[go: up one dir, main page]

JP2022066943A - Thin-film deposition source for vacuum-film deposition equipment - Google Patents

Thin-film deposition source for vacuum-film deposition equipment Download PDF

Info

Publication number
JP2022066943A
JP2022066943A JP2020175566A JP2020175566A JP2022066943A JP 2022066943 A JP2022066943 A JP 2022066943A JP 2020175566 A JP2020175566 A JP 2020175566A JP 2020175566 A JP2020175566 A JP 2020175566A JP 2022066943 A JP2022066943 A JP 2022066943A
Authority
JP
Japan
Prior art keywords
vapor deposition
container
substrate
vacuum
discharge nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020175566A
Other languages
Japanese (ja)
Inventor
僚也 北沢
Ryoya KITAZAWA
一也 齋藤
Kazuya Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2020175566A priority Critical patent/JP2022066943A/en
Priority to CN202110967499.3A priority patent/CN114381693A/en
Publication of JP2022066943A publication Critical patent/JP2022066943A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide a vapor deposition source for a vacuum deposition device that can prevent the temperature rise of a target substrate or a mask plate during vapor deposition.SOLUTION: A vapor deposition source DS for a vacuum deposition device is disposed in a vacuum chamber for vapor deposition of a target substrate. The vapor deposition source has a container 41 to be filled with vapor deposition material Vm, and heating means 43 for heating the vapor deposition material in the container. The container is provided with a release part 44 that allows the release of the vapor deposition material vaporized or sublimated in the container due to heating. The heating of the vapor deposition material by the heating means involves heating container portions 41a, 44a, 44b, which then radiate heat rays to the target substrate, the container portions 41a, 44a, 44b provided with low-emissivity layers Le that are lower in emissivity than the base material of the container.SELECTED DRAWING: Figure 2

Description

本発明は、真空チャンバ内に配置されて被処理基板に対して蒸着するための真空蒸着装置用の蒸着源に関し、より詳しくは、蒸着中における被処理基板やマスクプレートの温度上昇が抑制されるようにしたものに関する。 The present invention relates to a vapor deposition source for a vacuum vapor deposition apparatus that is arranged in a vacuum chamber and for vapor deposition on a substrate to be processed. More specifically, the temperature rise of the substrate to be processed or a mask plate during vapor deposition is suppressed. About what you did.

この種の蒸着源を備えた真空蒸着装置は、例えば特許文献1で知られている。このものは、真空チャンバの底部に蒸着源が配置され、蒸着源は、蒸着材料が充填される容器とこの容器内の蒸着材料を加熱する加熱手段とを備える。容器の上面には、気化または昇華した蒸着材料の放出を可能とする放出ノズル(放出部)が一方向に所定間隔で複数本列設されている。そして、真空雰囲気の真空チャンバ内で、容器内の蒸着材料を加熱して昇華または気化させ、この昇華または気化した蒸着材料を各放出ノズルから所定の余弦則に従い放出させ、蒸着源に対して相対移動する被処理基板に付着、堆積させて所定の薄膜が蒸着(成膜)される。このとき、容器上面の周囲または各放出ノズルの周囲には、通常、シースヒータなどの加熱手段が配置され、放出ノズルも加熱することで、蒸着時のノズル詰まりを可及的に防止している。また、蒸着に際しては、蒸着源と被処理基板との間にこの被処理基板に対する蒸着物質の付着範囲を制限するマスクプレート(即ち、板厚方向に貫通する開口が所定のマスクパターンで複数形成されたもの)を介在させることで、所定の成膜パターンで被処理基板に蒸着することも従来から知られている。 A vacuum vapor deposition apparatus provided with this type of vapor deposition source is known, for example, in Patent Document 1. In this, a vapor deposition source is arranged at the bottom of the vacuum chamber, and the vapor deposition source includes a container filled with the vapor deposition material and a heating means for heating the vapor deposition material in the container. On the upper surface of the container, a plurality of discharge nozzles (discharge portions) capable of discharging the vaporized or sublimated vaporized material are provided in a row at predetermined intervals in one direction. Then, in a vacuum chamber with a vacuum atmosphere, the vaporized material in the container is heated to sublimate or vaporize, and the sublimated or vaporized vaporized material is discharged from each discharge nozzle according to a predetermined chord rule, and is relative to the vapor deposition source. A predetermined thin film is deposited (deposited) by adhering to and depositing on a moving substrate to be processed. At this time, a heating means such as a sheath heater is usually arranged around the upper surface of the container or around each discharge nozzle, and the discharge nozzle is also heated to prevent nozzle clogging during vapor deposition as much as possible. Further, at the time of vapor deposition, a plurality of mask plates (that is, openings penetrating in the plate thickness direction) are formed between the vapor deposition source and the substrate to be processed in a predetermined mask pattern to limit the adhesion range of the vapor-deposited substance to the substrate to be processed. It has also been conventionally known to deposit a film on a substrate to be processed in a predetermined film formation pattern by interposing the above.

ここで、容器や放出ノズルの加熱時、熱線の放射により被処理基板やマスクプレートも加熱されて被処理基板とマスクプレートとが熱膨張する場合がある。このとき、熱膨張量に差が生じると、(被処理基板に対して各開口が位置ずれして)所定の成膜パターンで精度よく蒸着できないという問題を招来する。そこで、本願発明者らは、容器の上面に対向させて、放出ノズルが挿通する透孔を開設した遮熱板を配置し、放出ノズルのみが熱源となるようにして、蒸着中、被処理基板やマスクプレートが加熱されることを抑制することを提案している(例えば、特許文献2参照)。 Here, when the container or the discharge nozzle is heated, the substrate to be processed or the mask plate may also be heated by the radiation of heat rays, and the substrate to be processed and the mask plate may thermally expand. At this time, if there is a difference in the amount of thermal expansion, there is a problem that accurate vapor deposition cannot be performed with a predetermined film formation pattern (the positions of the openings are displaced with respect to the substrate to be processed). Therefore, the inventors of the present application have arranged a heat shield plate having a through hole through which the discharge nozzle is inserted so as to face the upper surface of the container so that only the discharge nozzle serves as a heat source, and the substrate to be treated during vapor deposition. And it is proposed to suppress the heating of the mask plate (see, for example, Patent Document 2).

ところで、近年では、被処理基板に蒸着しようとする成膜パターンの微細化がより一層進んでおり、これに伴い、マスクプレートに形成する開口の幅もより一層狭くなっている(開口幅が数μm以下)。このような場合、熱線の放射によりマスクプレートが加熱されると、マスクプレートに形成した各開口が歪む場合があり、これでは、高精度(言い換えると、所謂マスクボケなし)に蒸着することができない虞がある。このため、蒸着時に、被処理基板やマスクプレートの温度上昇を如何に抑制するかが重要な問題となっている。 By the way, in recent years, the film forming pattern to be vapor-deposited on the substrate to be processed has been further miniaturized, and along with this, the width of the opening formed in the mask plate has become even narrower (the opening width is several). μm or less). In such a case, when the mask plate is heated by the radiation of heat rays, each opening formed in the mask plate may be distorted, which may prevent vapor deposition with high accuracy (in other words, without so-called mask blur). There is. Therefore, how to suppress the temperature rise of the substrate to be processed and the mask plate during vapor deposition has become an important issue.

特開2014-77193号公報Japanese Unexamined Patent Publication No. 2014-77193 特開2019-167593号公報Japanese Unexamined Patent Publication No. 2019-167593

本発明は、以上の点に鑑み、蒸着中における被処理基板やマスクプレートの温度上昇を可及的に抑制することができる真空蒸着装置用の蒸着源を提供することをその課題とするものである。 In view of the above points, it is an object of the present invention to provide a vapor deposition source for a vacuum vapor deposition apparatus capable of suppressing a temperature rise of a substrate to be processed or a mask plate during vapor deposition as much as possible. be.

上記課題を解決するために、真空チャンバ内に配置されて被処理基板に対して蒸着するための本発明の真空蒸着装置用の蒸着源は、蒸着材料が充填される容器と、この容器内の蒸着材料を加熱する加熱手段とを備え、容器に、加熱によりこの容器内で気化または昇華した蒸着材料の放出を可能とする放出部を有し、加熱手段による蒸着材料の加熱に伴って加熱されることで、被処理基板に対して熱線を放射する容器部分に、この容器の母材より低い放射率の低放射率層を設けたことを特徴とする。本発明では、前記放出部が、前記被処理基板に対向する前記容器の上面に突設した放出ノズルで構成され、この放出ノズルを加熱する他の加熱手段を備える場合、前記容器部分を放出ノズルの内面とし、放出ノズルの内面に低放射率層を設ける構成を採用することができる。 In order to solve the above problems, the vapor deposition source for the vacuum vapor deposition apparatus of the present invention, which is arranged in a vacuum chamber and for vapor deposition on a substrate to be processed, is a container filled with a vapor deposition material and a container in the container. It is provided with a heating means for heating the vapor-deposited material, and the container has a discharge portion capable of releasing the vaporized material vaporized or sublimated in the container by heating, and is heated with the heating of the vapor-deposited material by the heating means. This is characterized in that a low emissivity layer having a lower emission rate than the base material of this container is provided in the container portion that radiates heat rays to the substrate to be processed. In the present invention, when the discharge portion is composed of a discharge nozzle projecting from the upper surface of the container facing the substrate to be processed and is provided with another heating means for heating the discharge nozzle, the container portion is discharged. It is possible to adopt a configuration in which a low emissivity layer is provided on the inner surface of the discharge nozzle.

ここで、本発明者らは、鋭意研究を重ね、仮に、上記容器の上面に対向させて放出ノズルが挿通する透孔を開設した遮熱板を配置し、放出ノズルのみが熱源となるようにしても、被処理基板やマスクプレートが加熱されることにとって、特に、放出ノズルの内面や外面からの熱放射の影響が無視できないことを知見するのに至った。そこで、本発明では、主として被処理基板に対して熱線を放射する、放出ノズルの内面及び外面や容器の上面といった容器部分に低放射率層を設け、被処理基板やマスクプレートへ向けての熱線の放熱量を減少させる構成を採用することで、蒸着中における被処理基板やマスクプレートの温度上昇を可及的に抑制することができる。この場合、前記低放射率層は、この容器部分の表面に直接成膜した金膜で構成することができる。これによれば、金膜は、耐熱性に優れており、また蒸着材料との反応性に乏しいため、耐久性に優れた低放射率層を得ることができる。一方で、前記低放射率層は、前記容器の表面を所定範囲内の表面粗さに加工することで構成してもよい。これによれば、容器や放出ノズルと同じ母材(金属)を用いて、熱線を放射する容器部分の表面のみの放射率をより低いものとすることができる。 Here, the present inventors have repeated diligent research, and tentatively, a heat shield plate having a through hole through which the discharge nozzle is inserted is arranged so as to face the upper surface of the container so that only the discharge nozzle serves as a heat source. However, it has been found that the influence of heat radiation from the inner surface and the outer surface of the discharge nozzle cannot be ignored for the heating of the substrate to be treated and the mask plate. Therefore, in the present invention, a low emissivity layer is provided on the container portion such as the inner surface and the outer surface of the discharge nozzle and the upper surface of the container, which mainly radiates heat rays to the substrate to be treated, and the heat rays are directed toward the substrate to be treated and the mask plate. By adopting a configuration that reduces the amount of heat radiated from the surface, it is possible to suppress the temperature rise of the substrate to be processed and the mask plate during vapor deposition as much as possible. In this case, the low emissivity layer can be formed of a gold film formed directly on the surface of the container portion. According to this, since the gold film has excellent heat resistance and poor reactivity with the vapor-deposited material, a low emissivity layer having excellent durability can be obtained. On the other hand, the low emissivity layer may be formed by processing the surface of the container to have a surface roughness within a predetermined range. According to this, the emissivity of only the surface of the container portion that radiates heat rays can be made lower by using the same base material (metal) as the container and the discharge nozzle.

(a)は、本発明の実施形態の蒸着源を備える真空蒸着装置を説明する、一部を断面視とした部分斜視図、(b)は、真空蒸着装置を正面側からみた部分断面図。(A) is a partial perspective view showing a partially sectional view of the vacuum vapor deposition apparatus including the vapor deposition source according to the embodiment of the present invention, and (b) is a partial sectional view of the vacuum vapor deposition apparatus viewed from the front side. 本実施形態の蒸着源の拡大断面図。Enlarged sectional view of the vapor deposition source of this embodiment. 蒸着源の遮熱板の温度分布を示す図。The figure which shows the temperature distribution of the heat shield plate of a thin film deposition source. 蒸着源の変形例の遮熱板の温度分布を示す図。The figure which shows the temperature distribution of the heat shield plate of the modification of the vapor deposition source.

以下、図面を参照して、被処理基板を矩形の輪郭を持つ所定厚さのガラス基板(以下、「基板Sw」という)とし、基板Swの片面に対して真空蒸着法により所定の薄膜を蒸着(成膜)する場合を例に本発明の真空蒸着装置用の蒸着源の実施形態を説明する。以下においては、「上」、「下」といった方向を示す用語は図1を基準として説明する。 Hereinafter, referring to the drawings, the substrate to be processed is a glass substrate having a rectangular outline and a predetermined thickness (hereinafter referred to as “substrate Sw”), and a predetermined thin film is deposited on one side of the substrate Sw by a vacuum vapor deposition method. An embodiment of a vapor deposition source for a vacuum vapor deposition apparatus of the present invention will be described by taking the case of (depositing) as an example. In the following, terms indicating directions such as "up" and "down" will be described with reference to FIG.

図1(a)及び(b)を参照して、Dmは、本実施形態の蒸着源DSを備える真空蒸着装置である。真空蒸着装置Dmは、真空チャンバ1を備え、真空チャンバ1には、特に図示して説明しないが、排気管を介して真空ポンプが接続され、所定圧力(真空度)に真空排気して保持できるようになっている。また、真空チャンバ1の上部には基板搬送装置2が設けられている。基板搬送装置2は、成膜面としての下面を開放した状態で基板Swを保持するキャリア21を有し、図外の駆動装置によってキャリア21、ひいては基板Swを真空チャンバ1内の一方向に所定速度で移動するようになっている。基板搬送装置2としては公知のものが利用できるため、これ以上の説明は省略する。また、以下においては、蒸着源DSに対する基板Swの相対移動方向をX軸方向、X軸方向に直交する基板Swの幅方向をY軸方向とする。 With reference to FIGS. 1 (a) and 1 (b), Dm is a vacuum vapor deposition apparatus including the vapor deposition source DS of the present embodiment. The vacuum vapor deposition apparatus Dm includes a vacuum chamber 1, and a vacuum pump is connected to the vacuum chamber 1 via an exhaust pipe, although not particularly illustrated, and can be evacuated to a predetermined pressure (vacuum degree) and held. It has become like. Further, a substrate transfer device 2 is provided above the vacuum chamber 1. The substrate transfer device 2 has a carrier 21 that holds the substrate Sw in a state where the lower surface as a film forming surface is open, and the carrier 21 and thus the substrate Sw are predetermined in one direction in the vacuum chamber 1 by a drive device (not shown). It is designed to move at speed. Since a known substrate transfer device 2 can be used, further description thereof will be omitted. Further, in the following, the relative movement direction of the substrate Sw with respect to the vapor deposition source DS is defined as the X-axis direction, and the width direction of the substrate Sw orthogonal to the X-axis direction is defined as the Y-axis direction.

基板搬送装置2によって搬送される基板Swと後述の蒸着源DSとの間には、板状のマスクプレート3が設けられている。マスクププレート3は、インバー、アルミ、アルミナやステンレス等の金属製またはポリイミド等の樹脂製の薄板で構成され、板厚方向に貫通する開口31が所定のマスクパターンで複数形成されている(これにより、蒸着時、開口31がない位置にて蒸着材料Vmの基板Swへの付着が制限されることで基板Swに、マスクパターンに対応する成膜パターンで所定の薄膜が蒸着される)。マスクプレート3は、基板Swと一体に取り付けられて基板Swと共に基板搬送装置2によって搬送されるが、真空チャンバ1に予め固定配置しておくこともできる。そして、真空チャンバ1の底面には、搬送される基板Swに対向させて蒸着源DSが設けられている。 A plate-shaped mask plate 3 is provided between the substrate Sw transported by the substrate transport device 2 and the vapor deposition source DS described later. The mask plate 3 is made of a thin plate made of metal such as thin film, aluminum, alumina, stainless steel, or resin such as polyimide, and a plurality of openings 31 penetrating in the plate thickness direction are formed in a predetermined mask pattern (this). As a result, during vapor deposition, the adhesion of the vapor deposition material Vm to the substrate Sw is restricted at a position where there is no opening 31, so that a predetermined thin film is vapor-deposited on the substrate Sw with a film formation pattern corresponding to the mask pattern). The mask plate 3 is attached integrally with the substrate Sw and is conveyed together with the substrate Sw by the substrate transfer device 2, but it can also be fixedly arranged in the vacuum chamber 1 in advance. A thin-film deposition source DS is provided on the bottom surface of the vacuum chamber 1 so as to face the substrate Sw to be conveyed.

図2も参照して、蒸着源DSは、蒸着材料Vmを収容する金属製の容器41を有する。容器41内には金属製の坩堝42が格納され、坩堝42内に蒸着材料Vmが充填されるようになっている。坩堝42と容器41との間には、坩堝42の外壁面をその全体に亘って覆うように加熱手段としてのシースヒータ43が設けられ、坩堝42を介して蒸着材料Vmを気化温度または昇華温度まで加熱できる。蒸着材料Vmとしては、基板Swに成膜しようとする薄膜に応じて金属材料や有機材料が適宜選択され、顆粒状またはタブレット状のものが利用される。容器41の上面(基板Swとの対向面)41aには、放出部としての放出ノズル44がY軸方向に所定間隔で複数本(本実施形態では8本)列設されている。 Also with reference to FIG. 2, the vapor deposition source DS has a metal container 41 that houses the vapor deposition material Vm. A metal crucible 42 is stored in the container 41, and the vapor deposition material Vm is filled in the crucible 42. A sheath heater 43 as a heating means is provided between the crucible 42 and the container 41 so as to cover the outer wall surface of the crucible 42 over the entire surface thereof, and the vaporized material Vm is vaporized or sublimated to the vaporization temperature or the sublimation temperature via the crucible 42. Can be heated. As the vapor deposition material Vm, a metal material or an organic material is appropriately selected according to the thin film to be formed on the substrate Sw, and a granular or tablet-like material is used. On the upper surface (the surface facing the substrate Sw) 41a of the container 41, a plurality of discharge nozzles 44 (8 in this embodiment) as discharge portions are arranged at predetermined intervals in the Y-axis direction.

各放出ノズル44の周囲には、他の加熱手段としてのシースヒータ45が設けられている。そして、シースヒータ43により気化温度または昇華温度まで加熱されて、容器41内で気化または昇華した蒸着材料Vmが、各放出ノズル44から所定の余弦則に従い放出される。このとき、シースヒータ45により各放出ノズル44を夫々加熱することで、気化または昇華された蒸着材料Vmが放出ノズル44の内面44aに再付着して凝縮または凝固するのを防止することができる。なお、放出ノズル44の本数、各放出ノズル44のノズル径や、上面41aから放出ノズル44の先端までの高さは、例えば基板Swに蒸着したときのY軸方向の膜厚分布を考慮して適宜設定することができる。 A sheath heater 45 as another heating means is provided around each discharge nozzle 44. Then, the vaporized material Vm vaporized or sublimated in the container 41, which is heated to the vaporization temperature or the sublimation temperature by the sheath heater 43, is discharged from each discharge nozzle 44 according to a predetermined cosine rule. At this time, by heating each discharge nozzle 44 by the sheath heater 45, it is possible to prevent the vaporized or sublimated vaporized material Vm from reattaching to the inner surface 44a of the discharge nozzle 44 and condensing or solidifying. The number of discharge nozzles 44, the nozzle diameter of each discharge nozzle 44, and the height from the upper surface 41a to the tip of the discharge nozzle 44 are determined in consideration of, for example, the film thickness distribution in the Y-axis direction when vapor-deposited on the substrate Sw. It can be set as appropriate.

また、容器41の上面41aには、角柱状の支持枠5aを介してその全面を覆う遮熱板5が対向配置されている。遮熱板5は、耐熱性の高い材料、例えば、ステンレス製である。遮熱板5には、その板厚方向に貫通して各放出ノズル44の挿通を夫々許容する透孔51aが開設され、容器41の上面41aへの遮熱板5の取付状態で各放出ノズル44の先端部が遮熱板5の上面から僅かに突出するようにしている。また、容器41の上面41aと遮熱板5の下面との間の空間には、2枚のリフレクター板61,62が上下方向に間隔を存して設けられ、容器41の上面41aから放射される熱線を反射して遮熱板5が加熱されるのを防止することができる。この場合、遮熱板5の下方に冷却手段を配置して遮熱板5を所定温度以下に維持されるようにしてもよい。なお、本実施形態では、遮熱板5及びリフレクター板61,62を備えるものを例に説明するが、遮熱板5やリフレクター板61,62自体は省略することもできる。 Further, on the upper surface 41a of the container 41, a heat shield plate 5 that covers the entire surface of the container 41 via a prismatic support frame 5a is arranged so as to face each other. The heat shield plate 5 is made of a material having high heat resistance, for example, stainless steel. The heat shield plate 5 is provided with a through hole 51a that penetrates in the plate thickness direction and allows the insertion of each discharge nozzle 44, and each discharge nozzle is attached to the upper surface 41a of the container 41. The tip of the 44 is slightly projected from the upper surface of the heat shield plate 5. Further, in the space between the upper surface 41a of the container 41 and the lower surface of the heat shield plate 5, two reflector plates 61 and 62 are provided at intervals in the vertical direction and are radiated from the upper surface 41a of the container 41. It is possible to prevent the heat shield plate 5 from being heated by reflecting the heat rays. In this case, a cooling means may be arranged below the heat shield plate 5 so that the heat shield plate 5 is maintained at a predetermined temperature or lower. In this embodiment, the one provided with the heat shield plate 5 and the reflector plates 61 and 62 will be described as an example, but the heat shield plate 5 and the reflector plates 61 and 62 themselves may be omitted.

上記真空蒸着装置Dmにより基板Swの下面に所定の薄膜を蒸着するのに際しては、真空チャンバ1内の大気雰囲気中にて坩堝42に蒸着材料Vmを充填した後、図外の真空ポンプにより所定圧力まで真空排気する。次に、シースヒータ43を作動させて蒸着材料Vmを加熱すると、蒸着材料Vmが気化または昇華して容器41内に気化雰囲気または昇華雰囲気が形成され、真空チャンバ1内との圧力差で各放出ノズル44から気化または昇華した蒸着材料Vmが所定の余弦則に従い放出される。これに併せて、基板搬送装置2によって基板SwがX軸方向に搬送される。これにより、容器41に対してX軸方向に相対移動する基板Swの下面に、各放出ノズル44から所定の余弦則に従い放出された気化または昇華した蒸着材料Vmが付着、堆積して所定の有機膜が蒸着(成膜)される。このとき、シースヒータ45により各放出ノズル44を夫々加熱しているため、特に、放出ノズル44の内面44aや外面44bから放射される熱で基板Swやマスクプレート3が可及的に加熱されないようにしておく必要がある。 When a predetermined thin film is deposited on the lower surface of the substrate Sw by the vacuum vapor deposition apparatus Dm, the vacuum chamber 42 is filled with the vapor deposition material Vm in the air atmosphere in the vacuum chamber 1, and then a predetermined pressure is applied by a vacuum pump (not shown). Vacuum exhaust until. Next, when the sheath heater 43 is operated to heat the vaporized material Vm, the vaporized material Vm is vaporized or sublimated to form a vaporized atmosphere or a sublimated atmosphere in the container 41, and each discharge nozzle is formed by the pressure difference from the vacuum chamber 1. The vaporized or sublimated vaporized material Vm is released from 44 according to a predetermined chord rule. At the same time, the substrate Sw is transported in the X-axis direction by the substrate transport device 2. As a result, the vaporized or sublimated vapor-filmed material Vm discharged from each discharge nozzle 44 according to a predetermined cosine rule adheres and is deposited on the lower surface of the substrate Sw that moves relative to the container 41 in the X-axis direction, and is deposited to be a predetermined organic substance. The film is vapor-deposited (deposited). At this time, since each discharge nozzle 44 is heated by the sheath heater 45, the substrate Sw and the mask plate 3 are prevented from being heated as much as possible by the heat radiated from the inner surface 44a and the outer surface 44b of the discharge nozzle 44. You need to keep it.

本実施形態では、放出ノズル44の内面44a及び外面44bのその全体に亘って、並びに、容器41の上面41a全体に亘って、容器41の母材(金属)より低い放射率の低放射率層Leを設けた(図2参照)。低放射率層Leとしては、例えば、Au、Cu、TiN等の中から選択した金属または金属化合物の薄膜(膜厚が、例えば、1~20μm)を用いることができ、より好ましくは、直接成膜した金膜が用いられる。金膜は、耐熱性に優れ、蒸着材料Vmとの反応性に乏しいため、耐久性に優れた低放射率層Leを得ることができる。低放射率層Leの成膜方法としては、メッキ法、真空蒸着法やスパッタリング法といった物理的成膜法またはCVD法などを利用できる。一方で、低放射率層Leとして、放出ノズル44の内面44aや外面44b、容器41の上面41aの表面を所定範囲内の表面粗さ(例えば、Ra3μm以下)に加工(研磨)して構成することもできる。この場合、容器41や放出ノズル44と同じ母材(金属)を用いて、熱線を放射する容器部分の表面のみの放射率をより低いものとすることができる。表面粗さの加工方法としては、電解研磨法や化学研磨法といった研磨方法や切削加工などを利用できる。 In the present embodiment, a low emissivity layer having a lower emissivity than the base material (metal) of the container 41 over the entire inner surface 44a and outer surface 44b of the discharge nozzle 44 and over the entire upper surface 41a of the container 41. Le was provided (see FIG. 2). As the low emissivity layer Le, for example, a thin film of a metal or a metal compound selected from Au, Cu, TiN and the like (thickness is, for example, 1 to 20 μm) can be used, and more preferably, it is directly formed. A filmed gold film is used. Since the gold film has excellent heat resistance and poor reactivity with the vapor deposition material Vm, it is possible to obtain a low emissivity layer Le with excellent durability. As a film forming method for the low emissivity layer Le, a physical film forming method such as a plating method, a vacuum vapor deposition method or a sputtering method, or a CVD method can be used. On the other hand, as the low emissivity layer Le, the inner surface 44a and outer surface 44b of the discharge nozzle 44 and the surface of the upper surface 41a of the container 41 are processed (polished) to have a surface roughness within a predetermined range (for example, Ra 3 μm or less). You can also do it. In this case, the same base material (metal) as the container 41 and the discharge nozzle 44 can be used to lower the emissivity of only the surface of the container portion that radiates heat rays. As a surface roughness processing method, a polishing method such as an electrolytic polishing method or a chemical polishing method or a cutting process can be used.

以上の実施形態によれば、基板Swに対して熱線を放射する容器部分として放出ノズル44の内面44a、外面44b及び容器41の上面41a全体に亘って、低放射率層Leを設けたことで、基板Swやマスクプレート3へ向けての熱線の放熱量が減少し、蒸着中における基板Swやマスクプレート3の温度上昇を可及的に抑制することができる。 According to the above embodiment, the low emissivity layer Le is provided over the entire inner surface 44a and outer surface 44b of the discharge nozzle 44 and the upper surface 41a of the container 41 as the container portion that radiates heat rays to the substrate Sw. The amount of heat radiation of the heat rays toward the substrate Sw and the mask plate 3 is reduced, and the temperature rise of the substrate Sw and the mask plate 3 during vapor deposition can be suppressed as much as possible.

上記効果を確認するため、上記真空蒸着装置Dmを用いて次の評価を行った。即ち、蒸着物質VmとしてAlq:トリス(8-ヒドロキシキノリナート)アルミニウムを坩堝42に充填し、真空チャンバ1内を所定圧力(10-5Pa)まで真空排気した後、シースヒータ43,45により蒸着温度(約400℃)まで昇温し、シミュレーションにより遮熱板5の温度分布を評価した。この場合、放出ノズル44が形成された容器41をチタン製とし、所定粒径の粒子を用いたブラスト処理のみを施したものを従来品、この従来品の放出ノズル44の内面44a、外面44b及び容器41の上面41a全体に亘って低放射率層Leとして、150nmの膜厚で金膜を物理的成膜法により予め成膜したものを発明品1、20nmの膜厚でTiN膜を物理的成膜法により予め成膜したものを発明品2とした。 In order to confirm the above effect, the following evaluation was performed using the vacuum vapor deposition apparatus Dm. That is, Alq 3 : Tris (8-hydroxyquinolinate) aluminum was filled in the pit 42 as the vapor-deposited substance Vm, the inside of the vacuum chamber 1 was evacuated to a predetermined pressure ( 10-5 Pa), and then the sheath heaters 43 and 45 were used. The temperature was raised to the vapor deposition temperature (about 400 ° C.), and the temperature distribution of the heat shield plate 5 was evaluated by simulation. In this case, the container 41 in which the discharge nozzle 44 is formed is made of titanium, and a conventional product is obtained by only blasting using particles having a predetermined particle size, and the inner surface 44a, outer surface 44b and outer surface 44b of the conventional product discharge nozzle 44. A low emissivity layer Le over the entire upper surface 41a of the container 41, in which a gold film was previously formed with a film thickness of 150 nm by a physical film forming method, and a TiN film was physically formed with a film thickness of 20 nm. The product that was previously film-formed by the film-forming method was designated as Invention 2.

図3は、遮熱板5の基板Swとの対向面の温度分布を示す。これによれば、従来品では、図3(c)に示すように、放出ノズル44が存する、遮熱板5の長手方向に沿う中央領域が比較的高温(中点における温度が94℃)になり、その外周縁部との間に40℃以上の温度差が生じていることが確認された。このような中央領域と外周縁部の間の温度差は、放出ノズル44自体から放射される熱線の放熱量が大きくなることで生じる。それに対して、発明品1では、図3(a)に示すように、中点における温度が57℃であり、表面温度が従来品より40℃程度低くなり、しかも、遮熱板5の長手方向に沿う中央領域とその外周縁部との間の温度差も小さくできることが確認された。同様に、発明品2では、図3(b)に示すように、中点における温度が69℃であり、表面温度が従来品より25℃程度低くなり、同様に、遮熱板5の長手方向に沿う中央領域とその外周縁部との間の温度差も小さくできることが確認された。即ち、発明品1及び発明品2では、放出ノズル44自体から放射される熱線の放熱量が小さいことを示している。これらの結果から、基板Swに対して熱線を放射する容器部分として放出ノズル44の内面44a、外面44b及び容器41の上面41a全体に亘って、低放射率層Leを設けたことで、基板Swやマスクプレート3へ向けての熱線の放熱量が減少し、蒸着中における基板Swやマスクプレート3の温度上昇を可及的に抑制できたことが判る。 FIG. 3 shows the temperature distribution of the surface of the heat shield plate 5 facing the substrate Sw. According to this, in the conventional product, as shown in FIG. 3C, the central region along the longitudinal direction of the heat shield plate 5 where the discharge nozzle 44 is present becomes relatively high temperature (the temperature at the midpoint is 94 ° C.). It was confirmed that a temperature difference of 40 ° C. or more was generated between the outer peripheral edge and the outer peripheral edge. Such a temperature difference between the central region and the outer peripheral edge portion is caused by an increase in the amount of heat radiation of the heat rays radiated from the emission nozzle 44 itself. On the other hand, in the invention product 1, as shown in FIG. 3A, the temperature at the midpoint is 57 ° C., the surface temperature is about 40 ° C. lower than that of the conventional product, and the heat shield plate 5 is in the longitudinal direction. It was confirmed that the temperature difference between the central region along the line and the outer peripheral edge thereof can also be reduced. Similarly, in the invention product 2, as shown in FIG. 3 (b), the temperature at the midpoint is 69 ° C., the surface temperature is about 25 ° C. lower than that of the conventional product, and similarly, the longitudinal direction of the heat shield plate 5 It was confirmed that the temperature difference between the central region along the line and the outer peripheral edge thereof can also be reduced. That is, in the invention product 1 and the invention product 2, it is shown that the amount of heat radiation of the heat rays radiated from the emission nozzle 44 itself is small. From these results, the low emissivity layer Le was provided over the entire inner surface 44a and outer surface 44b of the emission nozzle 44 and the upper surface 41a of the container 41 as the container portion for radiating heat rays to the substrate Sw. It can be seen that the amount of heat radiation of the heat rays toward the mask plate 3 was reduced, and the temperature rise of the substrate Sw and the mask plate 3 during vapor deposition could be suppressed as much as possible.

次に、従来品の放出ノズル44の内面44a、外面44b及び容器41の上面41aを電解研磨法によりその表面を表面粗さRa3μm以下に加工したもの発明品3とし、上記と同条件で他の実験を行った。図4は、放出ノズル44を含む、遮熱板5の基板Swとの対向面の温度分布を示す。これによれば、中点における温度が76℃であり、表面温度が従来品より20℃程度低くなり、しかも、遮熱板5の長手方向に沿う中央領域とその外周縁部との間の温度差も従来品より小さくできることが確認された。即ち、発明品3では、上記発明品1及び発明品2と同様に、放出ノズル44自体から放射される熱線の放熱量が小さいことを示している。これらの結果から、放出ノズル44の内面44a、外面44b及び容器41の上面41aを電解研磨法によりその表面を表面粗さRa3μm以下に加工したことで、基板Swやマスクプレート3へ向けての熱線の放熱量が減少し、蒸着中における基板Swやマスクプレート3の温度上昇を可及的に抑制できることが判る。 Next, the inner surface 44a, the outer surface 44b, and the upper surface 41a of the container 41 of the conventional discharge nozzle 44 are processed by an electrolytic polishing method to have a surface roughness Ra of 3 μm or less. An experiment was conducted. FIG. 4 shows the temperature distribution of the surface of the heat shield plate 5 facing the substrate Sw, including the discharge nozzle 44. According to this, the temperature at the midpoint is 76 ° C., the surface temperature is about 20 ° C. lower than that of the conventional product, and the temperature between the central region along the longitudinal direction of the heat shield plate 5 and the outer peripheral edge thereof. It was confirmed that the difference can be smaller than that of the conventional product. That is, the invention product 3 shows that the amount of heat radiation of the heat rays radiated from the discharge nozzle 44 itself is small, as in the invention product 1 and the invention product 2. From these results, the inner surface 44a and outer surface 44b of the discharge nozzle 44 and the upper surface 41a of the container 41 were processed by an electrolytic polishing method to have a surface roughness Ra of 3 μm or less, so that heat rays directed toward the substrate Sw and the mask plate 3 were obtained. It can be seen that the amount of heat dissipated is reduced, and the temperature rise of the substrate Sw and the mask plate 3 during vapor deposition can be suppressed as much as possible.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、基板Swに対して熱線を放射する容器部分として、放出ノズル44の内面44a及び外面44bのその全体に亘って並びに、容器41の上面41a全体に亘って低放射率層Leを設けたものを例に説明したが、基板Swに対して熱線を放射する容器部分はこれらに限定されず、放出ノズル44の内面44a、外面44b、容器41の上面41aの各部分のみに、または、各部分の部分的に、低放射率層Leを設けてもよい。また、遮熱板5及びリフレクター板61,62を備える場合、基板Swに対して熱線を放射する容器部分として、遮熱板5やリフレクター板61,62の上面に低放射率層Leを設けもよい。 Although the embodiments of the present invention have been described above, various modifications are possible as long as they do not deviate from the scope of the technical idea of the present invention. In the above embodiment, as the container portion that radiates heat rays to the substrate Sw, the low emissivity layer Le is provided over the entire inner surface 44a and outer surface 44b of the discharge nozzle 44 and over the entire upper surface 41a of the container 41. Although the provided one has been described as an example, the container portion that radiates heat rays to the substrate Sw is not limited to these, and is limited to each portion of the inner surface 44a, the outer surface 44b, and the upper surface 41a of the container 41 of the discharge nozzle 44, or. , A low emissivity layer Le may be provided partially in each portion. Further, when the heat shield plate 5 and the reflector plates 61 and 62 are provided, a low emissivity layer Le may be provided on the upper surface of the heat shield plate 5 and the reflector plates 61 and 62 as a container portion for radiating heat rays to the substrate Sw. good.

Dm…真空蒸着装置、DS…蒸着源、Le…低放射率層、Sw…基板(被処理基板)、Vm…蒸着材料、1…真空チャンバ、41…容器、41a…容器の上面(被処理基板に対して熱線を放射する容器部分)、43…シースヒータ(加熱手段)、44…放出ノズル(放出部)、44a…放出ノズルの内面(被処理基板に対して熱線を放射する容器部分)、44b…放出ノズルの外面(被処理基板に対して熱線を放射する容器部分)、45…シースヒータ(他の加熱手段)。 Dm ... Vacuum vapor deposition equipment, DS ... Vapor deposition source, Le ... Low radiation layer, Sw ... Substrate (processed substrate), Vm ... Vapor deposition material, 1 ... Vacuum chamber, 41 ... Container, 41a ... Top surface of container (Processed substrate) (Container part that radiates heat rays to the substrate), 43 ... Sheath heater (heating means), 44 ... Discharge nozzle (discharge part), 44a ... Inner surface of the discharge nozzle (Container part that radiates heat rays to the substrate to be processed), 44b … Outer surface of the emission nozzle (container portion that radiates heat rays to the substrate to be treated), 45… sheath heater (other heating means).

Claims (4)

真空チャンバ内に配置されて被処理基板に対して蒸着するための真空蒸着装置用の蒸着源であって、
蒸着材料が充填される容器と、この容器内の蒸着材料を加熱する加熱手段とを備え、容器に、加熱によりこの容器内で気化または昇華した蒸着材料の放出を可能とする放出部を有するものにおいて、
加熱手段による蒸着材料の加熱に伴って加熱されることで、被処理基板に対して熱線を放射する容器部分に、この容器の母材より低い放射率の低放射率層を設けたことを特徴とする真空蒸着装置用の蒸着源。
A vapor deposition source for a vacuum vapor deposition apparatus that is placed in a vacuum chamber to deposit on a substrate to be processed.
A container filled with a vapor-deposited material and a heating means for heating the vapor-deposited material in the container, and the container has a discharge portion capable of releasing the vaporized material vaporized or sublimated in the container by heating. In
It is characterized by providing a low emissivity layer with a lower emissivity than the base material of this container in the container part that radiates heat rays to the substrate to be treated by being heated by heating the vapor-filmed material by the heating means. A vapor deposition source for vacuum vapor deposition equipment.
請求項1記載の真空蒸着装置用の蒸着源であって、前記放出部が、前記被処理基板に対向する前記容器の上面に突設した放出ノズルで構成され、この放出ノズルを加熱する他の加熱手段を備えるものにおいて、
前記容器部分を放出ノズルの内面とし、放出ノズルの内面に低放射率層を設けたことを特徴とする真空蒸着装置用の蒸着源。
Another vapor deposition source for a vacuum vapor deposition apparatus according to claim 1, wherein the discharge portion is composed of a discharge nozzle projecting from the upper surface of the container facing the substrate to be processed, and heats the discharge nozzle. In those equipped with heating means,
A vapor deposition source for a vacuum vapor deposition apparatus, characterized in that the container portion is an inner surface of a discharge nozzle and a low emissivity layer is provided on the inner surface of the discharge nozzle.
前記低放射率層は、この容器部分の表面に直接成膜した金膜で構成されることを特徴とする請求項1または請求項2記載の真空蒸着装置用の蒸着源。 The vapor deposition source for a vacuum vapor deposition apparatus according to claim 1 or 2, wherein the low emissivity layer is composed of a gold film formed directly on the surface of the container portion. 前記低放射率層は、前記容器の表面を所定範囲内の表面粗さに加工することで構成されることを特徴とする請求項1または請求項2記載の真空蒸着装置用の蒸着源。 The vapor deposition source for a vacuum vapor deposition apparatus according to claim 1 or 2, wherein the low emissivity layer is formed by processing the surface of the container to a surface roughness within a predetermined range.
JP2020175566A 2020-10-19 2020-10-19 Thin-film deposition source for vacuum-film deposition equipment Pending JP2022066943A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020175566A JP2022066943A (en) 2020-10-19 2020-10-19 Thin-film deposition source for vacuum-film deposition equipment
CN202110967499.3A CN114381693A (en) 2020-10-19 2021-08-23 Vapor deposition source for vacuum vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020175566A JP2022066943A (en) 2020-10-19 2020-10-19 Thin-film deposition source for vacuum-film deposition equipment

Publications (1)

Publication Number Publication Date
JP2022066943A true JP2022066943A (en) 2022-05-02

Family

ID=81194653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020175566A Pending JP2022066943A (en) 2020-10-19 2020-10-19 Thin-film deposition source for vacuum-film deposition equipment

Country Status (2)

Country Link
JP (1) JP2022066943A (en)
CN (1) CN114381693A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943871A (en) * 1982-09-04 1984-03-12 Konishiroku Photo Ind Co Ltd Vessel for storing material to be evaporated
JPH03177565A (en) * 1989-12-04 1991-08-01 Matsushita Electric Ind Co Ltd Crucible for vaporization source
CN103430624A (en) * 2011-03-03 2013-12-04 东京毅力科创株式会社 Vapor-deposition device, vapor-deposition method, organic EL display, and lighting device
JP7141793B2 (en) * 2018-03-23 2022-09-26 株式会社アルバック Evaporation source for vacuum deposition apparatus and vacuum deposition method
JP2020002388A (en) * 2018-06-25 2020-01-09 株式会社アルバック Vapor deposition source for vacuum evaporation system

Also Published As

Publication number Publication date
CN114381693A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
EP1777320B1 (en) Apparatus and method for depositing thin films
EP1803836B1 (en) Evaporation source and method of depositing thin film using the same
KR101263005B1 (en) Vapor deposition sources and method
KR101671489B1 (en) Evaporation source for organic material and vapor depositing apparatus including the same
JP2003160855A (en) Thin-film forming apparatus
US20180037982A1 (en) Linear evaporation source and deposition apparatus including the same
CN101445907A (en) Vapor deposition device
CN1782120B (en) Evaporation source and evaporation device with evaporation source
JP2022066943A (en) Thin-film deposition source for vacuum-film deposition equipment
JP6982695B2 (en) Deposition source and vacuum processing equipment
KR101520335B1 (en) Depositon apparatus for substrate
JP2020190013A (en) Vacuum deposition method
JP4445497B2 (en) Thin film deposition apparatus and thin film deposition method using the same
CN111108230A (en) Vapor deposition source for vacuum vapor deposition device
JP7503398B2 (en) Vacuum deposition equipment parts
JP7078462B2 (en) Thin-film deposition source for vacuum-film deposition equipment
JP6591570B2 (en) Self-locking holder for substrates
KR102733478B1 (en) Lateral type vacuum effusion cell and method for fabricating organic light emitting display device using the same
JP6983096B2 (en) Thin-film deposition source for vacuum-film deposition equipment
JP7036676B2 (en) Thin-film deposition source for vacuum-film deposition equipment
KR100656847B1 (en) Evaporation source for organic electroluminescent layer deposition
KR20060121502A (en) Crucible of organic material deposition apparatus and organic material deposition apparatus equipped with the same
KR20060040233A (en) Organic material deposition apparatus and its deposition method
JP2024118690A (en) Evaporation source for vacuum deposition equipment
KR100987670B1 (en) Evaporation source for organic electroluminescent layer deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20241217