JP7431645B2 - Dress grinding device and method - Google Patents
Dress grinding device and method Download PDFInfo
- Publication number
- JP7431645B2 JP7431645B2 JP2020067101A JP2020067101A JP7431645B2 JP 7431645 B2 JP7431645 B2 JP 7431645B2 JP 2020067101 A JP2020067101 A JP 2020067101A JP 2020067101 A JP2020067101 A JP 2020067101A JP 7431645 B2 JP7431645 B2 JP 7431645B2
- Authority
- JP
- Japan
- Prior art keywords
- axis
- dressing
- grinding
- dress
- rough
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Machine Tool Sensing Apparatuses (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
Description
本発明は、研削盤用のドレス研削装置及びその制御方法に関し、特に、ねじ研削盤用のドレス研削装置及びその制御方法に関する。 The present invention relates to a dress grinding device for a grinding machine and a control method thereof, and particularly to a dress grinding device for a thread grinding machine and a control method thereof.
従来、研削盤による研削、特にボールねじ研削においては、ねじ溝としてJIS B 1192-1:2018にあるようにゴシック形状の溝及びわずかにそれを補正する等して派生させた溝を作ることが多い。図1はゴシック形状溝の形状の概要を示しており、左右対称であるが右側と左側の円弧の中心がずらしてある。一般にはこれを派生させ溝の縁の面取を加えるとか溝中央を深めに掘るなど要求に応じた形状が使用される。このとき、ねじ研削盤を用いたねじ溝の研削においては、ねじ溝に作る形状に合わせた形で砥石の形を作り、その砥石断面形状を螺旋に沿ってほぼそのまま転写することで所望の溝形状を作るということが一般的である。この砥石の形を作るドレス装置として、種々の機構の装置が用意され市場で使用されているが、例えば、ロータリドレッサを備える研削盤のドレス装置及び方法が使用されている(例えば、特許文献1及び2参照)。 Conventionally, in grinding using a grinding machine, especially in ball screw grinding, it has been possible to create gothic-shaped grooves as described in JIS B 1192-1:2018 and grooves derived by slightly correcting the grooves. many. FIG. 1 shows an outline of the shape of the Gothic groove, which is symmetrical, but the centers of the right and left arcs are shifted. Generally, a shape based on this is used, such as adding a chamfer to the edge of the groove or digging deeper in the center of the groove, depending on the requirements. At this time, when grinding a thread groove using a thread grinder, the shape of the grindstone is made to match the shape to be made in the thread groove, and the cross-sectional shape of the grindstone is transferred almost exactly along the spiral to form the desired groove. It is common to create shapes. As a dressing device for creating the shape of this grindstone, devices with various mechanisms are prepared and used in the market. For example, a dressing device and method for a grinding machine equipped with a rotary dresser is used (for example, Patent Document 1 and 2).
また、ねじ研削盤用のドレス研削装置として、例えば、図2に示すようなドレス装置も使用されており、この図2に示す装置も、ロータリドレッサを回転する機構を有している。一般的に砥石の成形をツルーイング、砥石の目立てをドレスと言うが、ここでは砥石の形状を造る操作もドレスと呼ぶこととする。図2に示す装置において、ロータリドレッサの外周には砥石を削る物体が配されており、回転しながら砥石に当てると砥石の形が変わる。通常はダイヤモンドが使われるのでダイヤが外周に配された円盤そのものを、ここではロータリダイヤと呼ぶ。図2に示す装置では、X-Z平面内で2次元の位置を定めるそれぞれ直線軸のU軸(X軸に平行)及びW軸(Z軸に平行)を持ち、回転軸B軸(X-Zに垂直な軸周りの回転)をもっており砥石を削る工具に相当するロータリダイヤをB軸で旋回させたときにその刃先に相当するダイヤの先端のB軸旋回中心からのオフセット量(図2のB軸旋回半径)の調整用の送り軸もしくは調整機構を持っている。このような装置では、ゴシック形状の円弧部分はU-Wの円弧補間で作ることも出来るうえにU-Wの座標を定めてB軸を旋回させることで成形することが出来る。U-Wの円弧補間では2軸同期制御でありB軸旋回では1軸制御であり、一般には同期制御軸数が少ないB軸旋回による円弧成形が精度を安定させ易い。必ずしもU-Wのどちらかが砥石の回転軸に平行になっている必要はなく、組み合わせて平面内の平行移動の動きを作り出せればよいが、図2に示す装置の場合には、ドレスの際には砥石の径に合わせて毎回円弧の中心をU軸で前進させる。また、この装置では半径の増加にあわせてU-W2軸同期制御で円弧補間をしてB軸でロータリダイヤの特定部分を砥石に向ける一般に法線方向制御と呼ばれる方法により形状を作ることも可能である。 Further, as a dressing grinding device for a thread grinding machine, for example, a dressing device as shown in FIG. 2 is also used, and this device shown in FIG. 2 also has a mechanism for rotating a rotary dresser. In general, the shaping of a whetstone is called truing, and the sharpening of a whetstone is called dressing, but here we will also refer to the operation of shaping the whetstone as dressing. In the apparatus shown in FIG. 2, an object for sharpening a grindstone is arranged around the outer periphery of the rotary dresser, and when it hits the grindstone while rotating, the shape of the grindstone changes. Since diamonds are usually used, the disk itself with diamonds arranged around its outer circumference is referred to here as a rotary diamond. The device shown in Figure 2 has linear axes U-axis (parallel to the X-axis) and W-axis (parallel to the Z-axis) that define two-dimensional positions within the When a rotary diamond, which is equivalent to a tool for sharpening a whetstone, is rotated around the B-axis, the amount of offset of the tip of the diamond, which corresponds to the cutting edge, from the B-axis rotation center (as shown in Figure 2) is It has a feed axis or adjustment mechanism for adjusting the B-axis (turning radius). In such a device, a Gothic-shaped circular arc portion can be created by U-W circular interpolation, and can also be formed by determining the U-W coordinates and rotating the B-axis. UW circular interpolation uses 2-axis synchronous control, and B-axis rotation uses 1-axis control, and in general, arc forming using B-axis rotation with a small number of synchronously controlled axes makes it easier to stabilize accuracy. It is not necessarily necessary for either U or W to be parallel to the rotation axis of the grinding wheel, as long as they can be combined to create a parallel movement in the plane, but in the case of the device shown in Figure 2, the dress In each case, the center of the arc is moved forward along the U-axis to match the diameter of the grindstone. In addition, with this device, it is also possible to create a shape using a method generally called normal direction control, which performs circular interpolation using U-W two-axis synchronous control as the radius increases, and directs a specific part of the rotary diamond toward the grindstone using the B axis. It is.
このとき、ある程度ドレスが進行して十分に砥石形状が安定してくると、図3(b)の細い線が、一回前のドレスで成形した砥石形状でハッチングの領域が今回のドレスで削り取る領域となる。この形状をみると、たとえU軸方向に1だけ前進していても、この1が微小であるという条件の下で近似するとB = θyの付近(図4参照)では厚み計算でcosθyしか削らないことになる。θy = 60 度なら0.5である。従って、薄く削られる部分は形状はきれいに仕上がるが、目立てが不十分になりやすくその砥石を使用すると研削焼けを引き起こし易くなるという問題を生じる。かといって図4の薄い部分を厚くしようとしてU軸を過度に大きくすると、ロータリダイヤに過度の負荷がかかり砥石の種類によってはロータリダイヤに損傷を与えてしまう。 At this time, when the dressing progresses to a certain extent and the shape of the whetstone becomes stable enough, the thin line in Figure 3(b) shows the shape of the whetstone formed by the previous dressing, and the hatched area is scraped off by the current dressing. It becomes an area. Looking at this shape, even if it advances by 1 in the U-axis direction, if we approximate it under the condition that this 1 is small, only cos θy will be removed in the thickness calculation near B = θy (see Figure 4). It turns out. If θy = 60 degrees, it is 0.5. Therefore, although the thinly shaved portion is finished in a neat shape, the sharpening tends to be insufficient and the use of such a whetstone tends to cause grinding burn. On the other hand, if the U-axis is made excessively large in an attempt to thicken the thin portion shown in FIG. 4, an excessive load will be applied to the rotary diamond, which may damage the rotary diamond depending on the type of grindstone.
しかし、実際にはマイクロメートルのオーダではダイヤ先端の位置を把握していない場合が多い。例えば、ロータリドレッサの製造上の公差や組み立て上の偏差やドレス装置の熱変形などでマイクロメートルオーダでは設計位置からずれていることもある。U-W補間だけを使用して円弧を削っている場合には問題にならないが、B軸の円弧とU-Wの動きを組み合わせた場合には実際には偏差の影響で削りにばらつき生じる虞れがある。 However, in reality, the position of the diamond tip is often not known on the order of micrometers. For example, due to manufacturing tolerances and assembly deviations of the rotary dresser, thermal deformation of the dressing device, etc., the position may deviate from the designed position on the order of micrometers. This is not a problem if only the U-W interpolation is used to cut the arc, but if the B-axis arc and U-W movement are combined, there may actually be variations in the cutting due to the deviation. There is.
本発明の目的は、十分な目立てが可能な上に、研削焼けやロータリダイヤの損傷を有効に防止し得ると共に、ダイヤ先端の位置の設計からの偏差の影響を低減できる研削盤用のドレス研削装置及びその制御方法を提供することにある。 An object of the present invention is to provide dress grinding for a grinding machine that not only allows sufficient sharpening, but also effectively prevents grinding burn and damage to the rotary diamond, and reduces the influence of deviations from the design of the position of the diamond tip. An object of the present invention is to provide a device and a control method thereof.
本発明者は、十分な目立てが可能な上に、研削焼けやロータリダイヤの損傷を有効に防止し得るねじ研削盤用ドレス研削装置及びその制御方法について、鋭意研究した結果、切り込み方向の直線軸をU軸、前記U軸に直交する水平方向の直線軸をW軸、前記U軸と前記W軸の双方に直交する直線軸廻りの回転軸をB軸とした場合において、U-W-B同期制御もしくはU-B同期制御で、図5(a)の太線の粗ドレス目標まで粗ドレスを行い、しかる後に(b)の切り込み厚み一定の仕上げドレスを行うという二段階ドレスを行うことを見出した。勿論、図5(a)の粗ドレスの線まで一気に削り落とせない場合には複数回に分けて削り落とす。尚、図5(a)の太線の粗ドレス目標は仕上げドレスの目標オフセットを与えて厳密に算出される線ではあるが、適宜 多角形近似をしてもよいし、図3のU軸方向の負方向の頂点だけを削り落とすように簡易化しても良い。 As a result of intensive research into a dress grinding device for a screw grinding machine and its control method, which not only allows for sufficient sharpening but also effectively prevents grinding burn and damage to the rotary diamond, the present inventor discovered that is the U-axis, the horizontal linear axis perpendicular to the U-axis is the W-axis, and the rotation axis around the linear axis perpendicular to both the U-axis and the W-axis is the B-axis. It was discovered that two-step dressing can be performed using synchronous control or U-B synchronous control, in which rough dressing is performed to the rough dressing target shown by the thick line in Fig. 5 (a), and then finish dressing with a constant cut thickness in (b) is performed. Ta. Of course, if it is not possible to scrape off all the way to the rough dress line in FIG. 5(a) at once, scrape off in multiple steps. Although the thick line rough dressing target in Fig. 5(a) is a line that is strictly calculated by giving a target offset for finishing dressing, it may be approximated by polygonal approximation as appropriate, or It may be simplified such that only the vertices in the negative direction are removed.
