[go: up one dir, main page]

JP7503398B2 - Vacuum deposition equipment parts - Google Patents

Vacuum deposition equipment parts Download PDF

Info

Publication number
JP7503398B2
JP7503398B2 JP2020036472A JP2020036472A JP7503398B2 JP 7503398 B2 JP7503398 B2 JP 7503398B2 JP 2020036472 A JP2020036472 A JP 2020036472A JP 2020036472 A JP2020036472 A JP 2020036472A JP 7503398 B2 JP7503398 B2 JP 7503398B2
Authority
JP
Japan
Prior art keywords
film
organic
molecular orientation
vacuum
organic molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020036472A
Other languages
Japanese (ja)
Other versions
JP2021138992A (en
Inventor
晃平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2020036472A priority Critical patent/JP7503398B2/en
Publication of JP2021138992A publication Critical patent/JP2021138992A/en
Application granted granted Critical
Publication of JP7503398B2 publication Critical patent/JP7503398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、真空雰囲気の真空チャンバ内で有機材料を気化または昇華させ、この気化または昇華した有機分子を成膜対象物表面に付着、堆積させて有機膜を成膜する際に、真空チャンバ内に存してその表面に有機分子が付着、堆積して有機膜が成膜される真空成膜装置用の部品に関する。 The present invention relates to a part for a vacuum film-forming device that exists in a vacuum chamber and that forms an organic film by adhering and depositing organic molecules on a surface of an object to be film-formed, when an organic material is vaporized or sublimated in a vacuum chamber in a vacuum atmosphere and the vaporized or sublimated organic molecules are attached and deposited on the surface of the object to be film-formed.

従来、所定の輪郭を持つガラス基板やシート状の樹脂製基板といった成膜対象物(以下、「基板」という)に対し真空蒸着法により有機膜を成膜するための真空成膜装置は例えば特許文献1で知られている。このものは、真空チャンバを備え、真空チャンバの底部には、成膜しようとする有機膜に応じて適宜選択される有機材料を収容する坩堝が配置されている。そして、真空チャンバ内を真空雰囲気とし、坩堝内の有機材料を加熱して気化または昇華させ、坩堝の放出開口から所定の余弦則に従い飛散される有機分子を基板表面に付着、堆積させ、所定の膜厚の有機膜が成膜される。このとき、例えば真空チャンバ内壁への着膜を防止する防着板や、真空チャンバ内に配置されて基板に対する有機材料の飛散範囲を規制する規制板(遮蔽手段)といった各種の部品表面にも、気化または昇華した有機分子が付着、堆積して有機膜が成膜される。防着板や規制板といった部品は、一般に、ステンレスやアルミニウムといった金属材料で製作されている。 Conventionally, a vacuum film-forming apparatus for forming an organic film by a vacuum deposition method on a film-forming target object (hereinafter referred to as a "substrate") such as a glass substrate or a sheet-shaped resin substrate having a predetermined contour is known, for example from Patent Document 1. This apparatus is equipped with a vacuum chamber, and a crucible is disposed at the bottom of the vacuum chamber, which contains an organic material appropriately selected according to the organic film to be formed. The vacuum chamber is then made into a vacuum atmosphere, and the organic material in the crucible is heated and vaporized or sublimated, and the organic molecules scattered from the discharge opening of the crucible according to a predetermined cosine law are attached and deposited on the substrate surface, forming an organic film with a predetermined thickness. At this time, the vaporized or sublimated organic molecules are also attached and deposited on the surfaces of various components, such as an adhesion prevention plate that prevents deposition on the inner wall of the vacuum chamber and a regulation plate (shielding means) that is disposed in the vacuum chamber and regulates the range of scattering of the organic material onto the substrate, thereby forming an organic film. Components such as the adhesion prevention plate and the regulation plate are generally made of metal materials such as stainless steel or aluminum.

ここで、上記のようにして有機膜を成膜する際、有機材料(即ち、有機材料の坩堝からの飛散分布)によっては、部品表面の特定箇所に有機材料が付着、堆積して有機膜が局所的に成長(より詳しくは、部品表面に直交する方向に凸状にのびるように成長)する場合があることが判明した。特に、坩堝の放出開口近傍に位置する部品表面にて有機膜が局所的に成長し、この成長した有機膜により坩堝の放出開口から所定の余弦則に従い飛散される有機分子の飛散経路が遮られると、成膜レートや膜厚分布の低下を招くという問題が生じる。このような場合、上記部品を頻繁に交換すればよいが、これでは、真空成膜装置を長時間に亘って連続稼働させることができない。 Here, it has been found that when forming an organic film as described above, depending on the organic material (i.e., the distribution of the organic material scattered from the crucible), the organic material may adhere and accumulate at specific locations on the component surface, causing the organic film to grow locally (more specifically, to grow in a convex shape in a direction perpendicular to the component surface). In particular, if an organic film grows locally on the component surface located near the discharge opening of the crucible, and this grown organic film blocks the scattering path of organic molecules that are scattered from the discharge opening of the crucible according to a predetermined cosine law, problems arise in that the film formation rate and film thickness distribution are reduced. In such cases, the above-mentioned parts can be replaced frequently, but this makes it impossible to operate the vacuum film formation device continuously for long periods of time.

そこで、本願発明者は、鋭意研究を重ね、次のことを知見するのに至った。即ち、上記有機膜の成膜に利用される有機材料の中には、気化または昇華した有機分子が部品表面に付着したとき、有機分子の分子配向方位が部品表面と直交する方向(法線方向)となるものが多く、このような有機分子の場合には、比較的短時間で有機膜が法線方向に凸状にのびるように成長し易いことを知見するのに至った。 The inventors of the present application therefore conducted extensive research and discovered the following: In other words, among the organic materials used to form the organic film, many of the organic molecules that are vaporized or sublimated and attached to the surface of a component have a molecular orientation direction that is perpendicular to the surface of the component (normal direction), and they discovered that in the case of such organic molecules, the organic film tends to grow in a relatively short time so as to extend convexly in the normal direction.

特開平7-98862号公報Japanese Patent Application Laid-Open No. 7-98862

本発明は、以上の点に鑑み、長時間に亘って連続稼働が可能な真空成膜装置用の部品を提供することをその課題とする。 In view of the above, the present invention aims to provide components for vacuum deposition equipment that can operate continuously for long periods of time.

上記課題を解決するために、真空雰囲気の真空チャンバ内で蒸着源から有機材料を気化または昇華させ、この気化または昇華した有機分子を成膜対象物表面に付着、堆積させて有機膜を成膜する際に、真空チャンバ内で蒸着源の周囲に配置されて、蒸着源より放出された前記有機分子がその表面に直接付着、堆積して有機膜が成長する本発明の真空成膜装置用の部品は、母材と、有機分子が付着する母材表面に所定の膜厚で形成されるAgまたはAuからなる分子配向制御膜とを有し、分子配向制御膜表面に広がるd電子雲またはπ電子雲と分子配向制御膜に付着する有機分子のπ電子雲との相互作用により、有機分子の分子配向方位を接線方向に向けて有機膜を接線方向に成長させるように構成したことを特徴とする

In order to solve the above problems, when an organic material is vaporized or sublimated from a vapor deposition source in a vacuum chamber in a vacuum atmosphere, and the vaporized or sublimated organic molecules are attached and deposited on the surface of an object to be film-formed to form an organic film, the part for a vacuum film-forming apparatus of the present invention is arranged around the vapor deposition source in the vacuum chamber, and the organic molecules released from the vapor deposition source are directly attached to and deposited on the surface to grow an organic film. The part has a base material and a molecular orientation control film made of Ag or Au formed with a predetermined thickness on the surface of the base material to which the organic molecules are attached , and is configured so that the molecular orientation direction of the organic molecules is oriented in the tangential direction due to the interaction between the d-electron cloud or π-electron cloud spreading on the surface of the molecular orientation control film and the π-electron cloud of the organic molecules attached to the molecular orientation control film, causing the organic film to grow in the tangential direction .

本発明によれば、有機膜が成膜される部品表面に分子配向制御膜が形成されていないもの(従来品)と比較して、部品表面に成膜される有機膜の凸状にのびるような成長が抑制され、倍以上の時間、真空成膜装置を連続稼働できることが確認された。これは、本来、気化または昇華した有機分子が部品表面に付着したとき、有機分子の分子配向方位が法線方向となるものであっても、母材表面(即ち、有機膜が成膜される面)にAg、Au、グラファイトまたはグラフェンといった分子配向制御膜が存在すると、分子配向制御膜表面に広がるd電子雲またはπ電子雲と、その表面に付着する有機分子のπ電子雲との相互作用により、有機分子の分子配向方位が接線方向となり、これにより、有機膜が接線方向へと成長し易くなって、法線方向への有機膜の成長が抑制されることに起因すると考えられる。また、分子配向制御膜表面に成膜された有機膜は、従来品と比較して高密度となっているため、部品表面の有機膜からのパーティクルの発生もより抑制でき、連続稼働をより一層長くすることが可能となる。 According to the present invention, it has been confirmed that the convex growth of the organic film formed on the surface of the component is suppressed, and the vacuum film forming apparatus can be operated continuously for more than twice as long as the conventional product, when the organic film is formed on the surface of the component without the molecular orientation control film. This is because, even if the molecular orientation direction of the organic molecules is normal when the vaporized or sublimated organic molecules adhere to the surface of the component, if a molecular orientation control film such as Ag, Au, graphite or graphene is present on the surface of the base material (i.e., the surface on which the organic film is formed), the molecular orientation direction of the organic molecules becomes tangential due to the interaction between the d-electron cloud or π-electron cloud spreading on the surface of the molecular orientation control film and the π-electron cloud of the organic molecules attached to the surface, which makes it easier for the organic film to grow in the tangential direction and suppresses the growth of the organic film in the normal direction. In addition, since the organic film formed on the surface of the molecular orientation control film is denser than the conventional product, the generation of particles from the organic film on the surface of the component can be further suppressed, and continuous operation can be extended even longer.

(a)は、本実施形態の真空蒸着装置の構成を説明する、一部を断面視とした部分斜視図、(b)は、真空蒸着装置を正面側からみた部分断面図。1A is a partial perspective view, partly in cross section, illustrating the configuration of a vacuum deposition apparatus of the present embodiment, and FIG. 1B is a partial cross-sectional view of the vacuum deposition apparatus as viewed from the front side. 図1(b)の一点鎖線で囲う符号IIの部分を拡大して示す断面及び、部品表面を更に拡大した拡大模式図であり、(a)は、母材表面に分子が法線方向に垂直配向した状態、(b)は、分子配向制御膜表面に分子が接線方向に垂直配向した状態、(c)は、分子配向制御膜表面に分子が接線方向に水平配向した状態を模式的に示す。1(b) is an enlarged cross-sectional view of the portion indicated by the symbol II surrounded by a dashed line in FIG. 1(b), and a further enlarged schematic diagram of the component surface, in which (a) shows a state in which molecules are vertically oriented in the normal direction on the surface of the base material, (b) shows a state in which molecules are vertically oriented in the tangential direction on the surface of the molecular orientation control film, and (c) shows a state in which molecules are horizontally oriented in the tangential direction on the surface of the molecular orientation control film. 本発明の効果を示す実験で成膜された有機膜のX線回折スペクトル。1 is an X-ray diffraction spectrum of an organic film formed in an experiment showing the effect of the present invention.

以下、図面を参照して、真空成膜装置を真空蒸着装置Dmとし、また、真空チャンバ内に存してその表面にも有機分子が付着、堆積して有機膜が成膜される本発明の真空成膜装置用の部品を真空チャンバ内に配置される防着板MPとし、その実施形態を説明する。以下においては、「上」、「下」といった方向を示す用語は図1を基準として説明する。 The following describes an embodiment of the vacuum deposition apparatus, which is a vacuum deposition apparatus Dm, and a component for the vacuum deposition apparatus of the present invention, which exists in a vacuum chamber and on whose surface organic molecules adhere and deposit to form an organic film, is an adhesion prevention plate MP placed in the vacuum chamber, with reference to the drawings. In the following, terms indicating directions such as "upper" and "lower" are explained based on FIG. 1.

図1(a)及び(b)を参照して、Dmは、本実施形態の防着板MPを備える真空蒸着装置である。真空蒸着装置Dmは、ガラス基板などの成膜対象物(以下「基板Sw」という)表面に対して真空蒸着法により有機膜を成膜するものであり、真空チャンバ1を備える。真空チャンバ1には、特に図示して説明しないが、排気管を介して真空ポンプが接続され、真空チャンバ1内を所定圧力(真空度)に真空排気して保持できるようになっている。また、真空チャンバ1の上部には、基板搬送装置2が設けられている。基板搬送装置2は、蒸着面としての下面を開放した状態で基板Swを保持するキャリア21を有し、図外の駆動装置によってキャリア21、ひいては基板Swが真空チャンバ1内の一方向に所定速度で移動できるようになっている。基板搬送装置2としては、公知のものを利用できるため、これ以上の説明は省略する。また、以下においては、後述の蒸着源5に対する基板Swの相対移動方向をX軸方向、X軸方向に直交する基板Swの幅方向をY軸方向とする。 1(a) and (b), Dm is a vacuum deposition apparatus equipped with the adhesion prevention plate MP of this embodiment. The vacuum deposition apparatus Dm forms an organic film on the surface of a film-forming object (hereinafter referred to as "substrate Sw") such as a glass substrate by a vacuum deposition method, and is equipped with a vacuum chamber 1. Although not particularly shown or described, a vacuum pump is connected to the vacuum chamber 1 via an exhaust pipe, so that the inside of the vacuum chamber 1 can be evacuated to a predetermined pressure (vacuum level) and maintained. In addition, a substrate transport device 2 is provided on the upper part of the vacuum chamber 1. The substrate transport device 2 has a carrier 21 that holds the substrate Sw with the lower surface as the deposition surface open, and the carrier 21 and thus the substrate Sw can be moved at a predetermined speed in one direction in the vacuum chamber 1 by a driving device not shown. As the substrate transport device 2, a known one can be used, so further description will be omitted. In the following, the relative movement direction of the substrate Sw with respect to the deposition source 5 described later is the X-axis direction, and the width direction of the substrate Sw perpendicular to the X-axis direction is the Y-axis direction.

基板搬送装置2によって搬送される基板Swと後述の蒸着源5との間には、板状のマスクプレート3が設けられている。本実施形態では、マスクプレート3は、基板Swと一体に取り付けられて基板Swと共に基板搬送装置2によって搬送されるようになっている。なお、マスクプレート3は、真空チャンバ1に予め固定配置しておくこともできる。マスクプレート3には、板厚方向に貫通する複数の開口31が形成され、これら開口31がない位置にて蒸着材料の基板Swに対する付着範囲が制限されることで、所定のパターンで基板Swに蒸着されるようになっている。マスクプレート3としては、インバー、アルミ、アルミナやステンレス等の金属製のものの他、ポリイミド等の樹脂製のものが用いられる。 A plate-shaped mask plate 3 is provided between the substrate Sw transported by the substrate transport device 2 and the deposition source 5 described below. In this embodiment, the mask plate 3 is attached integrally to the substrate Sw and transported by the substrate transport device 2 together with the substrate Sw. The mask plate 3 can also be fixedly disposed in the vacuum chamber 1 in advance. The mask plate 3 has a plurality of openings 31 formed therethrough in the plate thickness direction, and the deposition material is deposited on the substrate Sw in a predetermined pattern by limiting the range of adhesion to the substrate Sw at positions where these openings 31 are not present. The mask plate 3 can be made of metals such as invar, aluminum, alumina, and stainless steel, or resins such as polyimide.

また、真空チャンバ1内には、真空チャンバ1内壁への着膜を防止する板状の防着版MPが配置され、本実施形態の真空蒸着装置Dm用の部品を構成する。防着版MPとしては、ステンレスやアルミニウムなどの金属製のものが用いられ、後述の蒸着源5のY軸方向両端を覆うように真空チャンバ1の底面に配置されている。そして、真空チャンバ1の底面には、基板Swに対向させて蒸着源5が設けられている。 In addition, a plate-shaped anti-adhesion plate MP is arranged inside the vacuum chamber 1 to prevent deposition of a film on the inner wall of the vacuum chamber 1, and constitutes a component of the vacuum deposition device Dm of this embodiment. The anti-adhesion plate MP is made of metal such as stainless steel or aluminum, and is arranged on the bottom surface of the vacuum chamber 1 so as to cover both ends in the Y-axis direction of the deposition source 5 described below. The deposition source 5 is provided on the bottom surface of the vacuum chamber 1, facing the substrate Sw.

