JP7440861B2 - Silicon carbide semiconductor device and its manufacturing method - Google Patents
Silicon carbide semiconductor device and its manufacturing method Download PDFInfo
- Publication number
- JP7440861B2 JP7440861B2 JP2020026991A JP2020026991A JP7440861B2 JP 7440861 B2 JP7440861 B2 JP 7440861B2 JP 2020026991 A JP2020026991 A JP 2020026991A JP 2020026991 A JP2020026991 A JP 2020026991A JP 7440861 B2 JP7440861 B2 JP 7440861B2
- Authority
- JP
- Japan
- Prior art keywords
- ion implantation
- layer
- plane
- implantation
- silicon carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 35
- 239000004065 semiconductor Substances 0.000 title claims description 32
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000005468 ion implantation Methods 0.000 claims description 84
- 238000000034 method Methods 0.000 claims description 28
- 239000013078 crystal Substances 0.000 claims description 13
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 239000012535 impurity Substances 0.000 description 38
- 238000002513 implantation Methods 0.000 description 32
- 239000000758 substrate Substances 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 18
- 230000004888 barrier function Effects 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 230000005465 channeling Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 229910021332 silicide Inorganic materials 0.000 description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 231100000987 absorbed dose Toxicity 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000004157 plasmatron Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
特許法第30条第2項適用 第66回 応用物理学会春季学術講演会の講演予稿集(9a-PB3-6)としてWEB公開(https://confit.atlas.jp/guide/event/jsap2019s/subject/9a-PB3-6/advanced) 第66回 応用物理学会春季学術講演会にて発表 International Conference on Silicon Carbide and Related Materials 2019 予稿集に掲載 International Conference on Silicon Carbide and Related Materials 2019にて発表 先進パワー半導体分科会誌 第6回講演会 予稿集に掲載 先進パワー半導体分科会誌 第6回講演会にて発表Application of Article 30,
本開示は、炭化珪素半導体装置及びその製造方法に関する。 The present disclosure relates to a silicon carbide semiconductor device and a method for manufacturing the same.
半導体装置は様々な用途に用いられている。近年では、200℃以上の高温の環境や、吸収線量が数千Gy~数万Gyという環境においても作動する半導体装置が求められている。しかし、従来のシリコン(Si)半導体は、このような環境において使用することは困難であり、新たな半導体材料が検討されている。中でも、炭化珪素(SiC)半導体は、耐熱性及び放射線耐性に優れた半導体材料として期待されている。 Semiconductor devices are used for various purposes. In recent years, there has been a demand for semiconductor devices that can operate in high-temperature environments of 200° C. or higher and environments with absorbed doses of several thousand Gy to tens of thousands of Gy. However, it is difficult to use conventional silicon (Si) semiconductors in such an environment, and new semiconductor materials are being considered. Among these, silicon carbide (SiC) semiconductors are expected to be a semiconductor material with excellent heat resistance and radiation resistance.
半導体装置を製造するには、イオン注入の技術が不可欠である。炭化珪素半導体の場合、イオン注入後の結晶性の回復がシリコン半導体のように容易ではない等の炭化珪素半導体に特有の問題がある。このため、イオン注入を炭化珪素半導体に対して最適化しようとする試みがなされている。例えば、特許文献1においては、イオンの注入の際の面方位を変えることにより、炭化珪素の結晶格子に対するダメージを低減することが検討されている。
Ion implantation technology is essential to manufacturing semiconductor devices. In the case of silicon carbide semiconductors, there are problems unique to silicon carbide semiconductors, such as recovery of crystallinity after ion implantation is not as easy as in silicon semiconductors. For this reason, attempts have been made to optimize ion implantation for silicon carbide semiconductors. For example,
炭化珪素半導体に対するイオン注入には、結晶に対するダメージの問題だけでなく、注入深さの制御性が悪いという問題もある。本開示の課題は、炭化珪素半導体に対するイオン注入の注入深さの制御性を向上し、高性能の炭化珪素半導体装置を容易に製造できるようにすることである。 Ion implantation into silicon carbide semiconductors has not only the problem of damage to the crystal, but also the problem of poor controllability of the implantation depth. An object of the present disclosure is to improve the controllability of the depth of ion implantation into a silicon carbide semiconductor, and to easily manufacture a high-performance silicon carbide semiconductor device.
本開示の炭化珪素半導体装置の製造方法の一態様は、4H-SiC結晶層にイオン注入を行いイオン注入層を形成する工程を備え、イオン注入は、{1-100}面に対して[0001]から+10°又は-10°傾けたイオン注入角、{1-210}面に対して[0001]から+3°又は-3°傾けたイオン注入角、又は{1-100}面と{1-210}面との中間の面に対して[0001]から+4°又は-4°傾けたイオン注入角で行う。 One embodiment of the method for manufacturing a silicon carbide semiconductor device of the present disclosure includes a step of performing ion implantation into a 4H-SiC crystal layer to form an ion implantation layer, and the ion implantation is performed with respect to the {1-100} plane. ], an ion implantation angle tilted +10° or -10° from {1-210} plane, an ion implantation angle tilted +3° or -3° from [0001] with respect to {1-100} plane, or {1-100} plane and {1- The ion implantation is performed at an ion implantation angle tilted by +4° or −4° from [0001] with respect to the plane intermediate between the ion implantation and the [0001] plane.
