example and Comparative Example was placed on a stage with the PET film side facing down, and the maximum height from the stage was measured with a vernier caliper. The amount of warping was positive when the laminate was downwardly convex, and negative when the laminate was upwardly convex. The measurement was performed on 10 sheets, and the arithmetic average value was calculated.

<導電パターンに占める樹脂の割合測定>
導電パターンが設けられた積層体を、導電パターンの断面が潰れないように片刃カミソリを用いて切断した後、イオンミリング装置IB-9010CP(日本電子株式会社製)により断面を平滑にし、電界放出型分析走査電子顕微鏡JSM-7610F(日本電子株式会社製)を用いて断面を観察した。金属、樹脂及び空隙が識別できるコントラストを有する条件で観察し、該断面に占める金属と樹脂の面積を求め、百分率で以てその断面における体積占有率とした。1層目及び2層目の導電パターンの各20箇所、合計40箇所の平均を求めることで体積占有率を求めた。
<Measurement of the percentage of resin in the conductive pattern>
The laminate provided with the conductive pattern was cut using a single-edged razor so as not to crush the cross section of the conductive pattern, and then the cross section was smoothed using an ion milling device IB-9010CP (manufactured by JEOL Ltd.), and the cross section was observed using a field emission analytical scanning electron microscope JSM-7610F (manufactured by JEOL Ltd.). Observation was performed under conditions that provided contrast that allowed the metal, resin, and voids to be identified, and the areas of the metal and resin in the cross section were determined, and the volume occupancy in the cross section was calculated as a percentage. The volume occupancy was calculated by averaging 20 locations each of the first and second layers of the conductive pattern, a total of 40 locations.

<タッチセンサーの評価>
導電パターンが設けられた積層体を、導電パターンが内側になるように曲率半径3mmで180度折り曲げて元に戻し、ついで導電パターンが外側になるように曲率半径3mmで180度折り曲げて元に戻す一組の操作を5万回繰り返した後に、次の導電性評価及び外観検査を実施した。
<Touch sensor evaluation>
The laminate provided with the conductive pattern was folded 180 degrees with a curvature radius of 3 mm so that the conductive pattern was on the inside, returned to its original state, and then folded 180 degrees with a curvature radius of 3 mm so that the conductive pattern was on the outside, and returned to its original state, this set of operations was repeated 50,000 times, and then the following conductivity evaluation and appearance inspection were carried out.

・導電性評価
1層目及び2層目の導電パターンの各20箇所、合計40箇所の両端を抵抗計(RM3544;HIOKI製)でつないで抵抗値を測定して、平均値、最大値、最小値を求めた。抵抗計の測定上限3.5MΩ以上の場合は測定不可とし、平均値の算出からは除外した。
Conductivity evaluation The resistance values of 20 locations each of the first and second conductive patterns, a total of 40 locations, were measured with a resistance meter (RM3544; manufactured by HIOKI) to determine the average, maximum, and minimum values. When the resistance meter's upper limit of measurement, 3.5 MΩ, was exceeded, it was deemed unmeasurable and was excluded from the calculation of the average value.

・外観検査
1層目及び2層目の導電パターンに、クラック、剥がれおよび断線が生じていない場合を合格、それ以外を不合格、と判定した。
Visual Inspection If the conductive patterns of the first and second layers were free of cracks, peeling, or disconnections, they were judged as passed, otherwise they were judged as failed.

各実施例及び比較例で用いた材料は、以下のとおりである。
[溶剤]
・ジメチルエタノールアミン(DMEA。東京化成工業株式会社製)
・N-メチルピロリドン(NMP。東京化成工業株式会社製)
・セロソルブアセテート(CA。東京化成工業株式会社製)
[エポキシ樹脂]
・jeR828(三菱ケミカル株式会社製)
[光重合開始剤]
・IRGACURE 369(チバジャパン株式会社製)
[シリカ分散液]
・DMAC-ST(日産化学製)。
The materials used in each of the examples and comparative examples are as follows.
[solvent]
Dimethylethanolamine (DMEA, manufactured by Tokyo Chemical Industry Co., Ltd.)
N-methylpyrrolidone (NMP, manufactured by Tokyo Chemical Industry Co., Ltd.)
Cellosolve acetate (CA, manufactured by Tokyo Chemical Industry Co., Ltd.)
[Epoxy resin]
・jeR828 (manufactured by Mitsubishi Chemical Corporation)
[Photopolymerization initiator]
・IRGACURE 369 (manufactured by Chiba Japan Co., Ltd.)
[Silica dispersion]
・DMAC-ST (manufactured by Nissan Chemical).

(合成例1)
窒素気流下で、300mlのセパラブルフラスコの中に、NMPを100g投入して55℃になるまで加熱攪拌した。1,4-ビス(アミノメチル)シクロヘキサンを2.47g、3,3’-ジアミノジフェニルスルホンを4.31g投入してNMPに溶解させた。この溶液に、4,4’-オキシジフタル酸無水物(ODPA)を9.77g、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)を0.687加えて、この溶液を55℃で90分間攪拌を続けて重合反応を行った。得られた溶液にシリカ分散液DMAC-STを3g投入して、室温で60分攪拌してポリアミド酸溶液(A-1)を得た。
(Synthesis Example 1)
Under a nitrogen stream, 100 g of NMP was added to a 300 ml separable flask and heated and stirred until the temperature reached 55°C. 2.47 g of 1,4-bis(aminomethyl)cyclohexane and 4.31 g of 3,3'-diaminodiphenylsulfone were added and dissolved in NMP. 9.77 g of 4,4'-oxydiphthalic anhydride (ODPA) and 0.687 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) were added to this solution, and the solution was stirred at 55°C for 90 minutes to carry out a polymerization reaction. 3 g of silica dispersion DMAC-ST was added to the obtained solution and stirred at room temperature for 60 minutes to obtain a polyamic acid solution (A-1).

(合成例2)
エチレンジアミン(以下、「EA」/メタクリル酸2-エチルヘキシル(以下、「2-EHMA」)/スチレン(以下、「St」)/アクリル酸(以下、「AA」)のアクリル系共重合体(共重合比率(質量部):20/40/20/15)に、グリシジルメタクリレート(以下、「GMA」)を5質量部付加反応させたもの
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2-EHMA、20gのSt、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、アクリル系共重合体(B-1)を得た。得られたアクリル系共重合体(B-1)の酸価は103mgKOH/gであった。
(Synthesis Example 2)
An acrylic copolymer of ethylenediamine (hereinafter, "EA")/2-ethylhexyl methacrylate (hereinafter, "2-EHMA")/styrene (hereinafter, "St")/acrylic acid (hereinafter, "AA") (copolymerization ratio (parts by mass): 20/40/20/15) was reacted with 5 parts by mass of glycidyl methacrylate (hereinafter, "GMA") In a reaction vessel in a nitrogen atmosphere, 150 g of DMEA was charged, and the temperature was raised to 80 ° C. using an oil bath. A mixture consisting of 20 g of EA, 40 g of 2-EHMA, 20 g of St, 15 g of AA, 0.8 g of 2,2'-azobisisobutyronitrile, and 10 g of DMEA was dropped into the reaction vessel over 1 hour. After the dropwise addition, the polymerization reaction was carried out for another 6 hours. Then, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g of GMA, 1 g of triethylbenzylammonium chloride, and 10 g of DMEA was dropped into the reaction vessel over 0.5 hours. After the dropwise addition, the addition reaction was carried out for another 2 hours. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum dried for 24 hours to obtain an acrylic copolymer (B-1). The acid value of the obtained acrylic copolymer (B-1) was 103 mg KOH / g.

(合成例3)
100mLクリーンボトルに、10.0gのアクリル系共重合体(B-1)、3.0gのライトアクリレートBP-4EA、2.0gのエポキシ樹脂jeR828、0.6gのIRGACURE 369及び60.0gのDMEAを入れ、“あわとり錬太郎”(ARE-310;株式会社シンキー社製)で混合して、75.6gのオーバーコート溶液(C-1)を得た。
(Synthesis Example 3)
Into a 100 mL clean bottle were placed 10.0 g of the acrylic copolymer (B-1), 3.0 g of Light Acrylate BP-4EA, 2.0 g of the epoxy resin jeR828, 0.6 g of IRGACURE 369, and 60.0 g of DMEA, and mixed using a Thinky Mixer (ARE-310; manufactured by Thinky Corporation) to obtain 75.6 g of an overcoat solution (C-1).

(合成例4)
100mLクリーンボトルに、アクリル系共重合体(B-1)を10.0g、2.0gのライトアクリレートBP-4EA、光重合開始剤IRGACURE369(チバジャパン株式会社製)を0.60g、CAを8.0gいれ、“あわとり錬太郎”(商品名、ARE-310、株式会社シンキー社製)で混合し、感光性樹脂溶液20.6g(全固形分61.2質量%)を得た。得られた感光性樹脂溶液10.0gと平均粒子径0.2μmのAg粒子22.0gを混ぜ合わせ、3本ローラー“EXAKT M-50”(商品名、EXAKT社製)を用いて混練し、32.0gの導電ペースト(D-1)を得た。
(Synthesis Example 4)
In a 100 mL clean bottle, 10.0 g of acrylic copolymer (B-1), 2.0 g of light acrylate BP-4EA, 0.60 g of photopolymerization initiator IRGACURE369 (manufactured by Ciba Japan Co., Ltd.), and 8.0 g of CA were added and mixed with "Awatori Rentaro" (trade name, ARE-310, manufactured by Thinky Corporation) to obtain 20.6 g of photosensitive resin solution (total solid content 61.2% by mass). 10.0 g of the obtained photosensitive resin solution was mixed with 22.0 g of Ag particles having an average particle size of 0.2 μm, and kneaded using a three-roller "EXAKT M-50" (trade name, manufactured by EXAKT Co., Ltd.) to obtain 32.0 g of conductive paste (D-1).

(実施例1)
厚み0.7mm、150mm角の無アルカリガラス基板AN100(旭硝子株式会社製)上にポリアミド酸溶液(A-1)を全面に塗布し、熱風オーブンで90℃15分乾燥させた。その後、熱風オーブンで260℃60分間熱硬化を行い、厚み7μmのポリイミド膜を形成した。このポリイミド膜の上にオーバーコート溶液(C-1)を全面に塗布し、熱風オーブンで90℃8分間乾燥させた。露光装置PEM-6M(ユニオン光学株式会社製)を用いて露光量200mJ/cm(波長365nm換算)で全線露光を行った後に、熱風オーブンで230℃60分間熱硬化を行い、厚み3μmの保護膜を形成することで厚み10μmの樹脂膜を得た。その後、樹脂膜の上に合計厚み50μmのインテリマーテープCS2350NA4(ニッタ株式会社製)を150mm角のサイズで貼り合わせた後、樹脂膜及びインテリマーテープをガラス基板から剥離した。その後、貼り合わせ装置SE650n(クライムプロダクツ製)を用いて、この剥離物の樹脂膜側(ガラス基板との剥離面側)に厚み50μmの自己粘着性を有するPETフィルムを貼り合わせた。さらに、インテリマーテープを剥離することで、10μmの樹脂膜に50μmのPETフィルムを貼り合わせた積層体を得た。
Example 1
A polyamic acid solution (A-1) was applied to the entire surface of a 0.7 mm thick, 150 mm square alkali-free glass substrate AN100 (manufactured by Asahi Glass Co., Ltd.), and dried in a hot air oven at 90 ° C. for 15 minutes. Then, heat curing was performed in a hot air oven at 260 ° C. for 60 minutes to form a polyimide film with a thickness of 7 μm. An overcoat solution (C-1) was applied to the entire surface of this polyimide film, and dried in a hot air oven at 90 ° C. for 8 minutes. After performing full line exposure at an exposure dose of 200 mJ / cm 2 (wavelength 365 nm conversion) using an exposure device PEM-6M (manufactured by Union Optical Co., Ltd.), heat curing was performed in a hot air oven at 230 ° C. for 60 minutes to form a protective film with a thickness of 3 μm, thereby obtaining a resin film with a thickness of 10 μm. Then, Intellimer tape CS2350NA4 (manufactured by Nitta Corporation) with a total thickness of 50 μm was laminated on the resin film with a size of 150 mm square, and then the resin film and Intellimer tape were peeled off from the glass substrate. Then, using a lamination device SE650n (manufactured by Climb Products), a PET film having a thickness of 50 μm and self-adhesive was laminated on the resin film side (the side on which the glass substrate is peeled off) of the peeled off product. Furthermore, by peeling off the Intellimer tape, a laminate in which a 50 μm PET film was laminated on a 10 μm resin film was obtained.

(実施例2)
合計厚み50μmのインテリマーテープCS2350NA4の代わりに合計厚み25μmのインテリマーテープCS2325NA4(ニッタ株式会社製)を使用する以外は実施例1と同様に実施した。
Example 2
The same procedure as in Example 1 was carried out, except that Intellimer tape CS2325NA4 (manufactured by Nitta Corporation) having a total thickness of 25 μm was used instead of Intellimer tape CS2350NA4 having a total thickness of 50 μm.

(実施例3)
インテリマーテープCS2350NA4の代わりにインテリマーテープCS2350NA3を使用する以外は実施例1と同様に実施した。
Example 3
The same procedure as in Example 1 was repeated except that Intellimer tape CS2350NA3 was used instead of Intellimer tape CS2350NA4.

(比較例1)
インテリマーテープCS2325NA4の代わりにPETを使用する以外は実施例1と同様に実施した。
(Comparative Example 1)
The same procedure as in Example 1 was repeated except that PET was used instead of Intellimer tape CS2325NA4.

実施例1~3、比較例1の評価結果を表1に示す。The evaluation results for Examples 1 to 3 and Comparison Example 1 are shown in Table 1.

(実施例4)
厚み0.7mm、150mm角の無アルカリガラス基板AN100(旭硝子株式会社製)上にポリアミド酸溶液(A-1)を全面に塗布し、熱風オーブンで90℃15分乾燥させた。その後、熱風オーブンで260℃60分間熱硬化を行い、厚み7μmのポリイミド膜を形成した。このポリイミド膜の上にオーバーコート溶液(C-1)を全面に塗布し、熱風オーブンで90℃8分間乾燥させた。その後、露光装置PEM-6M(ユニオン光学株式会社製)を用いて露光量200mJ/cm(波長365nm換算)で全線露光を行った後に、熱風オーブンで230℃60分間熱硬化を行い、厚み3μmの保護膜を形成することで合計厚み10μmの樹脂膜を得た。その後、ガラス基板及び樹脂膜を100℃に保持し、樹脂膜の上に予め100℃に加熱した自己粘着性を有する厚み5mmのウレタンゲルシート(熱膨張係数93ppm/K)を貼り合わせた。100℃に保った状態でウレタンゲルシートと樹脂膜をガラス基板と樹脂膜の界面より分離し、ウレタンゲルシート及び樹脂膜を25℃まで冷却した。貼り合わせ装置SE650n(クライムプロダクツ製)を用いて、この剥離物の樹脂膜側(ガラス基板との剥離面側)に厚み50μmの自己粘着性を有するPETフィルムを貼り合わせた。ウレタンゲルシートを剥離することで、10μmの樹脂膜に50μmのPETフィルムを貼り合わせた積層体を得た。
Example 4
A polyamic acid solution (A-1) was applied to the entire surface of a 0.7 mm thick, 150 mm square alkali-free glass substrate AN100 (manufactured by Asahi Glass Co., Ltd.), and dried in a hot air oven at 90 ° C. for 15 minutes. Then, heat curing was performed in a hot air oven at 260 ° C. for 60 minutes to form a polyimide film with a thickness of 7 μm. An overcoat solution (C-1) was applied to the entire surface of this polyimide film, and dried in a hot air oven at 90 ° C. for 8 minutes. Then, a full line exposure was performed using an exposure device PEM-6M (manufactured by Union Optical Co., Ltd.) at an exposure dose of 200 mJ / cm 2 (wavelength 365 nm equivalent), and then heat curing was performed in a hot air oven at 230 ° C. for 60 minutes to form a protective film with a thickness of 3 μm, thereby obtaining a resin film with a total thickness of 10 μm. Thereafter, the glass substrate and the resin film were held at 100°C, and a 5 mm thick urethane gel sheet (thermal expansion coefficient 93 ppm/K) having self-adhesiveness, which had been heated to 100°C in advance, was attached to the resin film. While held at 100°C, the urethane gel sheet and the resin film were separated from the interface between the glass substrate and the resin film, and the urethane gel sheet and the resin film were cooled to 25°C. Using a lamination device SE650n (manufactured by Climb Products), a 50 μm thick PET film having self-adhesiveness was attached to the resin film side (the side peeled from the glass substrate) of this peeled product. By peeling off the urethane gel sheet, a laminate in which a 50 μm PET film was attached to a 10 μm resin film was obtained.

(実施例5)
貼り合わせ前の温度を100℃から70℃に変更する以外は実施例4と同様に実施した。
Example 5
The same procedure as in Example 4 was carried out, except that the temperature before lamination was changed from 100°C to 70°C.

(実施例6)
貼り合わせ前の温度を100℃から120℃に変更する以外は実施例4と同様に実施した。
Example 6
The same procedure as in Example 4 was carried out, except that the temperature before lamination was changed from 100° C. to 120° C.

(実施例7)
ウレタンゲルシートの代わりに厚み5mmのシリコンゲルシート(熱膨張係数204ppm/K)を用い、貼り合わせ前の温度を100℃から60℃に変更する以外は実施例4と同様に実施した。
(Example 7)
The same procedure as in Example 4 was repeated, except that a 5 mm thick silicon gel sheet (coefficient of thermal expansion: 204 ppm/K) was used instead of the urethane gel sheet, and the temperature before lamination was changed from 100°C to 60°C.

(実施例8)
ウレタンゲルシートの代わりに厚さ0.5mmのPMMA(熱膨張係数50ppm/K)を用い貼り合わせ前の温度を100℃から115℃に変更する以外は実施例4と同様に実施した。
(Example 8)
The same procedure as in Example 4 was carried out, except that a 0.5 mm thick PMMA (coefficient of thermal expansion: 50 ppm/K) was used instead of the urethane gel sheet, and the temperature before lamination was changed from 100°C to 115°C.

(実施例9)
ウレタンゲルシートの代わりに厚さ0.3mmのマグネシウム合金AZ91板(熱膨張係数28ppm/K)を用い、貼り合わせ前の温度を100℃から150℃、貼り合わせ後の温度を25℃から0℃にする以外は実施例4と同様に実施した。
Example 9
The same procedure as in Example 4 was repeated, except that a 0.3 mm thick magnesium alloy AZ91 plate (thermal expansion coefficient 28 ppm/K) was used instead of the urethane gel sheet, the temperature before lamination was set to 100° C. to 150° C., and the temperature after lamination was set to 25° C. to 0° C.

(実施例10)
ウレタンゲルシートの代わりに厚さ5mmのシリコンゲルシートを用い、貼り合わせ前の温度を100℃から35℃に変更する以外は実施例4と同様に実施した。
Example 10
The same procedure as in Example 4 was carried out, except that a 5 mm thick silicone gel sheet was used instead of the urethane gel sheet and the temperature before lamination was changed from 100°C to 35°C.

(比較例2)
貼り合わせ前の温度を100℃から25℃に変更する以外は実施例4と同様に実施した。
(Comparative Example 2)
The same procedure as in Example 4 was carried out, except that the temperature before lamination was changed from 100° C. to 25° C.

(比較例3)
ウレタンゲルシートの代わりに厚さ5mmのシリコンゲルシートを用い、貼り合わせ前の温度を100℃から30℃に変更する以外は実施例4と同様に実施した。
(Comparative Example 3)
The same procedure as in Example 4 was carried out, except that a 5 mm thick silicone gel sheet was used instead of the urethane gel sheet and the temperature before lamination was changed from 100°C to 30°C.

実施例4~10、比較例2~3の評価結果を表2に示す。The evaluation results for Examples 4 to 10 and Comparative Examples 2 to 3 are shown in Table 2.

(実施例11)
厚み0.7mm、150mm角の無アルカリガラス基板AN100(旭硝子株式会社製)上にポリアミド酸溶液(A-1)を全面に塗布し、熱風オーブンで90℃15分乾燥させた。その後、熱風オーブンで260℃60分熱硬化を行い、厚み7μmのポリイミド膜を形成した。このポリイミド膜の上にオーバーコート溶液(C-1)を全面に塗布し、熱風オーブンで90℃8分乾燥させた。露光装置PEM-6M(ユニオン光学株式会社製)を用いて露光量200mJ/cm(波長365nm換算)で全線露光を行った後に、熱風オーブンで230℃60分間熱硬化を行い、厚み3μmの保護膜を形成することで合計厚み10μmの樹脂膜を得た。図2に示す治具を用いて、ウレタンゲルシートを面方向の全方位に均等に0.69%引き延ばした。0.69%引き延ばした状態のウレタンゲルシートを樹脂膜の上に貼り合わせた。その後、ウレタンゲルシートと樹脂膜をガラス基板と樹脂膜との界面より剥離し、ウレタンゲルシートの引き延ばしを解除してウレタンゲルシート及び樹脂膜を収縮させた。この剥離物の樹脂膜側(ガラス基板との剥離面側)に厚み50μmの自己粘着性を有するPETフィルムを貼り合わせた。さらに、ウレタンゲルシートを剥離することで、10μmの樹脂膜に50μmのPETフィルムを貼り合わせた積層体を得た。
(Example 11)
A polyamic acid solution (A-1) was applied to the entire surface of a 0.7 mm thick, 150 mm square alkali-free glass substrate AN100 (manufactured by Asahi Glass Co., Ltd.), and dried in a hot air oven at 90 ° C. for 15 minutes. Then, heat curing was performed in a hot air oven at 260 ° C. for 60 minutes to form a polyimide film with a thickness of 7 μm. An overcoat solution (C-1) was applied to the entire surface of this polyimide film, and dried in a hot air oven at 90 ° C. for 8 minutes. After performing full line exposure at an exposure dose of 200 mJ / cm 2 (converted to a wavelength of 365 nm) using an exposure device PEM-6M (manufactured by Union Optical Co., Ltd.), heat curing was performed in a hot air oven at 230 ° C. for 60 minutes to form a protective film with a thickness of 3 μm, thereby obtaining a resin film with a total thickness of 10 μm. Using the jig shown in FIG. 2, the urethane gel sheet was stretched by 0.69% evenly in all directions in the surface direction. The urethane gel sheet in the 0.69% stretched state was attached onto the resin film. Thereafter, the urethane gel sheet and the resin film were peeled off from the interface between the glass substrate and the resin film, and the stretching of the urethane gel sheet was released to cause the urethane gel sheet and the resin film to shrink. A 50 μm thick self-adhesive PET film was attached to the resin film side (the side peeled off from the glass substrate) of this peeled off product. Furthermore, the urethane gel sheet was peeled off to obtain a laminate in which a 50 μm thick PET film was attached to a 10 μm thick resin film.

(実施例12)
ウレタンゲルシートの引き延ばし量を0.89%にする以外は実施例11と同様に実施した。
Example 12
The same procedure as in Example 11 was carried out, except that the stretch amount of the urethane gel sheet was 0.89%.

(比較例4)
ウレタンゲルシートの引き延ばし量を0.15%にする以外は実施例11と同様に実施した。
(Comparative Example 4)
The same procedure as in Example 11 was carried out, except that the stretch amount of the urethane gel sheet was 0.15%.

実施例11~12、比較例4の評価結果を表3に示す。The evaluation results for Examples 11-12 and Comparison Example 4 are shown in Table 3.

(実施例13)
厚み0.7mm、150mm角の無アルカリガラス基板AN100(旭硝子株式会社製)上にポリアミド酸溶液(A-1)を全面に塗布し、熱風オーブンで90℃15分乾燥させた。その後、熱風オーブンで260℃60分熱硬化を行い、厚み7μmのポリイミド膜を形成した。ポリイミド膜の上に導電ペースト(D-1)をスクリーン印刷機LS-150(ニューロング精密工業株式会社製)で全面に塗布し、100℃の乾燥オーブンで10分間乾燥することで1.0μmの塗布膜を得た。図3に示す、3μmの幅で対角線の長さが0.5mmである菱形の連続体からなる格子状の透光部及び1.5mm角の透光部を両端に有するパターンを、4mm間隔で20個有しているフォトマスクを基板の中央に配置し、露光装置PEM-6M(ユニオン光学株式会社製)を用いて露光量200mJ/cm(波長365nm換算)で全線露光を行った後に、0.1質量%のTMAH溶液に基板を30秒浸漬させて現像を実施し、超純水によるリンス処理を施すことにより、導電パターンの前駆体を得た。その後、熱風オーブンで230℃60分間熱硬化を行い、線幅4.0μmである1層目の導電パターンを形成した。この上にオーバーコート溶液(C-1)を導電パターンの格子状部分のみを被せるように80mm×85mmの範囲に塗布し、熱風オーブンで90℃8分乾燥させた。露光装置PEM-6M(ユニオン光学株式会社製)を用いて露光量200mJ/cm(波長365nm換算)で全線露光を行った後に、熱風オーブンで230℃60分間熱硬化を行い、厚み3μmの1層目の保護膜を形成した。1層目の保護膜の上に、1層目の導電パターンと同様の手順で、1層目の導電パターンと互いに直交するように2層目の導電パターンを形成した。この上にオーバーコート溶液(C-1)を、導電パターンの格子状部分のみを被せるように80mm×80mmの範囲に塗布し、熱風オーブンで90℃8分乾燥させた。露光装置PEM-6M(ユニオン光学株式会社製)を用いて露光量200mJ/cm(波長365nm換算)で全線露光を行った後に、熱風オーブンで210℃60分間熱硬化を行い、厚み2μmの2層目の保護膜を形成することで、図4に示す構成のタッチセンサーを形成した。その後、タッチセンサーの上に合計厚み50μmのインテリマーテープCS2350NA4(ニッタ株式会社製)を150mm角のサイズで貼り合わせた後、樹脂膜及びインテリマーテープをガラス基板から剥離した。その後、貼り合わせ装置SE650n(クライムプロダクツ製)を用いて、この剥離物の樹脂膜側(ガラス基板との剥離面側)に厚み50μmのPETフィルムを貼り合わせた。さらに、インテリマーテープを剥離することで、タッチセンサーに50μmのPETフィルムを貼り合わせた積層体を得た。
(Example 13)
A polyamic acid solution (A-1) was applied to the entire surface of a 0.7 mm thick, 150 mm square alkali-free glass substrate AN100 (manufactured by Asahi Glass Co., Ltd.), and dried in a hot air oven at 90 ° C. for 15 minutes. Then, heat curing was performed in a hot air oven at 260 ° C. for 60 minutes to form a polyimide film with a thickness of 7 μm. A conductive paste (D-1) was applied to the entire surface of the polyimide film using a screen printer LS-150 (manufactured by Newlong Precision Industry Co., Ltd.), and dried in a drying oven at 100 ° C. for 10 minutes to obtain a coating film with a thickness of 1.0 μm. As shown in FIG. 3, a photomask having 20 patterns at 4 mm intervals, each pattern having a lattice-shaped light-transmitting portion consisting of a rhombic continuum with a width of 3 μm and a diagonal length of 0.5 mm and a light-transmitting portion of 1.5 mm square at both ends, was placed in the center of the substrate, and a full-line exposure was performed at an exposure dose of 200 mJ/cm 2 (converted to a wavelength of 365 nm) using an exposure device PEM-6M (manufactured by Union Optical Co., Ltd.), and then the substrate was immersed in a 0.1 mass% TMAH solution for 30 seconds to perform development, and a rinse treatment was performed with ultrapure water to obtain a precursor of a conductive pattern. Then, the substrate was thermally cured in a hot air oven at 230° C. for 60 minutes to form a first layer conductive pattern with a line width of 4.0 μm. An overcoat solution (C-1) was applied thereon to an area of 80 mm×85 mm so as to cover only the lattice-shaped portion of the conductive pattern, and the conductive pattern was dried in a hot air oven at 90° C. for 8 minutes. After performing full line exposure at an exposure dose of 200 mJ/cm 2 (wavelength 365 nm equivalent) using an exposure device PEM-6M (manufactured by Union Optical Co., Ltd.), thermal curing was performed in a hot air oven at 230 ° C. for 60 minutes to form a first layer protective film with a thickness of 3 μm. A second layer conductive pattern was formed on the first layer protective film in the same procedure as the first layer conductive pattern so as to be mutually perpendicular to the first layer conductive pattern. An overcoat solution (C-1) was applied thereon to an area of 80 mm x 80 mm so as to cover only the lattice-shaped portion of the conductive pattern, and dried at 90 ° C. for 8 minutes in a hot air oven. After performing full line exposure at an exposure dose of 200 mJ/cm 2 (wavelength 365 nm equivalent) using an exposure device PEM-6M (manufactured by Union Optical Co., Ltd.), thermal curing was performed in a hot air oven at 210 ° C. for 60 minutes to form a second layer protective film with a thickness of 2 μm, thereby forming a touch sensor having the configuration shown in FIG. 4. Then, Intellimer tape CS2350NA4 (manufactured by Nitta Corporation) with a total thickness of 50 μm was attached to the touch sensor in a size of 150 mm square, and then the resin film and Intellimer tape were peeled off from the glass substrate. Then, using a bonding device SE650n (manufactured by Climb Products), a PET film with a thickness of 50 μm was attached to the resin film side (the side peeled off from the glass substrate) of this peeled off product. Furthermore, by peeling off the Intellimer tape, a laminate in which a 50 μm PET film was attached to the touch sensor was obtained.

実施例13の評価結果を表4及び表5に示す。The evaluation results of Example 13 are shown in Tables 4 and 5.

Figure 0007517341000001
Figure 0007517341000001

Figure 0007517341000002
Figure 0007517341000002

Figure 0007517341000003
Figure 0007517341000003

Figure 0007517341000004
Figure 0007517341000004

Figure 0007517341000005
Figure 0007517341000005

11 支持材A
12 樹脂膜
13 支持材B
14 基材A
21 ネジ
22 ガイド
23 クランプ
24 支持材B
31 フォトマスクの透光部
41 ポリイミド膜
42 1層目の導電パターン
43 1層目の保護膜
44 2層目の導電パターン
45 2層目の保護膜
11 Support material A
12 Resin film 13 Support material B
14 Substrate A
21 Screw 22 Guide 23 Clamp 24 Support B
31: Light transmitting portion of photomask 41: Polyimide film 42: First layer conductive pattern 43: First layer protective film 44: Second layer conductive pattern 45: Second layer protective film

Claims (4)

樹脂膜と該樹脂膜との積層を目的とされた基材(基材A)との積層体を得る積層体の製造方法であって、
樹脂膜を、支持材(支持材A)上に形成する工程(工程A)と、
前記樹脂膜の前記支持材Aが設けられた側とは反対側の面に、他の支持材(支持材B)を貼り合わせて積層体を得る工程(工程B)と、
前記工程Bで得られた積層体について、前記支持材Aと前記樹脂膜との界面で剥離して、樹脂膜と支持材Bの積層体を得る工程(工程C)と、
前記工程Cで得られた積層体の前記支持材Bが設けられた側とは反対側の面に基材Aを貼り合わせて積層体を得る工程(工程D)と、
前記工程Dで得られた積層体について、前記支持材Bと前記樹脂膜との界面で剥離して、樹脂膜と基材Aとの積層体を得る工程(工程E)とを含み、
前記樹脂膜の引っ張り弾性率をEa、前記支持材Bの引っ張り弾性率をEbとしたときのEb/(Ea+Eb)が0.04以下である、積層体の製造方法。
A method for producing a laminate for obtaining a laminate of a resin film and a substrate (substrate A) on which the resin film is to be laminated, comprising the steps of:
A step (step A) of forming a resin film on a support material (support material A);
A step (step B) of laminating another supporting material (supporting material B) to the surface of the resin film opposite to the surface on which the supporting material A is provided to obtain a laminate;
A step (step C) of peeling the laminate obtained in the step B at the interface between the support material A and the resin film to obtain a laminate of the resin film and the support material B;
A step (step D) of obtaining a laminate by bonding a substrate A to the surface of the laminate obtained in the step C opposite to the surface on which the support material B is provided;
and a step (step E) of peeling the laminate obtained in the step D at an interface between the support material B and the resin film to obtain a laminate of the resin film and the substrate A,
A method for producing a laminate, wherein Eb/(Ea+Eb) is 0.04 or less, where Ea is the tensile modulus of elasticity of the resin film and Eb is the tensile modulus of elasticity of the support material B.
前記樹脂膜が透明ポリイミドからなる層を1層以上有する2層以上の積層体であり、前記樹脂膜に線幅が1μm~9μmの不透明導電パターンを有する、請求項1に記載の積層体の製造方法。 2. The method for producing a laminate according to claim 1, wherein the resin film is a laminate of two or more layers having one or more layers made of transparent polyimide, and the resin film has an opaque conductive pattern having a line width of 1 μm to 9 μm. 前記不透明導電パターンが金属と樹脂の混合物によって構成されており、かつ、前記不透明導電パターン中に占める樹脂の割合が30~80体積%である、請求項に記載の積層体の製造方法。 3. The method for producing a laminate according to claim 2 , wherein the opaque conductive pattern is composed of a mixture of metal and resin, and the proportion of resin in the opaque conductive pattern is 30 to 80 volume %. 請求項または請求項記載の積層体の製造法によって得られた積層体を部材として用いたタッチセンー用の部材の製造方法 A method for producing a member for a touch sensor , comprising using the laminate obtained by the method for producing a laminate according to claim 2 or 3 as a member.
JP2021539109A 2020-07-31 2021-07-01 Manufacturing method of laminate Active JP7517341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024072077A JP2024102166A (en) 2020-07-31 2024-04-26 Production method of laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020129967 2020-07-31
JP2020129967 2020-07-31
PCT/JP2021/024926 WO2022024655A1 (en) 2020-07-31 2021-07-01 Method for manufacturing laminate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024072077A Division JP2024102166A (en) 2020-07-31 2024-04-26 Production method of laminate

Publications (2)

Publication Number Publication Date
JPWO2022024655A1 JPWO2022024655A1 (en) 2022-02-03
JP7517341B2 true JP7517341B2 (en) 2024-07-17

Family

ID=80037328

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021539109A Active JP7517341B2 (en) 2020-07-31 2021-07-01 Manufacturing method of laminate
JP2024072077A Pending JP2024102166A (en) 2020-07-31 2024-04-26 Production method of laminate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024072077A Pending JP2024102166A (en) 2020-07-31 2024-04-26 Production method of laminate

Country Status (5)

Country Link
JP (2) JP7517341B2 (en)
KR (1) KR102737275B1 (en)
CN (1) CN115803122B (en)
TW (1) TWI864316B (en)
WO (1) WO2022024655A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113356A (en) 2001-10-01 2003-04-18 Lintec Corp Adhesive tape for bonding paper
JP2003292916A (en) 2002-04-08 2003-10-15 Nitto Denko Corp Method for processing adherend using adhesive sheet
JP2004047975A (en) 2002-05-17 2004-02-12 Semiconductor Energy Lab Co Ltd Method of transferring laminate and method of manufacturing semiconductor device
JP2009220496A (en) 2008-03-18 2009-10-01 Lintec Corp Strippable sheet, polarizing plate with strippable sheet and double-coated adhesive sheet without substrate
JP2012051186A (en) 2010-08-31 2012-03-15 Nippon Electric Glass Co Ltd Glass-resin laminate, glass roll wound with the laminate and method of manufacturing glass roll
JP2012177084A (en) 2011-01-31 2012-09-13 Dainippon Printing Co Ltd Heat-resistant temporary adhesive composition and heat-resistant temporary adhesive tape
JP2013063606A (en) 2011-09-20 2013-04-11 Fujimori Kogyo Co Ltd Adhesive sheet laminated body
JP2013203799A (en) 2012-03-27 2013-10-07 Nitto Denko Corp Heat-peelable adhesive sheet
JP2016069474A (en) 2014-09-29 2016-05-09 リンテック株式会社 Temporary fixing method and adhesive sheet
JP2019056101A (en) 2017-06-13 2019-04-11 マクセルホールディングス株式会社 Double faced adhesive tape, and stacking body of thin film component and supporting component
WO2019187249A1 (en) 2018-03-30 2019-10-03 リンテック株式会社 Multilayer body for preventing warp of cured sealed body and method for producing cured sealed body
JP2020034623A (en) 2018-08-27 2020-03-05 日東電工株式会社 Laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201656B (en) * 2010-11-10 2015-05-27 住友化学株式会社 Methods for producing polarizing laminate film and polarizing plate
JP6580808B2 (en) 2012-06-19 2019-09-25 日鉄ケミカル&マテリアル株式会社 Display device and manufacturing method thereof
JP6039297B2 (en) 2012-08-07 2016-12-07 三井化学株式会社 Polyimide film and method for producing the same
WO2015186549A1 (en) * 2014-06-06 2015-12-10 富士フイルム株式会社 Laminate, transfer film, method for producing laminate, conductive film laminate, capacitive input device and image display device
JP2018116859A (en) 2017-01-19 2018-07-26 株式会社ジャパンディスプレイ Display device manufacturing method and display device
JP2019062088A (en) * 2017-09-27 2019-04-18 パナソニックIpマネジメント株式会社 Solar cell module
JP2020093534A (en) * 2018-12-03 2020-06-18 住友化学株式会社 Laminated body and manufacturing method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113356A (en) 2001-10-01 2003-04-18 Lintec Corp Adhesive tape for bonding paper
JP2003292916A (en) 2002-04-08 2003-10-15 Nitto Denko Corp Method for processing adherend using adhesive sheet
JP2004047975A (en) 2002-05-17 2004-02-12 Semiconductor Energy Lab Co Ltd Method of transferring laminate and method of manufacturing semiconductor device
JP2009220496A (en) 2008-03-18 2009-10-01 Lintec Corp Strippable sheet, polarizing plate with strippable sheet and double-coated adhesive sheet without substrate
JP2012051186A (en) 2010-08-31 2012-03-15 Nippon Electric Glass Co Ltd Glass-resin laminate, glass roll wound with the laminate and method of manufacturing glass roll
JP2012177084A (en) 2011-01-31 2012-09-13 Dainippon Printing Co Ltd Heat-resistant temporary adhesive composition and heat-resistant temporary adhesive tape
JP2013063606A (en) 2011-09-20 2013-04-11 Fujimori Kogyo Co Ltd Adhesive sheet laminated body
JP2013203799A (en) 2012-03-27 2013-10-07 Nitto Denko Corp Heat-peelable adhesive sheet
JP2016069474A (en) 2014-09-29 2016-05-09 リンテック株式会社 Temporary fixing method and adhesive sheet
JP2019056101A (en) 2017-06-13 2019-04-11 マクセルホールディングス株式会社 Double faced adhesive tape, and stacking body of thin film component and supporting component
WO2019187249A1 (en) 2018-03-30 2019-10-03 リンテック株式会社 Multilayer body for preventing warp of cured sealed body and method for producing cured sealed body
JP2020034623A (en) 2018-08-27 2020-03-05 日東電工株式会社 Laminate

Also Published As

Publication number Publication date
KR20230042210A (en) 2023-03-28
WO2022024655A1 (en) 2022-02-03
TW202214446A (en) 2022-04-16
CN115803122B (en) 2023-12-01
CN115803122A (en) 2023-03-14
KR102737275B1 (en) 2024-12-03
JP2024102166A (en) 2024-07-30
TWI864316B (en) 2024-12-01
JPWO2022024655A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
CN107000409B (en) Transparent conductivity film laminated body and application thereof
TWI690420B (en) Transparent conductive film laminate, touch panel using the same, and method for manufacturing transparent conductive film
TWI726960B (en) Film touch sensor and method for fabricating the same
CN108475143B (en) Thin film touch sensor and manufacturing method thereof
JP5857013B2 (en) SUBSTRATE WITH DECORATION MATERIAL AND ITS MANUFACTURING METHOD, TOUCH PANEL AND INFORMATION DISPLAY DEVICE
JP6121204B2 (en) Touch panel laminate and method for manufacturing touch panel laminate
CN104597531A (en) Self-supporting film, self-supporting structure, and method for manufacturing self-supporting film
CN108351722B (en) Thin film touch sensor
JPWO2014175312A1 (en) TRANSFER MATERIAL, SUBSTRATE WITH TRANSFER LAYER AND TOUCH PANEL, METHOD FOR PRODUCING THEM, AND INFORMATION DISPLAY DEVICE
JPWO2018230495A1 (en) Laminated body, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
CN108139823B (en) Thin film touch sensor and manufacturing method thereof
TWI752002B (en) Film touch sensor and method for fabricating the same
JP7139715B2 (en) Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
CN109795190A (en) Optical component and production method of product with touch sensor, optical component
JP7517341B2 (en) Manufacturing method of laminate
CN113348433A (en) Membrane touch sensor and method of manufacturing the same
WO2021261314A1 (en) Electronic display device and method for manufacturing same
JP2011020333A (en) Transfer film and adhesive film with transparent conducting film
KR20160071091A (en) Film Touch Sensor and Method for Fabricating the Same
WO2021246450A1 (en) Method for producing laminate and touch panel sensor
TWI496693B (en) Layered flexible device and the method of fabricating a display apparatus using the same
TWI797437B (en) Substrate with conductive layer and touch panel
JP5750979B2 (en) Elongated body with pattern structure layer and method for bonding pattern structure layer
KR101912583B1 (en) Film touch sensor, touch panel and image display device comprising the same
KR20160112173A (en) Resin composition for transparent electrode substrate, transparent electrode substrate formed from the same and film touch sensor comprising the transparent electrode substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240617

R150 Certificate of patent or registration of utility model

Ref document number: 7517341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150