蒸着源5は、蒸着物質としての有機材料6を収容する収容箱51を有する。有機材料6としては、基板Swに成膜しようとする有機膜に応じて適宜選択され、顆粒状またはタブレット状のものが利用される。収容箱51内には、金属製の坩堝52が設けられ、坩堝52内に有機材料6が充填されるようになっている。坩堝52と収容箱51の底壁との間には、坩堝52の外壁面をその全体に亘って覆うようにシースヒータ等の加熱手段53が設けられている。収容箱51の上面(基板Swとの対向面)51aには、所定高さの筒体で構成される放出開口54がY軸方向に所定の間隔で複数本(本実施形態では、6本)列設され、各放出開口54から、気化または昇華した有機材料(以下、これを「有機分子61」という)が所定の余弦則に従い放出されるようになっている。 The deposition source 5 has a storage box 51 that stores an organic material 6 as a deposition material. The organic material 6 is appropriately selected according to the organic film to be formed on the substrate Sw, and is in the form of granules or tablets. A metal crucible 52 is provided in the storage box 51, and the organic material 6 is filled in the crucible 52. A heating means 53 such as a sheath heater is provided between the crucible 52 and the bottom wall of the storage box 51 so as to cover the entire outer wall surface of the crucible 52. A plurality of (six in this embodiment) emission openings 54 made of a cylinder of a predetermined height are arranged in a row at predetermined intervals in the Y-axis direction on the upper surface 51a of the storage box 51 (the surface facing the substrate Sw), and the vaporized or sublimated organic material (hereinafter referred to as "organic molecules 61") is emitted from each emission opening 54 according to a predetermined cosine law.

上記真空蒸着装置Dmにより基板Swの下面に所定の有機膜を蒸着するのに際しては、真空チャンバ1内の大気雰囲気中にて坩堝52に固体の有機材料6をその底面から所定高さ位置まで充填した後、図外の真空ポンプにより所定圧力まで真空排気する。次に、加熱手段53を作動させて有機材料6を加熱すると、有機材料6が気化または昇華して収容箱51内に気化雰囲気または昇華雰囲気が形成され、真空チャンバ1内との圧力差で各放出開口54から有機分子61が所定の余弦則に従い放出される。これに併せて、基板搬送装置2によって基板SwがX軸方向に搬送される。これにより、収容箱51に対してX軸方向に相対移動する基板Swの下面に、各放出開口54から所定の余弦則に従い放出された有機分子61が付着、堆積して所定の有機膜が蒸着される。 When a predetermined organic film is deposited on the underside of the substrate Sw by the vacuum deposition device Dm, the crucible 52 is filled with solid organic material 6 from its bottom surface to a predetermined height position in the atmospheric atmosphere in the vacuum chamber 1, and then the crucible 52 is evacuated to a predetermined pressure by a vacuum pump not shown. Next, when the heating means 53 is operated to heat the organic material 6, the organic material 6 is vaporized or sublimated to form a vaporization atmosphere or sublimation atmosphere in the storage box 51, and organic molecules 61 are released from each release opening 54 according to a predetermined cosine law due to the pressure difference with the inside of the vacuum chamber 1. At the same time, the substrate Sw is transported in the X-axis direction by the substrate transport device 2. As a result, the organic molecules 61 released from each release opening 54 according to the predetermined cosine law adhere to and accumulate on the underside of the substrate Sw that moves relative to the storage box 51 in the X-axis direction, and the predetermined organic film is deposited.

上記のようにして有機膜を成膜する際、放出開口54からみて所定の余弦則による直接の有機分子61の付着(入射)を受ける防着板MP表面にも、気化または昇華した有機分子61が付着、堆積して、有機膜62が成膜される。ここで、図2(a)に示すように、防着版MPを構成するステンレスやアルミニウムなどの母材(金属)Bm表面に付着した有機分子61の分子配向方位が、防着板MP表面と直交する方向(法線方向)であると、有機膜62は法線方向に凸状にのびるように成長していく。そして、成長した有機膜62により収容箱51の放出開口54から飛散される有機分子61の飛散経路が遮られると、成膜レートや膜厚分布の低下を招く。 When the organic film is formed as described above, the vaporized or sublimated organic molecules 61 also adhere and accumulate on the surface of the adhesion prevention plate MP, which receives the direct adhesion (incidence) of the organic molecules 61 from the emission opening 54 according to a predetermined cosine law, forming an organic film 62. Here, as shown in FIG. 2(a), if the molecular orientation direction of the organic molecules 61 adhered to the surface of the base material (metal) Bm, such as stainless steel or aluminum, constituting the adhesion prevention plate MP, is perpendicular (normal direction) to the adhesion prevention plate MP surface, the organic film 62 grows so as to extend convexly in the normal direction. If the grown organic film 62 blocks the scattering path of the organic molecules 61 scattered from the emission opening 54 of the storage box 51, this leads to a decrease in the film formation rate and film thickness distribution.

本実施形態では、少なくとも放出開口54からみて所定の余弦則による直接の有機分子61の付着(入射)を受ける母材(金属)Bmとしての防着板MPの表面に、分子配向制御膜Cmを形成することとした。分子配向制御膜Cmとしては、例えば、Ag、Au、グラファイト及びグラフェンの中から選択したものが用いられる。この場合、分子配向制御膜Cmの形成方法としては、メッキ法、真空蒸着法やスパッタリング法といった物理的成膜法や、インクを用いる塗布法などを利用でき、また、分子配向制御膜Cmの膜厚は、所謂連続膜となっていれば、特に制限されるものではない。 In this embodiment, a molecular orientation control film Cm is formed on the surface of the adhesion prevention plate MP as the base material (metal) Bm that receives the direct adhesion (incidence) of the organic molecules 61 according to a predetermined cosine law at least as viewed from the emission opening 54. As the molecular orientation control film Cm, for example, a material selected from Ag, Au, graphite, and graphene is used. In this case, the molecular orientation control film Cm can be formed by a physical film formation method such as a plating method, a vacuum deposition method, or a sputtering method, or a coating method using ink, and the film thickness of the molecular orientation control film Cm is not particularly limited as long as it is a so-called continuous film.

これにより、Ag、Au、グラファイトまたはグラフェンといった分子配向制御膜Cmが存在すると、分子配向制御膜Cm表面に広がるd電子雲またはπ電子雲と、その表面に付着する有機分子61のπ電子雲との相互作用により、図2(b)または図2(b)に示すように、有機分子61の分子配向方位が接線方向となり、これにより、分子配向制御膜Cm表面に成膜される有機膜62が接線方向へと成長し易くなって、法線方向への有機膜62の成長が抑制される。その結果、有機膜62が成膜される防着板MP表面に分子配向制御膜Cmが形成されていないもの(即ち、図2(a)に示す有機分子61の分子配向方位が法線方向となるもの)と比較して、防着板MP表面に成膜される有機膜62の凸状にのびるような成長が抑制されるため、倍以上の時間、真空蒸着装置Dmを連続稼働することができる。また、分子配向制御膜Cm表面に成膜された有機膜62は、分子配向制御膜Cmが形成されていないものと比較して高密度となるため、防着板MP表面の有機膜62からのパーティクルの発生もより抑制でき、連続稼働をより一層長くすることができる。 As a result, when a molecular orientation control film Cm such as Ag, Au, graphite, or graphene is present, the molecular orientation direction of the organic molecules 61 becomes tangential as shown in FIG. 2(b) or FIG. 2(b) due to the interaction between the d-electron cloud or π-electron cloud spreading on the surface of the molecular orientation control film Cm and the π-electron cloud of the organic molecules 61 attached to the surface, and as a result, the organic film 62 formed on the surface of the molecular orientation control film Cm tends to grow in the tangential direction, and the growth of the organic film 62 in the normal direction is suppressed. As a result, compared to a case where the molecular orientation control film Cm is not formed on the surface of the adhesion prevention plate MP on which the organic film 62 is formed (i.e., a case where the molecular orientation direction of the organic molecules 61 shown in FIG. 2(a) is the normal direction), the growth of the organic film 62 formed on the surface of the adhesion prevention plate MP is suppressed in a convex shape, and the vacuum deposition device Dm can be continuously operated for more than twice as long. In addition, the organic film 62 formed on the surface of the molecular orientation control film Cm has a higher density than one without the molecular orientation control film Cm, which further reduces particle generation from the organic film 62 on the surface of the adhesion prevention plate MP, allowing for even longer continuous operation.

次に、上記真空蒸着装置Dmを用いて次の評価を行った。即ち、有機材料6としてアミン誘導体を用い、真空チャンバ1内を所定圧力(10-5Pa)まで真空排気した後、加熱手段53を稼働させて有機材料6を昇華させ、50時間、連続成膜した。このとき、放出開口54の近傍に位置し、放出開口54からみて所定の余弦則による直接の有機分子61の付着(入射)を受ける防着板MPの表面に2枚のシリコンウエハ(試料1、試料2)を貼付しておいた。そして、一方の試料2には、シリコンウエハ表面に10nmの膜厚で分子配向制御膜Cmとして金膜を真空蒸着法により予め形成しておいた。 Next, the following evaluation was performed using the vacuum deposition apparatus Dm. That is, an amine derivative was used as the organic material 6, and after evacuating the inside of the vacuum chamber 1 to a predetermined pressure (10 -5 Pa), the heating means 53 was operated to sublimate the organic material 6, and a film was continuously formed for 50 hours. At this time, two silicon wafers (sample 1, sample 2) were attached to the surface of the adhesion prevention plate MP located near the emission opening 54 and receiving direct adhesion (incidence) of the organic molecules 61 according to a predetermined cosine law as viewed from the emission opening 54. Then, for one of the samples, sample 2, a gold film was previously formed as a molecular orientation control film Cm with a thickness of 10 nm on the silicon wafer surface by vacuum deposition.

図3には、試料1,2に成膜された有機膜62をX線回折分析(XRD)により評価した結果が示されている。これによれば、分子配向制御膜Cmに対応するピーク、有機分子61の分子配向方位が接線方向である有機膜62に対応するピークが観察され、有機分子61の分子配向方位が図2(C)に示す接線方向となっていることが確認された。また、試料1,2に成膜された有機膜62の膜厚を測定したところ、試料1と比較して試料2は半分程度の膜厚であり、試料2の膜密度は試料1と比較して2倍程向上したことが確認された。 Figure 3 shows the results of evaluating the organic film 62 formed on samples 1 and 2 by X-ray diffraction analysis (XRD). According to this, a peak corresponding to the molecular orientation control film Cm and a peak corresponding to the organic film 62 in which the molecular orientation direction of the organic molecules 61 is the tangential direction were observed, and it was confirmed that the molecular orientation direction of the organic molecules 61 is the tangential direction shown in Figure 2 (C). In addition, when the thickness of the organic film 62 formed on samples 1 and 2 was measured, it was confirmed that the thickness of sample 2 was about half that of sample 1, and that the film density of sample 2 was about twice that of sample 1.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態においては、真空成膜装置として真空蒸着装置Dmを例に説明したが、これに限定されるものではなく、スパッタリング法、プラズマ重合法、蒸着重合法等の有機膜を成膜する方法により、基板Swに有機膜を成膜する際に、チャンバ内に存して有機分子が着膜する部品にも本発明を適用することができる。また、上記実施形態では、真空成膜装置Dm用の部品として防着板MPを例に説明したが、真空チャンバ1内に存して有機分子61が着膜される部品であれば、マスクプレートや規制板等にも本発明を適用することができる。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above. In the above embodiment, the vacuum deposition apparatus Dm has been described as an example of the vacuum deposition apparatus, but the present invention is not limited to this, and the present invention can also be applied to parts that exist in the chamber and on which organic molecules are deposited when an organic film is deposited on a substrate Sw by a method of depositing an organic film, such as a sputtering method, a plasma polymerization method, or a deposition polymerization method. In the above embodiment, the deposition prevention plate MP has been described as an example of a part for the vacuum deposition apparatus Dm, but the present invention can also be applied to mask plates, regulating plates, and other parts that exist in the vacuum chamber 1 and on which organic molecules 61 are deposited.

Dm…真空蒸着装置、Sw…基板(成膜対象物)、MP…防着板(部品)、Bm…母材金属、Cm…分子配向制御膜、1…真空チャンバ、6…有機材料、61…有機分子、62…有機膜。 Dm...vacuum deposition device, Sw...substrate (object to be film-formed), MP...adhesion prevention plate (part), Bm...base metal, Cm...molecular orientation control film, 1...vacuum chamber, 6...organic material, 61...organic molecule, 62...organic film.

Claims (2)

真空雰囲気の真空チャンバ内で蒸着源から有機材料を気化または昇華させ、この気化または昇華した有機分子を成膜対象物表面に付着、堆積させて有機膜を成膜する際に、真空チャンバ内で蒸着源の周囲に配置されて、蒸着源より放出された前記有機分子がその表面に直接付着、堆積して有機膜が成長する真空成膜装置用の部品であって、
母材と、有機分子が付着する母材表面に所定の膜厚で形成されるAgまたはAuからなる分子配向制御膜とを有し、分子配向制御膜表面に広がるd電子雲またはπ電子雲と分子配向制御膜に付着する有機分子のπ電子雲との相互作用により、有機分子の分子配向方位を接線方向に向けて有機膜を接線方向に成長させるように構成したことを特徴とする真空成膜装置用の部品。
A part for a vacuum film-forming apparatus that is disposed around a vapor deposition source in a vacuum chamber so that the organic molecules emitted from the vapor deposition source directly adhere to and deposit on a surface of an object to form an organic film when vaporizing or sublimating an organic material from a vapor deposition source in a vacuum chamber in a vacuum atmosphere and attaching or depositing the vaporized or sublimated organic molecules on the surface of an object to form an organic film, the part comprising:
A component for a vacuum film-forming apparatus, comprising a base material and a molecular orientation control film made of Ag or Au formed to a predetermined thickness on the surface of the base material to which organic molecules adhere, and configured so that an organic film is grown in a tangential direction by aligning the molecular orientation of the organic molecules in the tangential direction through interaction between the d-electron cloud or π-electron cloud spreading on the surface of the molecular orientation control film and the π-electron cloud of the organic molecules adhered to the molecular orientation control film.
前記分子配向制御膜は、Ag、Au、グラファイト及びグラフェンの中から選択されたものであることを特徴とする請求項1記載の真空成膜装置用の部品。 The vacuum deposition device component according to claim 1, characterized in that the molecular orientation control film is selected from the group consisting of Ag, Au, graphite, and graphene.
JP2020036472A 2020-03-04 2020-03-04 Vacuum deposition equipment parts Active JP7503398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020036472A JP7503398B2 (en) 2020-03-04 2020-03-04 Vacuum deposition equipment parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020036472A JP7503398B2 (en) 2020-03-04 2020-03-04 Vacuum deposition equipment parts

Publications (2)

Publication Number Publication Date
JP2021138992A JP2021138992A (en) 2021-09-16
JP7503398B2 true JP7503398B2 (en) 2024-06-20

Family

ID=77667974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020036472A Active JP7503398B2 (en) 2020-03-04 2020-03-04 Vacuum deposition equipment parts

Country Status (1)

Country Link
JP (1) JP7503398B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021170A (en) 2013-07-19 2015-02-02 株式会社日立ハイテクノロジーズ Vacuum vapor deposition device
JP2018521216A (en) 2016-05-10 2018-08-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Evaporation source for depositing evaporated material and method for depositing evaporated material
JP2018530664A (en) 2016-01-15 2018-10-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated An evaporation source for organic materials, an apparatus having an evaporation source for organic materials, and a method for depositing organic materials.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021170A (en) 2013-07-19 2015-02-02 株式会社日立ハイテクノロジーズ Vacuum vapor deposition device
JP2018530664A (en) 2016-01-15 2018-10-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated An evaporation source for organic materials, an apparatus having an evaporation source for organic materials, and a method for depositing organic materials.
JP2018521216A (en) 2016-05-10 2018-08-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Evaporation source for depositing evaporated material and method for depositing evaporated material

Also Published As

Publication number Publication date
JP2021138992A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
EP1803836B1 (en) Evaporation source and method of depositing thin film using the same
US6444043B1 (en) Apparatus for depositing CdS and CdTe layers on substrates by means of a CSS process
JP3030309B2 (en) Thin film manufacturing equipment
KR102493115B1 (en) Vacuum Deposition Equipment and Method for Coating Substrates
KR102671537B1 (en) Vacuum deposition facility and method for coating a substrate
KR20070043541A (en) Thin film deposition apparatus and thin film deposition method using the same
JP7503398B2 (en) Vacuum deposition equipment parts
US4648347A (en) Vacuum depositing apparatus
KR100287978B1 (en) MG evaporation method with increased evaporation rate
US20100034970A1 (en) Apparatus and method for chemical vapor deposition
KR100996338B1 (en) Apparatus and method for depositing high temperature superconductor by continuously injecting materials in a vacuum state
KR102486851B1 (en) Vacuum Deposition Equipment and Method for Coating Substrates
JP4110966B2 (en) Vapor deposition apparatus and vapor deposition method
JP2022087844A (en) Tantalum carbide composite
JP2020190013A (en) Vacuum deposition method
JP4445497B2 (en) Thin film deposition apparatus and thin film deposition method using the same
CN102782177B (en) Cathodic Sputtering Deposition of Cu(In,Ga)X2 Thin Films
US9051642B2 (en) Process for coating a substrate, plant for implementing the process and feeder for feeding such a plant with metal
JP3399570B2 (en) Continuous vacuum deposition equipment
JP2019189901A (en) Vacuum evaporation device
JP2022066943A (en) Thin-film deposition source for vacuum-film deposition equipment
JP7240963B2 (en) Vacuum deposition equipment
JP7303031B2 (en) Evaporation source for vacuum deposition equipment
JP6983096B2 (en) Thin-film deposition source for vacuum-film deposition equipment
JP2018003156A (en) Filter device and cathodic arc evaporation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240610

R150 Certificate of patent or registration of utility model

Ref document number: 7503398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150