炭化珪素半導体装置の製造方法の一態様は、イオン注入層を貫通するトレンチを形成して、イオン注入層を互いに分離されたソース領域とドレイン領域とする工程と、トレンチにゲート絶縁膜を形成する工程と、ゲート絶縁膜の上にゲート電極を形成する工程と、ソース領域及びドレイン領域にそれぞれオーミック接触したオーミック電極を形成する工程とをさらに備えていてもよい。 One aspect of the method for manufacturing a silicon carbide semiconductor device includes forming a trench penetrating an ion implantation layer to use the ion implantation layer as a source region and a drain region separated from each other, and forming a gate insulating film in the trench. The method may further include a step of forming a gate electrode on the gate insulating film, and a step of forming ohmic electrodes in ohmic contact with the source region and the drain region, respectively.
本開示の炭化珪素半導体装置の一態様は、4H-SiC結晶層と、4H-SiC結晶層に形成された少なくとも1つの不純物注入層とを備え、不純物注入層は、設計深さよりも2.14倍深い位置における不純物濃度が、設計深さ範囲における最も高い不純物濃度の20分の1以下である。 One embodiment of the silicon carbide semiconductor device of the present disclosure includes a 4H-SiC crystal layer and at least one impurity implantation layer formed in the 4H-SiC crystal layer, and the impurity implantation layer has a depth 2.14 mm below the design depth. The impurity concentration at twice the depth is 1/20 or less of the highest impurity concentration in the design depth range.
炭化珪素半導体装置の一態様において、4H-SiC結晶層に設けられたトレンチと、トレンチにゲート絶縁膜を介して設けられたゲート電極と、不純物注入層とオーミック接触したオーミック電極とをさらに備え、不純物注入層は、トレンチを挟んで両側に設けられていてもよい。 One embodiment of the silicon carbide semiconductor device further includes a trench provided in the 4H-SiC crystal layer, a gate electrode provided in the trench via a gate insulating film, and an ohmic electrode in ohmic contact with the impurity injection layer, The impurity implantation layer may be provided on both sides of the trench.
本開示の半導体装置の製造方法によれば、注入深さの制御性が向上し、高性能の炭化珪素半導体装置を容易に製造することができる。 According to the method for manufacturing a semiconductor device of the present disclosure, controllability of implantation depth is improved, and a high-performance silicon carbide semiconductor device can be easily manufactured.
格子面の記号において、負の指数については、結晶学上、”-”(バー)を数字の上に付けて表すことになっているが、本開示においては明細書作成の都合上、数字の前に負号を付けて表す場合がある。 In terms of lattice plane symbols, negative exponents are represented by adding a "-" (bar) above the number in terms of crystallography, but in this disclosure, for convenience of writing the specification, the number is not shown. Sometimes expressed with a negative sign in front.
本開示の炭化珪素(SiC)半導体装置の製造方法は、4H-SiC結晶層にイオン注入を行いイオン注入層を形成する工程を備えている。イオン注入層を形成する工程において、イオン注入は{1-100}面に対して[0001]から+10°又は-10°傾けたイオン注入角、{1-210}面に対して[0001]から+3°又は-3°傾けたイオン注入角、又は{1-100}面と{1-210}面との中間の面に対して[0001]から+4°又は-4°傾けたイオン注入角で行う。なお、この角度は±1°程度のずれを許容する。 A method of manufacturing a silicon carbide (SiC) semiconductor device according to the present disclosure includes a step of implanting ions into a 4H-SiC crystal layer to form an ion implantation layer. In the process of forming an ion implantation layer, ion implantation is performed at an ion implantation angle tilted by +10° or -10° from [0001] with respect to the {1-100} plane, and from [0001] with respect to the {1-210} plane. At an ion implantation angle tilted by +3° or -3°, or by an ion implantation angle tilted by +4° or -4° from [0001] with respect to the intermediate plane between the {1-100} plane and the {1-210} plane. conduct. Note that this angle allows a deviation of approximately ±1°.