更に、ダイヤ先端の位置の設計からの偏差の影響を低減するために、以下のようなドレス制御方法が有効であることを見出した。
まず、前提として、対象とする装置はAEセンサを設け、砥石とドレッサが接触したらそれを知らせる信号を制御装置に送ることが出来るものとする。また、その信号を受けた制御装置は一旦送りを止め信号を受けた座標を記録することが出来る一般にスキップ機能といわれる機能を持っているものとする。
そのドレス研削装置の制御方法では、第1の工程として、図6(a)に示すように、U-W軸を砥石に対して仕上げで切り込みたい一定厚みuに対応した分だけ下げる。その上で図5の粗ドレス目標上の軌跡で動かすと本来ならダイヤ先端はB軸の向いた方向に後uだけ送れば砥石とダイヤ先端は接触するはずである。これを、図6(b)に示すように、AEセンサを用いたスキップ機能で確認する。つまり軌跡上の数箇所で一旦止めてB軸の向いた方向にU-W軸で送って計画のuに対する偏差を求める。
次に、第2の工程として、uに対する偏差を使って図5の粗ドレス目標の指令をU-W軸で補正を行い(角度に応じたずらし量を数列や関数にする。)、この補正を適用した粗ドレス目標で図5(a)を置き換える。
尚、偏差が厚み分より大きい場合には、図6(c)に示すように、一旦、切り込みたい一定厚みuより大きめの厚みuL下げるようにすれば良い。そのとき粗ドレス目標に相当する軌跡も大きめに調整する必要がある。先ほどと同じようにAEセンサを用いたスキップ機能で上記大きめの厚みuLに対する偏差を求め軌跡を補正する。(角度に応じたずらし量を数列や関数にする。)後は先に記述した第2の工程から実行する。
但し、偏差の大きさと上記大きめの厚みuLに設定したものの大きさによっては、このまま上記一定厚みuに相当する分だけもどしてその上で補正粗ドレス目標上の軌跡で動かすとまだ不適切な切込み(Bの角度により削りが途切れたり削りすぎたり)が残る場合が考えられるので、上記uLより更に小さくずらしたuL’で補正粗ドレス目標の軌跡で粗ドレス目標の軌跡で置き換えて上記第1の工程を行うという操作を繰り返して不都合が生じなくなるまで続けていく。
このようにすれば、図2のようなドレス装置において、「薄く削らない部分は形状はきれい(面粗さ・光沢など)に仕上がるが、目立てが不十分になりやすくその砥石を使用すると研削焼けを引き起こしやすくなる」と言う問題を回避する際にダイヤ先端の位置の設計からの偏差の影響を低減できる。
Furthermore, it has been found that the following dressing control method is effective in reducing the influence of the deviation of the position of the diamond tip from the design.
First, it is assumed that the target device is equipped with an AE sensor and can send a signal to the control device to notify the contact between the grindstone and the dresser. It is also assumed that the control device that receives the signal has a function generally called a skip function that can temporarily stop the feed and record the coordinates that received the signal.
In the method for controlling the dress grinding device, as a first step, as shown in FIG. 6(a), the UW axis is lowered relative to the grindstone by an amount corresponding to a certain thickness u that is desired for the finishing cut. Then, if the diamond tip is moved along the trajectory on the rough dressing target shown in FIG. 5, the grinding wheel and the diamond tip should come into contact if the diamond tip is moved backward by u in the direction of the B axis. This is confirmed by a skip function using an AE sensor, as shown in FIG. 6(b). In other words, it is temporarily stopped at several points on the trajectory and sent along the UW axis in the direction of the B axis to find the deviation of the plan with respect to u.
Next, as a second step, the rough dressing target command in Fig. 5 is corrected on the UW axis using the deviation with respect to u (the amount of shift according to the angle is converted into a sequence or function), and this correction is performed. 5(a) is replaced with a rough dressing target to which .
In addition, if the deviation is larger than the thickness, as shown in FIG. 6(c), it is sufficient to temporarily lower the thickness uL, which is larger than the desired constant thickness u. At that time, the locus corresponding to the rough dressing target also needs to be adjusted to a larger extent. As before, the deviation from the larger thickness uL is determined using the skip function using the AE sensor and the trajectory is corrected. (The shift amount according to the angle is converted into a numerical sequence or a function.) The rest is executed from the second step described earlier.
However, depending on the size of the deviation and the size of the large thickness uL set above, if you return it by an amount equivalent to the constant thickness u above and then move it on a trajectory on the corrected coarse dress target, it may still result in an inappropriate depth of cut. (Depending on the angle of B, there may be cases where cutting is interrupted or too much cutting is left.) Therefore, the trajectory of the rough dressing target is replaced with the trajectory of the corrected rough dressing target using uL', which is shifted even smaller than the above uL, and the trajectory of the rough dressing target is replaced with the trajectory of the rough dressing target. Repeat the process until no inconvenience occurs.
In this way, in a dressing device like the one shown in Figure 2, ``the parts that are not thinly ground will be finished with a fine shape (surface roughness, gloss, etc.), but the sharpening tends to be insufficient and grinding burns will occur if that grindstone is used. In order to avoid the problem of ``making it more likely to cause problems,'' it is possible to reduce the influence of deviations from the design of the position of the diamond tip.
本発明によれば、十分な目立てが可能な上に、研削焼けやロータリダイヤの損傷を有効に防止し得ると共に、ダイヤ先端の位置の設計からの偏差の影響を低減できる研削盤用のドレス研削装置及びその制御方法を提供することができる。 According to the present invention, dress grinding for a grinding machine allows sufficient sharpening, effectively prevents grinding burn and damage to the rotary diamond, and reduces the influence of deviation from the design of the position of the diamond tip. A device and a control method thereof can be provided.
まず、本発明の理解を容易にするため、本発明の適用対象となるねじ研削盤用のドレス研削装置の構成について、改めて図2を参照して詳細に説明する。図2は、ねじ研削盤用のドレス研削装置において、切り込み方向の直線軸をU軸、前記U軸に直交する水平方向の直線軸をW軸、前記U軸と前記W軸の双方に直交する直線軸廻りの回転軸をB軸とした場合において、U-W-B同期制御もしくはU-B同期制御が可能なねじ研削盤用のドレス研削装置の基本構成を示す概略図である。図2に示すように、本発明の適用対象となるねじ研削盤用のドレス研削装置100は、後述するロータリドレッサをW(軸)方向に移動可能なW(軸)送り装置102と、同様にU(軸)方向に移動可能なU(軸)送り装置104と、同様にB軸廻りに旋回可能なB軸旋回装置106と、半径調整装置108を備えている。B軸旋回装置106と半径調整装置108には、ロータリドレッサ回転装置110が、B軸旋回可能且つ後述するようにダイヤ先端の半径を調整可能に取り付けられている。また、このロータリドレッサ回転装置110の回転軸110aには、ロータリドレッサ112が取り付けられている。このロータリドレッサ112の円周面には、各部断面が三角錐形状や角柱形状などになるようにダイヤモンド112Aが装着されている。尚、半径調整装置108は、B軸旋回装置106によって旋回でき、ロータリドレッサ回転装置110を支え、B軸を旋回した時のダイヤ先端112aの半径を調整可能に構成されている。このような構成により、ロータリドレッサ回転装置110がW(軸)方向送り操作、U(軸)方向送り操作、B軸廻り旋回操作、ダイヤ先端112aのB軸旋回中心115からのオフセット量(B軸旋回半径)113(B軸旋回中心115とダイヤ先端112aまでの距離)を調整操作され、ロータリドレッサ112を回転させつつ、同期して回転するドレス対象となる砥石200に当てることにより、砥石200の周面をダイヤ先端112aによりドレスする。尚、ここでいう「ドレス」とは、前述したように、「砥石の目立て」だけでなく、砥石の形状を造る操作も含む意味である。以上のように構成されるねじ研削盤用のドレス研削装置100等では、図2において定義されるU-W-B軸方向において、U-W-B同期制御もしくはU-B同期制御が可能であれば、ねじ研削盤用の砥石200をドレス研削可能である。かかる構成のドレス研削装置100では、従来、ロータリドレッサ112を回転しつつダイヤ先端112aの軌跡を一定に繰り返し描けるようにしておき、この繰り返す軌跡をU軸方向に移動操作することで、砥石をドレスして前述したゴシック形状溝を形成することができる。
First, in order to facilitate understanding of the present invention, the configuration of a dress grinding device for a screw grinder to which the present invention is applied will be explained in detail with reference to FIG. 2 again. Fig. 2 shows a dress grinding device for a screw grinder, in which the linear axis in the cutting direction is the U axis, the horizontal linear axis perpendicular to the U axis is the W axis, and the linear axis is perpendicular to both the U axis and the W axis. FIG. 2 is a schematic diagram showing the basic configuration of a dress grinding device for a screw grinding machine capable of UWB synchronous control or UB synchronous control when the rotation axis around a linear axis is the B axis. As shown in FIG. 2, a
図5は、本実施形態に係るねじ研削盤用のドレス研削装置100における(a)は、粗ドレス目標、(b)は、仕上げドレス目標を、それぞれ示す図である。ここで、前述したように、従来のドレス方法では、薄く削られる部分で目立てが不十分になり、その砥石を使用すると研削焼けを引き起こし易くなる一方、U軸を過度に大きくするとロータリダイヤに負荷がかかるという問題を生じかねない。そこで、本実施形態のねじ研削盤用のドレス研削装置及びその方法では、前述したU-W-B同期制御もしくはU-B同期制御が可能なねじ研削盤用のドレス研削装置100(図2参照)を用い、まず、図5(a)の太線の粗ドレス目標まで粗ドレスを行い、しかる後に図5(b)の切り込み厚み一定の仕上げドレスを行うという二段階ドレスを行うようにした。即ち、図5(b)に太線で示すのは、仕上げドレス目標56である。勿論、図5(a)に太線で示す粗ドレス目標52まで一気に削り落とせない場合には複数回に分けて削り落とす。尚、図5(a)に太線で示す粗ドレス目標52は、仕上げドレスの目標オフセットを与えて厳密に算出される線である。つまり、U軸方向のオフセットを考えなければ、RをR+r (r:仕上げで切り込みたい厚み)に置き換えるだけである。砥石についている形状を旧軌跡、こうして用意した軌跡を新軌跡と呼ぶ。U軸方向のオフセットは、削りに使う範囲の端54で旧軌跡と新軌跡が交差するように配置する。半径の調整用の送り軸があればその軸の調整だけで達成できるが、手動になっている場合にはB軸の動作にU-W方向のオフセットを同期させる(B旋回による半径方向外側に向けてずらす)。ずらし量は、厳密に解くなら、以下の数式(1)で得られる。
しかし、実際にはマイクロメートルのオーダではダイヤ先端の位置を把握していない場合が多い。例えば、ロータリドレッサの製造上の公差や組み立て上の偏差やドレス装置の熱変形などでマイクロメートルオーダでは設計位置からずれていることもある。U-W補間だけを使用して円弧を削っている場合には問題にならないが、B軸の円弧とU-Wの動きを組み合わせた場合には実際には偏差の影響で削りにばらつき生じる虞れがある。 However, in reality, the position of the diamond tip is often not known on the order of micrometers. For example, due to manufacturing tolerances and assembly deviations of the rotary dresser, thermal deformation of the dressing device, etc., the position may deviate from the designed position on the order of micrometers. This is not a problem if only the U-W interpolation is used to cut the arc, but if the B-axis arc and U-W movement are combined, there may actually be variations in the cutting due to the deviation. There is.
そこで、本発明者は、以下のような方法により、十分な目立てが可能な上に、研削焼けやロータリダイヤの損傷を有効に防止し得ると共に、ダイヤ先端の位置の設計からの偏差の影響を低減できるようにした。即ち、まず、U-W-B同期制御もしくはU-B同期制御で、図5(a)の太線の粗ドレス目標まで粗ドレスを行い、しかる後に(b)の切り込み厚み一定の仕上げドレスを行うという二段階ドレスを行う。勿論、図5(a)の粗ドレスの線まで一気に削り落とせない場合には複数回に分けて削り落とす。尚、図5(a)の太線の粗ドレス目標は仕上げドレスの目標オフセットを与えて厳密に算出される線ではあるが、適宜 多角形近似をしてもよいし、図3のU軸方向の負方向の頂点だけを削り落とすように簡易化しても良い。 Therefore, the inventor of the present invention has developed a method as described below, which not only enables sufficient sharpening but also effectively prevents grinding burn and damage to the rotary diamond, and also reduces the influence of deviation from the design of the position of the diamond tip. Made it possible to reduce it. That is, first, by UW-B synchronous control or U-B synchronous control, rough dressing is performed to the rough dressing target shown by the thick line in FIG. This is a two-step dress. Of course, if it is not possible to scrape off all the way to the rough dress line in FIG. 5(a) at once, scrape off in multiple steps. Although the thick line rough dressing target in Fig. 5(a) is a line that is strictly calculated by giving a target offset for finishing dressing, it may be approximated by polygonal approximation as appropriate, or It may be simplified such that only the vertices in the negative direction are removed.
更に、ダイヤ先端の位置の設計からの偏差の影響を低減するために、以下のようなドレス制御方法が有効であることを見出した。以下、本発明の実施形態に係るねじ研削盤用のドレス研削装置の制御方法について、図6乃至図10を参照して説明する。まず、前提として、対象とするドレス制御装置はAEセンサを設け、砥石とドレッサが接触したらそれを知らせる信号を制御装置に送ることが出来るものとする。また、その信号を受けた制御装置は一旦送りを止め信号を受けた座標を記録することが出来る一般にスキップ機能といわれる機能を持っているものとする。 Furthermore, it has been found that the following dressing control method is effective in reducing the influence of the deviation of the position of the diamond tip from the design. Hereinafter, a method of controlling a dress grinding device for a thread grinding machine according to an embodiment of the present invention will be described with reference to FIGS. 6 to 10. First, it is assumed that the target dressing control device is equipped with an AE sensor and can send a signal to the control device to notify the contact between the grindstone and the dresser. It is also assumed that the control device that receives the signal has a function generally called a skip function that can temporarily stop the feed and record the coordinates that received the signal.
図6は、本発明の実施形態に係るねじ研削盤用ドレス研削装置の制御方法を示す第1の図である。図6(a)では、粗ドレス目標と同じ軌跡(U-Wオフセット)62に対する現在の砥石形状64を示し、図6(b)では、このズレをスキップ機能で確認し、その点のB軸旋回中心に向かってU-W直線補間(スキップ信号まで)を行うこと、即ち、接触までの距離をスキップ機能で確認することを示している。また、図6(c)では、偏差が厚み分より大きい場合に、一旦、切り込みたい一定厚みuより大きめの厚みuL下げるようにする制御方法を示している。尚、この場合には、粗ドレス目標に相当する軌跡も大きめに調整する必要がある。図6(b)と同様に、AEセンサを用いたスキップ機能で上記大きめの厚みuLに対する偏差を求め軌跡を補正する。図7は、本実施形態に係るねじ研削盤用ドレス研削装置の制御系の概略を示す機能ブロック図である。本実施形態に係るねじ研削盤用ドレス研削装置100は、制御系として、ドレス制御装置700と、入出力装置710と、各軸モータ720及びそれぞれのモータドライブ730、ロータリダイヤ軸回転モータ740とロータリダイヤ軸モータドライブ750を有している。ドレス制御装置700は、軸制御部702と、プログラマブルコントローラ704と、I/O(入出力)モジュール706を有している。本実施形態に係るドレス研削装置100の制御系には、入出力装置710として、各種スイッチ等と、本発明のポイントであるスキップ信号に関わるAEセンサ、エンコーダ等も有している。これら制御系から成るドレス制御装置は、ねじ研削盤の制御装置(図示せず)とは別置の制御装置でも良いし、ねじ研削盤の制御装置(図示せず)の一部を用いても良い。
FIG. 6 is a first diagram illustrating a method of controlling a dress grinding device for a thread grinding machine according to an embodiment of the present invention. 6(a) shows the current
図8は、本実施形態に係るねじ研削盤用ドレス研削装置の要部の構成を示す概略図である。即ち、図8は、AEセンサによる接触検知と、その信号処理と制御の対応関係を示しており、AEセンサ802による接触検知がなされると、信号処理装置804を介して接触検知信号がドレス制御装置700に伝送される。ここで、AEセンサは、ドレス装置100(図2参照)に内蔵しても良いし、図示しないねじ研削盤の砥石軸(図示せず)の装置側に内蔵しても良い。図8では、固定側にAEセンサを設置しているが、このセンサは、接触点に近く設置できる回転軸内に備えるタイプの方が好適である。
FIG. 8 is a schematic diagram showing the configuration of main parts of the dress grinding device for a thread grinding machine according to the present embodiment. That is, FIG. 8 shows the correspondence between contact detection by the AE sensor and its signal processing and control. When contact is detected by the AE sensor 802, the contact detection signal is sent to the dress control via the
図9は、本実施形態に係るねじ研削盤用のドレス研削方法を説明するための第2の図である。図9(a)では、図6(a)に示した粗ドレス目標と同じ軌跡62からのズレ(オフセット)はB軸旋回角度位置の如何に拘らず均一であることを想定している。即ち、図9(a)において、グラフの横軸は、0°から±75°までのB軸旋回角度位置を示し、縦軸は、オフセット量を示している。しかしながら、機械の関係で、実際は、図9(b)に示すように、B軸旋回角度位置の如何によりオフセット量がずれることがある。これに対して、本実施形態に係るねじ研削盤用のドレス研削方法では、このズレをスキップ機能で確認し、その点のB軸旋回中心に向かってU-W直線補間(スキップ信号まで)を行うことで、このズレの問題を解消する。図10は、本実施形態に係るねじ研削盤用ドレス研削方法を示す第3の図である。即ち、本実施形態に係るねじ研削盤用のドレス研削方法では、図10(a)に示すように、機械の関係でずれる実際のオフセット量を各点で(ところどころ)測定し、図10(b)に示すように、各点でのズレをスキップ機能で確認し、その点のB軸旋回中心に向かってU-W直線補間(スキップ信号まで)を行った上で、軌跡を修正して近づけるようにする。これにより、図10(c)に示すように、B軸旋回角度位置の如何に拘らず均一な想定しているオフセットが得られる。
FIG. 9 is a second diagram for explaining the dress grinding method for a screw grinder according to the present embodiment. In FIG. 9(a), it is assumed that the deviation (offset) from the
このように、本実施形態に係るねじ研削盤用のドレス研削装置の制御方法では、第1の工程として、図6(a)に示すように、U-W軸を砥石に対して仕上げで切り込みたい一定厚みuに対応した分だけ下げる。その上で図5の粗ドレス目標上の軌跡で動かすと本来ならダイヤ先端はB軸の向いた方向に、あと上記一定厚みuだけ送れば砥石とダイヤ先端は接触するはずである。これを、図6(b)に示すように、AEセンサを用いたスキップ機能で確認する。つまり、軌跡上の数箇所で一旦止めてB軸の向いた方向にU-W軸で送って計画とする上記一定厚みuに対する偏差を求める。次に、第2の工程として、uに対する偏差を使って図5の粗ドレス目標の指令をU-W軸で補正を行い(角度に応じたずらし量を数列や関数にする。)、この補正を適用した粗ドレス目標で図5(a)を置き換える。尚、偏差が厚み分より大きい場合には、図6(c)に示すように、一旦、切り込みたい一定厚みuより大きめの厚みuL下げるようにすれば良い。そのとき粗ドレス目標に相当する軌跡も大きめに調整する必要がある。先ほどと同じようにAEセンサを用いたスキップ機能でuLに対する偏差を求め軌跡を補正する。(角度に応じたずらし量を数列や関数にする。)後は先に記述した第2の工程から実行する。 As described above, in the control method of the dress grinding device for a thread grinding machine according to the present embodiment, as shown in FIG. 6(a), the UW axis is finished cut into the grindstone. It is lowered by an amount corresponding to the constant thickness u. Then, if the diamond tip is moved along the trajectory on the rough dressing target shown in FIG. 5, the tip of the diamond should be in the direction of the B axis, and if it is fed by the above-mentioned constant thickness u, the grinding wheel and the tip of the diamond should come into contact. This is confirmed by a skip function using an AE sensor, as shown in FIG. 6(b). That is, it is temporarily stopped at several points on the trajectory and sent along the UW axis in the direction of the B axis to find the deviation from the planned constant thickness u. Next, as a second step, the rough dressing target command in Fig. 5 is corrected on the UW axis using the deviation with respect to u (the amount of shift according to the angle is converted into a sequence or function), and this correction is performed. 5(a) is replaced with a rough dressing target to which . In addition, if the deviation is larger than the thickness, as shown in FIG. 6(c), it is sufficient to temporarily lower the thickness uL, which is larger than the desired constant thickness u. At that time, the locus corresponding to the rough dressing target also needs to be adjusted to a larger extent. As before, use the skip function using the AE sensor to find the deviation from uL and correct the trajectory. (The amount of shift according to the angle is converted into a numerical sequence or a function.) The rest is executed from the second step described earlier.
但し、偏差の大きさと大きめのuLに設定したものの大きさによっては、このまま先と同じ一定厚みuに相当する分だけもどしてその上で補正粗ドレス目標上の軌跡で動かすとまだ不適切な切込み(Bの角度により削りが途切れたり削りすぎたり)が残る場合が考えられるので、uLより更に小さいずらしuL’で補正粗ドレス目標の軌跡で粗ドレス目標の軌跡で置き換えて上記第1の工程を行うという操作を繰り返して不都合が生じなくなるまで続けていく。 このようにすれば、図2のようなドレス装置において、「薄く削らない部分は形状はきれい(面粗さ・光沢など)に仕上がるが、目立てが不十分になりやすくその砥石を使用すると研削焼けを引き起こしやすくなる」と言う問題を回避する際にダイヤ先端の位置の設計からの偏差の影響を低減できる。 However, depending on the size of the deviation and the size of the large uL set, if you return it by an amount corresponding to the same constant thickness u as before and then move it on a trajectory on the corrected coarse dress target, the cut may still be inappropriate. (Depending on the angle of B, there may be cases where cutting is interrupted or too much cutting is left.) Therefore, the first step above is performed by replacing the trajectory of the rough dressing target with the trajectory of the corrected coarse dressing target using a shift uL' that is even smaller than uL. Repeat this operation until the inconvenience no longer occurs. In this way, in a dressing device like the one shown in Figure 2, ``the parts that are not thinly ground will be finished with a fine shape (surface roughness, gloss, etc.), but the sharpening tends to be insufficient and grinding burns will occur if that grindstone is used. In order to avoid the problem of ``making it more likely to cause problems,'' it is possible to reduce the influence of deviations from the design of the position of the diamond tip.
本発明の実施形態によれば、十分な目立てが可能な上に、研削焼けやロータリダイヤの損傷を有効に防止し得ると共に、ダイヤ先端の位置の設計からの偏差の影響を低減できる研削盤用のドレス研削装置及びその制御方法を提供することができる。 According to an embodiment of the present invention, a grinding machine that not only allows sufficient sharpening, but also can effectively prevent grinding burn and damage to the rotary diamond, as well as reduce the influence of deviation from the design of the position of the diamond tip. A dress grinding device and a control method thereof can be provided.
尚、以上において、ドレス装置の制御は、別置きの制御器があって、それにより行っても良いし、ねじ研削盤本体の制御器によって行っても良い。即ち、図11に示す例では、CNC内蔵のねじ研削装置(主機)110と、CNC内蔵のドレス装置(補機)120とを備えている。
CNC内蔵のねじ研削装置(主機)110は、制御器112と、複数個の1軸ドライブ114と各モータ(アクチュエータ)115と、砥石軸ドライブ116とそのモータ(アクチュエータ)117と、入出力装置118(位置センサ、速度センサ、スイッチ、ランプ、タッチプローブ、キーボード…)を有している。ここで、制御器112は、NC制御器112a、表示器及び入出力装置用制御器112b、補助(シーケンス)制御器112cを含んでいる。
CNC内蔵のドレス装置(補機)120は、制御器122と、複数個の1軸ドライブ124と各モータ(アクチュエータ)125と、ダイヤドライブ126とそのモータ(アクチュエータ)127と、入出力装置128を有している。ここで、制御器122は、NC制御器122a、補助制御器122cを含んでいる。
上記1軸ドライブの形は1つでも複数軸分モータを動かせるものもある。NC制御器からドライブへ直接制御を出すのではなく補助制御器が動かすようになっている場合も多い。NC制御器や補助制御器や表示器などの制御器の実体は、一つにまとまっていて各機能の一部または全部がソフトウェアとして実装されている場合も多い。つまり、複数台分の制御器を一台にまとめることは容易である。そのため、ドレス装置の制御器は主機の制御器と共通とし、主機側のソフトウェアとして実装することも可能である。当然、その場合には、主機と補機の枠は明確でない。
In the above, the dressing device may be controlled by a separate controller, or may be controlled by a controller in the thread grinding machine itself. That is, the example shown in FIG. 11 includes a thread grinding device (main machine) 110 with a built-in CNC and a dressing device (auxiliary machine) 120 with a built-in CNC.
A thread grinding device (main machine) 110 with a built-in CNC includes a
The CNC built-in dressing device (auxiliary device) 120 includes a
Some of the above-mentioned single-axis drives can drive motors for multiple axes. In many cases, the drive is not directly controlled by the NC controller, but is operated by an auxiliary controller. In many cases, controllers such as NC controllers, auxiliary controllers, and displays are integrated into one unit, and some or all of their functions are implemented as software. In other words, it is easy to combine multiple controllers into one controller. Therefore, the controller of the dressing device can be the same as the controller of the main machine, and can be implemented as software on the main machine side. Naturally, in that case, the boundaries between the main engine and the auxiliary engine are not clear.
52 粗ドレス目標、 54 削りに使う範囲の端、56 仕上げドレス目標、62 粗ドレス目標と同じ軌跡(U-Wオフセット)、 64 現在の砥石形状、100 ねじ研削盤用のドレス研削装置、102 W(軸)送り装置、 104 U(軸)送り装置、106 B軸旋回装置、108 半径調整装置、110 ロータリドレッサ回転装置、110a 回転軸、112 ロータリドレッサ、 112A ダイヤモンド、112a ダイヤ先端、 115 B軸旋回中心、113 オフセット量(B軸旋回半径)、200 砥石、
52 Rough dressing target, 54 End of range used for cutting, 56 Finish dressing target, 62 Same locus as rough dressing target (U-W offset), 64 Current grinding wheel shape, 100 Dressing grinding device for screw grinding machine, 102 W (axis) feeder, 104 U (axis) feeder, 106 B-axis rotation device, 108 radius adjustment device, 110 rotary dresser rotation device, 110a rotating shaft, 112 rotary dresser, 112A diamond, 112a diamond tip, 115 B-axis rotation Center, 113 Offset amount (B axis turning radius), 200 Grinding wheel,
Claims (1)
U-W-B同期制御もしくはU-B同期制御が可能なねじ研削盤用のドレス研削装置であって、AEセンサを設け、砥石とドレッサが接触したらそれを知らせる信号を制御装置に送ることが出来ると共に、その信号を受けた制御装置は一旦送りを止め信号を受けた座標を記録することが出来るスキップ機能を持っており、該ドレス研削装置は、まず、粗ドレス目標まで粗ドレスを行う粗ドレス手段と、前記粗ドレス後に、切り込み厚み一定の仕上げドレスを行う仕上げドレス手段を有し、U-W軸を砥石に対して仕上げで切り込みたい一定厚みuに対応した分だけ下げ、その上で前記粗ドレスの目標上の軌跡で動かすと本来ならダイヤ先端はB軸の向いた方向に後uだけ送れば砥石とダイヤ先端は接触することを前記AEセンサを用いたスキップ機能で確認する第1の工程と、
uに対する偏差を使って前記粗ドレスの目標の指令をU-Wで補正を行い、この補正を適用した粗ドレス目標に置き換える第2の工程を、有することを特徴とするねじ研削盤用のドレス研削装置の制御方法。 In a dress grinding device for a screw grinder, the linear axis in the cutting direction is the U axis, the horizontal linear axis perpendicular to the U axis is the W axis, and the linear axis around the linear axis perpendicular to both the U axis and the W axis is When the rotation axis is the B axis,
This is a dress grinding device for a thread grinding machine that is capable of U-W-B synchronous control or U-B synchronous control, and is equipped with an AE sensor to send a signal to the control device to notify when the grinding wheel and dresser come into contact. At the same time, the control device that receives the signal has a skip function that can temporarily stop feeding and record the coordinates that received the signal. It has a dressing means and a finishing dressing means for performing finishing dressing with a constant cut thickness after the rough dressing, and lowers the U-W axis to the grindstone by an amount corresponding to the constant thickness u desired to make the finishing cut, and then The first step is to use the skip function using the AE sensor to confirm that if the diamond tip is moved along the target locus of the rough dressing, the grinding wheel and the diamond tip will come into contact if the diamond tip is moved backward by u in the direction of the B axis. The process of
A dressing for a screw grinding machine, comprising a second step of correcting the rough dressing target command U-W using the deviation with respect to u, and replacing it with the rough dressing target to which this correction is applied. Control method for grinding equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020067101A JP7431645B2 (en) | 2020-04-02 | 2020-04-02 | Dress grinding device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020067101A JP7431645B2 (en) | 2020-04-02 | 2020-04-02 | Dress grinding device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021160062A JP2021160062A (en) | 2021-10-11 |
JP7431645B2 true JP7431645B2 (en) | 2024-02-15 |
Family
ID=78002077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020067101A Active JP7431645B2 (en) | 2020-04-02 | 2020-04-02 | Dress grinding device and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7431645B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007125644A (en) | 2005-11-04 | 2007-05-24 | Jtekt Corp | Truing device of grinding wheel |
JP2009172695A (en) | 2008-01-22 | 2009-08-06 | Jtekt Corp | Grinding machine and grinding method |
JP2010030022A (en) | 2008-07-31 | 2010-02-12 | Mitsubishi Heavy Ind Ltd | Phase focusing method for screw-like grinding wheel and apparatus therefor |
JP2011177850A (en) | 2010-03-03 | 2011-09-15 | Mitsubishi Heavy Ind Ltd | Truing method for grind stone for grinding gear and gear grinding machine |
JP2016083744A (en) | 2014-10-28 | 2016-05-19 | トーヨーエイテック株式会社 | Method of correcting process tolerance of gear grinder |
JP2018024051A (en) | 2016-08-10 | 2018-02-15 | 光洋機械工業株式会社 | Dressing method and grinding method for workpiece |
-
2020
- 2020-04-02 JP JP2020067101A patent/JP7431645B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007125644A (en) | 2005-11-04 | 2007-05-24 | Jtekt Corp | Truing device of grinding wheel |
JP2009172695A (en) | 2008-01-22 | 2009-08-06 | Jtekt Corp | Grinding machine and grinding method |
JP2010030022A (en) | 2008-07-31 | 2010-02-12 | Mitsubishi Heavy Ind Ltd | Phase focusing method for screw-like grinding wheel and apparatus therefor |
JP2011177850A (en) | 2010-03-03 | 2011-09-15 | Mitsubishi Heavy Ind Ltd | Truing method for grind stone for grinding gear and gear grinding machine |
JP2016083744A (en) | 2014-10-28 | 2016-05-19 | トーヨーエイテック株式会社 | Method of correcting process tolerance of gear grinder |
JP2018024051A (en) | 2016-08-10 | 2018-02-15 | 光洋機械工業株式会社 | Dressing method and grinding method for workpiece |
Also Published As
Publication number | Publication date |
---|---|
JP2021160062A (en) | 2021-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180221976A1 (en) | Gear cutter machining apparatus, gear cutter machining method, tool profile simulation apparatus, and tool profile simulation method | |
JP5846082B2 (en) | Grinding method for skiving cutter | |
JPH1058292A (en) | Contour forming method for continuous roller grinding worm and tool and device for use in it | |
KR102622113B1 (en) | Tooth profile machining method and profile machine | |
CN107695883B (en) | Shaping and trimming device and shaping and trimming method | |
JP2022084107A (en) | Gear grinding method and gear grinding device | |
JP2008509012A (en) | Raster cutting technology for ophthalmic lenses | |
CN114364478B (en) | Gear cutting method and machine tool set using same | |
JP2009184066A (en) | Method of machining concave fresnel lens shape member, and concave fresnel lens shape member | |
US11583372B2 (en) | Method for producing a dental restoration part, and a dental processing machine | |
WO2005039821A1 (en) | Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface | |
JP7237857B2 (en) | Method and gear cutting machine designed therefor for machining teeth and computer program product therefor | |
JP7431645B2 (en) | Dress grinding device and method | |
JP6898299B2 (en) | A tooth finishing method, a finishing machine that executes this method, and a computer program that controls this machine. | |
US20190217405A1 (en) | Gear machining apparatus and gear machining method | |
JP2000084852A (en) | Dressing device for grinding machine | |
JP2000246636A (en) | Grinding worm shaping method, shaping tool and shaping device | |
JP4576255B2 (en) | Tool whetstone shape creation method | |
JP2007320008A (en) | Cam grinder and cam grinding method | |
JP7509547B2 (en) | Dress grinding device and method for thread grinding machine | |
JP2020069623A (en) | Processing device and method for gear-cutting tool | |
JP7024416B2 (en) | Gear processing equipment equipped with a gear processing tool polishing device, a gear processing tool polishing method, and a gear processing tool polishing device. | |
JP2005028556A (en) | Machining method of free curved surface | |
JP2020032484A (en) | Grinding device and its control method | |
JP4519618B2 (en) | Grinding wheel molding method and molding apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230329 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7431645 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |