JP7432815B2 - How to dissolve dry reagents - Google Patents
How to dissolve dry reagents Download PDFInfo
- Publication number
- JP7432815B2 JP7432815B2 JP2020019693A JP2020019693A JP7432815B2 JP 7432815 B2 JP7432815 B2 JP 7432815B2 JP 2020019693 A JP2020019693 A JP 2020019693A JP 2020019693 A JP2020019693 A JP 2020019693A JP 7432815 B2 JP7432815 B2 JP 7432815B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorescence
- dry reagent
- excitation light
- solvent
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003153 chemical reaction reagent Substances 0.000 title claims description 43
- 230000005284 excitation Effects 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 9
- 230000003321 amplification Effects 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 108020004707 nucleic acids Proteins 0.000 claims description 4
- 150000007523 nucleic acids Chemical group 0.000 claims description 4
- 102000039446 nucleic acids Human genes 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 3
- 238000004090 dissolution Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 238000001917 fluorescence detection Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
本発明は、乾燥試薬の溶解方法に関する。 The present invention relates to a method for dissolving dry reagents.
生体試料と試薬を混合して反応させることで、生体試料中の成分を分析する自動分析装置において、乾燥試薬が多く用いられている。乾燥試薬は溶媒による溶解が必要であり、通常、一定の攪拌時間や温度で行われている(例えば、特許文献1参照)。乾燥試薬が十分に溶解されていない場合、試薬の反応性が低下する等によって誤判定になるおそれがあるが、十分に溶解されているかは目視での確認にとどまっていた。 BACKGROUND ART Dried reagents are often used in automatic analyzers that analyze components in biological samples by mixing and reacting the biological samples with reagents. Dry reagents need to be dissolved in a solvent, which is usually done at a constant stirring time and temperature (for example, see Patent Document 1). If the dry reagent is not sufficiently dissolved, the reactivity of the reagent may decrease, leading to a false determination, but whether or not it is sufficiently dissolved can only be confirmed visually.
乾燥試薬の溶解中にリアルタイムで溶解の進行度を確認することで、乾燥試薬の溶解不良を防ぐ方法を提供する。 To provide a method for preventing defective dissolution of a dry reagent by checking the progress of dissolution in real time during dissolution of the dry reagent.
上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。
すなわち、本発明は、容器内に配置された乾燥試薬に溶媒を加える工程と、蛍光検出器の励起光及び蛍光の有効径が前記乾燥試薬すべてを覆うように照準を合わせて蛍光強度の検出を開始する工程と、検出された蛍光強度が任意の閾値に達するまで前記容器内の攪拌を行う工程と、を含んでなる乾燥試薬の溶解方法である。
In order to solve the above problems, the present inventors have made extensive studies and have arrived at the present invention.
That is, the present invention includes the steps of adding a solvent to a dry reagent placed in a container, and detecting the fluorescence intensity by aiming the excitation light and fluorescence of a fluorescence detector so that the effective diameter covers all of the dry reagent. and stirring the container until the detected fluorescence intensity reaches an arbitrary threshold value.
以下、本発明を詳細に説明する。 The present invention will be explained in detail below.
乾燥試薬とは、液状の試薬を凍結乾燥、自然乾燥、真空乾燥等させて水分を取り除いた試薬である。核酸増幅試薬であれば、酵素と基質とプライマーと、増副産物と特異的に反応する蛍光標識を含んだ乾燥試薬が例示できるが、これに限定されるものではない。形状については、粒状、粉状、薄膜状のいずれであっても問題は無いが、薄膜状が特に好ましい。 A dry reagent is a reagent obtained by removing moisture from a liquid reagent by freeze-drying, natural drying, vacuum drying, or the like. Examples of nucleic acid amplification reagents include, but are not limited to, dry reagents containing an enzyme, a substrate, a primer, and a fluorescent label that specifically reacts with the amplification product. Regarding the shape, there is no problem whether it is granular, powder, or thin film, but thin film is particularly preferred.
乾燥試薬を配置する容器としては、試薬の溶解反応や試料の核酸増幅等に影響を与えないのであれば、その材質、大きさ、形状において、特に制限はないが、使い捨てが容易であるプラスチック製の容器が好ましい。 There are no particular restrictions on the material, size, or shape of the container in which the dry reagent is placed, as long as it does not affect the dissolution reaction of the reagent or the amplification of the nucleic acid of the sample, but it should be made of plastic that is easily disposable. containers are preferred.
乾燥試薬を溶解するのに用いられる溶媒としては、測定試料が添加された精製水が用いられる。乾燥試薬と測定試料の反応によって、適宜、溶媒に対し酸、塩、界面活性剤をさらに添加してもよい。 Purified water to which a measurement sample has been added is used as a solvent to dissolve the dry reagent. Depending on the reaction between the dry reagent and the measurement sample, an acid, salt, or surfactant may be further added to the solvent as appropriate.
容器内に配置された乾燥試薬に溶媒を加えた後、蛍光検出器の励起光及び蛍光の有効径が乾燥試薬すべてを覆うように照準を合わせて蛍光強度の検出を開始する。通常、乾燥試薬は溶媒よりも比重が重いため、容器が十分に大きければ、乾燥試薬は容器内底に沈んでいる。 After adding a solvent to the dry reagent placed in the container, the excitation light and fluorescence effective diameter of the fluorescence detector are aimed so as to cover all of the dry reagent, and detection of fluorescence intensity is started. Usually, the dry reagent has a higher specific gravity than the solvent, so if the container is large enough, the dry reagent will sink to the bottom of the container.
用いる蛍光検出器としては、試料に励起光を照射する励起光照射手段と、当該試料から発する蛍光を検出する蛍光検出手段とを備えた一般的な装置であれば問題はないが、3励起3蛍光検出器が特に好適である。なお、励起光及び蛍光の有効径とは、励起光照射手段及び蛍光検出手段がそれぞれ備えているレンズの有効口径(JIS B 7095:1997参照)を指す。すなわち、レンズの光軸上の無限遠物点から出て,与えられた絞り目盛に相当する開口をもつレンズを通過すべき平行光線束の,光軸に垂直な断面積と等しい面積をもつ円の直径のことを指す。 There is no problem with the fluorescence detector used if it is a general device equipped with an excitation light irradiation means for irradiating the sample with excitation light and a fluorescence detection means for detecting the fluorescence emitted from the sample. Fluorescence detectors are particularly suitable. Note that the effective apertures of excitation light and fluorescence refer to the effective apertures (see JIS B 7095:1997) of lenses provided in the excitation light irradiation means and the fluorescence detection means, respectively. In other words, a circle with an area equal to the cross-sectional area perpendicular to the optical axis of a bundle of parallel rays that exits from an object point at infinity on the optical axis of the lens and passes through a lens with an aperture corresponding to a given aperture scale. refers to the diameter of
蛍光検出器は、励起光及び蛍光の有効径が乾燥試薬すべてを覆えるのであれば、その位置は特に制限されず、核酸増幅を行うためのインキュベーターと蛍光検出器が一体となった態様も可能である。 The position of the fluorescence detector is not particularly limited as long as the effective diameter of the excitation light and fluorescence can cover all of the dried reagents, and an embodiment in which the incubator for nucleic acid amplification and the fluorescence detector are integrated is also possible. It is.
蛍光検出器の励起光及び蛍光の有効径が乾燥試薬すべてを覆うように照準を合わせて蛍光強度を検出すると、溶解が始まっていない段階(乾燥試薬のみ)の時に蛍光強度が最も高く、乾燥試薬が溶媒に均等に溶解していると蛍光強度は最も低くなる。すなわち、乾燥試薬の溶解が進むにつれて、蛍光強度が漸減していく。 When detecting the fluorescence intensity by aiming the fluorescence detector so that the effective diameter of the excitation light and fluorescence covers all of the dry reagents, the fluorescence intensity is highest when dissolution has not yet begun (only the dry reagents), and the fluorescence intensity is highest when the dry reagents When is evenly dissolved in the solvent, the fluorescence intensity will be the lowest. That is, as the dry reagent dissolves, the fluorescence intensity gradually decreases.
上述の原理を利用して、適切な蛍光強度を閾値として設定する。蛍光強度が任意の閾値に達していれば、乾燥試薬は溶媒に均等に溶解していると判断できるため、その時点で溶解を促進するための攪拌を止めればよい。なお、攪拌方法は、攪拌翼を用いた方法、容器を水平又は垂直方法に振動させる方法、分注機構による吸引吐出などを例示することができるが、特に制限はない。 Using the principles described above, an appropriate fluorescence intensity is set as a threshold. If the fluorescence intensity reaches an arbitrary threshold value, it can be determined that the dry reagent is evenly dissolved in the solvent, and therefore, stirring for promoting dissolution can be stopped at that point. Examples of the stirring method include a method using a stirring blade, a method of vibrating a container horizontally or vertically, a method of sucking and discharging using a dispensing mechanism, but there is no particular limitation.
容器内での乾燥試薬の溶解不良を防ぎ、無駄な攪拌を行わず、総合的な時間短縮に資する。 This prevents poor dissolution of dry reagents in the container, eliminates unnecessary stirring, and contributes to overall time reduction.
以下、具体的な実施形態を説明するが、本発明は当該例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者に容易に理解可能である。 Specific embodiments will be described below, but it will be appreciated by those skilled in the art that the present invention is not limited to these examples, and that various modifications can be made within the scope of the invention described in the claims. Easy to understand.
実施例1
図1に示す本発明の蛍光検出器と攪拌機構を用いて、乾燥試薬の溶解の進行度がリアルタイムに蛍光測定できるか検証した。試料容器10として無色透明のポリプロピレン製容器を、乾燥試薬11は蛍光色素で修飾した核酸プローブを、溶媒12は精製水を主成分とした溶媒を用いた。励起光照射部14と蛍光検出部15は、励起光450nm蛍光495nm、励起光500nm蛍光545nm、励起光590nm蛍光645nmの3組を用いた。3つの励起光照射部14を順番に点灯し(2.5sec×3、2.5sec消灯)、それに対応する蛍光検出部15の蛍光強度を測定した。分注機構13にて、試料容器10へ溶媒12を吐出し、その後は吸引吐出にて攪拌を行った。
Example 1
Using the fluorescence detector and stirring mechanism of the present invention shown in FIG. 1, it was verified whether the progress of dissolution of a dry reagent could be measured in real time using fluorescence. A colorless and transparent polypropylene container was used as the sample container 10, a nucleic acid probe modified with a fluorescent dye was used as the dry reagent 11, and a solvent mainly composed of purified water was used as the solvent 12. Three sets of excitation light irradiation section 14 and fluorescence detection section 15 were used: excitation light of 450 nm and fluorescence of 495 nm, excitation light of 500 nm and fluorescence of 545 nm, and excitation light of 590 nm and fluorescence of 645 nm. The three excitation light irradiation sections 14 were turned on in order (2.5 sec x 3, 2.5 sec off), and the corresponding fluorescence intensity of the fluorescence detection section 15 was measured. The solvent 12 was discharged into the sample container 10 by the dispensing mechanism 13, and then stirred by suction and discharge.
結果を図2に示す。溶媒12の吐出前は、蛍光検出器の有効径内に乾燥試薬が全て覆われているため、3種類の蛍光検出器ともに高い蛍光強度を受光した。溶媒12を吐出して40秒間は蛍光強度が徐々に減少した。有効径外の溶媒へ乾燥試薬が時間的に溶解していることが分かる。40秒以降は蛍光強度が一定になった。乾燥試薬が全て溶媒へ溶解したことが分かる。 The results are shown in Figure 2. Before discharging the solvent 12, all the dry reagents were covered within the effective diameter of the fluorescence detector, so all three types of fluorescence detectors received high fluorescence intensity. The fluorescence intensity gradually decreased for 40 seconds after discharging the solvent 12. It can be seen that the dry reagent is dissolved in the solvent outside the effective diameter over time. After 40 seconds, the fluorescence intensity became constant. It can be seen that all of the dry reagents were dissolved in the solvent.
10 :試料容器
11 :乾燥試薬
12 :溶媒
13 :分注機構(攪拌機構)
14 :励起光照射部
14a:励起光源
14b:光学フィルタ(励起光側)
14c:励起光有効径
15 :蛍光検出部
15a:受光素子
15b:光学フィルタ(蛍光側)
15c:蛍光有効径
10: Sample container 11: Dry reagent 12: Solvent 13: Dispensing mechanism (stirring mechanism)
14: Excitation light irradiation section 14a: Excitation light source 14b: Optical filter (excitation light side)
14c: Excitation light effective diameter 15: Fluorescence detection section 15a: Light receiving element 15b: Optical filter (fluorescence side)
15c: Fluorescence effective diameter
Claims (3)
蛍光検出器の励起光が前記容器の下部を覆うように照準を合わせて蛍光強度の検出を開始する工程と、
検出された蛍光強度が所定の閾値を下回るまで前記容器内の攪拌を行う工程と、
を含んでなる、乾燥試薬の溶解方法。 adding a solvent to the dry reagent placed in the container;
Aiming the excitation light of the fluorescence detector so as to cover the lower part of the container and starting to detect the fluorescence intensity;
stirring the container until the detected fluorescence intensity is below a predetermined threshold;
A method for dissolving a dry reagent comprising :
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020019693A JP7432815B2 (en) | 2020-02-07 | 2020-02-07 | How to dissolve dry reagents |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020019693A JP7432815B2 (en) | 2020-02-07 | 2020-02-07 | How to dissolve dry reagents |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021124455A JP2021124455A (en) | 2021-08-30 |
JP7432815B2 true JP7432815B2 (en) | 2024-02-19 |
Family
ID=77458594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020019693A Active JP7432815B2 (en) | 2020-02-07 | 2020-02-07 | How to dissolve dry reagents |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7432815B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009527734A (en) | 2006-03-28 | 2009-07-30 | ヘモク アクチボラゲット | Apparatus and method for detection of fluorescently labeled biological components |
JP2012026728A (en) | 2010-07-20 | 2012-02-09 | Hitachi High-Technologies Corp | Analyzer |
JP2013110999A (en) | 2011-11-28 | 2013-06-10 | Kanagawa Acad Of Sci & Technol | Liquid-refluxing type high speed gene amplification device |
WO2018025705A1 (en) | 2016-08-03 | 2018-02-08 | 国立研究開発法人理化学研究所 | Analysis cell, analysis device, analysis equipment, and analysis system |
JP2019193670A (en) | 2018-03-23 | 2019-11-07 | 日本板硝子株式会社 | Reaction treatment device |
JP2019215376A (en) | 2011-08-29 | 2019-12-19 | アムジェン インコーポレイテッド | Methods and apparatus for nondestructive detection of undissolved particles in fluid |
-
2020
- 2020-02-07 JP JP2020019693A patent/JP7432815B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009527734A (en) | 2006-03-28 | 2009-07-30 | ヘモク アクチボラゲット | Apparatus and method for detection of fluorescently labeled biological components |
JP2012026728A (en) | 2010-07-20 | 2012-02-09 | Hitachi High-Technologies Corp | Analyzer |
JP2019215376A (en) | 2011-08-29 | 2019-12-19 | アムジェン インコーポレイテッド | Methods and apparatus for nondestructive detection of undissolved particles in fluid |
JP2013110999A (en) | 2011-11-28 | 2013-06-10 | Kanagawa Acad Of Sci & Technol | Liquid-refluxing type high speed gene amplification device |
WO2018025705A1 (en) | 2016-08-03 | 2018-02-08 | 国立研究開発法人理化学研究所 | Analysis cell, analysis device, analysis equipment, and analysis system |
JP2019193670A (en) | 2018-03-23 | 2019-11-07 | 日本板硝子株式会社 | Reaction treatment device |
Also Published As
Publication number | Publication date |
---|---|
JP2021124455A (en) | 2021-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100485368C (en) | Detection method and detection apparatus for biological sample components | |
TWI486570B (en) | Ensuring sample adequacy using turbidity light scattering techniques | |
JP2018151392A (en) | Optical analysis device, and method for identifying type and amount of micro-organism in fluid sample | |
CN102539737A (en) | Method for automatic determination of sample | |
US9885700B2 (en) | Method and apparatus for detecting elution of samples | |
US20190195684A1 (en) | System for Optically Monitoring Operating Conditions in a Sample Analyzing Apparatus | |
US20070263210A1 (en) | Fluorescence Measuring Apparatus | |
US5607861A (en) | Method for spotting liquid samples onto frameless dry-type chemical analysis film pieces | |
JP7432815B2 (en) | How to dissolve dry reagents | |
US20200068683A1 (en) | Method to correct signal light intensities measured by a detector of a detection unit in a laboratory instrument | |
JP5258090B2 (en) | Automatic analyzer | |
JP2007333440A (en) | Sample measuring method, and sample measuring device | |
JP2020091185A (en) | Analyzer and method for analysis | |
US20210053050A1 (en) | Specimen processing apparatus, specimen measurement system and method for processing specimen | |
JP2009014505A (en) | Contaminant detector and analyzer | |
JP2009210275A (en) | Autoanalyzer | |
JP2002311036A (en) | Clinical examination device | |
US20050172887A1 (en) | Method for monitoring the production of biomolecule crystals | |
JP2011179983A (en) | Standard particle and automatic analysis device | |
US20230314419A1 (en) | Target measurement method, target measurement device, target measurement apparatus, and target measurement kit | |
JP2011072234A (en) | Detector and nucleic acid amplifier to use detector | |
JP4058419B2 (en) | Analysis equipment | |
JP5160461B2 (en) | Automatic analyzer | |
JP2010217115A (en) | Reaction card, reaction image stabilizing method, and automatic analysis device using reaction card | |
JP2021061757A (en) | Inspection method of analysis chip, inspection device and production method of analysis chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240108 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7432815 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |