[go: up one dir, main page]

JP2021124455A - Dissolution method of drying reagent - Google Patents

Dissolution method of drying reagent Download PDF

Info

Publication number
JP2021124455A
JP2021124455A JP2020019693A JP2020019693A JP2021124455A JP 2021124455 A JP2021124455 A JP 2021124455A JP 2020019693 A JP2020019693 A JP 2020019693A JP 2020019693 A JP2020019693 A JP 2020019693A JP 2021124455 A JP2021124455 A JP 2021124455A
Authority
JP
Japan
Prior art keywords
fluorescence
drying
reagent
drying reagent
dissolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020019693A
Other languages
Japanese (ja)
Other versions
JP7432815B2 (en
Inventor
雄大 青柳
Takehiro Aoyanagi
雄大 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2020019693A priority Critical patent/JP7432815B2/en
Publication of JP2021124455A publication Critical patent/JP2021124455A/en
Application granted granted Critical
Publication of JP7432815B2 publication Critical patent/JP7432815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

【課題】乾燥試薬の溶解中にリアルタイムで溶解の進行度を確認することで、乾燥試薬の溶解不良を防ぐ方法を提供する。【解決手段】容器内に配置された乾燥試薬に溶媒を加える工程と、蛍光検出器の励起光及び蛍光の有効径が前記乾燥試薬すべてを覆うように照準を合わせて蛍光強度の検出を開始する工程と、検出された蛍光強度が任意の閾値に達するまで前記容器内の攪拌を行う工程と、を含んでなる乾燥試薬の溶解方法。【選択図】 図1The present invention provides a method for preventing defective dissolution of a dry reagent by checking the progress of dissolution in real time during the dissolution of the dry reagent. [Solution] A step of adding a solvent to a dry reagent placed in a container, and starting detection of fluorescence intensity by aiming the effective diameter of excitation light and fluorescence of a fluorescence detector so as to cover all of the dry reagent. and stirring the container until the detected fluorescence intensity reaches an arbitrary threshold value. [Selection diagram] Figure 1

Description

本発明は、乾燥試薬の溶解方法に関する。 The present invention relates to a method for dissolving a drying reagent.

生体試料と試薬を混合して反応させることで、生体試料中の成分を分析する自動分析装置において、乾燥試薬が多く用いられている。乾燥試薬は溶媒による溶解が必要であり、通常、一定の攪拌時間や温度で行われている(例えば、特許文献1参照)。乾燥試薬が十分に溶解されていない場合、試薬の反応性が低下する等によって誤判定になるおそれがあるが、十分に溶解されているかは目視での確認にとどまっていた。 Dry reagents are often used in automatic analyzers that analyze components in biological samples by mixing and reacting biological samples with reagents. The drying reagent needs to be dissolved in a solvent, and is usually carried out at a constant stirring time and temperature (see, for example, Patent Document 1). If the drying reagent is not sufficiently dissolved, it may be erroneously determined due to a decrease in the reactivity of the reagent, but it was only visually confirmed whether or not the drying reagent was sufficiently dissolved.

WO2017/149940号パンフレットWO2017 / 149940 Pamphlet

乾燥試薬の溶解中にリアルタイムで溶解の進行度を確認することで、乾燥試薬の溶解不良を防ぐ方法を提供する。 By confirming the progress of dissolution in real time during the dissolution of the drying reagent, a method for preventing the dissolution failure of the drying reagent is provided.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。
すなわち、本発明は、容器内に配置された乾燥試薬に溶媒を加える工程と、蛍光検出器の励起光及び蛍光の有効径が前記乾燥試薬すべてを覆うように照準を合わせて蛍光強度の検出を開始する工程と、検出された蛍光強度が任意の閾値に達するまで前記容器内の攪拌を行う工程と、を含んでなる乾燥試薬の溶解方法である。
In order to solve the above problems, the present inventors have reached the present invention as a result of repeated diligent studies.
That is, the present invention detects the fluorescence intensity by aiming at the step of adding a solvent to the drying reagent arranged in the container and aiming so that the excitation light of the fluorescence detector and the effective diameter of fluorescence cover all the drying reagents. A method for dissolving a drying reagent, comprising a step of starting and a step of stirring the inside of the container until the detected fluorescence intensity reaches an arbitrary threshold value.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

乾燥試薬とは、液状の試薬を凍結乾燥、自然乾燥、真空乾燥等させて水分を取り除いた試薬である。核酸増幅試薬であれば、酵素と基質とプライマーと、増副産物と特異的に反応する蛍光標識を含んだ乾燥試薬が例示できるが、これに限定されるものではない。形状については、粒状、粉状、薄膜状のいずれであっても問題は無いが、薄膜状が特に好ましい。 The drying reagent is a reagent from which water has been removed by freeze-drying, air-drying, vacuum-drying, or the like a liquid reagent. Examples of nucleic acid amplification reagents include, but are not limited to, dry reagents containing enzymes, substrates, primers, and fluorescent labels that specifically react with augmented by-products. The shape may be granular, powdery, or thin film, but the thin film is particularly preferable.

乾燥試薬を配置する容器としては、試薬の溶解反応や試料の核酸増幅等に影響を与えないのであれば、その材質、大きさ、形状において、特に制限はないが、使い捨てが容易であるプラスチック製の容器が好ましい。 The container in which the drying reagent is placed is made of plastic, which is easy to dispose of, although the material, size, and shape are not particularly limited as long as it does not affect the dissolution reaction of the reagent or the nucleic acid amplification of the sample. Container is preferable.

乾燥試薬を溶解するのに用いられる溶媒としては、測定試料が添加された精製水が用いられる。乾燥試薬と測定試料の反応によって、適宜、溶媒に対し酸、塩、界面活性剤をさらに添加してもよい。 As the solvent used to dissolve the drying reagent, purified water to which the measurement sample is added is used. Depending on the reaction between the drying reagent and the measurement sample, an acid, a salt, or a surfactant may be further added to the solvent as appropriate.

容器内に配置された乾燥試薬に溶媒を加えた後、蛍光検出器の励起光及び蛍光の有効径が乾燥試薬すべてを覆うように照準を合わせて蛍光強度の検出を開始する。通常、乾燥試薬は溶媒よりも比重が重いため、容器が十分に大きければ、乾燥試薬は容器内底に沈んでいる。 After adding the solvent to the drying reagent placed in the container, the fluorescence intensity is detected by aiming so that the excitation light of the fluorescence detector and the effective diameter of fluorescence cover all the drying reagents. Usually, the drying reagent has a heavier specific gravity than the solvent, so if the container is large enough, the drying reagent is submerged in the inner bottom of the container.

用いる蛍光検出器としては、試料に励起光を照射する励起光照射手段と、当該試料から発する蛍光を検出する蛍光検出手段とを備えた一般的な装置であれば問題はないが、3励起3蛍光検出器が特に好適である。なお、励起光及び蛍光の有効径とは、励起光照射手段及び蛍光検出手段がそれぞれ備えているレンズの有効口径(JIS B 7095:1997参照)を指す。すなわち、レンズの光軸上の無限遠物点から出て,与えられた絞り目盛に相当する開口をもつレンズを通過すべき平行光線束の,光軸に垂直な断面積と等しい面積をもつ円の直径のことを指す。 As the fluorescence detector to be used, there is no problem as long as it is a general device including an excitation light irradiation means for irradiating the sample with excitation light and a fluorescence detection means for detecting the fluorescence emitted from the sample, but there is no problem with 3 excitation 3 Fluorescence detectors are particularly suitable. The effective diameters of the excitation light and the fluorescence refer to the effective diameters of the lenses provided by the excitation light irradiation means and the fluorescence detection means (see JIS B 7095: 1997). That is, a circle having an area equal to the cross-sectional area perpendicular to the optical axis of a bundle of parallel rays that should exit from an infinite object point on the optical axis of the lens and pass through a lens having an aperture corresponding to a given aperture scale. Refers to the diameter of.

蛍光検出器は、励起光及び蛍光の有効径が乾燥試薬すべてを覆えるのであれば、その位置は特に制限されず、核酸増幅を行うためのインキュベーターと蛍光検出器が一体となった態様も可能である。 The position of the fluorescence detector is not particularly limited as long as the effective diameter of the excitation light and fluorescence covers all the drying reagents, and an incubator for nucleic acid amplification and a fluorescence detector can be integrated. Is.

蛍光検出器の励起光及び蛍光の有効径が乾燥試薬すべてを覆うように照準を合わせて蛍光強度を検出すると、溶解が始まっていない段階(乾燥試薬のみ)の時に蛍光強度が最も高く、乾燥試薬が溶媒に均等に溶解していると蛍光強度は最も低くなる。すなわち、乾燥試薬の溶解が進むにつれて、蛍光強度が漸減していく。 When the fluorescence intensity is detected by aiming so that the excitation light of the fluorescence detector and the effective diameter of fluorescence cover all the drying reagents, the fluorescence intensity is highest at the stage where dissolution has not started (drying reagent only), and the drying reagent. Is evenly dissolved in the solvent, the fluorescence intensity is lowest. That is, as the dissolution of the drying reagent progresses, the fluorescence intensity gradually decreases.

上述の原理を利用して、適切な蛍光強度を閾値として設定する。蛍光強度が任意の閾値に達していれば、乾燥試薬は溶媒に均等に溶解していると判断できるため、その時点で溶解を促進するための攪拌を止めればよい。なお、攪拌方法は、攪拌翼を用いた方法、容器を水平又は垂直方法に振動させる方法、分注機構による吸引吐出などを例示することができるが、特に制限はない。 Using the above principle, an appropriate fluorescence intensity is set as a threshold value. If the fluorescence intensity reaches an arbitrary threshold value, it can be determined that the drying reagent is evenly dissolved in the solvent, and at that point, stirring for promoting dissolution may be stopped. The stirring method can be exemplified by a method using a stirring blade, a method of vibrating the container horizontally or vertically, a suction discharge by a dispensing mechanism, and the like, but there is no particular limitation.

容器内での乾燥試薬の溶解不良を防ぎ、無駄な攪拌を行わず、総合的な時間短縮に資する。 Prevents poor dissolution of the drying reagent in the container, does not perform unnecessary stirring, and contributes to overall time reduction.

本発明の乾燥試薬の溶解方法を示す概略図である。It is the schematic which shows the dissolution method of the drying reagent of this invention. 実施例1の結果を示した図である。It is a figure which showed the result of Example 1. FIG.

以下、具体的な実施形態を説明するが、本発明は当該例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者に容易に理解可能である。 Hereinafter, specific embodiments will be described, but those skilled in the art will appreciate that the present invention is not limited to this example and that various modifications can be made within the scope of the invention described in the claims. It is easy to understand.

実施例1
図1に示す本発明の蛍光検出器と攪拌機構を用いて、乾燥試薬の溶解の進行度がリアルタイムに蛍光測定できるか検証した。試料容器10として無色透明のポリプロピレン製容器を、乾燥試薬11は蛍光色素で修飾した核酸プローブを、溶媒12は精製水を主成分とした溶媒を用いた。励起光照射部14と蛍光検出部15は、励起光450nm蛍光495nm、励起光500nm蛍光545nm、励起光590nm蛍光645nmの3組を用いた。3つの励起光照射部14を順番に点灯し(2.5sec×3、2.5sec消灯)、それに対応する蛍光検出部15の蛍光強度を測定した。分注機構13にて、試料容器10へ溶媒12を吐出し、その後は吸引吐出にて攪拌を行った。
Example 1
Using the fluorescence detector of the present invention and the stirring mechanism shown in FIG. 1, it was verified whether the progress of dissolution of the drying reagent could be measured by fluorescence in real time. A colorless and transparent polypropylene container was used as the sample container 10, a nucleic acid probe modified with a fluorescent dye was used as the drying reagent 11, and a solvent containing purified water as a main component was used as the solvent 12. As the excitation light irradiation unit 14 and the fluorescence detection unit 15, three sets of excitation light 450 nm fluorescence 495 nm, excitation light 500 nm fluorescence 545 nm, and excitation light 590 nm fluorescence 645 nm were used. The three excitation light irradiation units 14 were turned on in order (2.5 sec × 3, 2.5 sec off), and the fluorescence intensity of the corresponding fluorescence detection unit 15 was measured. The solvent 12 was discharged into the sample container 10 by the dispensing mechanism 13, and then stirring was performed by suction discharge.

結果を図2に示す。溶媒12の吐出前は、蛍光検出器の有効径内に乾燥試薬が全て覆われているため、3種類の蛍光検出器ともに高い蛍光強度を受光した。溶媒12を吐出して40秒間は蛍光強度が徐々に減少した。有効径外の溶媒へ乾燥試薬が時間的に溶解していることが分かる。40秒以降は蛍光強度が一定になった。乾燥試薬が全て溶媒へ溶解したことが分かる。 The results are shown in FIG. Before discharging the solvent 12, all the drying reagents were covered within the effective diameter of the fluorescence detector, so that all three types of fluorescence detectors received high fluorescence intensity. The fluorescence intensity gradually decreased for 40 seconds after discharging the solvent 12. It can be seen that the drying reagent is temporally dissolved in a solvent outside the effective diameter. After 40 seconds, the fluorescence intensity became constant. It can be seen that all the drying reagents were dissolved in the solvent.

10 :試料容器
11 :乾燥試薬
12 :溶媒
13 :分注機構(攪拌機構)
14 :励起光照射部
14a:励起光源
14b:光学フィルタ(励起光側)
14c:励起光有効径
15 :蛍光検出部
15a:受光素子
15b:光学フィルタ(蛍光側)
15c:蛍光有効径
10: Sample container 11: Drying reagent 12: Solvent 13: Dispensing mechanism (stirring mechanism)
14: Excitation light irradiation unit 14a: Excitation light source 14b: Optical filter (excitation light side)
14c: Effective diameter of excitation light 15: Fluorescence detection unit 15a: Light receiving element 15b: Optical filter (fluorescence side)
15c: Fluorescence effective diameter

Claims (4)

容器内に配置された乾燥試薬に溶媒を加える工程と、
蛍光検出器の励起光及び蛍光の有効径が前記乾燥試薬すべてを覆うように照準を合わせて蛍光強度の検出を開始する工程と、
検出された蛍光強度が任意の閾値に達するまで前記容器内の攪拌を行う工程と、
を含んでなる乾燥試薬の溶解方法。
The process of adding a solvent to the drying reagent placed in the container,
A step of aiming the excitation light of the fluorescence detector and the effective diameter of the fluorescence so as to cover all the drying reagents, and a step of starting the detection of the fluorescence intensity.
The step of stirring the inside of the container until the detected fluorescence intensity reaches an arbitrary threshold value, and
A method for dissolving a drying reagent comprising.
蛍光検出器が3励起3蛍光検出器であることを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the fluorescence detector is a 3-excitation 3-fluorescence detector. 乾燥試薬の形状が薄膜状であることを特徴とする請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the shape of the drying reagent is a thin film. 乾燥試薬が核酸増幅試薬であることを特徴とする請求項1〜3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the drying reagent is a nucleic acid amplification reagent.
JP2020019693A 2020-02-07 2020-02-07 How to dissolve dry reagents Active JP7432815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020019693A JP7432815B2 (en) 2020-02-07 2020-02-07 How to dissolve dry reagents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020019693A JP7432815B2 (en) 2020-02-07 2020-02-07 How to dissolve dry reagents

Publications (2)

Publication Number Publication Date
JP2021124455A true JP2021124455A (en) 2021-08-30
JP7432815B2 JP7432815B2 (en) 2024-02-19

Family

ID=77458594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020019693A Active JP7432815B2 (en) 2020-02-07 2020-02-07 How to dissolve dry reagents

Country Status (1)

Country Link
JP (1) JP7432815B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527734A (en) * 2006-03-28 2009-07-30 ヘモク アクチボラゲット Apparatus and method for detection of fluorescently labeled biological components
JP2012026728A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Analyzer
JP2013110999A (en) * 2011-11-28 2013-06-10 Kanagawa Acad Of Sci & Technol Liquid-refluxing type high speed gene amplification device
WO2018025705A1 (en) * 2016-08-03 2018-02-08 国立研究開発法人理化学研究所 Analysis cell, analysis device, analysis equipment, and analysis system
JP2019193670A (en) * 2018-03-23 2019-11-07 日本板硝子株式会社 Reaction treatment device
JP2019215376A (en) * 2011-08-29 2019-12-19 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527734A (en) * 2006-03-28 2009-07-30 ヘモク アクチボラゲット Apparatus and method for detection of fluorescently labeled biological components
JP2012026728A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Analyzer
JP2019215376A (en) * 2011-08-29 2019-12-19 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
JP2013110999A (en) * 2011-11-28 2013-06-10 Kanagawa Acad Of Sci & Technol Liquid-refluxing type high speed gene amplification device
WO2018025705A1 (en) * 2016-08-03 2018-02-08 国立研究開発法人理化学研究所 Analysis cell, analysis device, analysis equipment, and analysis system
JP2019193670A (en) * 2018-03-23 2019-11-07 日本板硝子株式会社 Reaction treatment device

Also Published As

Publication number Publication date
JP7432815B2 (en) 2024-02-19

Similar Documents

Publication Publication Date Title
JP6673970B2 (en) Optical analyzer and method for identifying the type and amount of microorganisms in a fluid sample
CN100485368C (en) Detection method and detection apparatus for biological sample components
EP3535591B1 (en) System for optically monitoring operating conditions in a sample analyzing apparatus
US20070264655A1 (en) Nucleic acid automatic examining device
GB2558169A (en) Flow cell for nucleic acid analysis and nucleic acid analyzer
US20070263210A1 (en) Fluorescence Measuring Apparatus
CN104204778A (en) Fluorescence detection device and fluorescence detection method
US9885700B2 (en) Method and apparatus for detecting elution of samples
EP0677744B1 (en) Method and apparatus for spotting liquid samples onto dry-type chemical analysis film pieces
JP2021124455A (en) Dissolution method of drying reagent
JP4871025B2 (en) Automatic analyzer and its sample dispensing method
JP2009207392A (en) Method and device for analyzing amplified nucleic acid
JPWO2004068144A1 (en) Method and apparatus for analyzing liquid sample
JP2020091185A (en) Analysis device and analysis method
US8845964B2 (en) Sample analyzer and method for controling a sample analyzer
JP3910000B2 (en) Single base substitution detection method
US20170239653A1 (en) Device and method for conducting direct quantitative real time PCR
US20210053050A1 (en) Specimen processing apparatus, specimen measurement system and method for processing specimen
JP7354749B2 (en) Analytical chip testing method, testing device, and analytical chip manufacturing method
JP2009210275A (en) Autoanalyzer
JP2011072234A (en) Detector and nucleic acid amplifier to use detector
JP2005221503A (en) Method for monitoring the formation of biomolecular crystals
CN114207413A (en) Microfluidic analysis method and apparatus for quantification of soluble gaseous pollutants in water
JP2005233813A (en) Method of detecting biosubstance
JP2008216067A (en) Analyzer and analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240108

R151 Written notification of patent or utility model registration

Ref document number: 7432815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151