イオン注入層は、設計深さ範囲の領域に設計された濃度で不純物が存在し、範囲外において不純物濃度が急激に減衰することが好ましい。理想的なイオン注入層を形成するために、注入イオン濃度、注入エネルギー及び基板の材質等のパラメータを用いたシミュレーションを行い、イオン注入の条件を決定する。しかし、実際の不純物の深さ方向の濃度プロファイルが、シミュレーションの結果から大きくずれて、半導体装置の特性を大きく乱す場合がある。本願発明者らは、ラザフォード後方散乱法における後方散乱イオン数の急激な低下(ディップ)が生じない角度範囲でイオン注入を行うことにより、不純物の深さ方向の濃度プロファイルをシミュレーション結果に近づけることができることを見いだした。 In the ion-implanted layer, it is preferable that impurities exist at a designed concentration in a region within a designed depth range, and the impurity concentration sharply attenuates outside the range. In order to form an ideal ion implantation layer, ion implantation conditions are determined by performing a simulation using parameters such as implantation ion concentration, implantation energy, and substrate material. However, the actual concentration profile of impurities in the depth direction may deviate greatly from the simulation results, and the characteristics of the semiconductor device may be greatly disturbed. The inventors of the present application have found that by performing ion implantation in an angular range that does not cause a sharp drop (dip) in the number of backscattered ions in the Rutherford backscattering method, it is possible to bring the concentration profile of impurities in the depth direction closer to the simulation results. I found out what I can do.
具体的には、{0-100}面に平行な方向の場合、[0001]から+10°又は-10°において±1°程度のディップがほとんど生じない範囲が存在する。このため、{1-100}面に対して[0001]から+10°又は-10°傾けたイオン注入角でイオン注入を行うことにより、イオンの注入深さの制御性が向上し、設計値に近い理想的な濃度プロファイルを有するイオン注入層を形成することができる。 Specifically, in the case of a direction parallel to the {0-100} plane, there is a range in which a dip of approximately ±1° hardly occurs at +10° or −10° from [0001]. Therefore, by performing ion implantation at an ion implantation angle tilted +10° or -10° from [0001] with respect to the {1-100} plane, the controllability of the ion implantation depth is improved and the depth is adjusted to the design value. An ion-implanted layer having a near ideal concentration profile can be formed.
同様のディップがほとんど生じない範囲は、{1-210}面に平行な方向において[0001]から+3°又は-3°と、{1-100}面と{1-210}面との中間の面に平行な方向において[0001]から+4°又は-4°においても存在する。このため、イオン注入角を、{1-210}面に対して[0001]から+3°又は-3°傾けた角度、又は{1-100}面と{1-210}面との中間の面に対して[0001]から+4°又は-4°傾けた角度とすることもできる。 The range in which a similar dip hardly occurs is between +3° or -3° from [0001] in the direction parallel to the {1-210} plane, and between the {1-100} plane and the {1-210} plane. It also exists at +4° or −4° from [0001] in the direction parallel to the plane. For this reason, the ion implantation angle should be set at an angle of +3° or -3° from [0001] with respect to the {1-210} plane, or an intermediate plane between the {1-100} plane and the {1-210} plane. It is also possible to set the angle to +4° or −4° from [0001].
イオン注入角をこのような値とすることにより、設計注入深さよりも2.14倍深い位置における不純物濃度を、従来の{1-100}面に対して[0001]から+4°又は-4°傾けた注入角の場合と比べて1/6以下にすることができる。例えば、設計注入深さが70nmの場合は、2.14倍深い深さ150nmの位置における不純物濃度を、従来の1/6以下にすることができる。 By setting the ion implantation angle to such a value, the impurity concentration at a position 2.14 times deeper than the designed implantation depth can be adjusted by +4° or -4° from [0001] with respect to the conventional {1-100} plane. The injection angle can be reduced to 1/6 or less compared to the case of an inclined injection angle. For example, when the designed implantation depth is 70 nm, the impurity concentration at a depth of 150 nm, which is 2.14 times deeper, can be reduced to 1/6 or less of the conventional level.
また、設計値注入深さよりも2.14倍深い位置における不純物濃度を、設計深さ範囲内における最も高い不純物濃度の好ましくは20分の1以下、より好ましくは50分の1以下とすることができる。例えば、設計注入深さを70nmとしてイオン注入層を形成する場合に、深さ150nmの位置における不純物濃度を、表面から70nmまでの範囲における最も高い不純物濃度の好ましくは20分の1以下、より好ましくは50分の1以下とすることができる。 Further, the impurity concentration at a position 2.14 times deeper than the design value implantation depth can be preferably set to 1/20 or less, more preferably 1/50 or less of the highest impurity concentration within the design depth range. can. For example, when forming an ion implantation layer with a designed implantation depth of 70 nm, the impurity concentration at a depth of 150 nm is preferably 1/20 or less of the highest impurity concentration in the range from the surface to 70 nm, and more preferably. can be reduced to 1/50 or less.
本実施形態のイオン注入層の形成方法は、深さ方向における不純物濃度の減衰が大きく理想的な不純物プロファイルを容易に実現できるため、図1に示すようなトレンチMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)の製造において有用である。 The method for forming the ion-implanted layer of this embodiment has a large attenuation of the impurity concentration in the depth direction and can easily realize an ideal impurity profile. Transistors).
図1に示すトレンチMOSFETは、4H-SiC単結晶からなる基板101にイオン注入により形成されたイオン注入層であるソース領域112及びドレイン領域111を有している。ソース領域112とドレイン領域111との間には、トレンチが設けられている。基板101の上には、ソース領域112、ドレイン領域111及びトレンチを露出する開口部を有する絶縁膜116が形成されている。
The trench MOSFET shown in FIG. 1 has a
トレンチにはドライ酸化膜であるゲート絶縁膜115を介してゲート電極123が形成されている。ソース領域112及びドレイン領域111の上には、それぞれシリサイド層125がオーミック接触するように形成され、シリサイド層125の上には金属層126が形成されている。ソース領域112の上に形成されたシリサイド層125及び金属層126はソース電極122として機能し、ドレイン領域111の上に形成されたシリサイド層125及び金属層126はドレイン電極121として機能する。
A
トレンチMOSFETは、例えば、図2に示すように、基板101に注入マスクとなる絶縁膜117を形成した後、イオン注入を行いソース領域112及びドレイン領域111となるイオン注入層113を形成する。イオン注入は、{1-100}面に対して[0001]から+10°又は-10°傾けたイオン注入角により行う。また、ダメージの低減のために、例えば500℃での高温イオン注入が好ましい。この後、カーボンキャップ層118を形成してアニールを行い不純物の活性化及び結晶性の回復を行う。アニールは、例えば1700℃で5分間とすることができる。
In the trench MOSFET, for example, as shown in FIG. 2, an insulating
次に、イオン注入層113を露出する開口部を有する絶縁膜116を形成した後、絶縁膜116をマスクとしてトレンチを形成してイオン注入層113をソース領域112とドレイン領域111とに分離する。この後、例えば1150℃でドライ酸化を行い、トレンチ部分にゲート絶縁膜115を形成する。この後、絶縁膜116にソース領域112及びドレイン領域111を露出する開口部を形成し、ソース領域112及びドレイン領域111にシリサイド層125を形成する。この後、アルミニウム層を形成し、パターニングして、ソース電極122、ドレイン電極121及びゲート電極123を形成する。
Next, an insulating
トレンチMOSFETにおいてソース領域112及びドレイン領域111となるイオン注入層113の深さ方向の不純物プロファイルは非常に重要である。不純物が設計位置よりも深い位置にまで注入されてしまうと、トレンチを形成してもソース領域112とドレイン領域111とが十分に分離されず、ゲート電極123の下側においてリークが発生して、閾値電圧が設計値よりも上昇してしまう。トレンチを深くすれば、閾値電圧を下げることが可能であるが、設計値よりもトレンチを深くすると寄生容量が増加して動作速度が低下してしまう。また、イオン注入層113が設計値よりも深い位置まで拡がってしまうと、イオン注入層113における不純物濃度が低下してしまうという問題もある。
The impurity profile in the depth direction of the ion-implanted
本実施形態のイオン注入層の形成方法を用いることにより、イオン注入層113が設計値よりも深い位置に拡がることを抑え、設計値と近い濃度プロファイルを実現することができる。これにより、トレンチMOSFTにおいて、ゲート電極123の下側においてリークが発生しにくくして、閾値電圧のずれを生じにくくすることができる。なお、{1-210}面に対して[0001]から+3°又は-3°傾けたイオン注入角、又は{1-100}面と{1-210}面との中間の面に対して[0001]から+4°又は-4°傾けたイオン注入角でイオン注入層113のイオン注入を行うこともできる。
By using the ion-implanted layer forming method of this embodiment, it is possible to prevent the ion-implanted
本実施形態のイオン注入層の形成方法は、原理的にp型不純物であるアルミニウム及びホウ素、n型不純物である窒素及びリンのいずれにおいても不純物プロファイルを理想型に近づけることができる。このため、p型のイオン注入層及びn型のイオン注入層のいずれの形成にも有用である。また、分子クラスターのイオンではなく、原子のイオンを注入しても不純物プロファイルの制御が容易であり、炭化珪素結晶にダメージが小さいイオン注入を行うことができる。 The method for forming an ion-implanted layer of this embodiment can, in principle, bring the impurity profile close to an ideal type for both aluminum and boron, which are p-type impurities, and nitrogen and phosphorus, which are n-type impurities. Therefore, it is useful for forming both a p-type ion implantation layer and an n-type ion implantation layer. Further, even if atomic ions are implanted instead of molecular cluster ions, the impurity profile can be easily controlled, and the ion implantation can be performed with less damage to the silicon carbide crystal.
本実施形態のイオン注入層の形成方法は、トレンチMOSFETに限らず、イオン注入層を有する種々の半導体装置の製造に用いることができる。例えば、図3に示すような縦型MOSFETの製造に用いることもできる。図3に示す縦型のMOSFETは、n+型の4H-SiCからなる基板131の表面上に、n-型のドリフト層132がエピタキシャル成長により形成されている。ドリフト層132の表面側にはイオン注入によりp型ウェル133及びn+型のソース領域134が設けられており、ソース領域134の上にはソース電極141が形成されている。ソース領域134を跨ぐようにゲート絶縁膜135を介してゲート電極143が形成されている。基板131の裏面の上には、オーミック電極であるドレイン電極142が形成されている。
The method for forming an ion implantation layer of this embodiment can be used not only for manufacturing trench MOSFETs but also for manufacturing various semiconductor devices having ion implantation layers. For example, it can also be used to manufacture a vertical MOSFET as shown in FIG. In the vertical MOSFET shown in FIG. 3, an n -
本実施形態のイオン注入層の形成方法は、イオン注入層であるp型ウェル133及びソース領域134の形成に用いることができる。特にソース領域134の形成に、本実施形態のイオン注入法の形成方法を用いることにより、ソース領域134が深くなりすぎないように制御することが容易にできる。
The method for forming an ion implantation layer of this embodiment can be used to form the p-
本実施形態のイオン注入層の形成方法は、図4に示すような絶縁ゲートバイポーラトランジスタ(IGBT)の製造に用いることもできる。図4に示すIGBTは、例えばp+型の4H-SiCからなる基板151の表面上に、n-型のドリフト層152がエピタキシャル成長により形成されており、ドリフト層152の表面側にはp型ウェル153がイオン注入により形成されている。p型ウェル153には、n+型のエミッタ領域154がイオン注入により形成されており、エミッタ領域154の上にはエミッタ電極161が形成されている。エミッタ領域154を跨ぐようにゲート絶縁膜155を介してゲート電極163が形成されている。基板151の裏面の上には、コレクタ電極162が形成されている。
The method for forming an ion implantation layer of this embodiment can also be used for manufacturing an insulated gate bipolar transistor (IGBT) as shown in FIG. 4. In the IGBT shown in FIG. 4, an n -
本実施形態のイオン注入層の形成方法は、イオン注入層であるp型ウェル153及びエミッタ領域154の形成に用いることができる。特にエミッタ領域154の形成に、本実施形態のイオン注入法の形成方法を用いることにより、エミッタ領域154が深くなりすぎないように制御することが容易にできる。
The method for forming an ion implantation layer of this embodiment can be used to form the p-
本実施形態のイオン注入層の形成方法は、図5に示すようなPNダイオードの製造に用いることもできる。図5において、n+型の4H-SiCからなる基板171の上には、n-型のエピタキシャル層172が形成され、エピタキシャル層172の上部にはイオン注入によりp+型層173が形成されている。エピタキシャル層172の上には、p+型層を露出する開口部を有するシリコン酸化膜175が形成されており、開口部にはアノード電極178が形成されている。基板171の裏面にはカソード電極179が形成されている。p+型層173の形成に、本実施形態のイオン注入法の形成方法を用いることにより、p+型層173が深くなりすぎないように制御することが容易にできる。
The method for forming an ion implantation layer of this embodiment can also be used to manufacture a PN diode as shown in FIG. In FIG. 5, an n -
本実施形態のイオン注入層の形成方法は、図6に示すようなショットキーバリアダイオードの製造に用いることもできる。図6において、n+型の4H-SiCからなる基板181の上には、n-型のエピタキシャル層182が形成され、エピタキシャル層182の上部にはイオン注入によりp+型層183が形成されている。エピタキシャル層182の上には、p+型層を露出する開口部を有するシリコン酸化膜185が形成されており、開口部にはショットキー電極188が形成されている。基板181の裏面にはオーミック電極189が形成されている。p+型層183に代えて、図7に示すようなジャンクションバリア構造184を形成することもできる。本実施形態のイオン注入法の形成方法を用いることにより、p+型層183又はジャンクションバリア構造184が深くなりすぎないように制御することが容易にできる。
The method for forming an ion implantation layer of this embodiment can also be used to manufacture a Schottky barrier diode as shown in FIG. In FIG. 6, an n -
これらに限らず、4H-SiC結晶層にイオン注入層を形成するあらゆる場合に本実施形態のイオン注入層の形成方法を用いることができる。なお、イオンを注入する4H-SiC結晶層は、基板であっても、基板の上に形成したエピタキシャル成長層であってもよい。 The method for forming an ion implantation layer of this embodiment can be used not only in these cases but also in any case where an ion implantation layer is formed in a 4H-SiC crystal layer. Note that the 4H-SiC crystal layer into which ions are implanted may be the substrate or an epitaxially grown layer formed on the substrate.
本開示のイオン注入層の形成方法について、実施例を用いてさらに詳細に説明する。以下の実施例は例示であり、権利範囲の限定を意図するものではない。 The method for forming an ion-implanted layer according to the present disclosure will be described in more detail using Examples. The following examples are illustrative and are not intended to limit the scope of rights.
<ラザフォード後方散乱法によるチャネリング測定>
[0001]から傾けた注入角でヘリウムの注入を行いラザフォード後方散乱法によりチャネリングを測定した。注入加速電圧を2MeVとして、図8におけるライン1、ライン2及びライン3沿って角度を傾けて散乱強度を測定した。
<Channeling measurement using Rutherford backscattering method>
Helium was injected at an injection angle tilted from [0001], and channeling was measured by the Rutherford backscattering method. The scattering intensity was measured at an inclined angle along
図9に示すように{1-100}面に平行となる方向であるライン1の場合、通常のイオン注入において用いられる-4°付近には、後方散乱イオン数が急激に低下するディップが認められる。ディップが認められる位置においてはイオン注入の際にチャネリングが生じ、深い位置まで不純物が拡がる可能性が高い。一方、-10±1°の範囲には、ディップが認められず、注入角度がずれることを考慮しても、チャネリングを生じにくくできると予測される。
As shown in Figure 9, in the case of
{1-210}面に平行となる方向であるライン2の場合は、-3±1°の範囲、{1-100}面と{1-210}面との中間の面に平行となる方向であるライン3の場合は、-4±1°の範囲において、後方散乱イオン数の急激な低下が認められないため、この範囲においても、チャネリングを生じにくくできると予測される。
In the case of
また、後方散乱イオン数のプロファイルは、対称となるため、ライン1においては+10°、ライン2においては+3°、ライン3においては+4°においても同様にチャネリングを生じにくくできると予測される。
Furthermore, since the profile of the number of backscattered ions is symmetrical, it is predicted that channeling can be made similarly less likely to occur at +10° in
<不純物濃度プロファイルの測定>
4H-SiC単結晶基板に、イオン注入を行い、深さ方向の不純物濃度を二次イオン質量分析(SIMS)法により測定した。イオン注入は、設計注入深さが70nmとなるようにシミュレーションにより条件を決定した。条件決定のシミュレーションは、シミュレーションソフトウエアにSRIM2008を用いて行った。具体的な注入条件は、アルミニウム原子をイオン種として、注入深さを70nm、注入濃度を4×1020(atoms/cm3)とする多段注入で行い、多段注入の条件は、加速エネルギー55keVで注入量2.40×1015/cm2、加速エネルギー25keVで注入量7.00×1014/cm2、加速エネルギー12keVで注入量3.20×1013/cm2である。SIMSの測定は、アルバックファイ製2次イオン質量分析装置SIMS6650を使用し、一次イオンガンにはO2デュオプラズマトロンイオン銃を用いた。
<Measurement of impurity concentration profile>
Ions were implanted into a 4H-SiC single crystal substrate, and the impurity concentration in the depth direction was measured by secondary ion mass spectrometry (SIMS). Conditions for ion implantation were determined by simulation so that the designed implantation depth was 70 nm. The simulation for determining the conditions was performed using SRIM2008 as simulation software. The specific implantation conditions were multistage implantation using aluminum atoms as the ion species, implantation depth of 70 nm, and implantation concentration of 4×10 20 (atoms/cm 3 ). The implantation amount was 2.40×10 15 /cm 2 , the implantation amount was 7.00×10 14 /cm 2 at acceleration energy of 25 keV, and the implantation amount was 3.20×10 13 /cm 2 at acceleration energy of 12 keV. For SIMS measurements, a secondary ion mass spectrometer SIMS6650 manufactured by ULVAC Phi was used, and an O2 Duo Plasmatron ion gun was used as the primary ion gun.
図10に示すように、ライン1の-4°に対応する、{1-100}面に対して[0001]から-4°傾けてイオン注入を行った場合、深さ80nm程度から、不純物濃度がシミュレーションによる理想的なプロファイルとのずれが大きくなり始め、設計注入深さの2.14倍である150nmの位置における不純物濃度は、6×1019cm-3程度となっている。
As shown in FIG. 10, when ion implantation is performed at a tilt of -4° from [0001] with respect to the {1-100} plane, which corresponds to -4° of
一方、ライン1の-10°に対応する、{1-100}面に対して[0001]から-10°傾けてイオン注入を行った場合、深さ100nm程度までの不純物濃度は、シミュレーションによる理想的なプロファイルと大きく異なっていない。設計注入深さである70nmよりも深い位置においてずれが次第に拡大するが、150nmにおける不純物濃度は1×1019cm-3程度であり、-4°の場合の約1/6であった。
On the other hand, if ions are implanted at a tilt of -10° from [0001] to the {1-100} plane, which corresponds to -10° on
また、-10°の場合、設計注入深さである70nmまでの範囲における不純物濃度の最高値は6×1020cm-3程度であり、設計注入深さの2.14倍である150nmにおける不純物濃度は、最高値の1/50以下となった。一方、-4°の場合、150nmにおける不純物濃度は最高値の約1/10であり、不純物濃度の十分な減衰が生じていない。 In addition, in the case of -10°, the maximum impurity concentration in the range up to the design implantation depth of 70nm is about 6×10 20 cm -3 , and the impurity concentration at 150nm, which is 2.14 times the design implantation depth, is about 6×10 20 cm -3. The concentration was 1/50 or less of the maximum value. On the other hand, in the case of −4°, the impurity concentration at 150 nm is about 1/10 of the maximum value, and sufficient attenuation of the impurity concentration does not occur.
<閾値電圧の比較>
図1に示すp型のトレンチMOSFETを作成したところ、{1-100}面に対して[0001]から-10°傾けてイオン注入を行った場合、閾値電圧は-4Vとなり、ノーマリーオフを実現できた。一方、{1-100}面に対して[0001]から-4°傾けてイオン注入を行った場合、閾値電圧は+9Vとなり、ノーマリーオフを実現できなかった。閾値電圧はドレイン電圧を-100mV、ソース電圧を0Vとし、ゲート電圧を変化させることで測定を行った。
<Comparison of threshold voltages>
When the p-type trench MOSFET shown in Figure 1 was fabricated, when ions were implanted at an angle of -10° from [0001] with respect to the {1-100} plane, the threshold voltage was -4V, and the normally-off state was I was able to make it happen. On the other hand, when ion implantation was performed at an angle of −4° from [0001] with respect to the {1-100} plane, the threshold voltage was +9V, and normally-off could not be realized. The threshold voltage was measured by setting the drain voltage to -100 mV, the source voltage to 0 V, and changing the gate voltage.
なお、トレンチ深さは160nm、ゲート絶縁膜厚は20nm、ゲート長は5μm、ゲート幅は10μmとした。イオン注入層の形成は、アルミニウム原子をイオン種として形成し、設計注入深さを70nm、注入濃度を4×1020atoms/cm3とする多段注入で行った。多段注入の条件は、加速エネルギー55keVで注入量2.40×1015/cm2、加速エネルギー25keVで注入量7.00×1014/cm2、加速エネルギー12keVで注入量3.20×1013/cm2である。 Note that the trench depth was 160 nm, the gate insulating film thickness was 20 nm, the gate length was 5 μm, and the gate width was 10 μm. The ion implantation layer was formed by multistage implantation using aluminum atoms as ion species, with a designed implantation depth of 70 nm and an implantation concentration of 4×10 20 atoms/cm 3 . The conditions for multi-stage implantation were: acceleration energy of 55 keV and implantation amount of 2.40×10 15 /cm 2 , acceleration energy of 25 keV and implantation amount of 7.00×10 14 /cm 2 , acceleration energy of 12 keV and implantation amount of 3.20×10 13 / cm2 .
本開示の炭化珪素半導体装置の製造方法は、注入深さの制御性が高く、高性能の炭化珪素半導体装置を容易に製造することができ、半導体装置の分野において有用である。 The method for manufacturing a silicon carbide semiconductor device of the present disclosure has high controllability of implantation depth, can easily manufacture a high-performance silicon carbide semiconductor device, and is useful in the field of semiconductor devices.
101 基板
111 ドレイン領域
112 ソース領域
113 イオン注入層
115 ゲート絶縁膜
116 絶縁膜
117 絶縁膜
118 カーボンキャップ層
121 ドレイン電極
122 ソース電極
123 ゲート電極
125 シリサイド層
126 金属層
131 基板
132 ドリフト層
133 p型ウェル
134 ソース領域
135 ゲート絶縁膜
141 ソース電極
142 ドレイン電極
143 ゲート電極
151 基板
152 ドリフト層
153 p型ウェル
154 エミッタ領域
155 ゲート絶縁膜
161 エミッタ電極
162 コレクタ電極
163 ゲート電極
171 基板
172 エピタキシャル層
173 p+型層
175 シリコン酸化膜
178 アノード電極
179 カソード電極
181 基板
182 エピタキシャル層
183 型層
184 ジャンクションバリア構造
185 シリコン酸化膜
188 ショットキー電極
189 オーミック電極
101
Claims (2)
前記イオン注入は、{1-100}面に対して[0001]から+10°又は-10°傾けたイオン注入角、{1-210}面に対して[0001]から+3°又は-3°傾けたイオン注入角、又は{1-100}面と{1-210}面との中間の面に対して[0001]から+4°又は-4°傾けたイオン注入角で行う、炭化珪素半導体装置の製造方法。 A step of performing ion implantation into a 4H-SiC crystal layer to form an ion implantation layer,
The ion implantation is performed at an ion implantation angle of +10° or -10° from [0001] with respect to the {1-100} plane, and an ion implantation angle of +3° or -3° from [0001] with respect to the {1-210} plane. The ion implantation angle of the silicon carbide semiconductor device is performed at an ion implantation angle that is tilted by +4° or −4° from [0001] with respect to the plane between the {1-100} plane and the {1-210} plane. Production method.
前記トレンチにゲート絶縁膜を形成する工程と、
ゲート絶縁膜の上にゲート電極を形成する工程と、
前記ソース領域及びドレイン領域にそれぞれオーミック接触したオーミック電極を形成する工程とをさらに備えている、請求項1に記載の炭化珪素半導体装置の製造方法。 forming a trench penetrating the ion implantation layer to make the ion implantation layer a source region and a drain region separated from each other;
forming a gate insulating film in the trench;
forming a gate electrode on the gate insulating film;
The method for manufacturing a silicon carbide semiconductor device according to claim 1, further comprising the step of forming ohmic electrodes in ohmic contact with the source region and the drain region, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020026991A JP7440861B2 (en) | 2020-02-20 | 2020-02-20 | Silicon carbide semiconductor device and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020026991A JP7440861B2 (en) | 2020-02-20 | 2020-02-20 | Silicon carbide semiconductor device and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021132134A JP2021132134A (en) | 2021-09-09 |
JP7440861B2 true JP7440861B2 (en) | 2024-02-29 |
Family
ID=77551200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020026991A Active JP7440861B2 (en) | 2020-02-20 | 2020-02-20 | Silicon carbide semiconductor device and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7440861B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003347235A (en) | 2002-05-28 | 2003-12-05 | Matsushita Electric Ind Co Ltd | Method of manufacturing semiconductor device |
JP2011049408A (en) | 2009-08-28 | 2011-03-10 | National Institute Of Advanced Industrial Science & Technology | Recess gate type silicon carbide field effect transistor and method of manufacturing the same |
JP2016004955A (en) | 2014-06-19 | 2016-01-12 | 三菱電機株式会社 | Silicon carbide semiconductor device and manufacturing method of the same |
JP2017059571A (en) | 2015-09-14 | 2017-03-23 | 株式会社東芝 | Manufacturing method for semiconductor device and semiconductor device |
-
2020
- 2020-02-20 JP JP2020026991A patent/JP7440861B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003347235A (en) | 2002-05-28 | 2003-12-05 | Matsushita Electric Ind Co Ltd | Method of manufacturing semiconductor device |
JP2011049408A (en) | 2009-08-28 | 2011-03-10 | National Institute Of Advanced Industrial Science & Technology | Recess gate type silicon carbide field effect transistor and method of manufacturing the same |
JP2016004955A (en) | 2014-06-19 | 2016-01-12 | 三菱電機株式会社 | Silicon carbide semiconductor device and manufacturing method of the same |
JP2017059571A (en) | 2015-09-14 | 2017-03-23 | 株式会社東芝 | Manufacturing method for semiconductor device and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2021132134A (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10784338B2 (en) | Field effect transistor devices with buried well protection regions | |
CN107026205B (en) | Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device | |
JP6880669B2 (en) | Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device | |
JP5699628B2 (en) | Semiconductor device | |
JP5300658B2 (en) | Semiconductor device and manufacturing method thereof | |
US9306061B2 (en) | Field effect transistor devices with protective regions | |
US9373686B2 (en) | Semiconductor device and method for manufacturing same and semiconductor substrate | |
CN105210193B (en) | FET device with embedding well region and epitaxial layer | |
CN107039268B (en) | Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device | |
JP2012216701A (en) | Silicon carbide semiconductor device | |
JP6505263B2 (en) | Silicon carbide semiconductor device and method of manufacturing the same | |
US9349797B2 (en) | SiC devices with high blocking voltage terminated by a negative bevel | |
JP2019102493A (en) | Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method | |
US10707306B2 (en) | Semiconductor device and method of manufacturing the same | |
CN103477439A (en) | Semiconductor device and process for production thereof | |
WO2015015926A1 (en) | Silicon-carbide semiconductor device and manufacturing method therefor | |
CN109461768A (en) | A kind of SiC junction barrel Schottky diode and its manufacturing method | |
JP2015015468A (en) | Semiconductor device and manufacturing method | |
EP3637474A1 (en) | Silicon carbide switch device and manufacturing method therefor | |
JP7440861B2 (en) | Silicon carbide semiconductor device and its manufacturing method | |
JP5333241B2 (en) | Manufacturing method of semiconductor device | |
US9728599B1 (en) | Semiconductor device | |
JP7276407B2 (en) | Silicon carbide semiconductor device | |
JP5895750B2 (en) | Silicon carbide semiconductor device and manufacturing method thereof | |
JP2013179361A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20200309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200309 |
|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20200309 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7440861 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |