[go: up one dir, main page]

JP7492375B2 - Semiconductor Device - Google Patents

Semiconductor Device Download PDF

Info

Publication number
JP7492375B2
JP7492375B2 JP2020090982A JP2020090982A JP7492375B2 JP 7492375 B2 JP7492375 B2 JP 7492375B2 JP 2020090982 A JP2020090982 A JP 2020090982A JP 2020090982 A JP2020090982 A JP 2020090982A JP 7492375 B2 JP7492375 B2 JP 7492375B2
Authority
JP
Japan
Prior art keywords
region
semiconductor chip
solder alloy
semiconductor device
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020090982A
Other languages
Japanese (ja)
Other versions
JP2021190447A (en
Inventor
高彰 宮崎
真尚 山崎
宇幸 串間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Power Semiconductor Device Inc
Original Assignee
Hitachi Power Semiconductor Device Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Semiconductor Device Ltd filed Critical Hitachi Power Semiconductor Device Ltd
Priority to JP2020090982A priority Critical patent/JP7492375B2/en
Priority to CN202180032214.5A priority patent/CN115552576A/en
Priority to PCT/JP2021/009064 priority patent/WO2021240944A1/en
Priority to TW110113577A priority patent/TWI763429B/en
Publication of JP2021190447A publication Critical patent/JP2021190447A/en
Application granted granted Critical
Publication of JP7492375B2 publication Critical patent/JP7492375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Wire Bonding (AREA)

Description

本発明は、半導体装置に関し、例えば半田を介してチップ接続部に接続される半導体チップを備えた半導体装置に関する。 The present invention relates to a semiconductor device, for example a semiconductor device having a semiconductor chip connected to a chip connection portion via solder.

特開2007-109834号公報(特許文献1)には、パワー用IGBTモジュールとして、半導体チップが半田接合層を介してマウントされた半導体装置において、中央面部および外周面部のそれぞれに、組成の異なる半田を配置する構成が記載されている。 JP 2007-109834 A (Patent Document 1) describes a configuration in which solders of different compositions are arranged on the central surface and the outer peripheral surface of a semiconductor device in which a semiconductor chip is mounted via a solder bonding layer as a power IGBT module.

特開2007-109834号公報JP 2007-109834 A

パワー半導体装置(パワーモジュール)と呼ばれる半導体装置は、電力を制御するための要素がある。パワー半導体装置は、パワー用の半導体チップが基板などのチップ接続部に、半田を介して搭載され、必要に応じて放熱部材などが接続された半導体装置である。パワー半導体装置は、半導体チップの接続に用いられる半田合金層の接続信頼性を向上させる必要がある。特に近年、高温で動作可能なパワー用半導体チップの開発も進んでいる。このため、パワー半導体装置には、高温環境下での接続信頼性が要求される。 Semiconductor devices called power semiconductor devices (power modules) have elements for controlling electric power. Power semiconductor devices are semiconductor devices in which power semiconductor chips are mounted via solder on chip connection parts such as a substrate, and heat dissipation members are connected as necessary. Power semiconductor devices require improved connection reliability of the solder alloy layer used to connect the semiconductor chips. Particularly in recent years, there has been progress in the development of power semiconductor chips that can operate at high temperatures. For this reason, power semiconductor devices require connection reliability in high-temperature environments.

本発明の目的は、半導体チップとチップ接続部との間に介在する半田合金層の接続信頼性を向上させる技術を提供することにある。 The object of the present invention is to provide a technology that improves the connection reliability of the solder alloy layer interposed between the semiconductor chip and the chip connection part.

一実施の形態である半導体装置は、第1面、および前記第1面の反対側の第2面を有する第1半導体チップと、金属から成り、第1半田合金層を介して前記第1半導体チップの前記第2面と接続される第1チップ接続部と、前記第1半導体チップの前記第2面と、前記第1チップ接続部との間に配置される前記第1半田合金層と、前記第1半導体チップの前記第2面と、前記第1半田合金層との境界に形成され、前記第2面側から前記第1チップ接続部側に向かう凹凸面を備える第1金属間化合物層と、を有する。前記第2面は、前記第2面の中心を含む第1領域、および前記第2面の外周を含む第2領域を備える。前記第1金属間化合物層の厚さは、前記第2面の第1領域と重なる第1部分の平均厚さが、前記第2領域と重なる第2部分の平均厚さよりも厚い。 A semiconductor device according to one embodiment includes a first semiconductor chip having a first surface and a second surface opposite to the first surface, a first chip connection portion made of metal and connected to the second surface of the first semiconductor chip via a first solder alloy layer, the first solder alloy layer disposed between the second surface of the first semiconductor chip and the first chip connection portion, and a first intermetallic compound layer formed at the boundary between the second surface of the first semiconductor chip and the first solder alloy layer and having an uneven surface extending from the second surface side toward the first chip connection portion side. The second surface includes a first region including the center of the second surface and a second region including the periphery of the second surface. The thickness of the first intermetallic compound layer is such that the average thickness of the first portion overlapping the first region of the second surface is thicker than the average thickness of the second portion overlapping the second region.

他の実施の形態である半導体装置は、第1面、および前記第1面の反対側の第2面を有する第1半導体チップと、金属から成り、第1半田合金層を介して前記第1半導体チップの前記第2面と接続される第1チップ接続部と、前記第1半導体チップの前記第2面と、前記第1チップ接続部との間に配置される前記第1半田合金層と、前記第1半導体チップの前記第2面と、前記第1半田合金層との境界に形成され、前記第2面側から前記第1チップ接続部側に向かう凹凸面を備える第1金属間化合物層と、を有する。前記第2面は、前記第2面の中心を含む第1領域、および前記第2面の外周を含む第2領域を備える。前記第1金属間化合物層は、前記第2面の第1領域と重なる第1部分と、前記第2領域と重なる第2部分と、を有する。前記第1部分における前記凹凸面の高低差は、前記第2部分における前記凹凸面の高低差より大きい。 A semiconductor device according to another embodiment includes a first semiconductor chip having a first surface and a second surface opposite to the first surface, a first chip connection portion made of metal and connected to the second surface of the first semiconductor chip via a first solder alloy layer, the first solder alloy layer disposed between the second surface of the first semiconductor chip and the first chip connection portion, and a first intermetallic compound layer formed at the boundary between the second surface of the first semiconductor chip and the first solder alloy layer and having an uneven surface extending from the second surface side toward the first chip connection portion side. The second surface includes a first region including the center of the second surface and a second region including the periphery of the second surface. The first intermetallic compound layer has a first portion overlapping the first region of the second surface and a second portion overlapping the second region. The height difference of the uneven surface in the first portion is greater than the height difference of the uneven surface in the second portion.

本願において開示される発明によれば、半導体チップとチップ接続部との間に介在する半田合金層の接続信頼性を向上させることができる。 The invention disclosed in this application can improve the connection reliability of the solder alloy layer interposed between the semiconductor chip and the chip connection portion.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and advantages other than those mentioned above will become clear from the description of the embodiments below.

一実施の形態である半導体装置の構成例を模式的に示す説明図である。1 is an explanatory diagram illustrating a configuration example of a semiconductor device according to an embodiment; 図1に示す複数の半導体チップのうちの一つと、導体パターンとを電気的に接続する半田合金層の周辺を拡大して示す拡大断面図である。2 is an enlarged cross-sectional view showing the periphery of a solder alloy layer that electrically connects one of the semiconductor chips shown in FIG. 1 to a conductor pattern. FIG. 図2に示す半導体チップの下面側の平面図である。3 is a plan view of the lower surface side of the semiconductor chip shown in FIG. 2. 図2と同じ拡大断面において、半田合金層の厚さを比較する範囲を明示する拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing the same enlarged cross section as FIG. 2, but clearly showing the range for comparing the thicknesses of the solder alloy layers. 図3に対する変形例である半導体装置が備える半導体チップの下面側の平面図である。4 is a plan view of the lower surface side of a semiconductor chip included in a semiconductor device that is a modified example of the semiconductor device shown in FIG. 3. 図1に示す半導体チップが搭載される導体パターンの平面図である。2 is a plan view of a conductor pattern on which the semiconductor chip shown in FIG. 1 is mounted. 図2に対する変形例である半導体装置が備える半導体チップ周辺の拡大断面図である。3 is an enlarged cross-sectional view of the periphery of a semiconductor chip included in a semiconductor device which is a modified example of the semiconductor device shown in FIG. 2; 図2に対する検討例である半導体装置の接続構造において発生する亀裂の種類を模式的に示す拡大断面図である。3 is an enlarged cross-sectional view showing a typical type of crack that occurs in a connection structure of a semiconductor device that is an example of a study on FIG. 2 . FIG.

以下の実施の形態を説明するための各図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、機能的に同じ要素は同じ番号又は対応する番号で表示される場合もある。また、以下では、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示である。 In each of the figures for explaining the following embodiments, the same components are generally given the same reference numerals, and repeated explanations are omitted. Furthermore, functionally identical elements may be indicated by the same or corresponding numerals. Furthermore, in the following, hatching may be used even in plan views to make the drawings easier to understand. Note that the attached drawings show embodiments and implementation examples in accordance with the principles of this disclosure, but these are intended to aid in understanding this disclosure and are in no way intended to be used to interpret this disclosure in a restrictive manner. The descriptions in this specification are typical examples.

本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。 In this embodiment, the disclosure has been described in sufficient detail for a person skilled in the art to implement the disclosure, but it should be understood that other implementations and forms are possible, and that changes to the configuration and structure and substitutions of various elements are possible without departing from the scope and spirit of the technical ideas of the disclosure.

以下の実施の形態の説明では、半導体装置の一例として、絶縁基板上に形成された金属パターン上に半田を介して複数の半導体チップが搭載され、モジュール化された半導体装置(パワー半導体装置、パワーモジュール)を取り上げて説明する。ただし、以下で説明する技術は、半田を介してチップ接続部に接続される半導体チップを備えた半導体装置であれば、種々の変形例に適用可能である。 In the following description of the embodiment, a modularized semiconductor device (power semiconductor device, power module) in which multiple semiconductor chips are mounted via solder on a metal pattern formed on an insulating substrate is taken as an example of a semiconductor device. However, the technology described below can be applied to various modified examples of semiconductor devices that include semiconductor chips that are connected to chip connectors via solder.

また、以下の実施の形態の説明では、半田合金層を介して半導体チップが接続されるチップ接続部の例として、絶縁基板上に形成された金属製の導体パターンを例示的に取り上げて説明する。ただし、チップ接続部には種々の変形例があり、例えば、半導体チップと電気的に接続されるリード部材、半導体チップを支持するリードフレームのダイパッド、あるいは半導体チップと電気的に接続される他の電子部品の電極、などを例示する事ができる。 In the following description of the embodiment, a metallic conductor pattern formed on an insulating substrate is used as an example of a chip connection portion to which a semiconductor chip is connected via a solder alloy layer. However, there are various variations in the chip connection portion, and examples include a lead member electrically connected to the semiconductor chip, a die pad of a lead frame supporting the semiconductor chip, or an electrode of another electronic component electrically connected to the semiconductor chip.

<半導体装置の構成例>
図1は、本実施の形態の半導体装置の構成例を模式的に示す断面図である。半導体装置100は、複数の半導体チップ(半導体チップ10および20)と、半導体チップ10および20が搭載される基板30と、を有する。基板30は、絶縁基板31と、絶縁基板31の上面31tに形成された複数の導体パターン32と、絶縁基板31の下面31bに形成された導体パターン33と、を有する。半導体チップ10および20は、複数の導体パターン32に含まれる導体パターン32Aに搭載されている。半導体チップ10および20が搭載された基板30は、半田合金層2を介してベース板3上に搭載されている。ベース板3上に搭載された基板30は、半導体チップ10および20と共にカバー4に覆われ、カバー4およびベース板3に囲まれた空間内に収容されている。カバー4およびベース板3に囲まれた空間内には、例えばゲル状の絶縁材料である封止材5が充填され、半導体チップ10および20と、ワイヤ6は、封止材5により封止されている。
<Configuration Example of Semiconductor Device>
FIG. 1 is a cross-sectional view showing a schematic configuration example of a semiconductor device according to the present embodiment. The semiconductor device 100 has a plurality of semiconductor chips (semiconductor chips 10 and 20) and a substrate 30 on which the semiconductor chips 10 and 20 are mounted. The substrate 30 has an insulating substrate 31, a plurality of conductor patterns 32 formed on an upper surface 31t of the insulating substrate 31, and a conductor pattern 33 formed on a lower surface 31b of the insulating substrate 31. The semiconductor chips 10 and 20 are mounted on a conductor pattern 32A included in the plurality of conductor patterns 32. The substrate 30 on which the semiconductor chips 10 and 20 are mounted is mounted on a base plate 3 via a solder alloy layer 2. The substrate 30 mounted on the base plate 3 is covered with a cover 4 together with the semiconductor chips 10 and 20, and is accommodated in a space surrounded by the cover 4 and the base plate 3. The space surrounded by the cover 4 and the base plate 3 is filled with a sealant 5, which is, for example, a gel-like insulating material, and the semiconductor chips 10 and 20 and the wires 6 are sealed by the sealant 5.

基板30は、例えばセラミック基板である絶縁基板31の両面に、金属膜が貼り付けられ、この金属膜がパターニングされて回路を構成する。基板30は、導体パターン32および33として銅を主成分とする金属を用いる、DBC(Direct Bond Copper)、あるいは、導体パターン32および33としてアルミニウムを主成分とする金属を用いる、DBA(Direct Bond Aluminum)を用いることができる。ただし、半導体チップ10および20を搭載するチップ搭載部(チップ接続部)を構成する材料とて、種々の金属材料を適用できる。例えば、Cu、Al、Cu-Mo、Al―SiC(アルミニウムと炭化ケイ素の複合材料)、Mg―SiC(マグネシウムと炭化ケイ素の複合材料)、42Alloyや、CIC(Copper Invar Copper)などの金属から成るチップ接続部に接続する場合であっても、以下で説明する技術を適用することにより、半導体チップとチップ接続部との間に介在する半田合金層の接続信頼性を向上させることができる。 The substrate 30 is formed by attaching a metal film to both sides of an insulating substrate 31, which is, for example, a ceramic substrate, and patterning the metal film to form a circuit. The substrate 30 can be DBC (Direct Bond Copper), which uses a metal mainly composed of copper as the conductor patterns 32 and 33, or DBA (Direct Bond Aluminum), which uses a metal mainly composed of aluminum as the conductor patterns 32 and 33. However, various metal materials can be used as materials for the chip mounting portion (chip connection portion) on which the semiconductor chips 10 and 20 are mounted. For example, even when connecting to a chip connection portion made of metals such as Cu, Al, Cu-Mo, Al-SiC (a composite material of aluminum and silicon carbide), Mg-SiC (a composite material of magnesium and silicon carbide), 42 Alloy, or CIC (Copper Invar Copper), the connection reliability of the solder alloy layer interposed between the semiconductor chip and the chip connection portion can be improved by applying the technology described below.

図1に示す断面において、複数の導体パターン32は、半導体チップ10および20が搭載される導体パターン32Aと、ワイヤ6を介して半導体チップ10および20と電気的に接続される導体パターン32Bと、リード7が電気的に接続される導体パターン32Cと、を含む。リード7は、一部がカバー4の外部に導出され、半導体装置100の端子に接続される。あるいは、リード7自身が端子として利用される。 In the cross section shown in FIG. 1, the multiple conductor patterns 32 include conductor pattern 32A on which semiconductor chips 10 and 20 are mounted, conductor pattern 32B electrically connected to semiconductor chips 10 and 20 via wires 6, and conductor pattern 32C to which leads 7 are electrically connected. A portion of lead 7 is led out of cover 4 and connected to a terminal of semiconductor device 100. Alternatively, lead 7 itself is used as a terminal.

半導体装置100は、電力供給回路に組み込まれる電力制御用の電子部品(パワー半導体装置、パワーモジュール)である。パワーモジュールとしては、例えば、半導体チップ10および20をスイッチング素子として用いるインバータなどを例示することができる。半導体装置100は、例えば、鉄道の車両や自動車の車体、航空機、産業装置等に搭載される電源装置に組み込まれる。このような用途の場合、半導体装置100が高温環境にさらされる場合があり、半導体装置100を構成する各部品には、高温での信頼性が要求される。例えば、半導体チップ10や20を構成する半導体基板として、SiCやGaNなどを利用した場合、Siを用いる場合と比較して高温で動作させることが可能である。このため、半導体チップ10および20をチップ接続部に電気的、あるいは熱的に接続する部分の接続信頼性は、より高温での信頼性を確保する必要がある。 The semiconductor device 100 is an electronic component (power semiconductor device, power module) for power control incorporated in a power supply circuit. An example of a power module is an inverter using the semiconductor chips 10 and 20 as switching elements. The semiconductor device 100 is incorporated in a power supply device mounted on, for example, a railroad car, an automobile body, an aircraft, an industrial device, etc. In such applications, the semiconductor device 100 may be exposed to a high-temperature environment, and each component constituting the semiconductor device 100 is required to be reliable at high temperatures. For example, when SiC or GaN is used as the semiconductor substrate constituting the semiconductor chips 10 and 20, it is possible to operate at a higher temperature than when Si is used. For this reason, it is necessary to ensure the reliability of the connection at the part that electrically or thermally connects the semiconductor chips 10 and 20 to the chip connection part at a higher temperature.

半導体チップ10は、後述する図2に示すように、下面10bに形成されたメタライズ膜11と、上面10tに形成された電極パッド12と、を有する。電極パッド12は、図1に示すワイヤ6を介して導体パターン32Bと電気的に接続される。メタライズ膜11は、半田合金層40を介して導体パターン32Aと電気的に接続される。メタライズ膜11および電極パッド12は、それぞれ半導体チップ10の電極として機能する。例えば半導体チップ10がMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である場合、電極パッド12およびメタライズ膜11のうち、いずれか一方はソース電極、他方はドレイン電極である。例えば半導体チップ10がバイポーラトランジスタの場合、電極パッド12およびメタライズ膜11のうち、いずれか一方はエミッタ電極、他方はコレクタ電極である。トランジスタの場合には、上面10tには、電極パッド12の他、ゲート電極用の電極パッドが形成される。また、例えば、半導体チップ10がダイオードである場合、電極パッド12およびメタライズ膜11のうち、いずれか一方はアノード電極、他方はカソード電極である。 As shown in FIG. 2, the semiconductor chip 10 has a metallized film 11 formed on the lower surface 10b and an electrode pad 12 formed on the upper surface 10t. The electrode pad 12 is electrically connected to the conductor pattern 32B via the wire 6 shown in FIG. 1. The metallized film 11 is electrically connected to the conductor pattern 32A via the solder alloy layer 40. The metallized film 11 and the electrode pad 12 each function as an electrode of the semiconductor chip 10. For example, when the semiconductor chip 10 is a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), one of the electrode pad 12 and the metallized film 11 is a source electrode, and the other is a drain electrode. For example, when the semiconductor chip 10 is a bipolar transistor, one of the electrode pad 12 and the metallized film 11 is an emitter electrode, and the other is a collector electrode. In the case of a transistor, in addition to the electrode pad 12, an electrode pad for a gate electrode is formed on the upper surface 10t. Also, for example, if the semiconductor chip 10 is a diode, one of the electrode pad 12 and the metallization film 11 is an anode electrode, and the other is a cathode electrode.

<半導体チップの接続構造>
上記を踏まえ、半導体チップとチップ接続部との接続部分の信頼性を向上させた本実施の形態の構成例について説明する。図2は、図1に示す複数の半導体チップのうちの一つと、導体パターンとを電気的に接続する半田合金層の周辺を拡大して示す拡大断面図である。図3は、図2に示す半導体チップの下面側の平面図である。図8は、図2に対する検討例である半導体装置の接続構造において発生する亀裂の種類を模式的に示す拡大断面図である。なお、以下では、半導体チップとチップ接続部との接続部分の信頼性を向上させる技術について、図1に示す半導体チップ10と導体パターン32Aとの接続構造を例示的に取り上げて説明する。ただし、例えば、半導体チップ20と導体パターン32Aとの接続構造など、半田合金層40を介して接続する種々の部分に適応可能である。
<Connection structure of semiconductor chip>
Based on the above, a configuration example of the present embodiment in which the reliability of the connection part between the semiconductor chip and the chip connection part is improved will be described. FIG. 2 is an enlarged cross-sectional view showing the periphery of the solder alloy layer electrically connecting one of the multiple semiconductor chips shown in FIG. 1 to the conductor pattern. FIG. 3 is a plan view of the lower surface side of the semiconductor chip shown in FIG. 2. FIG. 8 is an enlarged cross-sectional view showing the type of cracks that occur in the connection structure of a semiconductor device, which is an example of the connection structure of FIG. 2. In the following, the technology for improving the reliability of the connection part between the semiconductor chip and the chip connection part will be described by taking the connection structure of the semiconductor chip 10 and the conductor pattern 32A shown in FIG. 1 as an example. However, it is applicable to various parts connected via the solder alloy layer 40, such as the connection structure of the semiconductor chip 20 and the conductor pattern 32A.

図2に示すように、半導体装置100は、半導体チップ10と、導体パターン32Aと、半田合金層40と、金属間化合物層50と、を有する。半導体チップ10は、上面10t、および上面10tの反対側の下面10bを有する。導体パターン32Aは、金属(例えばCu)から成り、半田合金層40を介して半導体チップ10の下面10bと接続される。金属間化合物層50は、半導体チップ10の下面10bと、半田合金層40との境界に形成され、下面10b側から導体パターン32A側に向かう凹凸面を備える。図3に示すように、半導体チップ10の下面10bは、下面10bの中心を含む領域R1、および下面10bの外周を含む領域R2を備える。図2に示すように、金属間化合物層50の厚さは、下面10bの領域R1(図3参照)と重なる部分50R1の平均厚さが、領域R2(図3参照)と重なる部分50R2の平均厚さよりも厚い。 As shown in FIG. 2, the semiconductor device 100 has a semiconductor chip 10, a conductor pattern 32A, a solder alloy layer 40, and an intermetallic compound layer 50. The semiconductor chip 10 has an upper surface 10t and a lower surface 10b opposite to the upper surface 10t. The conductor pattern 32A is made of a metal (e.g., Cu) and is connected to the lower surface 10b of the semiconductor chip 10 via the solder alloy layer 40. The intermetallic compound layer 50 is formed at the boundary between the lower surface 10b of the semiconductor chip 10 and the solder alloy layer 40, and has an uneven surface extending from the lower surface 10b side toward the conductor pattern 32A side. As shown in FIG. 3, the lower surface 10b of the semiconductor chip 10 has a region R1 including the center of the lower surface 10b, and a region R2 including the outer periphery of the lower surface 10b. As shown in FIG. 2, the average thickness of the intermetallic compound layer 50 at the portion 50R1 that overlaps with the region R1 (see FIG. 3) of the lower surface 10b is greater than the average thickness of the portion 50R2 that overlaps with the region R2 (see FIG. 3).

以下、図8に示す半導体装置100Cを用いて接続部分の故障モードについて説明した後、図2および図3に示す本実施の形態の接続構造により、接続部分の信頼性を向上させられる理由について説明する。本願発明者の検討によれば、半導体チップ10と導体パターン32Aとを電気的に接続する半田合金層40の接続信頼性を低下させる原因となる故障モードは、以下の2つに大別することができる。 Below, we will explain the failure modes of the connection part using the semiconductor device 100C shown in Figure 8, and then explain why the connection structure of this embodiment shown in Figures 2 and 3 can improve the reliability of the connection part. According to the inventor's research, the failure modes that cause a decrease in the connection reliability of the solder alloy layer 40 that electrically connects the semiconductor chip 10 and the conductor pattern 32A can be broadly divided into the following two types.

第1に、接続部周辺を構成する各部材の線膨張係数の違いに起因して生じる熱応力を原因とする故障モードがある。この第1の故障モードは、半田合金層40の外周部分(半導体チップ10の側面に近い部分)で発生し、半田合金層40の内側、言い換えれば中央部分に向かって進展する。第1の故障モードにより半田合金層40に亀裂CR1が生じる場合、半導体チップ10の下面10bに沿った方向に延びる亀裂が発生し易い。繰り返しの温度サイクル負荷を印加すると、亀裂CR1が中央部分に向かって延伸する。 First, there is a failure mode caused by thermal stress resulting from differences in the linear expansion coefficients of the components that make up the periphery of the connection. This first failure mode occurs in the outer peripheral portion of the solder alloy layer 40 (the portion close to the side of the semiconductor chip 10) and progresses toward the inside of the solder alloy layer 40, in other words, toward the central portion. When a crack CR1 occurs in the solder alloy layer 40 due to the first failure mode, a crack that extends in a direction along the bottom surface 10b of the semiconductor chip 10 is likely to occur. When repeated temperature cycle loads are applied, the crack CR1 extends toward the central portion.

第2に、半導体チップ10において、通電時に発生する熱に起因する半田合金層40の劣化による故障モードである。この第2の故障モードは、相対的に放熱特性が低い中央部分において発生する。第2の故障モードにより亀裂CR2が生じる場合、半田合金層40の厚さ方向(言い換えれば下面10bの面外方向)に向かって亀裂CR2が発生し易い。繰り返しの温度サイクル負荷を印加すると、亀裂CR2の発生個所が、中央部分から外周部分に向かって拡大する。この第2の故障モードの場合、亀裂CR2が生じること自体よりも、亀裂CR2の発生範囲が拡大することが、接続信頼性低下の原因となる。 The second failure mode is caused by deterioration of the solder alloy layer 40 in the semiconductor chip 10 due to heat generated when electricity is applied. This second failure mode occurs in the central portion, which has relatively poor heat dissipation characteristics. When cracks CR2 occur due to the second failure mode, they tend to occur in the thickness direction of the solder alloy layer 40 (in other words, in the out-of-plane direction of the lower surface 10b). When repeated temperature cycle loads are applied, the location where cracks CR2 occur expands from the central portion toward the outer periphery. In the case of this second failure mode, it is the expansion of the range in which cracks CR2 occur, rather than the occurrence of cracks CR2 itself, that causes a decrease in connection reliability.

第1の故障モードを抑制するためには、低弾性の半田合金を用いることが好ましい。半田合金層40の外周部分が低弾性であれば、熱応力を緩和し、起点となる亀裂CR1の発生、あるいは亀裂CR1が発生した後の進展を抑制することができる。第2の故障モードを抑制するためには、耐熱性の高い半田合金層40を中央部に用いることが好ましい。ただし、種類の異なる半田合金を用いる場合、塗布行程の条件、あるいはリフロー条件によって、2種類の半田合金の混合の程度が変化するため、設計通りの位置に安定的に2種類の半田合金層を形成することが難しい。製造条件のバラつきに起因して、接続信頼性が低下する可能性がある。したがって、半導体チップ10と導体パターン32Aとの間に配置される半田合金層40は、1種類の半田合金から成ることが好ましい。 In order to suppress the first failure mode, it is preferable to use a solder alloy with low elasticity. If the peripheral portion of the solder alloy layer 40 has low elasticity, it is possible to reduce thermal stress and suppress the occurrence of the crack CR1 that is the starting point, or the progression of the crack CR1 after it has occurred. In order to suppress the second failure mode, it is preferable to use a solder alloy layer 40 with high heat resistance in the center. However, when using different types of solder alloys, the degree of mixing of the two types of solder alloys changes depending on the conditions of the application process or the reflow conditions, so it is difficult to stably form two types of solder alloy layers at the designed position. Due to variations in manufacturing conditions, there is a possibility that the connection reliability will decrease. Therefore, it is preferable that the solder alloy layer 40 arranged between the semiconductor chip 10 and the conductor pattern 32A is made of one type of solder alloy.

そこで、本願発明者は、第2の故障モードの抑制方法として、亀裂CR2の発生個所が、中央部分から外周部分に向かって拡大することを阻害する部材を、中央部分の接続界面に設けることに着目した。図2に示すように、本実施の形態の場合、金属間化合物層50の部分50R1が、亀裂CR2の発生個所が、中央部分から外周部分に向かって拡大することを阻害する部材に相当する。 The inventors of the present application therefore focused on providing a member at the connection interface of the central portion that prevents the location of crack CR2 from expanding from the central portion toward the peripheral portion as a method of suppressing the second failure mode. As shown in FIG. 2, in the case of this embodiment, portion 50R1 of intermetallic compound layer 50 corresponds to the member that prevents the location of crack CR2 from expanding from the central portion toward the peripheral portion.

図2に示す金属間化合物層50は、半田合金層40に含まれる金属と、半導体チップ10の下面10bに形成されたメタライズ膜11を構成する金属との間で生じる化合物である。例えば、本実施の形態の場合、半田合金層40の半田合金は、錫(Sn)に加え、銅(Cu)およびアンチモン(Sb)を含有し、0.7重量%以上の銅を含む。なお、半田合金層40を構成する半田合金には、一般的な鉛フリー半田を用いることができるが、アンチモンおよび0.7重量%以上の銅を含むことが好ましい。また応力緩和特性の向上を考慮すると、Sn-3~5Cu-10Sb半田が特に好ましい。なお、半田合金の変形例としては、例えば、Sn-3~7Cu半田を用いることができる。半導体チップ10のメタライズ膜11は、Cu、Ni、Au、Ag、Pt、Pd、Ti、TiN、Fe-NiやFe-CoなどのFe軽合金など様々な金属、合金が適用可能である。例えば本実施の形態の場合、メタライズ膜11はニッケル(Ni)から成る。この場合、金属間化合物層は、半田合金とメタライズ膜11の主成分の金属である、Ni-Snの金属間化合物層となる。 The intermetallic compound layer 50 shown in FIG. 2 is a compound formed between the metal contained in the solder alloy layer 40 and the metal constituting the metallized film 11 formed on the lower surface 10b of the semiconductor chip 10. For example, in the case of the present embodiment, the solder alloy of the solder alloy layer 40 contains copper (Cu) and antimony (Sb) in addition to tin (Sn), and contains 0.7% by weight or more of copper. In addition, although a general lead-free solder can be used for the solder alloy constituting the solder alloy layer 40, it is preferable that it contains antimony and 0.7% by weight or more of copper. In addition, in consideration of improving the stress relaxation characteristics, Sn-3 to 5Cu-10Sb solder is particularly preferable. In addition, as a modified example of the solder alloy, for example, Sn-3 to 7Cu solder can be used. For the metallized film 11 of the semiconductor chip 10, various metals and alloys such as Cu, Ni, Au, Ag, Pt, Pd, Ti, TiN, Fe light alloys such as Fe-Ni and Fe-Co can be applied. For example, in the present embodiment, the metallized film 11 is made of nickel (Ni). In this case, the intermetallic compound layer is an intermetallic compound layer of Ni-Sn, which is the main metal component of the solder alloy and the metallized film 11.

金属間化合物層50は、半導体チップ10が導体パターン32A上に搭載されるリフロー行程において、半田合金とメタライズ膜11とが反応することにより形成される。このため、金属間化合物層50は、半導体チップ10の下面10b、すなわちメタライズ膜11から、下方(導体パターン32Aに向かう方向)に成長する。この時、金属間化合物層50は、一様に形成されず、図2に示すように、下面10b側から導体パターン32A側に向かう凹凸面を成すように形成される。この凹凸面の高低差が大きい場合、上記した第2の故障モードにより生じた亀裂が外周側に拡大することを抑制できる。つまり、本実施の形態の場合、金属間化合物層50の凹凸面の高低差を大きくすることにより、第2の故障モードにより生じた亀裂が外周側に拡大することを抑制している。 The intermetallic compound layer 50 is formed by the reaction between the solder alloy and the metallized film 11 during the reflow process in which the semiconductor chip 10 is mounted on the conductor pattern 32A. Therefore, the intermetallic compound layer 50 grows downward (toward the conductor pattern 32A) from the lower surface 10b of the semiconductor chip 10, i.e., the metallized film 11. At this time, the intermetallic compound layer 50 is not formed uniformly, but is formed to form an uneven surface from the lower surface 10b side toward the conductor pattern 32A side, as shown in FIG. 2. If the height difference of this uneven surface is large, it is possible to suppress the cracks caused by the second failure mode described above from expanding to the outer periphery. In other words, in the case of this embodiment, by increasing the height difference of the uneven surface of the intermetallic compound layer 50, the cracks caused by the second failure mode are suppressed from expanding to the outer periphery.

一方、金属間化合物層50は、その成長方向に対して直交する方向の外力には脆く、損傷しやすい。このため、半導体チップ10の下面10bの外周側にまで、高低差の大きい凹凸面を備える金属間化合物層50が形成されている場合、上記した第1の故障モードである熱応力に起因して、金属間化合物層50が損傷してしまう。したがって、第1の故障モードを抑制する観点からは、外周部分に形成された金属間化合物層50の凹凸面の高低差は小さいほうが良い。 On the other hand, the intermetallic compound layer 50 is fragile and easily damaged by external forces perpendicular to its growth direction. For this reason, if the intermetallic compound layer 50 is formed with an uneven surface with a large difference in height even on the outer periphery of the lower surface 10b of the semiconductor chip 10, the intermetallic compound layer 50 will be damaged due to thermal stress, which is the first failure mode described above. Therefore, from the viewpoint of suppressing the first failure mode, it is better for the uneven surface of the intermetallic compound layer 50 formed in the outer periphery to have a small difference in height.

そこで、本実施の形態の場合、外周領域では、凹凸面の高低差が小さくなるように金属間化合物層50を形成している。詳しくは、図3に示すように、半導体チップ10の下面10bは、下面10bの中心を含む領域R1、および下面10bの外周を含む領域R2を備える。図2に示すように、金属間化合物層50は、下面10bの領域R1(図3参照)と重なる部分50R1と、領域R2(図3参照)と重なる部分50R2と、を有する。金属間化合物層50の凹凸面の高低差は、下面10bの部分50R1の高低差が、部分50R2の高低差よりも大きい。 Therefore, in the present embodiment, the intermetallic compound layer 50 is formed in the peripheral region so that the height difference of the uneven surface is small. More specifically, as shown in FIG. 3, the lower surface 10b of the semiconductor chip 10 has a region R1 including the center of the lower surface 10b, and a region R2 including the outer periphery of the lower surface 10b. As shown in FIG. 2, the intermetallic compound layer 50 has a portion 50R1 that overlaps with the region R1 (see FIG. 3) of the lower surface 10b, and a portion 50R2 that overlaps with the region R2 (see FIG. 3). The height difference of the uneven surface of the intermetallic compound layer 50 is greater in the portion 50R1 of the lower surface 10b than in the portion 50R2.

金属間化合物層50の凹凸面の高低差は、例えば以下のようにして形成することができる。金属間化合物層50の凹凸面の高低差は、半田合金と、メタライズ膜11とが接した状態でリフロー処理される時間に比例して大きくなる。したがって、リフロー工程において、半導体チップ10の下面10bの領域R1(図3参照)のみが半田合金と接触した状態でリフローを開始し、リフロー処理の途中で半田合金が領域R2と接触するようにリフロー工程を管理すれば、図2に示す接続構造を製造することができる。この方法の場合、まず、ペーストまたはシート状の半田合金を導体パターン32A上に塗布(配置)する。次に、半導体チップ10をペーストまたはシート状の半田合金上に配置する。この時、半田合金に接するのは領域R1のみで、領域R2は、半田合金に接しない。次に、加熱工程として、半田合金を加熱する。この時、半田合金と半導体チップ10の下面10bとの接続界面では、金属間化合物層が生成され、導体パターン32Aに向かって成長する。次に、半導体チップ10と導体パターン32との距離を近づける。これにより、溶融した半田は周囲に広がり、領域R2(図3参照)と半田合金とが接触する。この状態で再び過熱すると、図2に示すように部分毎に高低差が制御された金属間化合物層50が得られる。 The height difference of the uneven surface of the intermetallic compound layer 50 can be formed, for example, as follows. The height difference of the uneven surface of the intermetallic compound layer 50 increases in proportion to the time of reflow processing in a state where the solder alloy and the metallized film 11 are in contact with each other. Therefore, in the reflow process, if the reflow process is started in a state where only the region R1 (see FIG. 3) of the lower surface 10b of the semiconductor chip 10 is in contact with the solder alloy, and the reflow process is controlled so that the solder alloy comes into contact with the region R2 during the reflow process, the connection structure shown in FIG. 2 can be manufactured. In this method, first, a paste or sheet-like solder alloy is applied (placed) on the conductor pattern 32A. Next, the semiconductor chip 10 is placed on the paste or sheet-like solder alloy. At this time, only the region R1 is in contact with the solder alloy, and the region R2 is not in contact with the solder alloy. Next, the solder alloy is heated as a heating process. At this time, an intermetallic compound layer is generated at the connection interface between the solder alloy and the lower surface 10b of the semiconductor chip 10, and grows toward the conductor pattern 32A. Next, the distance between the semiconductor chip 10 and the conductor pattern 32 is reduced. This causes the molten solder to spread around, and the solder alloy comes into contact with region R2 (see FIG. 3). When the solder alloy is heated again in this state, an intermetallic compound layer 50 is obtained in which the height difference between each part is controlled, as shown in FIG. 2.

この場合、凹凸面の高低差は、部分50R1の平均厚さ(下面10bから凹凸面の複数の凸部分の頂点までの距離の平均値)および部分50R2の平均厚さとして表現することができる。すなわち、上記したように、金属間化合物層50の厚さは、下面10bの領域R1(図3参照)と重なる部分50R1の平均厚さが、領域R2(図3参照)と重なる部分50R2の平均厚さよりも厚い。この場合、平均厚さが厚い部分50R1では、凹凸面の高低差が大きくなり、平均厚さが薄い部分50R2では、凹凸面の高低差が小さくなる。 In this case, the height difference of the uneven surface can be expressed as the average thickness of portion 50R1 (the average value of the distance from lower surface 10b to the apex of the multiple convex portions of the uneven surface) and the average thickness of portion 50R2. That is, as described above, the thickness of the intermetallic compound layer 50 is such that the average thickness of portion 50R1 overlapping with region R1 (see FIG. 3) of lower surface 10b is thicker than the average thickness of portion 50R2 overlapping with region R2 (see FIG. 3). In this case, the height difference of the uneven surface is large in portion 50R1, which has a thick average thickness, and the height difference of the uneven surface is small in portion 50R2, which has a thin average thickness.

また、金属間化合物層50の形成方法の変形例として、以下の方法もある。すなわち、下面10bの領域R1(図3参照)に、金属間化合物層50の高低差が大きくなるように形成された凹凸形状の金属膜を予め形成しておく。この金属膜は、例えば、メッキ法により形成することができる。領域R2(図3参照)をマスクした状態で、メッキ法により、領域R1に選択的に凹凸を有する金属膜を形成しておけば、リフロー処理において、下面10b全体に半田合金を接触させた状態でリフローを開始した場合でも、図2に示すように、金属間化合物層50の高低差を制御することができる。 Also, as a modified example of the method for forming the intermetallic compound layer 50, the following method is also available. That is, a metal film with an uneven shape is formed in advance in the region R1 (see FIG. 3) of the lower surface 10b so that the height difference of the intermetallic compound layer 50 is large. This metal film can be formed, for example, by a plating method. By selectively forming a metal film with unevenness in the region R1 by a plating method while the region R2 (see FIG. 3) is masked, the height difference of the intermetallic compound layer 50 can be controlled as shown in FIG. 2 even if reflow is started in a state where the solder alloy is in contact with the entire lower surface 10b during the reflow process.

本実施の形態の半導体装置100の場合、上記したように、部分50R1と部分50R2とで、凹凸面の高低差(言い換えれば平均厚さ)が異なるように形成されているので、上記した第1の故障モードおよび第2の故障モードのそれぞれを抑制することができる。また、半田合金層40は、1種類の半田合金から成るので、安定的に図2に示す接続構造を実現できる。この結果、半導体チップ10の下面10bと半田合金層40との接続界面における接続信頼性を向上させることができる。 In the case of the semiconductor device 100 of this embodiment, as described above, the height difference (in other words, the average thickness) of the uneven surface is different between the portion 50R1 and the portion 50R2, so that the first failure mode and the second failure mode described above can be suppressed. In addition, since the solder alloy layer 40 is made of one type of solder alloy, the connection structure shown in FIG. 2 can be stably realized. As a result, the connection reliability at the connection interface between the lower surface 10b of the semiconductor chip 10 and the solder alloy layer 40 can be improved.

また、半田合金層40は、半導体チップ10と導体パターン32Aとを接続するので、半導体チップ10の下面10b側に加えて、導体パターン32A側にも金属間化合物層50と同様の金属間化合物層60が形成されていることが好ましい。本実施の形態の場合、図2に示すように、導体パターン32Aは、半導体チップ10を上面10tから視た平面視において、下面10bの全体と対向する上面32tを備える。導体パターン32Aの上面32tと、半田合金層40との境界には、上面32t側から半導体チップ10側に向かう凹凸面を備える金属間化合物層60が形成される。金属間化合物層60の厚さは、下面10bの領域R1(図3参照)と重なる部分60R1の平均厚さが、領域R2(図3参照)と重なる部分60R2の平均厚さよりも厚い。 In addition, since the solder alloy layer 40 connects the semiconductor chip 10 and the conductor pattern 32A, it is preferable that an intermetallic compound layer 60 similar to the intermetallic compound layer 50 is formed on the conductor pattern 32A side in addition to the lower surface 10b side of the semiconductor chip 10. In the case of this embodiment, as shown in FIG. 2, the conductor pattern 32A has an upper surface 32t that faces the entire lower surface 10b in a plan view of the semiconductor chip 10 viewed from the upper surface 10t. At the boundary between the upper surface 32t of the conductor pattern 32A and the solder alloy layer 40, an intermetallic compound layer 60 having an uneven surface from the upper surface 32t side toward the semiconductor chip 10 side is formed. The thickness of the intermetallic compound layer 60 is such that the average thickness of a portion 60R1 overlapping with the region R1 (see FIG. 3) of the lower surface 10b is thicker than the average thickness of a portion 60R2 overlapping with the region R2 (see FIG. 3).

図2に示す金属間化合物層60は以下のように表現できる。金属間化合物層60は、下面10bの領域R1(図3参照)と重なる部分60R1と、領域R2(図3参照)と重なる部分60R2と、を有する。金属間化合物層60の凹凸面の高低差は、下面10bの部分60R1の高低差が、部分60R2の高低差よりも大きい。これにより、半田合金層40の下面側の接続界面、言い換えれば、半田合金層40と導体パターン32との接続界面において、接続信頼性を向上させることができる。 The intermetallic compound layer 60 shown in FIG. 2 can be expressed as follows. The intermetallic compound layer 60 has a portion 60R1 that overlaps with region R1 (see FIG. 3) of the lower surface 10b, and a portion 60R2 that overlaps with region R2 (see FIG. 3). The height difference of the uneven surface of the intermetallic compound layer 60 is greater in portion 60R1 of the lower surface 10b than in portion 60R2. This can improve the connection reliability at the connection interface on the lower surface side of the solder alloy layer 40, in other words, at the connection interface between the solder alloy layer 40 and the conductor pattern 32.

また、半田合金層40の外周部において、半田合金層40による応力緩和機能を向上させる観点からは、外周部分での半田合金層40の厚さを厚くすることが好ましい。図4に示すように、半田合金層40の厚さは、下面10bの領域R2(図3参照)と重なる部分40R2の平均厚さT2が、領域R1(図3参照)と重なる部分40R1の平均厚さT1よりも厚い。本実施の形態の場合、金属間化合物層50および60の平均厚さを上記したように構成することにより、半田合金層40の平均厚さの制御が可能である。なお、図4は、図2と同じ断面の拡大断面図であるが、符号の見易さのため、別図として記載した。 In addition, from the viewpoint of improving the stress relaxation function of the solder alloy layer 40 at the outer periphery of the solder alloy layer 40, it is preferable to increase the thickness of the solder alloy layer 40 at the outer periphery. As shown in FIG. 4, the average thickness T2 of the portion 40R2 overlapping with the region R2 (see FIG. 3) of the lower surface 10b of the solder alloy layer 40 is thicker than the average thickness T1 of the portion 40R1 overlapping with the region R1 (see FIG. 3). In the present embodiment, the average thickness of the solder alloy layer 40 can be controlled by configuring the average thicknesses of the intermetallic compound layers 50 and 60 as described above. Note that FIG. 4 is an enlarged cross-sectional view of the same cross section as FIG. 2, but is shown as a separate view for ease of viewing the symbols.

ところで、図3に示す領域R1と領域R2との範囲には、種々の実施例がある。以下では、接続信頼性を向上させる観点から好ましい態様について説明する。まず、領域R1と領域R2とは互いに隣接する。領域R1は、下面10bのうち、リフロー処理の開始時に、半田合金層40の原料であるペーストまたはシート状の半田合金と接している部分を領域R1として定義できる。領域R2は、領域R2の周囲の部分であり、リフロー処理の開始後に、ペーストまたはシート状の半田合金が広がることにより接する領域として定義できる。リフロー処理中の接触時間により金属間化合物層50および60の厚さ(高低差)を制御する場合、厳密には半田合金が中央部分から外周部分に徐々に広がるので、領域R1の近傍には、領域R2の最外周と比較して金属間化合物層50および60の厚さが厚い領域が存在する。本願では、この領域は、領域R2に属するものとして考える。また、変形例として、領域R1に選択的に凹凸面を有する金属膜が形成されている場合には、この金属膜が形成された領域を領域R1、その周囲の領域を領域R2と定義することができる。 By the way, there are various examples within the range of region R1 and region R2 shown in FIG. 3. In the following, a preferred embodiment from the viewpoint of improving connection reliability will be described. First, region R1 and region R2 are adjacent to each other. Region R1 can be defined as the portion of the lower surface 10b that is in contact with the paste or sheet-like solder alloy, which is the raw material of the solder alloy layer 40, at the start of the reflow process. Region R2 can be defined as the portion surrounding region R2, and as the region that comes into contact with the paste or sheet-like solder alloy after the start of the reflow process by spreading. When controlling the thickness (height difference) of the intermetallic compound layers 50 and 60 by the contact time during the reflow process, strictly speaking, the solder alloy gradually spreads from the central portion to the outer periphery, so that there is a region in the vicinity of region R1 where the thickness of the intermetallic compound layers 50 and 60 is thicker than that of the outermost periphery of region R2. In the present application, this region is considered to belong to region R2. As a modified example, if a metal film having an uneven surface is selectively formed in region R1, the region in which this metal film is formed can be defined as region R1, and the surrounding region as region R2.

上記した定義において、金属間化合物層50および60(図2参照)の損傷を抑制するため、領域R1の範囲は大きすぎない方が好ましい。詳しくは、領域R2は領域R1を囲むように設けられ、領域R2の面積は、領域R1の面積より大きいことが好ましい。領域R2の面積を領域R1の面積よりも大きくすることにより、高低差が大きい金属間化合物層50の部分50R1および金属間化合物層60の部分60R1が、熱応力により破損することを抑制できる。 In the above definition, in order to suppress damage to the intermetallic compound layers 50 and 60 (see FIG. 2), it is preferable that the range of region R1 is not too large. More specifically, region R2 is provided so as to surround region R1, and the area of region R2 is preferably larger than the area of region R1. By making the area of region R2 larger than the area of region R1, it is possible to suppress damage caused by thermal stress to portion 50R1 of intermetallic compound layer 50 and portion 60R1 of intermetallic compound layer 60, which have a large difference in height.

理想的には、領域R1の輪郭は、円または楕円であることが好ましい。下面10bの形状が正方形の場合、円形が好ましい。また、下面10bの形状が長方形の場合、長辺に沿った方向に長径を有する楕円であることが好ましい。また、下面10bの中心から下面10bの各辺に向かって垂線(仮想線)を引いた場合、領域R1は、その垂線の全長のうち、中心側の80%の位置を通る円または楕円の内側に配置されることが好ましい。 Ideally, the contour of region R1 is preferably a circle or an ellipse. If the shape of the lower surface 10b is a square, a circle is preferable. Also, if the shape of the lower surface 10b is a rectangle, an ellipse having a major axis in the direction along the long side is preferable. Also, if a perpendicular line (imaginary line) is drawn from the center of the lower surface 10b to each side of the lower surface 10b, region R1 is preferably positioned inside the circle or ellipse that passes through a position 80% of the total length of the perpendicular line toward the center.

また、上記した定義において、図3に示す領域R1を円形換算した時の直径の長さD1は、下面10bを正方形換算した時の1辺の長さL1に対して1/3以上であることが好ましい。領域R1の面積を大きくすることにより、図8に示す亀裂CR2が発生する箇所が中央からずれた場合でも、その拡大を抑制できる。なお、後述するように、領域R1の形状は円形には限定されず、下面10bの形状は正方形には限定されないが、各領域の面積の目安を比較する場合、上記の通り換算した値で評価することができる。 In addition, in the above definition, it is preferable that the diameter length D1 of region R1 shown in FIG. 3 when converted to a circle is equal to or greater than 1/3 of the length L1 of one side when underside 10b is converted to a square. By increasing the area of region R1, it is possible to suppress the expansion of crack CR2 shown in FIG. 8 even if the location where crack CR2 occurs is shifted from the center. As will be described later, the shape of region R1 is not limited to a circle, and the shape of underside 10b is not limited to a square, but when comparing the approximate areas of each region, they can be evaluated using the values converted as described above.

また、上記した第1の故障モードおよび第2の故障モードを抑制する観点からは、金属間化合物層50の厚さは、部分50R1の平均厚さが、部分50R2の平均厚さよりも3倍以上厚いことが特に好ましい。同様に、金属間化合物層60の厚さは、部分60R1の平均厚さが、部分60R2の平均厚さよりも3倍以上厚いことが好ましい。 In addition, from the viewpoint of suppressing the above-mentioned first and second failure modes, it is particularly preferable that the average thickness of portion 50R1 of intermetallic compound layer 50 is at least three times thicker than the average thickness of portion 50R2. Similarly, it is preferable that the average thickness of portion 60R1 of intermetallic compound layer 60 is at least three times thicker than the average thickness of portion 60R2.

<変形例1>
次に、図2に示す半導体装置100の接続構造に対する変形例について説明する。図5は、図3に対する変形例である半導体装置が備える半導体チップの下面側の平面図である。本変形例では、複数の半導体チップが近距離で互いに隣り合って配置されている場合に有効な技術である。なお、以下で説明する半導体装置200は、半導体チップ10および20の下面における領域の位置関係が図3と異なっている点を除き、上記した半導体装置100と同様である。以下の説明では、必要に応じて図1~図4を参照して説明する。
<Modification 1>
Next, a modified example of the connection structure of the semiconductor device 100 shown in Fig. 2 will be described. Fig. 5 is a plan view of the underside of a semiconductor chip included in a semiconductor device which is a modified example of the semiconductor device shown in Fig. 3. This modified example is an effective technique when a plurality of semiconductor chips are arranged adjacent to each other at a close distance. The semiconductor device 200 described below is similar to the semiconductor device 100 described above, except that the positional relationship of the regions on the underside of the semiconductor chips 10 and 20 is different from that shown in Fig. 3. In the following description, Figs. 1 to 4 will be referred to as necessary.

図5に示すように、半導体装置200は、図1に示す半導体装置100と同様に、平面視において、半導体チップ10の隣に搭載される半導体チップ20を有する。半導体チップ10の下面10bは、半導体チップ20と対向する辺10s1、辺10s1の反対側の辺10s2、辺10s1および辺10s2と交差する辺10s3、および辺10s3の反対側の辺10s4を備える四角形を成す。領域R1は、辺10s2よりも辺10s1に近い位置に設けられる。言い換えれば、領域R1は、半導体チップ20に寄せて配置される。 As shown in FIG. 5, the semiconductor device 200 has a semiconductor chip 20 mounted next to the semiconductor chip 10 in a plan view, similar to the semiconductor device 100 shown in FIG. 1. The bottom surface 10b of the semiconductor chip 10 forms a quadrangle with a side 10s1 facing the semiconductor chip 20, a side 10s2 opposite the side 10s1, a side 10s3 intersecting with the sides 10s1 and 10s2, and a side 10s4 opposite the side 10s3. Region R1 is provided at a position closer to side 10s1 than side 10s2. In other words, region R1 is positioned closer to the semiconductor chip 20.

半導体チップ10および20のように、複数の半導体チップが隣り合うように配置される場合、一つの半導体チップ10が単独で配置される場合と比較して、下面10bの面内において、高温になり易い場所が変化する。半導体チップ10の外周領域は、中央領域と比較して放熱し易いことに変わりはない。しかし、中央領域のうち、辺10s1に近い領域(言い換えれば、半導体チップ20に近い領域)は、辺10s2に近い領域(言い換えれば、半導体チップ20から遠い領域)と比較して、高温になり易い。辺10s1側には別の熱源である半導体チップ20が存在することにより放熱特性が低下することがこの原因と考えられる。本実施の形態のように、領域R1が、辺10s2よりも辺10s1に近い位置に設けられる場合、図8を用いて説明した亀裂CR2が発生し易い箇所に領域R1を設けることとなる。このように、複数の半導体チップを備える半導体装置の場合、複数の半導体チップの位置関係に伴う熱の分布を考慮して、領域R1のレイアウトを規定することが好ましい。これにより、亀裂CR2が発生する箇所が拡大することを効率的に抑制することができる。 When multiple semiconductor chips are arranged adjacent to each other, such as the semiconductor chips 10 and 20, the locations on the lower surface 10b that are likely to become hot change compared to when one semiconductor chip 10 is arranged alone. The outer peripheral region of the semiconductor chip 10 is still more likely to dissipate heat than the central region. However, the central region closer to the side 10s1 (in other words, closer to the semiconductor chip 20) is more likely to become hot than the region closer to the side 10s2 (in other words, farther from the semiconductor chip 20). This is thought to be due to the presence of the semiconductor chip 20, which is another heat source, on the side 10s1 side, which reduces the heat dissipation characteristics. When the region R1 is provided at a position closer to the side 10s1 than the side 10s2, as in this embodiment, the region R1 is provided at a location where the crack CR2 described with reference to FIG. 8 is likely to occur. In this way, in the case of a semiconductor device having multiple semiconductor chips, it is preferable to specify the layout of the region R1 in consideration of the heat distribution associated with the positional relationship of the multiple semiconductor chips. This makes it possible to efficiently suppress the expansion of the location where the crack CR2 occurs.

ただし、上記した第1の故障モードに起因する亀裂CR1(図8参照)の進展を抑制する観点から、領域R1の範囲は、極端に辺10s1側に寄らないことが好ましい。理想的には、下面10bの中心から下面10bの各辺(辺10s1、10s2、10s3、および10s4)に向かって垂線(仮想線)を引いた場合、領域R1は、その垂線の全長のうち、中心側の80%の位置を通る円または楕円の内側に配置されることが好ましい。 However, from the viewpoint of suppressing the growth of the crack CR1 (see FIG. 8) caused by the first failure mode described above, it is preferable that the range of region R1 is not extremely close to side 10s1. Ideally, when a perpendicular line (imaginary line) is drawn from the center of the lower surface 10b to each side of the lower surface 10b (sides 10s1, 10s2, 10s3, and 10s4), region R1 is preferably positioned inside a circle or ellipse that passes through a position 80% of the total length of the perpendicular line toward the center.

なお、図5では半導体チップの数が2個である例を示したが、半導体チップの数は2個に限定されない。例えば、図6に示す半導体装置200の場合、6個の半導体チップ(半導体チップ10、20、10A,20A、10B、および20B)を備えている。図6は、図1に示す半導体チップが搭載される導体パターンの平面図である。図6は、半導体チップの上面側から視た平面図であるが、下面の領域R1および領域R2の範囲を示している。あるいは、図示は省略するが、4個の半導体チップが一つの半導体装置内に互いに隣り合って搭載される場合もある。このように、複数の半導体チップが互いに隣あって搭載される場合、領域R1の位置は、隣り合う半導体チップの方に寄せて配置されることが好ましい。また、図6に示す半導体チップ10Aのように、両隣に半導体チップ10および10Bが配置される場合、半導体チップ10Aの領域R1の面積が半導体チップ10の領域R1の面積よりも大きくする場合もある。半導体チップ10Aは半導体チップ10および10Bと比較して放熱され難い位置に搭載されているが、中央領域(領域R1)の面積を大きくすることにより、上記した第2の故障モードの発生を抑制できる。 5 shows an example in which the number of semiconductor chips is two, but the number of semiconductor chips is not limited to two. For example, the semiconductor device 200 shown in FIG. 6 has six semiconductor chips (semiconductor chips 10, 20, 10A, 20A, 10B, and 20B). FIG. 6 is a plan view of the conductor pattern on which the semiconductor chips shown in FIG. 1 are mounted. FIG. 6 is a plan view seen from the top side of the semiconductor chip, showing the range of regions R1 and R2 on the bottom surface. Alternatively, although not shown, four semiconductor chips may be mounted adjacent to each other in one semiconductor device. In this way, when multiple semiconductor chips are mounted adjacent to each other, it is preferable that the position of region R1 is positioned closer to the adjacent semiconductor chip. In addition, when semiconductor chips 10 and 10B are arranged on both sides, as in the semiconductor chip 10A shown in FIG. 6, the area of region R1 of semiconductor chip 10A may be larger than the area of region R1 of semiconductor chip 10. Although semiconductor chip 10A is mounted in a position where heat dissipation is more difficult than for semiconductor chips 10 and 10B, by increasing the area of the central region (region R1), the occurrence of the second failure mode described above can be suppressed.

<変形例2>
図7は、図2に対する変形例である半導体装置が備える半導体チップ周辺の拡大断面図である。本変形例では、一つの半導体チップの上面および下面に半田合金層が接続されている実施態様について説明する。
<Modification 2>
Fig. 7 is an enlarged cross-sectional view of the periphery of a semiconductor chip provided in a semiconductor device which is a modification of Fig. 2. In this modification, an embodiment in which solder alloy layers are connected to the upper and lower surfaces of one semiconductor chip will be described.

半導体装置300は、図2を用いて説明した半導体装置100の構造のうち、上面10t側の電極パッド12に半田合金層70を介して導体パターン80が接続されている点で図2に示す半導体装置100と相違する。その他の点は、図2に示す半導体装置100と同様なので、重複する説明は省略する。 The semiconductor device 300 differs from the semiconductor device 100 shown in FIG. 2 in that the conductor pattern 80 is connected to the electrode pad 12 on the upper surface 10t side via the solder alloy layer 70 in the structure of the semiconductor device 100 described using FIG. 2. The other points are the same as those of the semiconductor device 100 shown in FIG. 2, so duplicated explanations will be omitted.

半導体装置300は、金属から成り、半田合金層70を介して半導体チップ10の上面10tと接続される導体パターン(第2チップ接続部)80と、半導体チップ10の上面10tと、導体パターン80との間に配置される半田合金層70と、を有する。 The semiconductor device 300 has a conductor pattern (second chip connection portion) 80 made of metal and connected to the upper surface 10t of the semiconductor chip 10 via a solder alloy layer 70, and the solder alloy layer 70 disposed between the upper surface 10t of the semiconductor chip 10 and the conductor pattern 80.

また、半導体装置300は、半導体チップ10の上面10tと、半田合金層70との境界に形成され、上面10t側から導体パターン80側に向かう凹凸面を備える金属間化合物層55を有する。金属間化合物層55の厚さは、下面10bの領域R1(図3参照)と重なる部分55R1の平均厚さが、領域R2(図3参照)と重なる部分55R2の平均厚さよりも厚い。 The semiconductor device 300 also has an intermetallic compound layer 55 formed at the boundary between the upper surface 10t of the semiconductor chip 10 and the solder alloy layer 70, and having an uneven surface extending from the upper surface 10t side toward the conductor pattern 80 side. The thickness of the intermetallic compound layer 55 is such that the average thickness of a portion 55R1 overlapping with region R1 (see FIG. 3) of the lower surface 10b is greater than the average thickness of a portion 55R2 overlapping with region R2 (see FIG. 3).

金属間化合物層55の構造は、以下のように表現することもできる。すなわち、金属間化合物層55は、下面10bの領域R1(図3参照)と重なる部分55R1と、領域R2(図3参照)と重なる部分55R2と、を有する。金属間化合物層55の凹凸面の高低差は、下面10bの部分55R1の高低差が、部分55R2の高低差よりも大きい。半導体チップ10の上面10t側に半田合金層70を接続する場合、本変形例の構成により、半田合金層70と半導体チップ10の電極パッド12との接続界面の接続信頼性を向上させることができる。 The structure of the intermetallic compound layer 55 can also be expressed as follows. That is, the intermetallic compound layer 55 has a portion 55R1 that overlaps with region R1 (see FIG. 3) of the lower surface 10b, and a portion 55R2 that overlaps with region R2 (see FIG. 3). The height difference of the uneven surface of the intermetallic compound layer 55 is greater in portion 55R1 of the lower surface 10b than in portion 55R2. When the solder alloy layer 70 is connected to the upper surface 10t side of the semiconductor chip 10, the configuration of this modified example can improve the connection reliability of the connection interface between the solder alloy layer 70 and the electrode pad 12 of the semiconductor chip 10.

同様に、半導体装置300は、導体パターン80の下面80bと、半田合金層70との境界に形成され、下面80b側から半導体チップ10の上面10t側に向かう凹凸面を備える金属間化合物層65を有する。また、金属間化合物層65は、下面10bの領域R1(図3参照)と重なる部分65R1と、領域R2(図3参照)と重なる部分65R2と、を有する。金属間化合物層65の凹凸面の高低差は、下面10bの部分65R1の高低差が、部分65R2の高低差よりも大きい。変形例の構成により、半田合金層70と導体パターン80との接続界面の接続信頼性を向上させることができる。 Similarly, the semiconductor device 300 has an intermetallic compound layer 65 formed at the boundary between the lower surface 80b of the conductor pattern 80 and the solder alloy layer 70, and having an uneven surface from the lower surface 80b side toward the upper surface 10t side of the semiconductor chip 10. The intermetallic compound layer 65 also has a portion 65R1 that overlaps with the region R1 (see FIG. 3) of the lower surface 10b, and a portion 65R2 that overlaps with the region R2 (see FIG. 3). The height difference of the uneven surface of the intermetallic compound layer 65 is greater in the portion 65R1 of the lower surface 10b than in the portion 65R2. The configuration of the modified example can improve the connection reliability of the connection interface between the solder alloy layer 70 and the conductor pattern 80.

なお、半導体チップ10に半田合金層70を介して接続されるチップ接続部の例として、導体パターン80を取り上げて説明したが、例えば、放熱板などの部材を取り付ける場合にも有効である。放熱板の場合、図8で説明した亀裂CR1や亀裂CR2の発生および進展により、熱的な経路が分断されるので、放熱特性が低下する。上記した構造を適用することにより、放熱性の低下を抑制できる。また、図示は省略するが、例えば図6に示す複数の半導体チップのそれぞれの上面および下面に導体パターンが接続される場合もある。 Although the conductor pattern 80 has been taken up as an example of a chip connection portion connected to the semiconductor chip 10 via the solder alloy layer 70, it is also effective when attaching a component such as a heat sink. In the case of a heat sink, the occurrence and progression of the cracks CR1 and CR2 described in FIG. 8 cuts off the thermal path, resulting in a decrease in heat dissipation characteristics. By applying the above-mentioned structure, the decrease in heat dissipation characteristics can be suppressed. Although not shown, there are also cases where conductor patterns are connected to the upper and lower surfaces of each of the multiple semiconductor chips shown in FIG. 6, for example.

また、上記では、種々の変形例を説明したが、各変形例を適宜組み合わせて適用することができる。 Although various modified examples have been described above, each modified example can be applied in combination as appropriate.

以上、本実施の形態の代表的な変形例について説明したが、本発明は、上記した実施例や代表的な変形例に限定されず、発明の趣旨を逸脱しない範囲において、種々の変形例が適用できる。 The above describes typical variations of this embodiment, but the present invention is not limited to the above examples and typical variations, and various variations can be applied within the scope of the spirit of the invention.

本発明は、光学装置に利用可能である。 This invention can be used in optical devices.

2 半田合金層
3 ベース板
4 カバー
5 封止材
6 ワイヤ
7 リード
10,10A,10B,20,20A,20B 半導体チップ(半導体素子)
10b 下面(裏面)
10s1,10s2,10s3,10s4 辺
10t 上面(表面)
11 メタライズ膜
12 電極パッド
30 基板
31 絶縁基板
31b 下面
31t,32t 上面
32,32A,32B,32C,33 導体パターン
40,70 半田合金層
40R1,40R2 部分
50,55,60,65 金属間化合物層
50R1,50R2,55R1,55R2,60R1,60R2,65R1,65R2 部分
80 導体パターン(第2チップ接続部)
80b 下面
100,100C,200,300 半導体装置
CR1,CR2 亀裂
R1 領域(中央領域)
R2 領域(外周領域)
2 solder alloy layer 3 base plate 4 cover 5 sealing material 6 wire 7 leads 10, 10A, 10B, 20, 20A, 20B semiconductor chip (semiconductor element)
10b Lower surface (reverse surface)
10s1, 10s2, 10s3, 10s4 Side 10t Top surface (surface)
11 Metallized film 12 Electrode pad 30 Substrate 31 Insulating substrate 31b Lower surface 31t, 32t Upper surface 32, 32A, 32B, 32C, 33 Conductive pattern 40, 70 Solder alloy layer 40R1, 40R2 Portion 50, 55, 60, 65 Intermetallic compound layer 50R1, 50R2, 55R1, 55R2, 60R1, 60R2, 65R1, 65R2 Portion 80 Conductive pattern (second chip connection portion)
80b Lower surface 100, 100C, 200, 300 Semiconductor device CR1, CR2 Crack R1 Region (central region)
R2 area (outer peripheral area)

Claims (10)

第1面、および前記第1面の反対側の第2面を有する第1半導体チップと、
金属から成り、第1半田合金層を介して前記第1半導体チップの前記第2面と接続される第1チップ接続部と、
前記第1半導体チップの前記第2面と、前記第1チップ接続部との間に配置される前記第1半田合金層と、
前記第1半導体チップの前記第2面と、前記第1半田合金層との境界に形成され、前記第2面側から前記第1チップ接続部側に向かう凹凸面を備える第1金属間化合物層と、
を有し、
前記第2面は、前記第2面の中心を含む第1領域、および前記第2面の外周を含む第2領域を備え、
前記第1金属間化合物層の厚さは、前記第2面の第1領域と重なる第1部分の平均厚さが、前記第2領域と重なる第2部分の平均厚さよりも厚い、半導体装置。
a first semiconductor chip having a first side and a second side opposite the first side;
a first chip connection portion made of metal and connected to the second surface of the first semiconductor chip via a first solder alloy layer;
the first solder alloy layer disposed between the second surface of the first semiconductor chip and the first chip connection portion;
a first intermetallic compound layer formed at a boundary between the second surface of the first semiconductor chip and the first solder alloy layer, the first intermetallic compound layer having an uneven surface extending from the second surface side toward the first chip connection portion side;
having
the second surface includes a first region including a center of the second surface and a second region including an outer periphery of the second surface;
A semiconductor device, wherein the first intermetallic compound layer has a thickness such that an average thickness of a first portion overlapping with a first region of the second surface is greater than an average thickness of a second portion overlapping with the second region.
請求項1に記載の半導体装置において、
前記第1チップ接続部は、前記第1半導体チップを前記第1面側から視た平面視において、前記第2面の全体と対向する第3面を備え、
前記第1チップ接続部の前記第3面と、前記第1半田合金層との境界には、前記第3面側から前記第1半導体チップ側に向かう凹凸面を備える第2金属間化合物層が形成され、
前記第2金属間化合物層の厚さは、前記第2面の第1領域と重なる第3部分の平均厚さが、前記第2領域と重なる第4部分の平均厚さよりも厚い、半導体装置。
2. The semiconductor device according to claim 1,
the first chip connection portion includes a third surface that faces the entire second surface in a plan view of the first semiconductor chip seen from the first surface side,
a second intermetallic compound layer having an uneven surface extending from the third surface side toward the first semiconductor chip side is formed at a boundary between the third surface of the first chip connection portion and the first solder alloy layer,
A semiconductor device, wherein the second intermetallic compound layer has a thickness such that an average thickness of a third portion overlapping with the first region of the second surface is greater than an average thickness of a fourth portion overlapping with the second region.
請求項2に記載の半導体装置において、
前記第1半田合金層の厚さは、前記第2面の前記第2領域と重なる第5部分が、第1領域と重なる第6部分の平均厚さの平均厚さよりも厚い、半導体装置。
3. The semiconductor device according to claim 2,
A semiconductor device, wherein the thickness of the first solder alloy layer is greater in a fifth portion overlapping the second region of the second surface than in a sixth portion overlapping the first region.
請求項3に記載の半導体装置において、
前記第2領域の面積は前記第1領域の面積より大きい、半導体装置。
4. The semiconductor device according to claim 3,
A semiconductor device, wherein the area of the second region is larger than the area of the first region.
請求項4に記載の半導体装置において、
前記第1領域と前記第2領域とは互いに隣接し、
前記第1領域を円形換算した時の直径の長さは、前記第2面を正方形換算した時の1辺の長さに対して1/3以上である、半導体装置。
5. The semiconductor device according to claim 4,
The first region and the second region are adjacent to each other,
A semiconductor device, wherein a diameter of the first region when converted into a circle is 1/3 or more of a length of one side of the second surface when converted into a square.
請求項1に記載の半導体装置において、
前記第2面の第1領域と重なる第1部分の平均厚さが、前記第2領域と重なる第2部分の平均厚さよりも3倍以上厚い、半導体装置。
2. The semiconductor device according to claim 1,
A semiconductor device, wherein an average thickness of a first portion of the second surface overlapping with the first region is at least three times thicker than an average thickness of a second portion of the second surface overlapping with the second region.
請求項1に記載の半導体装置において、
前記第1半田合金層は、錫(Sn)に加え、銅(Cu)およびアンチモン(Sb)を含有し、0.7重量%以上の銅を含む、半導体装置。
2. The semiconductor device according to claim 1,
The semiconductor device, wherein the first solder alloy layer contains copper (Cu) and antimony (Sb) in addition to tin (Sn), and contains 0.7 wt % or more of copper.
請求項1に記載の半導体装置において、
平面視において、前記第1半導体チップの隣に搭載される第2半導体チップを更に有し、
前記第1半導体チップの前記第2面は、前記第2半導体チップと対向する第1辺、前記第1辺の反対側の第2辺、前記第1辺および前記第2辺と交差する第3辺、および前記第3辺の反対側の第4辺を備える四角形を成し、
前記第1領域は、前記第2辺よりも前記第1辺に近い位置に設けられる、半導体装置。
2. The semiconductor device according to claim 1,
a second semiconductor chip mounted adjacent to the first semiconductor chip in a plan view;
the second surface of the first semiconductor chip forms a quadrangle having a first side facing the second semiconductor chip, a second side opposite the first side, a third side intersecting the first side and the second side, and a fourth side opposite the third side;
The first region is provided at a position closer to the first side than to the second side.
請求項1に記載の半導体装置において、
金属から成り、第2半田合金層を介して前記第1半導体チップの前記第1面と接続される第2チップ接続部と、
前記第1半導体チップの前記第1面と、前記第2チップ接続部との間に配置される前記第2半田合金層と、
前記第1半導体チップの前記第1面と、前記第2半田合金層との境界に形成され、前記第1面側から前記第2チップ接続部側に向かう凹凸面を備える第3金属間化合物層と、
を更に有し、
前記第3金属間化合物層の厚さは、前記第1面の第1領域と重なる第3部分の平均厚さが、前記第2領域と重なる第4部分の平均厚さよりも厚い、半導体装置。
2. The semiconductor device according to claim 1,
a second chip connection portion made of metal and connected to the first surface of the first semiconductor chip via a second solder alloy layer;
the second solder alloy layer disposed between the first surface of the first semiconductor chip and the second chip connection portion;
a third intermetallic compound layer formed at a boundary between the first surface of the first semiconductor chip and the second solder alloy layer, the third intermetallic compound layer having an uneven surface extending from the first surface side toward the second chip connection portion side;
and
A semiconductor device, wherein the third intermetallic compound layer has a thickness such that an average thickness of a third portion overlapping with the first region of the first surface is greater than an average thickness of a fourth portion overlapping with the second region.
第1面、および前記第1面の反対側の第2面を有する第1半導体チップと、
金属から成り、第1半田合金層を介して前記第1半導体チップの前記第2面と接続される第1チップ接続部と、
前記第1半導体チップの前記第2面と、前記第1チップ接続部との間に配置される前記第1半田合金層と、
前記第1半導体チップの前記第2面と、前記第1半田合金層との境界に形成され、前記第2面側から前記第1チップ接続部側に向かう凹凸面を備える第1金属間化合物層と、
を有し、
前記第2面は、前記第2面の中心を含む第1領域、および前記第2面の外周を含む第2領域を備え、
前記第1金属間化合物層は、前記第2面の第1領域と重なる第1部分と、前記第2領域と重なる第2部分と、を有し、
前記第1部分における前記凹凸面の高低差は、前記第2部分における前記凹凸面の高低差より大きい、半導体装置。
a first semiconductor chip having a first side and a second side opposite the first side;
a first chip connection portion made of metal and connected to the second surface of the first semiconductor chip via a first solder alloy layer;
the first solder alloy layer disposed between the second surface of the first semiconductor chip and the first chip connection portion;
a first intermetallic compound layer formed at a boundary between the second surface of the first semiconductor chip and the first solder alloy layer, the first intermetallic compound layer having an uneven surface extending from the second surface side toward the first chip connection portion side;
having
the second surface includes a first region including a center of the second surface and a second region including an outer periphery of the second surface;
the first intermetallic compound layer has a first portion overlapping a first region of the second surface and a second portion overlapping the second region;
A semiconductor device, wherein the height difference of the uneven surface in the first portion is greater than the height difference of the uneven surface in the second portion.
JP2020090982A 2020-05-26 2020-05-26 Semiconductor Device Active JP7492375B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020090982A JP7492375B2 (en) 2020-05-26 2020-05-26 Semiconductor Device
CN202180032214.5A CN115552576A (en) 2020-05-26 2021-03-08 Semiconductor device with a plurality of semiconductor chips
PCT/JP2021/009064 WO2021240944A1 (en) 2020-05-26 2021-03-08 Semiconductor device
TW110113577A TWI763429B (en) 2020-05-26 2021-04-15 semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090982A JP7492375B2 (en) 2020-05-26 2020-05-26 Semiconductor Device

Publications (2)

Publication Number Publication Date
JP2021190447A JP2021190447A (en) 2021-12-13
JP7492375B2 true JP7492375B2 (en) 2024-05-29

Family

ID=78723265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090982A Active JP7492375B2 (en) 2020-05-26 2020-05-26 Semiconductor Device

Country Status (4)

Country Link
JP (1) JP7492375B2 (en)
CN (1) CN115552576A (en)
TW (1) TWI763429B (en)
WO (1) WO2021240944A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159994A (en) 2011-04-12 2011-08-18 Fuji Electric Co Ltd Semiconductor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572627B2 (en) * 2004-08-27 2010-11-04 富士電機システムズ株式会社 Semiconductor device
JP4569423B2 (en) * 2005-08-31 2010-10-27 株式会社日立製作所 Manufacturing method of semiconductor device
JP4765098B2 (en) * 2005-10-13 2011-09-07 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP2006222470A (en) * 2006-05-29 2006-08-24 Renesas Technology Corp Semiconductor device and manufacturing method thereof
JP5331322B2 (en) * 2007-09-20 2013-10-30 株式会社日立製作所 Semiconductor device
JP2011014705A (en) * 2009-07-01 2011-01-20 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP5893528B2 (en) * 2012-07-27 2016-03-23 新日鉄住金マテリアルズ株式会社 Lead-free solder bump bonding structure
JP6519673B2 (en) * 2013-02-28 2019-05-29 日亜化学工業株式会社 Semiconductor light emitting device
WO2016079881A1 (en) * 2014-11-21 2016-05-26 株式会社日立製作所 Semiconductor power module, method for manufacturing same and mobile object
WO2017217145A1 (en) * 2016-06-16 2017-12-21 富士電機株式会社 Solder bonded part
JP6966379B2 (en) * 2018-04-23 2021-11-17 株式会社 日立パワーデバイス Semiconductor devices and their manufacturing methods
JP7020325B2 (en) * 2018-07-12 2022-02-16 三菱電機株式会社 Semiconductor devices, power conversion devices, and methods for manufacturing semiconductor devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159994A (en) 2011-04-12 2011-08-18 Fuji Electric Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2021190447A (en) 2021-12-13
TW202145493A (en) 2021-12-01
CN115552576A (en) 2022-12-30
WO2021240944A1 (en) 2021-12-02
TWI763429B (en) 2022-05-01

Similar Documents

Publication Publication Date Title
JP4569473B2 (en) Resin-encapsulated power semiconductor module
JP6234630B2 (en) Power module
JP5542567B2 (en) Semiconductor device
JP3333409B2 (en) Semiconductor module
EP3157053B1 (en) Power module
JP2007234690A (en) Power semiconductor module
KR102228945B1 (en) Semiconductor package and method of fabricating the same
JP2019216214A (en) Semiconductor device, lead frame and method of manufacturing semiconductor device
JP5899952B2 (en) Semiconductor module
CN117747445A (en) Assembling method and structure of high-temperature power module
JP7437582B2 (en) Material reduction metal plate on power semiconductor chip
JPH11265976A (en) Power-semiconductor module and its manufacture
JP4645406B2 (en) Semiconductor device
CN111834307B (en) Semiconductor module
CN113224022A (en) Semiconductor module and method for manufacturing semiconductor module
JP7492375B2 (en) Semiconductor Device
JP2015026667A (en) Semiconductor module
JP2013254810A (en) Metal substrate with feedthrough terminal and surface-mounted device using the same
JP2015115349A (en) Semiconductor device
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP2018116960A (en) Power semiconductor device
JP4861200B2 (en) Power module
WO2020201005A1 (en) Semiconductor module and method for manufacturing it
JP7668958B2 (en) Semiconductor device and method for manufacturing the same
JP7570298B2 (en) Semiconductor Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240517

R150 Certificate of patent or registration of utility model

Ref document number: 7492375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350