JP7433972B2 - Al-plated steel pipes and aluminum-plated steel pipe parts for STAF (registered trademark) construction method, and their manufacturing method - Google Patents
Al-plated steel pipes and aluminum-plated steel pipe parts for STAF (registered trademark) construction method, and their manufacturing method Download PDFInfo
- Publication number
- JP7433972B2 JP7433972B2 JP2020026538A JP2020026538A JP7433972B2 JP 7433972 B2 JP7433972 B2 JP 7433972B2 JP 2020026538 A JP2020026538 A JP 2020026538A JP 2020026538 A JP2020026538 A JP 2020026538A JP 7433972 B2 JP7433972 B2 JP 7433972B2
- Authority
- JP
- Japan
- Prior art keywords
- plated steel
- based plated
- plating layer
- steel pipe
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 273
- 239000010959 steel Substances 0.000 title claims description 273
- 238000004519 manufacturing process Methods 0.000 title claims description 39
- 101000759226 Homo sapiens Zinc finger protein 143 Proteins 0.000 title claims description 31
- 102100023389 Zinc finger protein 143 Human genes 0.000 title claims description 31
- 238000010276 construction Methods 0.000 title claims description 8
- 238000007747 plating Methods 0.000 claims description 164
- 238000000034 method Methods 0.000 claims description 62
- 238000010438 heat treatment Methods 0.000 claims description 35
- 238000005275 alloying Methods 0.000 claims description 21
- 238000010791 quenching Methods 0.000 claims description 13
- 230000000171 quenching effect Effects 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- 230000009466 transformation Effects 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 155
- 239000000463 material Substances 0.000 description 56
- 230000000694 effects Effects 0.000 description 22
- 238000011156 evaluation Methods 0.000 description 11
- 239000002436 steel type Substances 0.000 description 9
- 239000011324 bead Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000010960 cold rolled steel Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000010422 painting Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002335 surface treatment layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、熱間成形用Al系めっき鋼材及びAl系めっき鋼材部品、並びにそれらの製造方法に関する。 The present invention relates to Al-based plated steel materials for hot forming, Al-based plated steel parts, and methods of manufacturing them.
自動車のボディやフレームなどの車体部品には鋼材が一般に用いられている。例えば、近年、車体部品を軽量化するために鋼管が用いられることが多くなっている。また、車体部品間の接合を行うためにフランジ部が車体部品に形成されることがある。
フランジ部を有する鋼材部品(以下、「フランジ付き鋼材部品」という)の製造方法としては、冷間プレス、ハイドロフォーミング、ホットスタンピングなどを用いた方法が知られている。冷間プレス及びホットスタンピングを用いた方法は、2枚の鋼板を、組み合わせた際にパイプ本体部及びフランジ部となる形状にプレス成形した後、これらを溶接することでフランジ付き鋼材部品を製造することができる。また、ハイドロフォーミングを用いた方法は、鋼管をハイドロフォーミングで成形してパイプ本体部を得た後、プレス成形等で別途作製したフランジ部をパイプ本体部に溶接することによってフランジ付き鋼材部品を製造することができる。これらの方法はいずれも、溶接が必要であるため、手間がかかり、製造コストが増大するという問題がある。
Steel materials are generally used for vehicle body parts such as automobile bodies and frames. For example, in recent years, steel pipes have been increasingly used to reduce the weight of vehicle body parts. Additionally, a flange portion is sometimes formed on a vehicle body component to join the vehicle body components together.
Methods using cold pressing, hydroforming, hot stamping, etc. are known as methods for manufacturing steel parts having flanges (hereinafter referred to as "flanged steel parts"). In the method using cold pressing and hot stamping, two steel plates are press-formed into a shape that will become the pipe body and flange when combined, and then welded together to produce flanged steel parts. be able to. In addition, in the method using hydroforming, a steel pipe is formed by hydroforming to obtain a pipe body, and then a flange made separately by press forming etc. is welded to the pipe body to produce flanged steel parts. can do. All of these methods require welding, which is time consuming and increases manufacturing costs.
そこで、鋼管を加熱し、鋼管内に高圧流体を供給して成形(フランジ部の形成を含む)を行った後、焼入れを行う方法が提案されている(例えば、特許文献1)。この方法は、Steel Tube Air Forming、すなわち、STAF(登録商標)工法と称されている。
STAF(登録商標)工法に用いられる鋼管としては、焼入れ可能な鋼管が用いられている。しかしながら、この鋼管は、大気中で加熱する際に、表面にスケール(酸化物)が生成し易い。表面のスケールは、ショットブラストや酸洗などによって除去することができるが、このような処理を行うと製造コストの増大などにつながってしまう。そのため、この製造方法に用いられる鋼管は、耐高温酸化性に優れていることが要求される。
そこで、表面にAl系めっき層を形成した鋼管をSTAF(登録商標)工法に用いることが提案されている(例えば、特許文献2及び3)。
Therefore, a method has been proposed in which a steel pipe is heated and a high-pressure fluid is supplied into the steel pipe to form the pipe (including formation of a flange portion), and then to perform quenching (for example, Patent Document 1). This method is called Steel Tube Air Forming, or STAF (registered trademark) construction method.
As the steel pipe used in the STAF (registered trademark) method, a hardenable steel pipe is used. However, when this steel pipe is heated in the atmosphere, scale (oxide) is likely to be generated on the surface. Surface scale can be removed by shot blasting, pickling, etc., but such treatments lead to increased manufacturing costs. Therefore, the steel pipe used in this manufacturing method is required to have excellent high-temperature oxidation resistance.
Therefore, it has been proposed to use a steel pipe with an Al-based plating layer formed on its surface in the STAF (registered trademark) construction method (for example, Patent Documents 2 and 3).
しかしながら、表面にAl系めっき層を形成した鋼材を熱間成形すると、Al系めっき層の融点よりも高い温度に鋼材が加熱されるため、著しいめっき垂れが生じるという問題がある。このめっき垂れは、上記の各種方法、特にSTAF(登録商標)工法で得られた鋼材部品において、表面のAl系めっき層の厚さが著しく不均一な部分が形成される原因となる。 However, when a steel material with an Al-based plating layer formed on its surface is hot-formed, the steel material is heated to a temperature higher than the melting point of the Al-based plating layer, so there is a problem that significant plating sag occurs. This plating sag causes the formation of parts where the thickness of the Al-based plating layer on the surface is significantly uneven in steel parts obtained by the various methods described above, especially the STAF (registered trademark) construction method.
本発明は、上記のような課題を解決するためになされたものであり、熱間成形によってAl系めっき鋼材部品を製造する場合に、めっき垂れを抑制し得る熱間成形用Al系めっき鋼材及びその製造方法を提供することを課題とする。
また、本発明は、熱間成形によって製造される、Al系めっき層の厚さのバラツキが小さいAl系めっき鋼材部品及びその製造方法を提供することを課題とする。
The present invention has been made to solve the above-mentioned problems, and provides an Al-based plated steel material for hot forming that can suppress plating sag when manufacturing Al-based plated steel parts by hot forming. The object of the present invention is to provide a method for manufacturing the same.
Another object of the present invention is to provide an Al-based plated steel component manufactured by hot forming in which the thickness of the Al-based plated layer has small variations, and a method for manufacturing the same.
本発明者らは、熱間成形に用いられるAl系めっき鋼材について鋭意研究を続けた結果、Al系めっき層を特定の割合まで予め合金化するとともに、Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比を特定の範囲に制御することで、上記の問題を解決し得ることを見出し、本発明を完成するに至った。 As a result of intensive research on Al-based plated steel materials used for hot forming, the present inventors have pre-alloyed the Al-based plating layer to a specific ratio, and have determined that The inventors have discovered that the above problems can be solved by controlling the ratio of the maximum thickness of the plating layer within a specific range, and have completed the present invention.
すなわち、本発明は、鋼管の少なくとも外面に合金化率が35%以上のAl系めっき層を有し、前記Al系めっき層の最小厚さに対する前記Al系めっき層の最大厚さの比が1.2~2.0であるSTAF(登録商標)工法用Al系めっき鋼管である。 That is, the present invention has an Al-based plating layer with an alloying ratio of 35% or more on at least the outer surface of the steel pipe , and the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer is This is an Al-based plated steel pipe for use in the STAF (registered trademark) construction method with a hardness of 1.2 to 2.0 .
また、本発明は、前記Al系めっき鋼管の製造方法であって、鋼板の少なくとも1つの表面にAl系めっき層を形成する工程と、前記Al系めっき層が形成された前記鋼板を造管し、少なくとも外面に前記Al系めっき層が形成された鋼管を製造する工程と、前記Al系めっき層の合金化率が35%以上となるように、前記鋼管の管軸方向を水平方向にして加熱する工程とを含む、Al系めっき鋼管の製造方法である。 The present invention also provides a method for manufacturing the Al-based plated steel pipe, which includes a step of forming an Al-based plating layer on at least one surface of a steel plate, and forming a pipe from the steel plate on which the Al-based plated layer is formed. , manufacturing a steel pipe with the Al -based plating layer formed on at least the outer surface, and heating the steel pipe with the pipe axis direction horizontal so that the alloying rate of the Al-based plating layer is 35% or more. This is a method for manufacturing an Al-based plated steel pipe.
また、本発明は、前記Al系めっき鋼管のSTAF(登録商標)工法による成形体を含むAl系めっき鋼管部品であって、前記Al系めっき鋼管部品は、少なくとも1つの表面にAl系めっき層を有し、前記Al系めっき層の最小厚さに対する前記Al系めっき層の最大厚さの比が1.0~10.0であるAl系めっき鋼管部品である。 The present invention also provides an Al -based plated steel pipe component including a formed body of the Al-based plated steel pipe formed by the STAF (registered trademark) method , wherein the Al-based plated steel pipe part has at least one surface. The present invention is an Al-based plated steel pipe component having an Al-based plating layer, the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer being 1.0 to 10.0.
さらに、本発明は、前記Al系めっき鋼管をA1変態点以上の温度に加熱し、前記Al系めっき鋼管内に高圧流体を供給して成形を行った後、焼入れを行うAl系めっき鋼管部品の製造方法である。 Furthermore, the present invention provides an Al -based plated steel pipe in which the Al-based plated steel pipe is heated to a temperature equal to or higher than the A1 transformation point, and after forming by supplying high-pressure fluid into the Al-based plated steel pipe , quenching is performed. This is a method for manufacturing steel pipe parts.
本発明によれば、熱間成形によってAl系めっき鋼材部品を製造する場合に、めっき垂れを抑制し得る熱間成形用Al系めっき鋼材及びその製造方法を提供することができる。
また、本発明によれば、熱間成形によって製造される、Al系めっき層の厚さのバラツキが小さいAl系めっき鋼材部品及びその製造方法を提供することができる。
According to the present invention, it is possible to provide an Al-based plated steel material for hot forming, which can suppress plating sagging when producing Al-based plated steel parts by hot forming, and a method for manufacturing the same.
Further, according to the present invention, it is possible to provide an Al-based plated steel component manufactured by hot forming and with small variations in the thickness of the Al-based plated layer, and a method for manufacturing the same.
以下、本発明の実施形態について具体的に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し変更、改良などが適宜加えられたものも本発明の範囲に入ることが理解されるべきである。 Embodiments of the present invention will be specifically described below. The present invention is not limited to the following embodiments, and modifications and improvements may be made to the following embodiments as appropriate based on the common knowledge of those skilled in the art without departing from the spirit of the present invention. It is to be understood that such materials also fall within the scope of the present invention.
(熱間成形用Al系めっき鋼材)
本発明の実施形態に係る熱間成形用Al系めっき鋼材(以下、Al系めっき鋼材と略すことがある)は、鋼材の少なくとも1つの表面にAl系めっき層を有する。
ここで、鋼材の種類は、特に限定されず、鋼板、鋼管などを用いることができる。また、鋼材が鋼板である場合、Al系めっき層は、鋼板の一方の面、又は鋼板の両面に形成することができる。また、鋼材が鋼管である場合、Al系めっき層は、鋼管の外面、又は鋼管の外面及び内面に形成することができる。
また、本明細書において「熱間成形」とは、加熱して成形する工法、例えば、ホットスタンピング、STAF(登録商標)などのことを意味する。
(Al-based plated steel material for hot forming)
The Al-based plated steel material for hot forming (hereinafter sometimes abbreviated as Al-based plated steel material) according to the embodiment of the present invention has an Al-based plating layer on at least one surface of the steel material.
Here, the type of steel material is not particularly limited, and steel plates, steel pipes, etc. can be used. Moreover, when the steel material is a steel plate, the Al-based plating layer can be formed on one side of the steel plate or on both sides of the steel plate. Moreover, when the steel material is a steel pipe, the Al-based plating layer can be formed on the outer surface of the steel pipe, or on the outer surface and inner surface of the steel pipe.
Moreover, in this specification, "hot forming" means a method of heating and forming, such as hot stamping and STAF (registered trademark).
上記のような構造を有するAl系めっき鋼材は、耐高温酸化性、高温摺動性などの特性に優れているため、熱間成形、特にSTAF(登録商標)工法によるAl系めっき鋼材部品の製造に用いるのに適している。
ここで、STAF(登録商標)工法によるAl系めっき鋼材部品の製造とは、管状のAl系めっき鋼材(以下、「Al系めっき鋼管」という)を加熱し、Al系めっき鋼管内に高圧流体を供給して成形を行った後、焼入れを行うことを意味する。この工法において、成形には、パイプ本体部の成形だけでなく、フランジ部の成形が含まれてもよい。
Al-based plated steel with the above structure has excellent properties such as high-temperature oxidation resistance and high-temperature sliding properties, so it is suitable for manufacturing Al-based plated steel parts using hot forming, especially the STAF (registered trademark) method. suitable for use.
Here, the production of Al-based plated steel parts using the STAF (registered trademark) method involves heating a tubular Al-based plated steel material (hereinafter referred to as "Al-based plated steel pipe") and introducing high-pressure fluid into the Al-based plated steel pipe. This means that after supplying and forming, quenching is performed. In this construction method, the shaping may include not only the shaping of the pipe main body but also the shaping of the flange.
一方、上記のような構造を有するAl系めっき鋼材は、熱間成形、特にSTAF(登録商標)工法に用いると、加熱時に、Al系めっき層が溶融して鋼材の鉛直下方に移動する「めっき垂れ」が起こり易い。
そこで、本発明の実施形態に係るAl系めっき鋼材では、Al系めっき層を所定の割合まで予め合金化させるとともに、Al系めっき層の厚さのバラツキ(最小厚さに対する最大厚さの比)を特定の範囲に制御することにより、熱間成形におけるめっき垂れを抑制している。
On the other hand, when Al-based plated steel materials having the structure described above are used in hot forming, especially the STAF (registered trademark) method, the Al-based plating layer melts and moves vertically downward of the steel material during heating. Dragging is likely to occur.
Therefore, in the Al-based plated steel material according to the embodiment of the present invention, the Al-based plated layer is alloyed in advance to a predetermined ratio, and the thickness of the Al-based plated layer varies (ratio of maximum thickness to minimum thickness). By controlling the amount within a specific range, plating sag during hot forming is suppressed.
Al系めっき層は、合金化率が35%以上、好ましくは40%、より好ましくは50%以上である。合金化率を上記の範囲に制御することにより、熱間成形、特にSTAF(登録商標)工法を用いてAl系めっき鋼材部品を製造する場合(特に、加熱時)に、めっき垂れを抑制することができる。
ここで、Al系めっき層の合金化率は、次のようにして求めることができる。
Al系めっき鋼材がAl系めっき鋼管である場合、まず、Al系めっき鋼管を管軸方向に垂直な方向に切断してエポキシ樹脂に埋め込んだ後、研磨処理を行い、研磨された断面を光学顕微鏡で撮影する。撮影された写真から、Al系めっき層全体の厚さに対する合金化されたAl系めっき層の厚さの割合を合金化率とする。なお、Al系めっき層の厚さは、1視野で5箇所の平均値とすることが好ましい。また、Al系めっき鋼材が板状のAl系めっき鋼板(以下、「Al系めっき鋼板」という)である場合、Al系めっき鋼板を板幅方向に切断すること以外は上記と同様にして行えばよい。
The Al-based plating layer has an alloying ratio of 35% or more, preferably 40% or more, and more preferably 50% or more. By controlling the alloying ratio within the above range, plating sag can be suppressed when producing Al-based plated steel parts using hot forming, especially the STAF (registered trademark) method (especially during heating). I can do it.
Here, the alloying rate of the Al-based plating layer can be determined as follows.
When the Al-based plated steel material is an Al-based plated steel pipe, first, the Al-based plated steel pipe is cut in a direction perpendicular to the pipe axis direction, embedded in epoxy resin, and then polished, and the polished cross section is examined under an optical microscope. Take a photo with From the photograph taken, the ratio of the thickness of the alloyed Al-based plating layer to the total thickness of the Al-based plating layer is defined as the alloying ratio. Note that the thickness of the Al-based plating layer is preferably an average value at five locations in one field of view. In addition, if the Al-based plated steel material is a plate-shaped Al-based plated steel sheet (hereinafter referred to as "Al-based plated steel sheet"), the process can be performed in the same manner as above except that the Al-based plated steel sheet is cut in the sheet width direction. good.
Al系めっき層は、Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比(Al系めっき層の最大厚さ/Al系めっき層の最小厚さ)が1.0~5.0、好ましくは1.1~3.0、より好ましくは1.2~2.0である。Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比を上記の範囲に制御することにより、熱間成形、特にSTAF(登録商標)工法を用いてAl系めっき鋼材部品を製造する場合(特に、加熱時)に、めっき垂れ抑制することができる。
ここで、Al系めっき層の厚さは、合金化率と同様にして断面を光学顕微鏡で撮影し、撮影された写真から測定することができる。また、Al系めっき鋼材がAl系めっき鋼管である場合、「Al系めっき層の最小厚さ」とは、Al系めっき鋼管の管軸方向に垂直な方向の断面の写真において、Al系めっき層が最も小さくなる部分の厚さのことを意味する。同様に、「Al系めっき層の最大厚さ」とは、Al系めっき鋼管の管軸方向に垂直な方向の断面の写真において、Al系めっき層が最も大きくなる部分の厚さのことを意味する。Al系めっき層の最小厚さ及び最大厚さは、1視野で5箇所の平均値とすることが好ましい。また、Al系めっき鋼材がAl系めっき鋼板である場合、「Al系めっき層の最小厚さ」とは、Al系めっき鋼板の板幅方向断面の写真において、Al系めっき層が最も小さくなる部分の厚さのことを意味する。同様に、「Al系めっき層の最大厚さ」とは、Al系めっき鋼板の板幅方向断面の写真において、Al系めっき層が最も大きくなる部分の厚さのことを意味する。
なお、Al系めっき鋼材がAl系めっき鋼管である場合、Al系めっき鋼管は、管軸方向を水平方向にして加熱されることが多い。このとき、管軸中心に対して鉛直上方となる位置を0°とすると、Al系めっき層の厚さが最大となる部分は、管軸中心に対して180°の位置する部分(底部)周辺となり、Al系めっき層の厚さが最小となる部分は、管軸中心に対して90°及び270°の位置に位置する部分(側部)周辺となる。
The Al-based plating layer has a ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer (maximum thickness of the Al-based plating layer/minimum thickness of the Al-based plating layer) of 1.0 to 5. .0, preferably 1.1 to 3.0, more preferably 1.2 to 2.0. By controlling the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer within the above range, Al-based plated steel parts can be manufactured using hot forming, especially the STAF (registered trademark) method. (particularly during heating), plating sag can be suppressed.
Here, the thickness of the Al-based plating layer can be measured by photographing a cross section with an optical microscope in the same manner as the alloying rate, and from the photograph taken. In addition, when the Al-based plated steel material is an Al-based plated steel pipe, the "minimum thickness of the Al-based plated layer" means that the Al-based plated layer is It means the thickness of the part where is the smallest. Similarly, "maximum thickness of Al-based plating layer" means the thickness of the part where the Al-based plating layer is the largest in a photograph of a cross section of an Al-based plated steel pipe in a direction perpendicular to the pipe axis direction. do. It is preferable that the minimum thickness and maximum thickness of the Al-based plating layer be the average value of five locations in one field of view. In addition, when the Al-based plated steel material is an Al-based plated steel sheet, the "minimum thickness of the Al-based plated layer" refers to the part where the Al-based plated layer is the smallest in the photograph of the cross section in the sheet width direction of the Al-based plated steel sheet. It means the thickness of Similarly, "the maximum thickness of the Al-based plating layer" means the thickness of the portion where the Al-based plating layer is the largest in a photograph of a cross section in the sheet width direction of an Al-based plated steel sheet.
Note that when the Al-based plated steel material is an Al-based plated steel pipe, the Al-based plated steel pipe is often heated with the pipe axis direction in the horizontal direction. At this time, if the vertically upward position with respect to the center of the tube axis is 0°, the part where the thickness of the Al-based plating layer is maximum is around the part (bottom) located at 180° with respect to the center of the tube axis. Therefore, the portions where the thickness of the Al-based plating layer is the minimum are around the portions (side portions) located at positions of 90° and 270° with respect to the center of the tube axis.
めっき垂れが生じ易い従来のAl系めっき鋼材は、熱間成形、特にSTAF工法(登録商標)において、成形用の金型との間で局部的な面圧上昇を招き、成形用の金型の寿命を低下させるとともに、成形時の高温摺動性を低下させることがある。また、製品形状によっては、製品部品の寸法制度を低下させることもある。これに対して本発明の実施形態に係るAl系めっき鋼材は、熱間成形、特にSTAF(登録商標)工法を用いてAl系めっき鋼材部品を製造する場合に、めっき垂れを抑制し得るため、上記のような不具合を解決することができる。また、本発明の実施形態に係るAl系めっき鋼材は、熱間成形、特にSTAF工法(登録商標)を用いて製造されたAl系めっき鋼材部品を塗装する場合に、めっき垂れの影響による塗装後の外観の劣化を抑制することもできる。 Conventional Al-based plated steel materials, which are prone to plating sag, cause a localized increase in surface pressure between the forming mold and the forming die during hot forming, especially in the STAF method (registered trademark). In addition to reducing the service life, it may also reduce high-temperature slidability during molding. Furthermore, depending on the product shape, the dimensional accuracy of product parts may be degraded. On the other hand, the Al-based plated steel material according to the embodiment of the present invention can suppress plating sag when producing Al-based plated steel parts using hot forming, particularly the STAF (registered trademark) method. Problems such as those mentioned above can be resolved. In addition, when painting Al-based plated steel parts manufactured using hot forming, particularly the STAF method (registered trademark), the Al-based plated steel materials according to the embodiments of the present invention may be used after painting due to the effects of plating dripping. It is also possible to suppress deterioration of the appearance of the product.
本発明の実施形態に係るAl系めっき鋼材は、耐高温酸化性に優れているため、熱間成形、特にSTAF(登録商標)工法に用いても、少なくとも1つの表面にスケールが生成し難い。一方、少なくとも1つの表面にAl系めっき層を有していない鋼材を熱間成形に用いた場合、少なくとも1つの表面にスケールが生成する。特にSTAF(登録商標)工法に用いた場合には、フランジ部の形成過程やパイプ本体部の成形過程などでスケールが剥離する。その結果、剥離したスケールによって鋼材の少なくとも1つの表面に疵が発生し易くなると共に、金型にスケールが付着するため金型の清掃作業にも手間がかかる。したがって、本発明の実施形態に係るAl系めっき鋼材によれば、このようなスケールの発生に起因する問題を解決することができる。 Since the Al-based plated steel material according to the embodiment of the present invention has excellent high-temperature oxidation resistance, it is difficult to generate scale on at least one surface even when it is used in hot forming, particularly in the STAF (registered trademark) method. On the other hand, when a steel material that does not have an Al-based plating layer on at least one surface is used for hot forming, scale is generated on at least one surface. In particular, when used in the STAF (registered trademark) construction method, scale peels off during the process of forming the flange portion or the pipe body. As a result, the peeled scale tends to cause flaws on at least one surface of the steel material, and the scale adheres to the mold, making cleaning the mold labor-intensive. Therefore, according to the Al-based plated steel material according to the embodiment of the present invention, it is possible to solve the problem caused by the occurrence of scale.
また、本発明の実施形態に係るAl系めっき鋼材(Al系めっき鋼管)は、高温摺動性に優れているため、STAF(登録商標)工法を用いてフランジ部を形成することが容易である。具体的には、本発明の実施形態に係るAl系めっき鋼材(Al系めっき鋼管)は、高温時における金型との摩擦が小さいため、フランジ部を形成する際に、上金型と下金型の半開きの部分にAl系めっき鋼管の一部を膨張させ易くなる。
ここで、本明細書において「Al系めっき層」とは、Alを主成分とするめっき層のことを意味し、AlのみからなるAl系めっき層を含む概念である。Al系めっき層中のAl含有量は、特に限定されないが、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。
Furthermore, since the Al-based plated steel material (Al-based plated steel pipe) according to the embodiment of the present invention has excellent high-temperature sliding properties, it is easy to form a flange portion using the STAF (registered trademark) method. . Specifically, the Al-based plated steel material (Al-based plated steel pipe) according to the embodiment of the present invention has low friction with the mold at high temperatures, so when forming the flange part, the upper mold and the lower mold are It becomes easier to expand a part of the Al-based plated steel pipe in the half-opened part of the mold.
Here, in this specification, "Al-based plating layer" means a plating layer containing Al as a main component, and is a concept that includes an Al-based plating layer consisting only of Al. The Al content in the Al-based plating layer is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more.
Al系めっき層は、溶融めっき法、電気めっき法、真空蒸着法、クラッド法などの公知の方法によって形成することができる。その中でも、現在工業的に最も普及している溶融めっき法を用いて形成されたAl系めっき層であることが好ましい。 The Al-based plating layer can be formed by a known method such as a hot-dip plating method, an electroplating method, a vacuum evaporation method, or a cladding method. Among these, an Al-based plating layer formed using the hot-dip plating method, which is currently the most widely used in industry, is preferable.
本発明の一実施形態において、Al系めっき層は、Alと共にSiを含むことが好ましい。Al系めっき層にSiを含有させることにより、例えば、溶融めっきの際に、合金層の形成を抑制することができる。このような効果を確保する観点から、Al系めっき層中のSi含有量は1~15質量%であることが好ましい。また、このAl系めっき層は、耐食性を向上させる観点から、Cr:0.1~1質量%、Mg:0.5~10質量%、Ti:0.1~1質量%、Sn:1~5質量%、Zn:1~50質量%などを含んでもよい。これらの元素は、単独又は2種以上を組み合わせて含有させることができる。 In one embodiment of the present invention, the Al-based plating layer preferably contains Si as well as Al. By containing Si in the Al-based plating layer, formation of an alloy layer can be suppressed during hot-dip plating, for example. From the viewpoint of ensuring such an effect, the Si content in the Al-based plating layer is preferably 1 to 15% by mass. In addition, from the viewpoint of improving corrosion resistance, this Al-based plating layer has Cr: 0.1 to 1% by mass, Mg: 0.5 to 10% by mass, Ti: 0.1 to 1% by mass, and Sn: 1 to 1% by mass. 5% by mass, Zn: 1 to 50% by mass, etc. These elements can be contained alone or in combination of two or more.
Al系めっき層の付着量は、特に限定されないが、好ましくは10~150g/m2、より好ましくは20~100g/m2、さらに好ましくは20~80g/m2、特に好ましくは25~60g/m2である。Al系めっき層の付着量を10g/m2以上とすることにより、耐高温酸化性及び高温摺動性を確保することができるため、大気中で加熱する際に表面にスケールの生成を抑制することができると共に、フランジ部が形成し易くなる。また、Al系めっき層の付着量を150g/m2以下とすることにより、Al系めっき鋼材がAl系めっき鋼管である場合に造管性を高めることができる。なお、Al系めっき層がAl系めっき鋼管及びAl系めっき鋼板の両面に形成される場合、上記のAl系めっき層の付着量は、各面におけるAl系めっき層の付着量を意味する。 The amount of deposited Al-based plating layer is not particularly limited, but is preferably 10 to 150 g/m 2 , more preferably 20 to 100 g/m 2 , even more preferably 20 to 80 g/m 2 , particularly preferably 25 to 60 g/m 2 m2 . By setting the adhesion amount of the Al-based plating layer to 10 g/m 2 or more, high-temperature oxidation resistance and high-temperature slidability can be ensured, thereby suppressing the formation of scale on the surface when heated in the atmosphere. At the same time, it becomes easier to form the flange portion. Furthermore, by controlling the amount of the Al-based plating layer to be 150 g/m 2 or less, pipe formability can be improved when the Al-based plated steel material is an Al-based plated steel pipe. In addition, when an Al-based plating layer is formed on both sides of an Al-based plated steel pipe and an Al-based plated steel plate, the amount of the Al-based plating layer deposited above means the amount of the Al-based plating layer deposited on each surface.
Al系めっき鋼材に用いられる鋼材は、焼入れ可能であれば、その組成は特に限定されない。本発明の一実施形態において、鋼材は、C:0.10~0.50質量%、Si:0.10~2.00質量%、Mn:0.10~3.00質量%を含み、残部がFe及び不可避的不純物である組成を有することが好ましい。また、鋼材は、必要に応じて、Cr:0.10~5.00質量%、Mo:0.01~3.00質量%、Ni:0.01~3.00質量%、Cu:0.01~3.00質量%、Ti:0.01~0.20質量%、Al:0.002~0.10質量%、B:0.0003~0.0050質量%から選択される1種以上をさらに含んでもよい。なお、本明細書において「不可避的不純物」とは、O、N、P、Sなどの除去することが難しい成分のことを意味する。不可避的不純物は、原料を溶製する段階で不可避的に混入する。 The composition of the steel used for the Al-based plated steel is not particularly limited as long as it can be hardened. In one embodiment of the present invention, the steel material contains C: 0.10 to 0.50 mass%, Si: 0.10 to 2.00 mass%, Mn: 0.10 to 3.00 mass%, and the remainder It is preferable to have a composition in which is Fe and unavoidable impurities. Further, the steel material may be Cr: 0.10 to 5.00 mass%, Mo: 0.01 to 3.00 mass%, Ni: 0.01 to 3.00 mass%, Cu: 0. One or more selected from 01 to 3.00% by mass, Ti: 0.01 to 0.20% by mass, Al: 0.002 to 0.10% by mass, and B: 0.0003 to 0.0050% by mass. It may further include. Note that in this specification, "inevitable impurities" refer to components such as O, N, P, and S that are difficult to remove. Unavoidable impurities are inevitably mixed into raw materials during the melting process.
上記の鋼材の組成を限定する理由は次の通りである。
Cは焼入れ性の向上とともに、冷却時に生成するマルテンサイトの強度の向上に有効な元素である。焼入れ後にAl系めっき鋼材の引張強度(TS)を1200N/mm2以上にするためには、C含有量を好ましくは0.10質量%以上、より好ましくは0.11質量%以上、さらに好ましくは0.12質量%以上とする。一方、C含有量が多すぎると、衝突変形時にエネルギー吸収能力を確保することが難しくなるため、C含有量を好ましくは0.50質量%以下、より好ましくは0.45質量%以下、さらに好ましくは0.40質量%以下とする。
The reason for limiting the composition of the above steel material is as follows.
C is an element effective in improving the hardenability as well as the strength of martensite generated during cooling. In order to make the tensile strength (TS) of the Al-based plated steel material 1200 N/mm 2 or more after quenching, the C content is preferably 0.10% by mass or more, more preferably 0.11% by mass or more, and even more preferably The content shall be 0.12% by mass or more. On the other hand, if the C content is too large, it will be difficult to ensure energy absorption capacity during collision deformation, so the C content is preferably 0.50% by mass or less, more preferably 0.45% by mass or less, and even more preferably shall be 0.40% by mass or less.
Siは、強度の向上に有効な元素である。この効果を十分に得るためには、Si含有量を好ましくは0.10質量%以上、より好ましくは0.11質量%以上、さらに好ましくは0.12質量%以上とする。一方、Si含有量が2.00質量%を超えると、当該効果が飽和してしまう。そのため、Si含有量を好ましくは2.00質量%以下、より好ましくは1.80質量%以下、さらに好ましくは1.50質量%以下とする。 Si is an element effective in improving strength. In order to fully obtain this effect, the Si content is preferably 0.10% by mass or more, more preferably 0.11% by mass or more, and even more preferably 0.12% by mass or more. On the other hand, if the Si content exceeds 2.00% by mass, the effect will be saturated. Therefore, the Si content is preferably 2.00% by mass or less, more preferably 1.80% by mass or less, even more preferably 1.50% by mass or less.
Mnは、強度及び焼入れ性の向上に有効な元素である。これらの効果を十分に得るためには、Mn含有量を好ましくは0.10質量%以上、より好ましくは0.20質量%以上、さらに好ましくは0.30質量%以上とする。一方、Mn含有量が3.00質量%を超えると、当該効果が飽和してしまう。そのため、Mn含有量を好ましくは3.00質量%以下、より好ましくは2.80質量%以下、さらに好ましくは2.50質量%以下とする。 Mn is an element effective in improving strength and hardenability. In order to sufficiently obtain these effects, the Mn content is preferably 0.10% by mass or more, more preferably 0.20% by mass or more, and still more preferably 0.30% by mass or more. On the other hand, if the Mn content exceeds 3.00% by mass, the effect will be saturated. Therefore, the Mn content is preferably 3.00% by mass or less, more preferably 2.80% by mass or less, even more preferably 2.50% by mass or less.
Crは、焼入れ性の向上に有効な元素である。この効果を十分に得るためには、Cr含有量を好ましくは0.10質量%以上、より好ましくは0.15質量%以上、さらに好ましくは0.20質量%以上とする。一方、Cr含有量が5.00質量%を超えると、当該効果が飽和してしまう。そのため、Cr含有量を好ましくは5.00質量%以下、より好ましくは4.50質量%以下、さらに好ましくは3.00質量%以下とする。 Cr is an element effective in improving hardenability. In order to fully obtain this effect, the Cr content is preferably 0.10% by mass or more, more preferably 0.15% by mass or more, and still more preferably 0.20% by mass or more. On the other hand, if the Cr content exceeds 5.00% by mass, the effect will be saturated. Therefore, the Cr content is preferably 5.00% by mass or less, more preferably 4.50% by mass or less, even more preferably 3.00% by mass or less.
Moは、焼入れ性の向上に有効な元素である。この効果を十分に得るためには、Mo含有量を好ましくは0.01質量%以上、より好ましくは0.02質量%以上とする。一方、Mo含有量が3.00質量%を超えると、当該効果が飽和してしまう。そのため、Mo含有量を好ましくは3.00質量%以下、より好ましくは2.50質量%以下、さらに好ましくは2.00質量%以下とする。 Mo is an element effective in improving hardenability. In order to fully obtain this effect, the Mo content is preferably 0.01% by mass or more, more preferably 0.02% by mass or more. On the other hand, if the Mo content exceeds 3.00% by mass, the effect will be saturated. Therefore, the Mo content is preferably 3.00% by mass or less, more preferably 2.50% by mass or less, even more preferably 2.00% by mass or less.
Niは、焼入れ性の向上とともに衝突時の耐衝撃性の改善にも有効な元素である。これらの効果を十分に得るためには、Ni含有量を好ましくは0.01質量%以上、より好ましくは0.02質量%以上とする。一方、Ni含有量が3.00質量%を超えると、当該効果が飽和してしまう上、コストも上昇する。そのため、Ni含有量を好ましくは3.00質量%以下、より好ましくは2.50質量%以下、さらに好ましくは2.00質量%以下とする。 Ni is an element that is effective in improving hardenability and impact resistance at the time of collision. In order to fully obtain these effects, the Ni content is preferably 0.01% by mass or more, more preferably 0.02% by mass or more. On the other hand, if the Ni content exceeds 3.00% by mass, the effect will be saturated and the cost will also increase. Therefore, the Ni content is preferably 3.00% by mass or less, more preferably 2.50% by mass or less, even more preferably 2.00% by mass or less.
Cuは、焼入れ性及び靭性の向上に有効な元素である。これらの効果を十分に得るためには、Cu含有量を好ましくは0.01質量%以上、より好ましくは0.03質量%以上、さらに好ましくは0.05質量%以上とする。一方、Cu含有量が3.00質量%を超えると、当該効果が飽和してしまう上、コストも上昇する。そのため、Cu含有量を好ましくは3.00質量%以下、より好ましくは2.50質量%以下、さらに好ましくは2.00質量%以下とする。 Cu is an element effective in improving hardenability and toughness. In order to sufficiently obtain these effects, the Cu content is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and even more preferably 0.05% by mass or more. On the other hand, if the Cu content exceeds 3.00% by mass, the effect will be saturated and the cost will also increase. Therefore, the Cu content is preferably 3.00% by mass or less, more preferably 2.50% by mass or less, even more preferably 2.00% by mass or less.
Tiは、溶鋼の脱酸調整に添加される成分であるが、脱窒作用も有する。また、固溶しているNを窒化物として固定するので、焼き入れ性を改善する有効B量を高める。さらに、Tiは、炭窒化物を形成し、焼き入れ加熱時に結晶粒の粗大化を抑制する作用も有する。これらの作用を安定して得るためには、Ti含有量を好ましくは0.01質量%以上、より好ましくは0.02質量%以上とする。一方、Ti含有量が多くなると、コストも上昇する上、加工性が低下する原因となる。そのため、Ti含有量を好ましくは0.20質量%以下、より好ましくは0.10質量%以下とする。 Ti is a component added to adjust the deoxidization of molten steel, but it also has a denitrification effect. In addition, since N dissolved in solid solution is fixed as nitride, the effective amount of B for improving hardenability is increased. Furthermore, Ti forms carbonitrides and has the effect of suppressing coarsening of crystal grains during quenching and heating. In order to stably obtain these effects, the Ti content is preferably 0.01% by mass or more, more preferably 0.02% by mass or more. On the other hand, when the Ti content increases, not only does the cost increase, but also the processability decreases. Therefore, the Ti content is preferably 0.20% by mass or less, more preferably 0.10% by mass or less.
Alは、溶鋼の脱酸剤として使用される成分であり、Nを固定する作用も有する。このような効果を十分に得るためには、Al含有量を好ましくは0.002質量%以上、より好ましくは0.005質量%以上、さらに好ましくは0.010質量%以上とする。一方、Al含有量が多くなると、清浄度が損なわれ、表面疵が発生し易くなって表面品質が低下する要因となる。そのため、Al含有量を好ましくは0.10質量%以下、より好ましくは0.080質量%以下、さらに好ましくは0.060質量%以下とする。 Al is a component used as a deoxidizing agent for molten steel, and also has the effect of fixing N. In order to sufficiently obtain such effects, the Al content is preferably 0.002% by mass or more, more preferably 0.005% by mass or more, and still more preferably 0.010% by mass or more. On the other hand, when the Al content increases, cleanliness is impaired, surface flaws are more likely to occur, and this becomes a factor in deteriorating surface quality. Therefore, the Al content is preferably 0.10% by mass or less, more preferably 0.080% by mass or less, even more preferably 0.060% by mass or less.
Bは、焼入れ性の向上に有効な元素である。この効果を十分に得るためには、B含有量を好ましくは0.0003質量%以上、より好ましくは0.0005質量%以上、さらに好ましくは0.0010質量%以上とする。一方、B含有量が0.0050質量%を超えると、当該効果が飽和する上、フランジ部の形成やパイプ本体部の成形を行う際に割れが生じる恐れがある。そのため、B含有量を好ましくは0.0050質量%以下、より好ましくは0.0045質量%以下、さらに好ましくは0.0040質量%以下とする。 B is an element effective in improving hardenability. In order to fully obtain this effect, the B content is preferably 0.0003% by mass or more, more preferably 0.0005% by mass or more, and still more preferably 0.0010% by mass or more. On the other hand, if the B content exceeds 0.0050% by mass, the effect is saturated and there is a risk that cracks may occur during formation of the flange portion or molding of the pipe body. Therefore, the B content is preferably 0.0050% by mass or less, more preferably 0.0045% by mass or less, even more preferably 0.0040% by mass or less.
本発明の実施形態に係るAl系めっき鋼材は、本発明の効果を阻害しない範囲において、Al系めっき層の表面に化成処理層などの公知の表面処理層をさらに有していてもよい。 The Al-based plated steel material according to the embodiment of the present invention may further have a known surface treatment layer such as a chemical conversion treatment layer on the surface of the Al-based plated layer, within a range that does not impede the effects of the present invention.
本発明の実施形態に係るAl系めっき鋼材は、特に限定されないが、鋼材の少なくとも1つの表面にAl系めっき層を形成する工程と、Al系めっき層の合金化率が35%以上となるように加熱する工程とを含む方法によって製造することができる。
また、Al系めっき鋼材がAl系めっき鋼管である場合、鋼板の少なくとも1つの表面にAl系めっき層を形成する工程と、Al系めっき層が形成された鋼板を造管する工程と、Al系めっき層の合金化率が35%以上となるように加熱する工程とを含む方法によっても製造することができる。
造管方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、Al系めっき層を形成した鋼板を円筒形状に成形加工した後、板幅方向の両端部を突合わせて電縫溶接すればよい。
Although not particularly limited, the Al-based plated steel material according to the embodiment of the present invention includes a step of forming an Al-based plating layer on at least one surface of the steel material, and a process in which the alloying rate of the Al-based plating layer is 35% or more. It can be manufactured by a method including a step of heating to .
In addition, when the Al-based plated steel material is an Al-based plated steel pipe, the process includes a step of forming an Al-based plating layer on at least one surface of the steel plate, a step of forming the steel plate on which the Al-based plating layer is formed, and a step of forming the steel plate on which the Al-based plated layer is formed. It can also be manufactured by a method including a step of heating so that the alloying rate of the plating layer becomes 35% or more.
The pipe-making method is not particularly limited, and methods known in the technical field can be used. For example, after forming a steel plate on which an Al-based plating layer has been formed into a cylindrical shape, both ends in the width direction of the plate may be butted together and electrical resistance welded.
加熱方法は、特に限定されず、当該技術分野において公知の加熱装置を用いて行うことができる。また、Al系めっき鋼材を直ぐに熱間成形、特にSTAF(登録商標)工法で成形加工する場合には、当該成形加工を実施することが可能な成形装置を用いて加熱を行ってもよい。
Al系めっき層の合金化率が35%以上となるような加熱条件は、Al系めっき層の種類や付着量(厚さ)に応じて適宜設定すればよく特に限定されない。
The heating method is not particularly limited, and can be performed using a heating device known in the technical field. Further, when the Al-based plated steel material is immediately hot formed, particularly by the STAF (registered trademark) method, heating may be performed using a forming apparatus capable of performing the forming process.
The heating conditions such that the alloying rate of the Al-based plating layer becomes 35% or more are not particularly limited and may be set appropriately depending on the type and amount (thickness) of the Al-based plating layer.
典型的な加熱条件としては、3~200℃/秒の昇温速度で570~800℃の温度に加熱して10分以下保持することである。
昇温速度が3℃/秒未満であると、処理時間が長くなるため生産性が低下する。一方、昇温速度が200℃/秒を超えると、加熱速度にAlの拡散が追い付かず表面が粗くなることがある。
加熱温度が570℃未満であると、Al系めっき層の合金化が不十分となることがある。一方、加熱温度が800℃を超えると、めっき垂れが生じ易くなるとともに、Al系めっき層の表面が粗くなったり、酸化スケールが発生したりすることがある。加熱温度は、好ましくは580℃~700℃、より好ましくは600~690℃である。
保持時間が10分を超えると、処理時間が長くなるため生産性が低下する。保持時間は、Al系めっき鋼材の加工性やAl系めっき鋼材部品の表面状態を考慮すると、好ましくは15秒~9分、より好ましくは20秒~8分である。
Typical heating conditions include heating to a temperature of 570 to 800°C at a heating rate of 3 to 200°C/second and holding for 10 minutes or less.
If the temperature increase rate is less than 3° C./sec, the processing time becomes longer and productivity decreases. On the other hand, if the temperature increase rate exceeds 200° C./sec, the diffusion of Al may not be able to keep up with the heating rate and the surface may become rough.
If the heating temperature is less than 570°C, alloying of the Al-based plating layer may become insufficient. On the other hand, if the heating temperature exceeds 800° C., plating sag tends to occur, and the surface of the Al-based plating layer may become rough or oxide scale may occur. The heating temperature is preferably 580°C to 700°C, more preferably 600 to 690°C.
If the holding time exceeds 10 minutes, the processing time becomes longer and productivity decreases. The holding time is preferably 15 seconds to 9 minutes, more preferably 20 seconds to 8 minutes, taking into account the workability of the Al-based plated steel material and the surface condition of the Al-based plated steel parts.
本発明の実施形態に係るAl系めっき鋼材の焼入れ後の引張強度(TS)は、特に限定されないが、好ましくは1200N/mm2以上、より好ましくは1300N/mm2以上、さらに好ましくは1400N/mm2以上である。焼入れ後の引張強度が上記の範囲であれば、自動車の車体部品に要求される強度を確保することができる。 The tensile strength (TS) after quenching of the Al-based plated steel according to the embodiment of the present invention is not particularly limited, but is preferably 1200 N/mm 2 or more, more preferably 1300 N/mm 2 or more, and even more preferably 1400 N/mm. 2 or more. If the tensile strength after quenching is within the above range, the strength required for automobile body parts can be ensured.
(Al系めっき鋼材部品)
本発明の実施形態に係るAl系めっき鋼材部品は、上記の熱間成形用Al系めっき鋼材の熱間成形体を含む。また、このAl系めっき鋼材部品は、少なくとも1つの表面にAl系めっき層を有し、Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比(Al系めっき層の最大厚さ/Al系めっき層の最小厚さ)が1.0~10.0である。Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比が上記の範囲であれば、Al系めっき層の厚さのバラツキが小さいということができる。
(Al-based plated steel parts)
The Al-based plated steel component according to the embodiment of the present invention includes a hot-formed body of the above-mentioned Al-based plated steel for hot forming. In addition, this Al-based plated steel component has an Al-based plated layer on at least one surface, and the ratio of the maximum thickness of the Al-based plated layer to the minimum thickness of the Al-based plated layer (maximum thickness of the Al-based plated layer) (minimum thickness of Al-based plating layer) is 1.0 to 10.0. If the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer is within the above range, it can be said that the variation in the thickness of the Al-based plating layer is small.
Al系めっき鋼材部品におけるAl系めっき層の最小厚さに対するAl系めっき層の最大厚さの比は、Al系めっき鋼材におけるAl系めっき層の最小厚さに対するAl系めっき層の最大厚さの比と同様にして求めることができる。
例えば、Al系めっき鋼材部品が管状である場合、Al系めっき層の厚さは、管軸方向に垂直な方向の断面を光学顕微鏡で撮影し、撮影された写真から測定することができる。また、「Al系めっき層の最小厚さ」とは、管状のAl系めっき鋼材部品の管軸方向に垂直な方向の断面の写真において、Al系めっき層が最も小さくなる部分の厚さのことを意味する。同様に、「Al系めっき層の最大厚さ」とは、管状のAl系めっき鋼材部品の管軸方向に垂直な方向の断面の写真において、Al系めっき層が最も大きくなる部分の厚さのことを意味する。なお、Al系めっき層の最小厚さ及び最大厚さは、1視野で5箇所の平均値とすることが好ましい。
なお、Al系めっき鋼材部品が管状である場合、Al系めっき鋼材部品は、管軸方向を水平方向にして加熱されることが多い。このとき、管軸中心に対して鉛直上方となる位置を0°とすると、Al系めっき層の厚さが最大となる部分は、管軸中心に対して180°の位置する部分(底部)周辺となり、Al系めっき層の厚さが最小となる部分は、管軸中心に対して90°及び270°の位置に位置する部分(側部)周辺となる。
The ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer in the Al-based plated steel component is the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer in the Al-based plated steel material. It can be found in the same way as the ratio.
For example, when the Al-based plated steel component is tubular, the thickness of the Al-based plating layer can be measured by photographing a cross section in a direction perpendicular to the tube axis using an optical microscope. In addition, "the minimum thickness of the Al-based plating layer" refers to the thickness of the part where the Al-based plating layer is the smallest in a photograph of a cross section of a tubular Al-based plated steel part in a direction perpendicular to the tube axis direction. means. Similarly, the "maximum thickness of the Al-based plating layer" refers to the thickness of the portion where the Al-based plating layer is the largest in a photograph of a cross section of a tubular Al-based plated steel part in a direction perpendicular to the tube axis direction. It means that. Note that it is preferable that the minimum thickness and maximum thickness of the Al-based plating layer be an average value at five locations in one field of view.
Note that when the Al-based plated steel part is tubular, the Al-based plated steel part is often heated with the tube axis direction in the horizontal direction. At this time, if the vertically upward position with respect to the center of the tube axis is 0°, the part where the thickness of the Al-based plating layer is maximum is around the part (bottom) located at 180° with respect to the center of the tube axis. Therefore, the portions where the thickness of the Al-based plating layer is the minimum are around the portions (side portions) located at positions of 90° and 270° with respect to the center of the tube axis.
本発明の実施形態に係るAl系めっき鋼材部品は、上記の熱間成形用Al系めっき鋼材をA1変態点以上の温度に加熱して成形を行った後、焼入れを行うことによって製造される。特に、Al系めっき鋼材部品がSTAF(登録商標)工法で製造される場合、上記のAl系めっき鋼管をA1変態点以上の温度に加熱し、このAl系めっき鋼管内に高圧流体を供給して成形を行った後、焼入れを行うことによって製造される。STAF(登録商標)工法における成形には、パイプ本体部の成形だけでなく、フランジ部の成形を含むことができる。 The Al-based plated steel parts according to the embodiments of the present invention are manufactured by heating the hot-forming Al-based plated steel material to a temperature equal to or higher than the A1 transformation point, forming it, and then quenching it. In particular, when Al-based plated steel parts are manufactured using the STAF (registered trademark) method, the above-mentioned Al-based plated steel pipe is heated to a temperature equal to or higher than the A1 transformation point, and high-pressure fluid is supplied into the Al-based plated steel pipe. It is manufactured by molding and then quenching. Forming in the STAF (registered trademark) method can include not only forming the pipe main body but also forming the flange.
Al系めっき鋼材の加熱は、Al系めっき鋼材の鋼組織をオーステナイト化させるために、A1変態点以上、好ましくは850℃以上に加熱することにより行われる。この加熱により、Al系めっき鋼材が軟化するため、所望の形状への成形が可能となる。特に、STAF(登録商標)工法による製造では、Al系めっき鋼管内に高圧流体を供給することでAl系めっき鋼管が熱膨張し、パイプ本体部の成形やフランジ部の形成が可能となる。
加熱の際の昇温速度は、特に限定されないが、好ましくは5~200℃/秒である。
The Al-based plated steel material is heated to a temperature of A1 transformation point or higher, preferably 850° C. or higher, in order to austenitize the steel structure of the Al-based plated steel material. This heating softens the Al-based plated steel material, allowing it to be formed into a desired shape. In particular, in manufacturing using the STAF (registered trademark) method, the Al-plated steel pipe thermally expands by supplying high-pressure fluid into the pipe, making it possible to form the pipe body and the flange.
The temperature increase rate during heating is not particularly limited, but is preferably 5 to 200°C/sec.
焼入れは、Al系めっき鋼材の成形を行った後に、急冷することで実施することができる。焼入れにより、オーステナイトがマルテンサイトに変態するマルテンサイト変態が生じ、Al系めっき鋼材部品が高強度化される。 Hardening can be performed by forming the Al-based plated steel material and then rapidly cooling it. By quenching, martensitic transformation occurs, in which austenite transforms into martensite, and the strength of the Al-based plated steel parts is increased.
本発明の実施形態に係るAl系めっき鋼材部品の製造方法は、当該技術分野において公知の成形装置を用いて行うことができる。特に、本発明の実施形態に係るAl系めっき鋼材部品をSTAF(登録商標)工法によって製造する場合は、STAF(登録商標)工法を実施することが可能な成形装置、例えば、特開2018-167312号公報に記載の成形装置を用いて行うことができる。具体的には、本発明の実施形態に係るAl系めっき鋼材部品をSTAF(登録商標)工法によって製造する方法は、以下のようにして行うことができる。 The method for manufacturing Al-based plated steel parts according to the embodiments of the present invention can be carried out using a forming apparatus known in the technical field. In particular, when manufacturing the Al-based plated steel parts according to the embodiments of the present invention by the STAF (registered trademark) method, a forming apparatus capable of implementing the STAF (registered trademark) method, for example, Japanese Patent Application Publication No. 2018-167312 This can be carried out using the molding apparatus described in the above publication. Specifically, the method for manufacturing Al-based plated steel parts according to the embodiment of the present invention using the STAF (registered trademark) method can be performed as follows.
まず、上側の成形用の金型(以下、「上金型」という)と下側の成形用の金型(以下、「下金型」という)との間にAl系めっき鋼管を配置し、Al系めっき鋼管を通電加熱する。
次に、上金型と下金型との間が半開き状態となる型締め位置に調整した上で、Al系めっき鋼管の内部に高圧流体(例えば、高圧空気)を供給する。これにより、Al系めっき鋼管が上金型と下金型の内面形状に倣った形状に膨張すると共に、上金型と下金型の半開きの部分からAl系めっき鋼管の一部がはみ出す形で膨張する。この状態で型締めを行うことにより、上金型と下金型の半開きの部分からはみ出したAl系めっき鋼管の一部が上金型と下金型との間に挟まれて、フランジ部が形成される。
フランジ部の形成後、Al系めっき鋼管の内部に高圧流体をさらに供給することにより、上金型及び下金型の内面形状への密着度合い(倣い度合い)が高まる。このようにしてAl系めっき鋼管を所定の形状に成形してパイプ本体部が形成される。
パイプ本体部の形成後、金型内で急冷することで焼入れが行われ、マルテンサイト変態によって高強度化されたフランジ付きAl系めっき鋼材部品となる。
First, an Al-based plated steel pipe is placed between an upper molding mold (hereinafter referred to as "upper mold") and a lower molding mold (hereinafter referred to as "lower mold"), Al-based plated steel pipe is heated by electricity.
Next, the mold clamping position is adjusted so that the upper mold and the lower mold are in a half-open state, and high-pressure fluid (for example, high-pressure air) is supplied to the inside of the Al-based plated steel pipe. As a result, the Al-based plated steel pipe expands into a shape that follows the inner surface shapes of the upper and lower molds, and a portion of the Al-based plated steel pipe protrudes from the half-open portion of the upper and lower molds. Expand. By clamping the mold in this state, a part of the Al-based plated steel pipe protruding from the half-opened part of the upper mold and lower mold is caught between the upper mold and the lower mold, and the flange part is It is formed.
After the flange portion is formed, by further supplying high-pressure fluid to the inside of the Al-based plated steel pipe, the degree of close contact (degree of conformity) to the inner surface shape of the upper mold and the lower mold is increased. In this way, the Al-based plated steel pipe is formed into a predetermined shape to form the pipe main body.
After the pipe body is formed, it is quenched by being rapidly cooled in a mold, resulting in a flanged Al-plated steel part with increased strength due to martensitic transformation.
上記の製造方法では、上金型及び下金型の内面形状に倣い、Al系めっき鋼管の形状を自由に成形することが可能であるため、延材方向に不均一の形状を有するAl系めっき鋼材部品を一体的に成形することができる。 In the above manufacturing method, it is possible to freely form the shape of the Al-plated steel pipe by following the inner surface shape of the upper and lower molds, so it is possible to form the Al-plated steel pipe into any shape that is uneven in the rolling direction. Steel parts can be integrally molded.
以下に、実施例を挙げて本発明の内容を詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 EXAMPLES The present invention will be explained in detail below with reference to examples, but the present invention is not to be construed as being limited to these examples.
(実施例1)
<Al系めっき鋼材の製造>
Al系めっき鋼材としてAl系めっき鋼管を製造した。まず、表1に示す組成(残部はFe及び不可避的不純物である)を有する鋼を溶製し、連続鋳造して得られた鋳片を熱間圧延して板厚3.2mmの熱延鋼板とした。次に、この熱延鋼板を酸洗した後、冷間圧延して板厚1.6mmの冷延鋼板とした。次に、この冷延鋼板を連続式溶融Al系めっきライン内で720℃にて10秒加熱焼鈍した後、Al系めっき浴に浸漬させ、冷延鋼板の両面にAl系めっき層を形成した。Al系めっき浴は、91質量%のAl及び9質量%のSiからなる組成とした。また、冷延鋼板の各面に形成したAl系めっき層の付着量は35g/m2(Al系めっき層の厚さ17μm)とした。なお、Al系めっき層の付着量は、蛍光X線分析によって測定した。
次に、上記で得られたAl系めっき層が表面に形成された冷延鋼板を円筒状に成形加工した後、板幅方向の両端部を突合わせて電縫溶接した。溶接後、溶接ビード部を切削してAlを溶射した。
次に、上記で得られた鋼管を7℃/秒の昇温速度で400~800℃の温度に加熱して10秒~15分間保持する(具体的な条件は表2に示す)加熱処理を行うことにより、Al系めっき鋼管を得た。
(Example 1)
<Manufacture of Al-based plated steel>
An Al-based plated steel pipe was manufactured as an Al-based plated steel material. First, steel having the composition shown in Table 1 (the remainder is Fe and unavoidable impurities) is melted, and the slab obtained by continuous casting is hot rolled to form a hot rolled steel sheet with a thickness of 3.2 mm. And so. Next, this hot-rolled steel plate was pickled and then cold-rolled to obtain a cold-rolled steel plate with a thickness of 1.6 mm. Next, this cold-rolled steel sheet was heat-annealed at 720° C. for 10 seconds in a continuous hot-dip Al-based plating line, and then immersed in an Al-based plating bath to form an Al-based plating layer on both sides of the cold-rolled steel sheet. The Al-based plating bath had a composition of 91% by mass Al and 9% by mass Si. The amount of the Al-based plating layer formed on each surface of the cold-rolled steel sheet was 35 g/m 2 (the thickness of the Al-based plating layer was 17 μm). Note that the amount of the Al-based plating layer adhered was measured by fluorescent X-ray analysis.
Next, the cold-rolled steel plate on which the Al-based plating layer obtained above was formed was formed into a cylindrical shape, and then both ends in the width direction of the plate were butted together and electrical resistance welded. After welding, the weld bead was cut and Al was sprayed.
Next, the steel pipe obtained above was heated to a temperature of 400 to 800 °C at a heating rate of 7 °C/sec and held for 10 seconds to 15 minutes (specific conditions are shown in Table 2). By doing so, an Al-based plated steel pipe was obtained.
<Al系めっき鋼材部品の製造>
上金型と下金型との間にAl系めっき鋼管を配置し、Al系めっき鋼管を150℃/秒の昇温速度で950℃に通電加熱した。次に、上金型と下金型との間が半開き状態となる型締め位置に調整した上で、Al系めっき鋼管の内部に高圧空気を供給し、上金型と下金型の半開きの部分からAl系めっき鋼管の一部がはみ出した状態で型締めを行ってフランジ部を形成した。引き続きAl系めっき鋼管の内部に高圧流体を供給してパイプ本体部を形成した。次に、金型内で急冷して焼入れを行うことにより、Al系めっき鋼材部品を得た。
<Manufacture of Al-based plated steel parts>
An Al-based plated steel pipe was placed between the upper mold and the lower mold, and the Al-based plated steel pipe was electrically heated to 950°C at a heating rate of 150°C/sec. Next, after adjusting the mold clamping position so that the upper and lower molds are in a half-open state, high-pressure air is supplied to the inside of the Al-plated steel pipe to keep the upper and lower molds in a half-open state. A flange portion was formed by clamping the mold with a portion of the Al-based plated steel pipe protruding from the portion. Subsequently, high-pressure fluid was supplied to the inside of the Al-based plated steel pipe to form a pipe main body. Next, by rapidly cooling and hardening in a mold, an Al-based plated steel part was obtained.
<Al系めっき鋼材部品の表面状態の評価>
Al系めっき鋼材部品の表面状態は、電子線マイクロアナライザー(EPMA)を用いて評価した。その結果を表2に示す。なお、表2の結果は、全ての鋼種のAl系めっき鋼管から製造されたAl系めっき鋼材部品に共通する結果である。また、表2において、Al系めっき鋼材部品の表面が滑らかであり、且つ酸化スケールの発生が確認されなかったものを〇、Al系めっき鋼材部品の表面が粗いか、又は酸化スケールの発生が確認されたものを×と表す。
<Evaluation of surface condition of Al-based plated steel parts>
The surface condition of the Al-based plated steel parts was evaluated using an electron beam microanalyzer (EPMA). The results are shown in Table 2. The results in Table 2 are common to Al-plated steel parts manufactured from Al-plated steel pipes of all steel types. In addition, in Table 2, 〇 indicates that the surface of the Al-based plated steel parts is smooth and no oxide scale is confirmed, and 〇 indicates that the surface of the Al-based plated steel parts is rough or the occurrence of oxide scale is confirmed. Those that have been applied are indicated as ×.
表2に示されるように、全ての鋼種のAl系めっき鋼管の製造において、500℃の温度で30秒~10分、600℃の温度で2秒~10分、700℃の温度で2秒~10分及び800℃の温度で2秒加熱保持した場合に、Al系めっき鋼材部品の表面が滑らかであり、且つ酸化スケールが発生しないことが確認された。
なお、比較として、表1に示す鋼種1の組成を有する鋼を用い、Al系めっき層を形成しないこと以外は上記と同様にして作製した比較用鋼管について、上記と同様にしてAl系めっき鋼材部品を作製して表面状態の評価を行った結果、全ての加熱条件下で酸化スケールの発生が確認された。
また、熱処理を行わないこと以外は上記と同様にして作製した比較用鋼管について、上記と同様にしてAl系めっき鋼材部品を作製して表面状態の評価を行った結果、表面が粗くなっていることが確認された。この結果は全ての鋼種で共通していた。
As shown in Table 2, in the production of Al-plated steel pipes of all steel types, 30 seconds to 10 minutes at a temperature of 500°C, 2 seconds to 10 minutes at a temperature of 600°C, and 2 seconds to 10 minutes at a temperature of 700°C. When heated for 10 minutes and held at a temperature of 800° C. for 2 seconds, it was confirmed that the surface of the Al-based plated steel parts was smooth and no oxide scale was generated.
For comparison, a comparison steel pipe was prepared in the same manner as above except that a steel having the composition of steel type 1 shown in Table 1 was not formed, and an Al-plated steel pipe was prepared in the same manner as above. As a result of manufacturing the parts and evaluating the surface condition, it was confirmed that oxide scale was generated under all heating conditions.
In addition, for comparison steel pipes made in the same manner as above except that no heat treatment was performed, Al-based plated steel parts were made in the same manner as above and the surface condition was evaluated. As a result, the surface was rough. This was confirmed. This result was common to all steel types.
<Al系めっき鋼材の加工性の評価>
上記のAl系めっき鋼材(Al系めっき鋼管)の製造において、加熱条件を600℃の温度で5分としてAl系めっき鋼管を10本作製し、上記と同様の方法でAl系めっき鋼材部品を10個製造した。得られた10本のAl系めっき鋼管材品について、フランジ部及びパイプ本体部の形成状態を目視観察によって評価した。その結果、Al系めっき鋼材部品は、全ての鋼種において、10個全てフランジ部及びパイプ本体部の形成状態が良好であった。
なお、比較として、表1に示す鋼種1の組成を有する鋼を用い、Al系めっき層を形成しないこと以外は上記と同様にして作製した比較用鋼管について、上記と同様にしてAl系めっき鋼材部品を作製してAl系めっき鋼管の加工性の評価を行った結果、2個のAl系めっき鋼材部品においてフランジ部の形成状態が不均一であった。
<Evaluation of workability of Al-based plated steel>
In the production of the above-mentioned Al-based plated steel material (Al-based plated steel pipe), 10 Al-based plated steel pipes were produced under a heating condition of 600°C for 5 minutes, and 10 Al-based plated steel parts were produced in the same manner as above. Manufactured in pieces. Regarding the obtained 10 Al-based plated steel pipe products, the formation state of the flange portion and the pipe body portion was evaluated by visual observation. As a result, the flange portions and pipe body portions of all ten Al-based plated steel parts were in good condition for all steel types.
For comparison, a comparison steel pipe was prepared in the same manner as above except that a steel having the composition of steel type 1 shown in Table 1 was not formed, and an Al-plated steel pipe was prepared in the same manner as above. As a result of manufacturing the parts and evaluating the workability of the Al-based plated steel pipes, it was found that the formation state of the flange portion was non-uniform in the two Al-based plated steel parts.
<焼入れ後の引張強度の評価>
上記のAl系めっき鋼材(Al系めっき鋼管)の製造において、加熱条件を600℃の温度で5分としてAl系めっき鋼管を作製し、上記と同様の方法でAl系めっき鋼材部品を製造した。得られたAl系めっき鋼材部品について引張試験を行った。引張試験は、Al系めっき鋼材部品から採取し、つかみ部に心金を入れたJIS11号試験片について、JIS Z2241:2011に準拠して引張強度の測定を行った。その結果を表3に示す。
<Evaluation of tensile strength after quenching>
In the production of the above-mentioned Al-based plated steel material (Al-based plated steel pipe), the heating condition was set to 600° C. for 5 minutes to produce the Al-based plated steel pipe, and the Al-based plated steel parts were manufactured in the same manner as above. A tensile test was conducted on the obtained Al-based plated steel parts. In the tensile test, tensile strength was measured in accordance with JIS Z2241:2011 using a JIS No. 11 test piece taken from an Al-based plated steel component and having a mandrel inserted in the grip. The results are shown in Table 3.
表3に示されるように、Al系めっき鋼材部品は、全ての鋼種において、焼入れ後の引張強度が1200N/mm2以上であった。 As shown in Table 3, the Al-based plated steel parts had a tensile strength of 1200 N/mm 2 or more after quenching in all steel types.
(実施例2)
<Al系めっき鋼材の製造>
鋼種1を選択し、Al系めっき層の付着量を24g/m2(Al系めっき層の厚さ10μm)にするとともに、加熱処理の条件を表4に示す条件に変更したこと以外は実施例1と同様にしてAl系めっき鋼管を得た。
(Example 2)
<Manufacture of Al-based plated steel>
Example except that steel type 1 was selected, the amount of Al-based plating layer was set to 24 g/m 2 (Al-based plating layer thickness: 10 μm), and the heat treatment conditions were changed to those shown in Table 4. An Al-based plated steel pipe was obtained in the same manner as in Example 1.
<Al系めっき鋼材におけるAl系めっき層の合金化率の評価>
Al系めっき鋼管を管軸方向に垂直な方向に切断してエポキシ樹脂に埋め込んだ後、研磨処理を行い、研磨された断面を光学顕微鏡で撮影した。撮影箇所は、管軸中心に対する溶接ビード部の位置を0°とした場合に、管軸中心に対して90°、180°及び270°の位置とした。撮影された写真から、Al系めっき層全体の厚さに対する合金化されたAl系めっき層の厚さの割合を合金化率とした。Al系めっき層全体及び合金化されたAl系めっき層の厚さは、1視野で5箇所の平均値とした。また、合金化率は、管軸中心に対する溶接ビード部の位置を0°とした場合に、管軸中心に対して90°、180°及び270°の位置の平均値とした。
<Evaluation of alloying rate of Al-based plating layer in Al-based plated steel material>
After cutting an Al-based plated steel pipe in a direction perpendicular to the pipe axis and embedding it in an epoxy resin, a polishing treatment was performed, and the polished cross section was photographed using an optical microscope. The photographic locations were taken at positions of 90°, 180°, and 270° with respect to the center of the tube axis, assuming that the position of the weld bead portion with respect to the center of the tube axis was 0°. From the photograph taken, the ratio of the thickness of the alloyed Al-based plating layer to the thickness of the entire Al-based plating layer was defined as the alloying ratio. The thickness of the entire Al-based plating layer and the alloyed Al-based plating layer was the average value of five locations in one field of view. Further, the alloying ratio was an average value of positions at 90°, 180°, and 270° with respect to the center of the tube axis, when the position of the weld bead portion with respect to the center of the tube axis was 0°.
<Al系めっき鋼材におけるAl系めっき層の最小厚さ及び最大厚さの評価>
Al系めっき鋼管を管軸方向に垂直な方向に切断してエポキシ樹脂に埋め込んだ後、研磨処理を行い、研磨された断面を光学顕微鏡で撮影した。撮影箇所は、管軸中心に対する溶接ビード部の位置(加熱時に鉛直上方とした位置)を0°とした場合に、管軸中心に対して90°、180°及び270°の位置とした。ここで、管軸中心に対して180°の位置をAl系めっき層が最大厚さとなる位置とし、管軸中心に対して90°及び270°の位置をAl系めっき層が最小厚さとなる位置とした。撮影された写真から、各位置におけるAl系めっき層の厚さを測定した。各位置におけるAl系めっき層の厚さは、1視野で5箇所の平均値とした。Al系めっき層の最小厚さは、管軸中心に対して90°及び270°の位置の厚さの平均値とした。
次に、上記のようにして得られたAl系めっき層の最小厚さ及び最大厚さを基に、Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比を算出した。
<Evaluation of minimum and maximum thickness of Al-based plating layer in Al-based plated steel material>
After cutting an Al-based plated steel pipe in a direction perpendicular to the pipe axis and embedding it in an epoxy resin, a polishing treatment was performed, and the polished cross section was photographed using an optical microscope. The photographic locations were set at 90°, 180°, and 270° with respect to the center of the tube axis, where the position of the weld bead (the position vertically upward during heating) with respect to the center of the tube axis was 0°. Here, the position at 180° with respect to the center of the tube axis is the position where the Al-based plating layer has the maximum thickness, and the positions at 90° and 270° with respect to the center of the tube axis are the positions where the Al-based plating layer has the minimum thickness. And so. From the photographs taken, the thickness of the Al-based plating layer at each position was measured. The thickness of the Al-based plating layer at each position was the average value of five locations in one field of view. The minimum thickness of the Al-based plating layer was the average value of the thicknesses at positions 90° and 270° with respect to the center of the tube axis.
Next, based on the minimum thickness and maximum thickness of the Al-based plating layer obtained as described above, the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer was calculated.
<Al系めっき鋼材部品の製造>
STAF(登録商標)工法によってAl系めっき鋼材部品を製造した。具体的には、上金型と下金型との間にAl系めっき鋼管を溶接ビード部が鉛直上向きとなるように配置し、Al系めっき鋼管を表4に示す条件で通電加熱した。次に、上金型と下金型との間が半開き状態となる型締め位置に調整した上で、Al系めっき鋼管の内部に高圧空気を供給し、上金型と下金型の半開きの部分からAl系めっき鋼管の一部がはみ出した状態で型締めを行ってフランジ部を形成した。引き続きAl系めっき鋼管の内部に高圧流体を供給してパイプ本体部を形成した。次に、金型内で急冷して焼入れを行うことにより、Al系めっき鋼材部品を得た。
<Manufacture of Al-based plated steel parts>
Al-based plated steel parts were manufactured using the STAF (registered trademark) method. Specifically, an Al-based plated steel pipe was placed between an upper mold and a lower mold with the weld bead facing vertically upward, and the Al-based plated steel pipe was electrically heated under the conditions shown in Table 4. Next, after adjusting the mold clamping position so that the upper and lower molds are in a half-open state, high-pressure air is supplied to the inside of the Al-plated steel pipe to keep the upper and lower molds in a half-open state. A flange portion was formed by clamping the mold with a portion of the Al-based plated steel pipe protruding from the portion. Subsequently, high-pressure fluid was supplied to the inside of the Al-based plated steel pipe to form a pipe main body. Next, by rapidly cooling and hardening in a mold, an Al-based plated steel part was obtained.
<Al系めっき鋼材部品におけるAl系めっき層の最小厚さ及び最大厚さの評価>
Al系めっき鋼材部品を管軸方向に垂直な方向に切断してエポキシ樹脂に埋め込んだ後、研磨処理を行い、研磨された断面を光学顕微鏡で撮影した。撮影箇所は、管軸中心に対する溶接ビード部の位置を0°とした場合に、管軸中心に対して90°、180°及び270°の位置とした。ここで、管軸中心に対して180°の位置をAl系めっき層が最大厚さとなる位置とし、管軸中心に対して90°及び270°の位置をAl系めっき層が最小厚さとなる位置とした。撮影された写真から、各位置におけるAl系めっき層の厚さを測定した。各位置におけるAl系めっき層の厚さは、1視野で5箇所の平均値とした。Al系めっき層の最小厚さは、管軸中心に対して90°及び270°の位置の厚さの平均値とした。
次に、上記のようにして得られたAl系めっき層の最小厚さ及び最大厚さを基に、Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比を算出した。
加熱条件及び評価結果を表4に示す。
<Evaluation of minimum and maximum thickness of Al-based plating layer in Al-based plated steel parts>
After cutting an Al-based plated steel component in a direction perpendicular to the tube axis direction and embedding it in an epoxy resin, a polishing treatment was performed, and the polished cross section was photographed using an optical microscope. The photographic locations were taken at positions of 90°, 180°, and 270° with respect to the center of the tube axis, assuming that the position of the weld bead portion with respect to the center of the tube axis was 0°. Here, the position at 180° with respect to the center of the tube axis is the position where the Al-based plating layer has the maximum thickness, and the positions at 90° and 270° with respect to the center of the tube axis are the positions where the Al-based plating layer has the minimum thickness. And so. From the photographs taken, the thickness of the Al-based plating layer at each position was measured. The thickness of the Al-based plating layer at each position was the average value of five locations in one field of view. The minimum thickness of the Al-based plating layer was the average value of the thicknesses at positions 90° and 270° with respect to the center of the tube axis.
Next, based on the minimum thickness and maximum thickness of the Al-based plating layer obtained as described above, the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer was calculated.
The heating conditions and evaluation results are shown in Table 4.
表4に示されるように、Al系めっき層の合金化率が35%以上であり、且つAl系めっき層の最小厚さに対するAl系めっき層の最大厚さの比が1.0~5.0であるAl系めっき鋼管(No.2-5~2-14)は、当該両方の条件を満たさないAl系めっき鋼管(No.2-1~2-4)に比べて、Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比が1.0~10.0である(すなわち、めっき垂れが小さい)Al系めっき鋼材部品を与えた。
特に、Al系めっき層を予め合金化させていないAl系めっき鋼管を用い、STAF(登録商標)工法で製造したAl系めっき鋼材部品では、めっき垂れが著しく大きくなった(No.2-1~2-2)。また、Al系めっき層を予め合金化させていても、合金化率が不十分であったり、Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比が所定の範囲になかったりするAl系めっき鋼材部品では、めっき垂れが大きくなった(No.2-3~2-4)。
As shown in Table 4, the alloying ratio of the Al-based plating layer is 35% or more, and the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer is 1.0 to 5. 0, the Al-based plated steel pipes (No. 2-5 to 2-14) have a lower Al-based plating layer than the Al-based plated steel pipes (No. 2-1 to 2-4) that do not satisfy both conditions. An Al-based plated steel component was obtained in which the ratio of the maximum thickness of the Al-based plated layer to the minimum thickness of the aluminum plated layer was 1.0 to 10.0 (that is, the plating sag was small).
In particular, in the case of Al-plated steel parts manufactured using the STAF (registered trademark) method using Al-plated steel pipes in which the Al-based plating layer was not alloyed in advance, the plating sag became significantly large (No. 2-1~ 2-2). In addition, even if the Al-based plating layer is alloyed in advance, the alloying ratio may be insufficient or the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer may not be within the specified range. The plating sag became large in Al-based plated steel parts (Nos. 2-3 to 2-4).
(実施例3)
<Al系めっき鋼管の製造>
鋼種1を選択し、Al系めっき層の付着量を35g/m2(Al系めっき層の厚さ17μm)にするとともに、加熱処理の条件を表5に示す条件に変更したこと以外は実施例1と同様にしてAl系めっき鋼管を得た。
<Al系めっき鋼管におけるAl系めっき層の合金化率の評価>
実施例2と同様にして行った。
<Al系めっき鋼管におけるAl系めっき層の最小厚さ及び最大厚さの評価>
実施例2と同様にして行った。
(Example 3)
<Manufacture of Al-plated steel pipes>
Example except that steel type 1 was selected, the amount of Al-based plating layer was set to 35 g/m 2 (thickness of Al-based plating layer: 17 μm), and the heat treatment conditions were changed to those shown in Table 5. An Al-based plated steel pipe was obtained in the same manner as in Example 1.
<Evaluation of alloying rate of Al-based plating layer in Al-based plated steel pipe>
It was carried out in the same manner as in Example 2.
<Evaluation of minimum and maximum thickness of Al-based plating layer in Al-based plated steel pipe>
It was carried out in the same manner as in Example 2.
<Al系めっき鋼材部品の製造>
上金型と下金型との間にAl系めっき鋼管を溶接ビード部が鉛直上向きとなるように配置し、Al系めっき鋼管を表5に示す条件で通電加熱したこと以外は実施例2と同様にしてAl系めっき鋼材部品を得た。
<Al系めっき鋼材部品におけるAl系めっき層の最小厚さ及び最大厚さの評価>
実施例2と同様にして行った。
加熱条件及び評価結果を表5に示す。
<Manufacture of Al-based plated steel parts>
Example 2 except that an Al-plated steel pipe was placed between the upper mold and the lower mold with the weld bead facing vertically upward, and the Al-plated steel pipe was electrically heated under the conditions shown in Table 5. Al-based plated steel parts were obtained in the same manner.
<Evaluation of minimum and maximum thickness of Al-based plating layer in Al-based plated steel parts>
It was carried out in the same manner as in Example 2.
The heating conditions and evaluation results are shown in Table 5.
表5に示されるように、Al系めっき層の合金化率が35%以上であり、且つAl系めっき層の最小厚さに対するAl系めっき層の最大厚さの比が1.0~5.0であるAl系めっき鋼管(No.3-5~3-20)は、当該両方の条件を満たさないAl系めっき鋼管(No.3-1~3-4)に比べて、Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比が1.0~10.0である(すなわち、めっき垂れが小さい)Al系めっき鋼材部品を与えた。
特に、Al系めっき層を予め合金化させていないAl系めっき鋼管を用い、STAF(登録商標)工法で製造したAl系めっき鋼材部品では、めっき垂れが著しく大きくなった(No.3-1~3-2)。また、Al系めっき層を予め合金化させていても、合金化率が不十分であったり、Al系めっき層の最小厚さに対するAl系めっき層の最大厚さの比が所定の範囲になかったりするAl系めっき鋼材部品では、めっき垂れが大きくなった(No.3-3~3-4)。
As shown in Table 5, the alloying rate of the Al-based plating layer is 35% or more, and the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer is 1.0 to 5. 0, the Al-based plated steel pipes (No. 3-5 to 3-20) have a lower Al-based plating layer than the Al-based plated steel pipes (No. 3-1 to 3-4) that do not satisfy both conditions. An Al-based plated steel component was obtained in which the ratio of the maximum thickness of the Al-based plated layer to the minimum thickness of the aluminum plated layer was 1.0 to 10.0 (that is, the plating sag was small).
In particular, in the case of Al-plated steel parts manufactured using the STAF (registered trademark) method using Al-plated steel pipes in which the Al-based plating layer was not alloyed in advance, plating sag became significantly large (Nos. 3-1 to 3). 3-2). In addition, even if the Al-based plating layer is alloyed in advance, the alloying ratio may be insufficient or the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer may not be within the specified range. The plating sag became large for Al-based plated steel parts that were coated with aluminum (Nos. 3-3 to 3-4).
以上の結果からわかるように、本発明によれば、熱間成形によってAl系めっき鋼材部品を製造する場合に、めっき垂れを抑制し得る熱間成形用Al系めっき鋼材及びその製造方法を提供することができる。
また、本発明によれば、熱間成形によって製造される、Al系めっき層の厚さのバラツキが小さいAl系めっき鋼材部品及びその製造方法を提供することができる。
As can be seen from the above results, the present invention provides an Al-based plated steel material for hot forming that can suppress plating sag when manufacturing Al-based plated steel parts by hot forming, and a method for manufacturing the same. be able to.
Further, according to the present invention, it is possible to provide an Al-based plated steel component manufactured by hot forming and with small variations in the thickness of the Al-based plated layer, and a method for manufacturing the same.
Claims (7)
前記Al系めっき層の最小厚さに対する前記Al系めっき層の最大厚さの比が1.2~2.0であるSTAF(登録商標)工法用Al系めっき鋼管。 Having an Al-based plating layer with an alloying rate of 35% or more on at least the outer surface of the steel pipe,
An Al-based plated steel pipe for use in the STAF (registered trademark) method, wherein the ratio of the maximum thickness of the Al-based plated layer to the minimum thickness of the Al-based plated layer is 1.2 to 2.0.
鋼板の少なくとも1つの表面にAl系めっき層を形成する工程と、
前記Al系めっき層が形成された前記鋼板を造管し、少なくとも外面に前記Al系めっき層が形成された鋼管を製造する工程と、
前記Al系めっき層の合金化率が35%以上となるように、前記鋼管の管軸方向を水平方向にして加熱する工程と
を含む、Al系めっき鋼管の製造方法。 A method for manufacturing an Al-based plated steel pipe according to any one of claims 1 to 4, comprising:
forming an Al-based plating layer on at least one surface of the steel plate;
forming a pipe from the steel plate on which the Al-based plating layer is formed, and producing a steel pipe on which the Al -based plating layer is formed on at least the outer surface;
A method for producing an Al-based plated steel pipe, the method comprising: heating the steel pipe with its axis directed horizontally so that the alloying rate of the Al-based plated layer is 35% or more.
前記Al系めっき鋼管部品は、少なくとも1つの表面にAl系めっき層を有し、前記Al系めっき層の最小厚さに対する前記Al系めっき層の最大厚さの比が1.0~10.0であるAl系めっき鋼管部品。 An Al-based plated steel pipe component comprising a formed body of the Al-based plated steel pipe according to any one of claims 1 to 4 by the STAF (registered trademark) construction method,
The Al-based plated steel pipe component has an Al-based plating layer on at least one surface, and the ratio of the maximum thickness of the Al-based plating layer to the minimum thickness of the Al-based plating layer is 1.0 to 10.0. Al-based plated steel pipe parts.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020026538A JP7433972B2 (en) | 2020-02-19 | 2020-02-19 | Al-plated steel pipes and aluminum-plated steel pipe parts for STAF (registered trademark) construction method, and their manufacturing method |
PCT/JP2021/006460 WO2021167092A1 (en) | 2020-02-19 | 2021-02-19 | Steel material with aluminum-based plating for hot-forming, steel material component with aluminum-based plating, and method for manufacturing both |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020026538A JP7433972B2 (en) | 2020-02-19 | 2020-02-19 | Al-plated steel pipes and aluminum-plated steel pipe parts for STAF (registered trademark) construction method, and their manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021130844A JP2021130844A (en) | 2021-09-09 |
JP7433972B2 true JP7433972B2 (en) | 2024-02-20 |
Family
ID=77390835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020026538A Active JP7433972B2 (en) | 2020-02-19 | 2020-02-19 | Al-plated steel pipes and aluminum-plated steel pipe parts for STAF (registered trademark) construction method, and their manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7433972B2 (en) |
WO (1) | WO2021167092A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003027203A (en) | 2001-07-11 | 2003-01-29 | Nippon Steel Corp | Heating method of steel sheet for thermoforming |
JP2010018860A (en) | 2008-07-11 | 2010-01-28 | Nippon Steel Corp | Plated steel sheet for hot press and production method therefor |
JP2011137210A (en) | 2009-12-28 | 2011-07-14 | Nippon Steel Corp | Steel sheet for hot stamp and method of producing the same |
JP2013515618A (en) | 2009-12-29 | 2013-05-09 | ポスコ | Hot press forming method of plated steel material and hot press formed product using the same |
JP2019073779A (en) | 2017-10-18 | 2019-05-16 | 新日鐵住金株式会社 | METHOD FOR PRODUCING Al-PLATED STEEL PIPE COMPONENT, AND Al-PLATED STEEL PIPE COMPONENT |
JP2019073778A (en) | 2017-10-18 | 2019-05-16 | 新日鐵住金株式会社 | Al-PLATED STEEL PIPE COMPONENT |
-
2020
- 2020-02-19 JP JP2020026538A patent/JP7433972B2/en active Active
-
2021
- 2021-02-19 WO PCT/JP2021/006460 patent/WO2021167092A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003027203A (en) | 2001-07-11 | 2003-01-29 | Nippon Steel Corp | Heating method of steel sheet for thermoforming |
JP2010018860A (en) | 2008-07-11 | 2010-01-28 | Nippon Steel Corp | Plated steel sheet for hot press and production method therefor |
JP2011137210A (en) | 2009-12-28 | 2011-07-14 | Nippon Steel Corp | Steel sheet for hot stamp and method of producing the same |
JP2013515618A (en) | 2009-12-29 | 2013-05-09 | ポスコ | Hot press forming method of plated steel material and hot press formed product using the same |
JP2019073779A (en) | 2017-10-18 | 2019-05-16 | 新日鐵住金株式会社 | METHOD FOR PRODUCING Al-PLATED STEEL PIPE COMPONENT, AND Al-PLATED STEEL PIPE COMPONENT |
JP2019073778A (en) | 2017-10-18 | 2019-05-16 | 新日鐵住金株式会社 | Al-PLATED STEEL PIPE COMPONENT |
Also Published As
Publication number | Publication date |
---|---|
WO2021167092A1 (en) | 2021-08-26 |
JP2021130844A (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4725415B2 (en) | Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof | |
JP5732906B2 (en) | Hot-pressed steel, hot-pressed steel and hot-pressed steel manufacturing method | |
JP5387720B2 (en) | Hot-pressed steel plate member, hot-pressed steel plate member, and method for producing them | |
JP5609223B2 (en) | High-strength steel sheet with excellent warm workability and manufacturing method thereof | |
JP5246273B2 (en) | Bending metal material and manufacturing method thereof | |
KR101683406B1 (en) | Steel plate | |
JP2006265583A (en) | Hot-rolled steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot-press formed member | |
JP5071173B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5070947B2 (en) | Hardened steel plate member, hardened steel plate and manufacturing method thereof | |
JP6822616B2 (en) | Covered steel members, coated steel sheets and their manufacturing methods | |
JP3812279B2 (en) | High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same | |
WO2018142534A1 (en) | ALLOYED-Al-PLATED STEEL SHEET FOR HOT STAMPING, AND HOT-STAMPED MEMBER | |
CN111247266B (en) | Al-coated welded pipe for quenching, Al-coated hollow member, and manufacturing method thereof | |
JPWO2018199328A1 (en) | High strength steel plate and method of manufacturing the same | |
JP5228722B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP5835624B2 (en) | Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof | |
JP2014037596A (en) | Hot molded steel sheet member, method for producing the same and steel sheet for hot molding | |
JP6119655B2 (en) | High strength alloyed hot dip galvanized steel strip excellent in formability with small material variations in steel strip and method for producing the same | |
JP3870868B2 (en) | Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same | |
JP4299377B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet with increased heat treatment performance after forming | |
JP7433972B2 (en) | Al-plated steel pipes and aluminum-plated steel pipe parts for STAF (registered trademark) construction method, and their manufacturing method | |
JP3714094B2 (en) | High-tensile hot-dip galvanized steel sheet with excellent workability and strain age hardening characteristics and method for producing the same | |
CN111936649B (en) | High-strength galvanized steel sheet, high-strength member, and method for producing same | |
JP4419605B2 (en) | Steel sheet for double-wound pipe and manufacturing method thereof | |
JP5682357B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200313 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20200901 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7433972 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |