JP7412170B2 - Ophthalmological equipment, its evaluation method, program, and recording medium - Google Patents
Ophthalmological equipment, its evaluation method, program, and recording medium Download PDFInfo
- Publication number
- JP7412170B2 JP7412170B2 JP2019238173A JP2019238173A JP7412170B2 JP 7412170 B2 JP7412170 B2 JP 7412170B2 JP 2019238173 A JP2019238173 A JP 2019238173A JP 2019238173 A JP2019238173 A JP 2019238173A JP 7412170 B2 JP7412170 B2 JP 7412170B2
- Authority
- JP
- Japan
- Prior art keywords
- model eye
- optical system
- eye
- alignment
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011156 evaluation Methods 0.000 title claims description 94
- 230000003287 optical effect Effects 0.000 claims description 225
- 238000012545 processing Methods 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 56
- 230000007246 mechanism Effects 0.000 claims description 55
- 238000003384 imaging method Methods 0.000 claims description 48
- 210000004087 cornea Anatomy 0.000 claims description 47
- 210000001747 pupil Anatomy 0.000 claims description 34
- 210000001061 forehead Anatomy 0.000 claims description 21
- 230000004907 flux Effects 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims 2
- 210000001508 eye Anatomy 0.000 description 320
- 238000012014 optical coherence tomography Methods 0.000 description 64
- 210000000695 crystalline len Anatomy 0.000 description 63
- 238000005259 measurement Methods 0.000 description 51
- 238000005286 illumination Methods 0.000 description 21
- 238000013441 quality evaluation Methods 0.000 description 19
- 230000003595 spectral effect Effects 0.000 description 18
- 230000006870 function Effects 0.000 description 17
- 239000013307 optical fiber Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 230000010287 polarization Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 210000004127 vitreous body Anatomy 0.000 description 5
- 230000004323 axial length Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000009877 rendering Methods 0.000 description 4
- 206010025421 Macule Diseases 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 210000002294 anterior eye segment Anatomy 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 206010064930 age-related macular degeneration Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 208000001491 myopia Diseases 0.000 description 2
- 230000004379 myopia Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 1
- 208000003098 Ganglion Cysts Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 206010020675 Hypermetropia Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010038848 Retinal detachment Diseases 0.000 description 1
- 208000005400 Synovial Cyst Diseases 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001775 bruch membrane Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 208000021921 corneal disease Diseases 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 210000005081 epithelial layer Anatomy 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 230000004305 hyperopia Effects 0.000 description 1
- 201000006318 hyperopia Diseases 0.000 description 1
- 208000029515 lens disease Diseases 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004264 retinal detachment Effects 0.000 description 1
- 239000000790 retinal pigment Substances 0.000 description 1
- 210000003786 sclera Anatomy 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Landscapes
- Eye Examination Apparatus (AREA)
Description
この発明は、眼科装置、その評価方法、プログラム、及び記録媒体に関する。 The present invention relates to an ophthalmologic apparatus, an evaluation method thereof, a program, and a recording medium.
眼科診療では各種の装置が用いられ、典型的には撮影装置や測定装置がある。撮影装置は被検眼の画像を取得するための眼科装置であり、その例として、光コヒーレンストモグラフィ(OCT)装置、眼底カメラ、走査型レーザ検眼鏡(SLO)などがある。測定装置は被検眼の特性を測定するための眼科装置であり、その例として、眼屈折測定装置(レフラクトメータ、ケラトメータ)、眼圧計、スペキュラーマイクロスコープ、ウェーブフロントアナライザなどがある。 Various types of equipment are used in ophthalmological treatment, typically imaging equipment and measuring equipment. The imaging device is an ophthalmological device for acquiring an image of the eye to be examined, and examples thereof include an optical coherence tomography (OCT) device, a fundus camera, and a scanning laser ophthalmoscope (SLO). The measurement device is an ophthalmological device for measuring the characteristics of the eye to be examined, and examples thereof include an eye refraction measurement device (refractometer, keratometer), tonometer, specular microscope, wavefront analyzer, and the like.
このような眼科装置は精密機器であり、その性能を十分に発揮させるためには、厳密な評価に基づく調整や校正が必要である。眼科装置の評価には様々な方法があるが、模型眼を用いた方法が広く行われている(例えば、特許文献1を参照)。 Such ophthalmological devices are precision instruments, and in order to fully demonstrate their performance, adjustments and calibrations based on rigorous evaluation are required. Although there are various methods for evaluating ophthalmological devices, a method using a model eye is widely used (see, for example, Patent Document 1).
模型眼を用いた評価を適切に行うためには、評価対象の眼科装置の光学系に対して模型眼を正確に配置する必要があるが、模型眼の位置の調整を手作業で行うなど非常に煩雑な作業が必要であった。 In order to properly perform evaluation using a model eye, it is necessary to accurately place the model eye in relation to the optical system of the ophthalmological device to be evaluated. This required complicated work.
この発明の目的は、模型眼を用いた眼科装置の評価作業の容易化を図ることにある。 An object of the present invention is to facilitate the evaluation work of an ophthalmological apparatus using a model eye.
幾つかの例示的な態様は、眼のデータを取得するための光学系と、所定位置に設置された模型眼に対して前記光学系のアライメントを行うアライメント系と、前記アライメントの後に前記光学系により取得された前記模型眼のデータに基づいて評価情報を生成する評価部とを含む、眼科装置である。 Some exemplary aspects include an optical system for acquiring eye data, an alignment system for aligning the optical system with respect to a model eye placed in a predetermined position, and an alignment system for aligning the optical system after the alignment. and an evaluation unit that generates evaluation information based on the data of the model eye acquired by the ophthalmology apparatus.
幾つかの例示的な態様において、眼科装置は、被検者の顎が載置される顎受けと、前記顎受けに装着可能な第1アタッチメントとを更に含んでいてよく、前記第1アタッチメントに前記模型眼が装着されてよい。 In some exemplary embodiments, the ophthalmological device may further include a chin rest on which the subject's chin rests, and a first attachment attachable to the chin rest, and a first attachment attached to the first attachment. The model eye may be attached.
幾つかの例示的な態様において、眼科装置は、被検者の額があてがわれる額当てと、前記額当てに装着可能な第2アタッチメントとを更に含んでいてよく、前記第2アタッチメントに前記模型眼が装着されていてよい。 In some exemplary embodiments, the ophthalmological apparatus may further include a forehead rest to which the forehead of the subject is applied, and a second attachment attachable to the forehead rest, and the second attachment has the A model eye may be attached.
幾つかの例示的な態様において、前記アライメント系は、前記光学系を移動する移動機構と、前記模型眼を異なる2以上の方向から撮影する第1撮影部と、前記第1撮影部により取得された前記模型眼の2以上の画像に基づいて前記移動機構を制御する第1処理部とを含んでいてよい。 In some exemplary embodiments, the alignment system includes a moving mechanism that moves the optical system, a first imaging unit that photographs the model eye from two or more different directions, and an image captured by the first imaging unit. and a first processing section that controls the movement mechanism based on two or more images of the model eye.
幾つかの例示的な態様において、前記模型眼は、角膜に相当する角膜部と、虹彩に相当し、瞳孔に相当する開口を形成する虹彩部とを含んでいてよい。前記開口の入射瞳は、前記角膜部から略3.06ミリメートル離れた位置に配置されていてよい。前記開口の径は、2~10ミリメートルの範囲内の値に設定されていてよい。前記虹彩部の赤外光反射率は、2.0~2.5パーセントの範囲内の値に設定されていてよい。前記第1撮影部は、赤外波長に感度を有していてよい。前記第1処理部は、前記2以上の画像のそれぞれにおける瞳孔領域を特定し、特定された2以上の瞳孔領域に基づいて前記光学系の3次元移動量を算出し、前記3次元移動量に基づいて前記移動機構を制御するように構成されていてよい。 In some exemplary embodiments, the model eye may include a corneal portion that corresponds to the cornea, and an iris portion that corresponds to the iris and forms an opening that corresponds to the pupil. An entrance pupil of the aperture may be located approximately 3.06 millimeters from the cornea. The diameter of the opening may be set to a value within the range of 2 to 10 mm. The infrared light reflectance of the iris portion may be set to a value within a range of 2.0 to 2.5 percent. The first imaging unit may be sensitive to infrared wavelengths. The first processing unit specifies a pupil area in each of the two or more images, calculates a three-dimensional movement amount of the optical system based on the two or more specified pupil areas, and calculates a three-dimensional movement amount of the optical system based on the three-dimensional movement amount. The moving mechanism may be configured to be controlled based on the movement mechanism.
幾つかの例示的な態様において、前記アライメント系は、前記光学系を移動する移動機構と、前記模型眼に光束を投射する投射部と、前記模型眼を撮影する第2撮影部と、前記第2撮影部により取得された画像に基づいて前記移動機構を制御する第2処理部とを含んでいてよい。 In some exemplary embodiments, the alignment system includes a moving mechanism that moves the optical system, a projection unit that projects a light beam onto the model eye, a second imaging unit that photographs the model eye, and a second imaging unit that photographs the model eye. and a second processing section that controls the moving mechanism based on the image acquired by the second imaging section.
幾つかの例示的な態様において、前記模型眼は、角膜に相当する角膜部を含んでいてよい。前記角膜部の曲率半径は、略7.7ミリメートルであってよい。前記投射部は、前記模型眼に正面から光束を投射する第1投射部を含んでいてよい。前記第2処理部は、前記第2撮影部により取得された画像における前記光束の前記角膜部による反射像を特定し、特定された前記反射像に基づいて前記移動機構を制御するように構成されてよい。 In some exemplary embodiments, the model eye may include a corneal portion corresponding to the cornea. The corneal portion may have a radius of curvature of approximately 7.7 millimeters. The projection section may include a first projection section that projects a light beam onto the model eye from the front. The second processing unit is configured to identify a reflected image of the light beam by the cornea in the image acquired by the second imaging unit, and to control the moving mechanism based on the identified reflected image. It's okay.
幾つかの例示的な態様において、前記模型眼は、角膜に相当する角膜部を含んでいてよい。前記角膜部の曲率半径は、略7.7ミリメートルであってよい。前記投射部は、前記模型眼に斜方から光束を投射する第2投射部を含んでいてよい。前記第2撮影部は、前記光学系の光軸に関して前記光束の投射方向に略対称な方向に配置されたラインセンサー又はエリアセンサーを含んでいてよい。前記第2処理部は、前記角膜部による前記光束の反射光を検出した前記ラインセンサー又は前記エリアセンサーの受光素子の位置に基づいて前記移動機構を制御するように構成されてよい。 In some exemplary embodiments, the model eye may include a corneal portion corresponding to the cornea. The corneal portion may have a radius of curvature of approximately 7.7 millimeters. The projection section may include a second projection section that projects a light beam obliquely onto the model eye. The second imaging unit may include a line sensor or an area sensor arranged in a direction substantially symmetrical to the projection direction of the light beam with respect to the optical axis of the optical system. The second processing section may be configured to control the moving mechanism based on a position of a light receiving element of the line sensor or the area sensor that detects the reflected light of the luminous flux by the cornea section.
幾つかの例示的な態様において、前記模型眼は、左眼に相当する左模型眼と、右眼に相当する右模型眼とを含んでいてよい。眼科装置は、前記左模型眼を第1位置に設置し、且つ、前記右模型眼を第2位置に設置する第3アタッチメントを更に含んでいてよい。 In some exemplary embodiments, the model eye may include a left model eye corresponding to the left eye and a right model eye corresponding to the right eye. The ophthalmological apparatus may further include a third attachment that sets the left model eye at a first position and sets the right model eye at a second position.
幾つかの例示的な態様において、前記評価部は、前記光学系により取得されるデータの品質を示す第1評価情報を生成するように構成されてよい。 In some exemplary aspects, the evaluation unit may be configured to generate first evaluation information indicative of the quality of data acquired by the optical system.
幾つかの例示的な態様において、前記評価部は、前記アライメント系により行われるアライメントの品質を示す第2評価情報を生成するように構成されてよい。 In some exemplary aspects, the evaluation unit may be configured to generate second evaluation information indicative of the quality of alignment performed by the alignment system.
幾つかの例示的な態様は、眼のデータを取得するための光学系を含む眼科装置の性能を評価する方法であって、所定位置に模型眼を設置し、前記所定位置に設置された模型眼に対して前記光学系のアライメントを行い、前記アライメントの後に前記光学系により取得された前記模型眼のデータに基づいて評価情報を生成する。 Some exemplary aspects are a method of evaluating the performance of an ophthalmological device including an optical system for acquiring ocular data, the method comprising: installing a model eye at a predetermined position; The optical system is aligned with respect to the eye, and evaluation information is generated based on data of the model eye acquired by the optical system after the alignment.
幾つかの例示的な態様において、前記所定位置に前記模型眼を設置する工程は、前記眼科装置の顎受けに第1アタッチメントを装着する工程と、前記第1アタッチメントに前記模型眼を装着する工程とを含んでいてよい。 In some exemplary embodiments, the step of installing the model eye at the predetermined position includes the step of attaching a first attachment to the chin rest of the ophthalmological device, and the step of attaching the model eye to the first attachment. It may contain.
幾つかの例示的な態様において、前記所定位置に前記模型眼を設置する工程は、前記眼科装置の額当てに第2アタッチメントを装着する工程と、前記第2アタッチメントに前記模型眼を装着する工程とを含んでいてよい。 In some exemplary embodiments, the step of installing the model eye at the predetermined position includes a step of attaching a second attachment to the forehead rest of the ophthalmological device, and a step of attaching the model eye to the second attachment. It may contain.
幾つかの例示的な態様において、前記アライメントを行う工程は、前記模型眼を異なる2以上の方向から撮影する工程と、前記2以上の方向からの撮影により取得された前記模型眼の2以上の画像に基づいて前記光学系を移動する工程とを含んでいてよい。 In some exemplary embodiments, the step of performing the alignment includes the step of photographing the model eye from two or more different directions, and the step of photographing the model eye from two or more different directions. The method may include a step of moving the optical system based on the image.
幾つかの例示的な態様において、前記模型眼は、角膜に相当する角膜部と、虹彩に相当し、瞳孔に相当する開口を形成する虹彩部とを含んでいてよい。前記開口の入射瞳は、前記角膜部から略3.06ミリメートル離れた位置に配置されてよい。前記開口の径は、2~10ミリメートルの範囲内の値に設定されてよい。前記虹彩部の赤外光反射率は、2.0~2.5パーセントの範囲内の値に設定されてよい。前記模型眼を異なる2以上の方向から撮影する工程は、赤外波長に感度を有する撮影を行ってよい。前記2以上の画像に基づいて前記光学系を移動する工程は、前記2以上の画像のそれぞれにおける瞳孔領域を特定する工程と、特定された2以上の瞳孔領域に基づいて前記光学系の3次元移動量を算出する工程と、前記3次元移動量に基づいて前記光学系を移動する工程とを含んでいてよい。 In some exemplary embodiments, the model eye may include a corneal portion that corresponds to the cornea, and an iris portion that corresponds to the iris and forms an opening that corresponds to the pupil. An entrance pupil of the aperture may be located approximately 3.06 millimeters from the corneal portion. The diameter of the opening may be set to a value within the range of 2 to 10 millimeters. The infrared light reflectance of the iris portion may be set to a value within a range of 2.0 to 2.5 percent. The step of photographing the model eye from two or more different directions may include photographing that is sensitive to infrared wavelengths. The step of moving the optical system based on the two or more images includes the step of specifying a pupil area in each of the two or more images, and the step of moving the optical system based on the two or more specified pupil areas. The method may include the steps of calculating the amount of movement and moving the optical system based on the amount of three-dimensional movement.
幾つかの例示的な態様において、前記アライメントを行う工程は、前記模型眼に光束を投射する工程と、前記模型眼を撮影する工程と、前記模型眼の撮影により取得された画像に基づいて前記光学系を移動する工程とを含んでいてよい。 In some exemplary embodiments, the step of performing the alignment includes a step of projecting a light beam onto the model eye, a step of photographing the model eye, and a step of performing the alignment based on an image obtained by photographing the model eye. The method may include a step of moving the optical system.
幾つかの例示的な態様において、前記模型眼は、角膜に相当する角膜部を含んでいてよい。前記角膜部の曲率半径は、略7.7ミリメートルであってよい。前記光束を投射する工程は、前記模型眼に正面から光束を投射する工程を含んでいてよい。前記光学系を移動する工程は、前記模型眼の撮影により取得された前記画像における前記光束の前記角膜部による反射像を特定する工程と、特定された前記反射像に基づいて前記光学系を移動する工程とを含んでいてよい。 In some exemplary embodiments, the model eye may include a corneal portion corresponding to the cornea. The corneal portion may have a radius of curvature of approximately 7.7 millimeters. The step of projecting the light beam may include the step of projecting the light beam onto the model eye from the front. The step of moving the optical system includes a step of identifying a reflected image of the light beam by the cornea in the image obtained by photographing the model eye, and moving the optical system based on the identified reflected image. It may include a step of.
幾つかの例示的な態様において、前記模型眼は、角膜に相当する角膜部を含んでいてよい。前記角膜部の曲率半径は、略7.7ミリメートルであってよい。前記光束を投射する工程は、前記模型眼に斜方から光束を投射する工程を含んでいてよい。前記模型眼を撮影する工程は、前記光学系の光軸に関して前記光束の投射方向に略対称な方向に配置されたラインセンサー又はエリアセンサーによって前記角膜部による前記光束の反射光を検出する工程を含んでいてよい。前記光学系を移動する工程は、前記反射光を検出した前記ラインセンサー又は前記エリアセンサーの受光素子の位置に基づいて前記光学系を移動する工程を含んでいてよい。 In some exemplary embodiments, the model eye may include a corneal portion corresponding to the cornea. The corneal portion may have a radius of curvature of approximately 7.7 millimeters. The step of projecting the light beam may include the step of projecting the light beam obliquely onto the model eye. The step of photographing the model eye includes the step of detecting the reflected light of the light beam by the cornea portion using a line sensor or an area sensor arranged in a direction substantially symmetrical to the projection direction of the light beam with respect to the optical axis of the optical system. It may be included. The step of moving the optical system may include the step of moving the optical system based on the position of a light receiving element of the line sensor or the area sensor that has detected the reflected light.
幾つかの例示的な態様において、前記模型眼は、左眼に相当する左模型眼と、右眼に相当する右模型眼とを含んでいてよい。前記所定位置に前記模型眼を設置する工程は、前記眼科装置に第3アタッチメントを装着する工程と、前記左模型眼を前記第3アタッチメントに装着して前記左模型眼を第1位置に設置する工程と、前記右模型眼を前記第3アタッチメントに装着して前記右模型眼を第2位置に設置する工程とを含んでいてよい。 In some exemplary embodiments, the model eye may include a left model eye corresponding to the left eye and a right model eye corresponding to the right eye. The step of installing the model eye at the predetermined position includes the step of attaching a third attachment to the ophthalmological apparatus, and attaching the left model eye to the third attachment and installing the left model eye at the first position. and a step of attaching the right model eye to the third attachment and installing the right model eye at a second position.
幾つかの例示的な態様において、前記評価情報を生成する工程は、前記光学系により取得されるデータの品質を示す第1評価情報を生成する工程を含んでいてよい。 In some exemplary aspects, generating the evaluation information may include generating first evaluation information indicative of the quality of data acquired by the optical system.
幾つかの例示的な態様において、前記評価情報を生成する工程は、前記アライメント系により行われるアライメントの品質を示す第2評価情報を生成する工程を含んでいてよい。 In some exemplary aspects, generating the evaluation information may include generating second evaluation information indicating the quality of alignment performed by the alignment system.
幾つかの例示的な態様は、いずれかの態様の評価方法を眼科装置に実行させるプログラムである。 Some example aspects are programs that cause an ophthalmological apparatus to perform the evaluation method of any aspect.
幾つかの例示的な態様は、いずれかの態様のプログラムが記録されたコンピュータ可読な非一時的記録媒体である。 Some example embodiments are computer readable non-transitory storage media having a program of any embodiment recorded thereon.
幾つかの例示的な態様によれば、模型眼を用いた眼科装置の評価作業の容易化を図ることが可能である。 According to some exemplary aspects, it is possible to facilitate the evaluation work of an ophthalmological device using a model eye.
実施形態に係る眼科装置、その評価方法、プログラム、及び記録媒体について、幾つかの例示的な態様を説明する。以下に詳述する例示的な態様では、光コヒーレンストモグラフィ(OCT)装置と眼底カメラとを組み合わせた眼科装置を取り上げるが、実施形態に係る眼科装置はこれに限定されず、眼を検査(撮影、測定等)する機能とアライメント機能とを有する任意の眼科装置であってよい。 Some exemplary aspects of the ophthalmological apparatus, its evaluation method, program, and recording medium according to the embodiment will be described. In the exemplary embodiments detailed below, an ophthalmologic device that combines an optical coherence tomography (OCT) device and a fundus camera is featured, but the ophthalmologic device according to the embodiments is not limited thereto, , measurement, etc.) and an alignment function.
以下に詳述する例示的な態様の眼科装置に含まれるOCT装置にはスペクトラルドメインOCTが採用されているが、実施形態に係る眼科装置に適用可能なOCTの種別はスペクトラルドメインOCTに限定されず、例えばスウェプトソースOCTであってもよい。 Although spectral domain OCT is employed in the OCT device included in the ophthalmic device of exemplary embodiments described in detail below, the type of OCT applicable to the ophthalmic device according to the embodiment is not limited to spectral domain OCT. , for example, swept source OCT.
なお、スペクトラルドメインOCTは、低コヒーレンス光源からの光を測定光と参照光とに分割し、被検物からの測定光の戻り光を参照光と重ね合わせて干渉光を生成し、この干渉光のスペクトル分布を分光器で検出し、検出されたスペクトル分布にフーリエ変換等を施して画像を形成する手法である。 Spectral domain OCT splits light from a low-coherence light source into measurement light and reference light, and superimposes the return light of the measurement light from the object on the reference light to generate interference light. This is a method in which the spectral distribution of spectral distribution is detected using a spectrometer, and the detected spectral distribution is subjected to Fourier transform or the like to form an image.
これに対し、スウェプトソースOCTは、波長可変光源からの光を測定光と参照光とに分割し、被検物からの測定光の戻り光を参照光と重ね合わせて干渉光を生成し、この干渉光をバランスドフォトダイオード等の光検出器で検出し、波長の掃引及び測定光のスキャンに応じて収集された検出データにフーリエ変換等を施して画像を形成する手法である。 In contrast, swept source OCT splits the light from a wavelength tunable light source into measurement light and reference light, and superimposes the return light of the measurement light from the test object on the reference light to generate interference light. This is a method in which interference light is detected with a photodetector such as a balanced photodiode, and an image is formed by performing Fourier transform or the like on the detection data collected according to wavelength sweeps and measurement light scans.
このように、スペクトラルドメインOCTは空間分割でスペクトル分布を取得するOCT手法であり、スウェプトソースOCTは時分割でスペクトル分布を取得するOCT手法である。 In this way, spectral domain OCT is an OCT technique that acquires a spectral distribution by spatial division, and swept source OCT is an OCT technique that acquires a spectral distribution by time division.
本明細書において、特に言及しない限り、「画像データ」と、それに基づく可視化情報である「画像」とを区別しない。また、特に言及しない限り、被検眼の部位又は組織と、それに対応する模型眼の部分とを区別しない。同様に、被検眼の部位又は組織と、それを可視化した画像とを区別せず、また、模型眼の部分と、それを可視化した画像とを区別しない。 In this specification, unless otherwise specified, "image data" and "image" which is visualization information based on the image data are not distinguished. Further, unless otherwise specified, no distinction is made between the site or tissue of the eye to be examined and the corresponding portion of the model eye. Similarly, the part or tissue of the eye to be examined and the image that visualizes it are not distinguished, and the part of the model eye and the image that is visualized are not distinguished.
〈構成〉
例示的な態様の眼科装置を図1に示す。眼科装置1は、眼底カメラユニット2、OCTユニット100、及び演算制御ユニット200を含む。眼底カメラユニット2には、被検眼Eの正面画像を取得するための光学系や機構と、OCTを実行するための光学系や機構とが設けられている。OCTユニット100には、OCTを実行するための光学系や機構が設けられている。演算制御ユニット200は、各種の処理(演算、制御等)を実行するように構成された1以上のプロセッサを含んでいる。更に、眼科装置1は、互いに異なる2つの方向から前眼部を撮影するための2つの前眼部カメラ300を備えている。
<composition>
An exemplary embodiment of an ophthalmic device is shown in FIG. The
眼底カメラユニット2には、被検者の顔を保持するための顎受けと額当てが設けられている。顎受け及び額当ては、図4A及び図4Bに示す顔保持部450に相当する。ベース310には、駆動機構や演算制御回路が格納されている。ベース310上に設けられた筐体320には、光学系が格納されている。筐体320の前面に突出して設けられたレンズ収容部330には、対物レンズ22が収容されている。
The
更に、眼科装置1は、OCTが適用される部位を切り替えるためのレンズユニットを備えている。具体的には、眼科装置1は、前眼部にOCTを適用するための前眼部OCT用アタッチメント400を備えている。前眼部OCT用アタッチメント400は、例えば、特開2015-160103号公報に開示された光学ユニットと同様に構成されていてよい。
Furthermore, the
図1に示すように、前眼部OCT用アタッチメント400は、対物レンズ22と被検眼Eとの間に配置可能である。前眼部OCT用アタッチメント400が光路に配置されているとき、眼科装置1は前眼部にOCTスキャンを適用することが可能である。他方、前眼部OCT用アタッチメント400が光路から退避されているとき、眼科装置1は後眼部にOCTスキャンを適用することが可能である。前眼部OCT用アタッチメント400の移動は、手動又は自動で行われる。
As shown in FIG. 1, the anterior
幾つかの態様において、アタッチメントが光路に配置されているときに後眼部にOCTスキャンを適用可能であり、且つ、アタッチメントが光路から退避されているときに前眼部にOCTスキャンを適用可能であってよい。また、アタッチメントにより切り替えられる測定部位は後眼部及び前眼部に限定されず、眼の任意の部位であってよい。なお、OCTスキャンが適用される部位を切り替えるための構成はこのようなアタッチメントに限定されず、例えば、光路に沿って移動可能なレンズを備えた構成、又は、光路に対して挿脱可能なレンズを備えた構成を採用することも可能である。 In some embodiments, an OCT scan can be applied to the posterior segment when the attachment is placed in the optical path, and an OCT scan can be applied to the anterior segment when the attachment is retracted from the optical path. It's good. Furthermore, the measurement site that can be switched by the attachment is not limited to the posterior segment and the anterior segment, but may be any location on the eye. Note that the configuration for switching the region to which OCT scanning is applied is not limited to such an attachment, and for example, a configuration that includes a lens that is movable along the optical path, or a lens that can be inserted and removed from the optical path. It is also possible to adopt a configuration with the following.
本明細書に開示された要素の機能の少なくとも一部は、回路構成(circuitry)又は処理回路構成(processing circuitry)を用いて実装される。回路構成又は処理回路構成は、開示された機能の少なくとも一部を実行するように構成及び/又はプログラムされた、汎用プロセッサ、専用プロセッサ、集積回路、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)、従来の回路構成、及びそれらの任意の組み合わせのいずれかを含む。プロセッサは、トランジスタ及び/又は他の回路構成を含む、処理回路構成又は回路構成とみなされる。本開示において、回路構成、ユニット、手段、又はこれらに類する用語は、開示された機能の少なくとも一部を実行するハードウェア、又は、開示された機能の少なくとも一部を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されたハードウェアであってよく、或いは、記載された機能の少なくとも一部を実行するようにプログラム及び/又は構成された既知のハードウェアであってもよい。ハードウェアが或るタイプの回路構成とみなされ得るプロセッサである場合、回路構成、ユニット、手段、又はこれらに類する用語は、ハードウェアとソフトウェアとの組み合わせであり、このソフトウェアはハードウェア及び/又はプロセッサを構成するために使用される。 At least some of the functionality of the elements disclosed herein is implemented using circuitry or processing circuitry. The circuitry or processing circuitry may include a general purpose processor, special purpose processor, integrated circuit, central processing unit (CPU), graphics processing unit (GPU) configured and/or programmed to perform at least a portion of the disclosed functions. ), ASIC (Application Specific Integrated Circuit), programmable logic devices (for example, SPLD (Simple Programmable Logic Device), CPLD (Complex Programmable Logic Device), FPGA (Field Programmable Gate Array), conventional circuit configurations, and any of these A processor is considered to be a processing circuitry or circuitry that includes transistors and/or other circuitry. In this disclosure, the term circuitry, unit, means, or similar terminology refers to the disclosure Hardware that performs at least some of the functions disclosed herein, or hardware that is programmed to perform at least some of the functions disclosed. or may be known hardware programmed and/or configured to perform at least some of the functions described.A processor where the hardware may be considered a type of circuitry. , the term circuitry, unit, means, or similar terms is a combination of hardware and software, the software being used to configure the hardware and/or the processor.
〈眼底カメラユニット2〉
眼底カメラユニット2には、被検眼Eの眼底Ef(及び前眼部)を撮影するための光学系が設けられている。取得される眼底Efのデジタル画像(眼底像、眼底写真等と呼ばれる)は、一般に、観察画像、撮影画像等の正面画像である。観察画像は、近赤外光を用いた動画撮影により得られる。撮影画像は、可視領域のフラッシュ光を用いた静止画像である。
<
The
眼底カメラユニット2は、照明光学系10と撮影光学系30とを含む。照明光学系10は、被検眼Eに照明光を照射する。撮影光学系30は、被検眼Eに照射された照明光の戻り光を検出する。OCTユニット100からの測定光は、眼底カメラユニット2内の光路を通じて被検眼Eに導かれる。被検眼E(例えば、眼底Ef)に投射された測定光の戻り光は、眼底カメラユニット2内の同じ光路を通じてOCTユニット100に導かれる。
The
照明光学系10の観察光源11から出力された光(観察照明光)は、凹面鏡12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ系17、リレーレンズ18、絞り19、及びリレーレンズ系20を経由して孔開きミラー21に導かれる。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて被検眼E(眼底Ef)を照明する。観察照明光の被検眼Eからの戻り光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過し、撮影合焦レンズ31を経由し、ミラー32により反射される。更に、この戻り光は、ハーフミラー33Aを透過し、ダイクロイックミラー33により反射され、結像レンズ34によりイメージセンサー35の受光面に結像される。イメージセンサー35は、所定のフレームレートで戻り光を検出する。なお、撮影光学系30のフォーカスは、眼底Ef若しくはその近傍に合致するように調整可能であり、且つ、前眼部若しくはその近傍に合致するように調整可能である。
Light (observation illumination light) output from the observation
撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。被検眼Eからの撮影照明光の戻り光は、観察照明光の戻り光と同じ経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、結像レンズ37によりイメージセンサー38の受光面に結像される。
The light output from the photographing light source 15 (photographing illumination light) passes through the same path as the observation illumination light and is irradiated onto the fundus Ef. The return light of the imaging illumination light from the eye E is guided to the
液晶ディスプレイ(LCD)39は固視標(固視標画像)を表示する。LCD39から出力された光束は、その一部がハーフミラー33Aに反射され、ミラー32に反射され、撮影合焦レンズ31及びダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過する。孔開きミラー21の孔部を通過した光束は、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投射される。固視標は、典型的には、視線の誘導及び固定に利用される。被検眼Eの視線が誘導(及び固定)される方向、つまり被検眼Eの固視が促される方向は、固視位置と呼ばれる。
A liquid crystal display (LCD) 39 displays a fixation target (fixation target image). A portion of the light beam output from the
LCD39の画面上における固視標画像の表示位置を変更することで固視位置を変更することができる。固視位置の例として、黄斑を中心とする画像を取得するための固視位置や、視神経乳頭を中心とする画像を取得するための固視位置や、黄斑と視神経乳頭との間の位置(眼底中心)を中心とする画像を取得するための固視位置や、黄斑から大きく離れた部位(眼底周辺部)の画像を取得するための固視位置などがある。
The fixation position can be changed by changing the display position of the fixation target image on the screen of the
このような典型的な固視位置の少なくとも1つを指定するためのグラフィカルユーザーインターフェース(GUI)等を設けることができる。また、固視位置(固視標の表示位置)をマニュアルで移動するためのGUI等を設けることができる。また、固視位置を自動で設定する構成を適用することも可能である。 A graphical user interface (GUI) or the like may be provided for specifying at least one of such typical fixation positions. Further, a GUI or the like for manually moving the fixation position (the display position of the fixation target) can be provided. Furthermore, it is also possible to apply a configuration in which the fixation position is automatically set.
固視位置の変更が可能な固視標を被検眼Eに提示するための構成は、LCD等の表示デバイスには限定されない。例えば、複数の発光部(発光ダイオード等)がマトリクス状に配列されたデバイス(固視マトリクス)を、表示デバイスの代わりに採用することができる。この場合、複数の発光部を選択的に点灯させることにより、固視標による被検眼Eの固視位置を変更することができる。他の例として、移動可能な1以上の発光部を備えたデバイスによって、固視位置の変更が可能な固視標を生成することができる。 The configuration for presenting the eye E with a fixation target whose fixation position can be changed is not limited to a display device such as an LCD. For example, a device (fixation matrix) in which a plurality of light emitting parts (such as light emitting diodes) are arranged in a matrix can be used instead of the display device. In this case, by selectively lighting up the plurality of light emitting units, the fixation position of the eye E to be examined based on the fixation target can be changed. As another example, a fixation target whose fixation position can be changed can be generated by a device including one or more movable light emitting parts.
アライメント光学系50は、被検眼Eに対する光学系のアライメントに用いられるアライメント指標を生成する。発光ダイオード(LED)51から出力されたアライメント光は、絞り52、絞り53、及びリレーレンズ54を経由し、ダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22を介して被検眼Eに投射される。アライメント光の被検眼Eからの戻り光は、観察照明光の戻り光と同じ経路を通ってイメージセンサー35に導かれる。その受光像(アライメント指標像)に基づいてマニュアルアライメントやオートアライメントを実行することができる。
The alignment
なお、実施形態に適用可能なアライメント手法は、このようなアライメント指標を用いたものに限定されず、前眼部カメラ300を利用した手法や、角膜に正面から光束を投射することで形成される角膜反射像(プルキンエ像)を利用した手法や、角膜に斜方から光束を投射して反対方向にて角膜反射光を検出する光テコを利用した手法など、任意の公知の手法であってよい。
Note that the alignment method that can be applied to the embodiment is not limited to using such an alignment index, but also a method that uses the
フォーカス光学系60は、被検眼Eに対するフォーカス調整に用いられるスプリット指標を生成する。撮影光学系30の光路(撮影光路)に沿った撮影合焦レンズ31の移動に連動して、フォーカス光学系60は照明光学系10の光路(照明光路)に沿って移動される。反射棒67は、照明光路に対して挿脱される。フォーカス調整を行う際には、反射棒67の反射面が照明光路に傾斜配置される。LED61から出力されたフォーカス光は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65により反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22を介して被検眼Eに投射される。フォーカス光の被検眼Eからの戻り光(眼底反射光等)は、アライメント光の戻り光と同じ経路を通ってイメージセンサー35に導かれる。その受光像(スプリット指標像)に基づいてマニュアルフォーカシングやオートフォーカシングを実行できる。
The focus
孔開きミラー21とダイクロイックミラー55との間の撮影光路に、視度補正レンズ70及び71を選択的に挿入することができる。視度補正レンズ70は、強度遠視を補正するためのプラスレンズ(凸レンズ)である。視度補正レンズ71は、強度近視を補正するためのマイナスレンズ(凹レンズ)である。
ダイクロイックミラー46は、眼底撮影用光路とOCT用光路(測定アーム)とを合成する。ダイクロイックミラー46は、OCTに用いられる波長帯の光を反射し、眼底撮影用の光を透過させる。測定アームには、OCTユニット100側から順に、コリメータレンズユニット40、リトロリフレクタ41、分散補償部材42、OCT合焦レンズ43、光スキャナ44、及びリレーレンズ45が設けられている。
The
リトロリフレクタ41は、これに入射する測定光LSの光路に沿って移動可能とされ、それにより測定アームの長さが変更される。測定アーム長の変更は、例えば、眼軸長に応じた光路長補正や、干渉状態の調整などに利用される。
The
分散補償部材42は、参照アームに配置された分散補償部材113(後述)とともに、測定光LSの分散特性と参照光LRの分散特性とを合わせるよう作用する。
The
OCT合焦レンズ43は、測定アームのフォーカス調整を行うために測定アームに沿って移動される。なお、撮影合焦レンズ31の移動、フォーカス光学系60の移動、及びOCT合焦レンズ43の移動を連係的に制御することができる。
The
光スキャナ44は、実質的に、被検眼Eの瞳孔と光学的に共役な位置に配置される。光スキャナ44は、測定アームにより導かれる測定光LSを偏向する。光スキャナ44は、例えば、2次元走査が可能なガルバノスキャナである。典型的には、光スキャナ44は、測定光を±x方向に偏向するための1次元スキャナ(x-スキャナ)と、測定光を±y方向に偏向するための1次元スキャナ(y-スキャナ)とを含む。この場合、例えば、これら1次元スキャナのいずれか一方が瞳孔と光学的に共役な位置に配置されるか、或いは、瞳孔と光学的に共役な位置がこれら1次元スキャナの間に配置される。
The
〈OCTユニット100〉
図2に示す例示的なOCTユニット100には、スペクトラルドメインOCTを実行するための光学系が設けられている。この光学系は干渉光学系を含む。この干渉光学系は、低コヒーレンス光源(広帯域光源)からの光を測定光と参照光とに分割し、被検眼Eに投射された測定光の戻り光と参照光路を経由した参照光とを重ね合わせて干渉光を生成する。干渉光学系により生成された干渉光のスペクトル分布が分光器で検出する。干渉光のスペクトル分布の検出により得られたデータ(検出信号)は、演算制御ユニット200に送られる。
<
The
光源ユニット101は、広帯域の低コヒーレンス光L0を出力する。低コヒーレンス光L0は、例えば、近赤外領域の波長帯(800nm~900nm程度)を含み、数十マイクロメートル程度の時間的コヒーレンス長を有する。なお、低コヒーレンス光L0は、人眼では視認できない波長帯、例えば1040~1060nm程度の中心波長を有する近赤外光であってもよい。光源ユニット101は、スーパールミネセントダイオード(SLD)、LED、半導体光増幅器(SOA)等の光出力デバイスを含む。
The
なお、スウェプトソースOCTが採用される場合、光源ユニットは、例えば、出射光の波長を高速で変化させる近赤外波長可変レーザーを含む。 Note that when swept source OCT is employed, the light source unit includes, for example, a near-infrared variable wavelength laser that changes the wavelength of emitted light at high speed.
光源ユニット101から出力された低コヒーレンス光L0は、光ファイバ102により偏波コントローラ103に導かれてその偏光状態が調整される。偏光状態が調整された光L0は、光ファイバ104によりファイバカプラ105に導かれて測定光LSと参照光LRとに分割される。測定光LSを導く光路は測定アーム(sample arm)などと呼ばれ、参照光LRを導く光路は参照アーム(reference arm)などと呼ばれる。
The low coherence light L0 output from the
ファイバカプラ105により生成された参照光LRは、光ファイバ110によりコリメータ111に導かれて平行光束に変換され、光路長補正部材112及び分散補償部材113を経由し、リトロリフレクタ114に導かれる。光路長補正部材112は、参照光LRの光路長と測定光LSの光路長とを合わせるよう作用する。分散補償部材113は、測定アームに配置された分散補償部材42とともに、参照光LRと測定光LSとの間の分散特性を合わせるよう作用する。リトロリフレクタ114は、これに入射する参照光LRの光路に沿って移動可能であり、それにより参照アームの長さが変更される。参照アーム長の変更は、例えば、眼軸長に応じた光路長補正や、干渉状態の調整などに利用される。
The reference light LR generated by the
リトロリフレクタ114を経由した参照光LRは、分散補償部材113及び光路長補正部材112を経由し、コリメータ116によって平行光束から集束光束に変換され、光ファイバ117に入射する。光ファイバ117に入射した参照光LRは、偏波コントローラ118に導かれてその偏光状態が調整され、光ファイバ119を通じてアッテネータ120に導かれてその光量が調整され、光ファイバ121を通じてファイバカプラ122に導かれる。
The reference light LR that has passed through the
一方、ファイバカプラ105により生成された測定光LSは、光ファイバ127を通じてコリメータレンズユニット40に導かれて平行光束に変換され、リトロリフレクタ41、分散補償部材42、OCT合焦レンズ43、光スキャナ44、及びリレーレンズ45を経由し、ダイクロイックミラー46により反射され、対物レンズ22により屈折されて被検眼Eに投射される。測定光LSは、被検眼Eの様々な深さ位置において散乱・反射される。測定光LSの被検眼Eからの戻り光は、測定アームを逆向きに進行してファイバカプラ105に導かれ、光ファイバ128を経由してファイバカプラ122に到達する。
On the other hand, the measurement light LS generated by the
ファイバカプラ122は、光ファイバ128を介して入射された測定光LSと、光ファイバ121を介して入射された参照光LRとを重ね合わせて干渉光LCを生成する。
The
ファイバカプラ122により生成された干渉光LCは、光ファイバ129を通じて分光器130に導かれる。分光器130は、例えば、入射された干渉光LCをコリメータレンズによって平行光束に変換し、平行光束に変換された干渉光LCを回折格子によってスペクトル成分に分解し、回折格子により分解されたスペクトル成分をレンズ114によってイメージセンサーに投射する。このイメージセンサーは、例えばラインセンサーであり、干渉光LCの複数のスペクトル成分を検出して電気信号(検出信号)を生成する。生成された検出信号は、演算制御ユニット200に送られる。
The interference light LC generated by the
なお、スウェプトソースOCTが採用される場合、測定光と参照光とを重ね合わせて生成された干渉光が所定の分岐比(例えば1:1)で分岐されて一対の干渉光を生成し、生成された一対の干渉光が光検出器に導かれる。光検出器は、例えばバランスドフォトダイオードを含む。バランスドフォトダイオードは、一対の干渉光をそれぞれ検出する一対のフォトディテクタを含み、これらにより得られた一対の検出信号の差分を出力する。光検出器は、この出力(差分信号等の検出信号)をデータ収集システム(DAQ)に送る。データ収集システムには、光源ユニットからクロックが供給される。クロックは、光源ユニットにおいて、波長可変光源により所定の波長範囲内で掃引される各波長の出力タイミングに同期して生成される。光源ユニットは、例えば、各出力波長の光を分岐して2つの分岐光を生成し、これら分岐光の一方を光学的に遅延させ、これら分岐光を合成し、得られた合成光を検出し、その検出信号に基づいてクロックを生成する。データ収集システムは、光検出器から入力される検出信号(差分信号)のサンプリングをクロックに基づいて実行する。このサンプリングで得られたデータが画像構築などの処理に供される。 Note that when swept source OCT is adopted, the interference light generated by superimposing the measurement light and the reference light is split at a predetermined branching ratio (for example, 1:1) to generate a pair of interference lights. A pair of interference lights are guided to a photodetector. The photodetector includes, for example, a balanced photodiode. The balanced photodiode includes a pair of photodetectors that respectively detect a pair of interference lights, and outputs a difference between a pair of detection signals obtained by these photodetectors. The photodetector sends this output (a detection signal such as a differential signal) to a data acquisition system (DAQ). The data acquisition system is supplied with a clock from the light source unit. The clock is generated in the light source unit in synchronization with the output timing of each wavelength swept within a predetermined wavelength range by the variable wavelength light source. For example, the light source unit splits light of each output wavelength to generate two branched lights, optically delays one of these branched lights, combines these branched lights, and detects the resulting combined light. , generates a clock based on the detection signal. The data acquisition system performs sampling of the detection signal (difference signal) input from the photodetector based on a clock. The data obtained through this sampling is used for processing such as image construction.
図1及び図2に示す眼科装置1には、測定アーム長を変更するための要素(例えば、リトロリフレクタ41)と、参照アーム長を変更するための要素(例えば、リトロリフレクタ114、又は参照ミラー)との双方が設けられているが、幾つかの例示的な態様ではこれら要素のうちの一方のみが設けられる。測定アーム長と参照アーム長とを相対的に変化させることにより(つまり、測定アームと参照アームとの間の光路長差を変更することにより)、コヒーレンスゲート位置が変更される。光路長差を変更するための要素は本態様に開示された要素には限定されず、任意の要素(光学部材、機構など)であってよい。
The
〈演算制御ユニット200〉
演算制御ユニット200は、眼科装置1の各部の制御を実行する。また、演算制御ユニット200は、各種の演算を実行する。例えば、演算制御ユニット200は、分光器130により取得されたスペクトル分布にフーリエ変換等の信号処理を施すことによって、各Aラインにおける反射強度プロファイルを形成する。更に、演算制御ユニット200は、各Aラインの反射強度プロファイルを画像化することによって画像データを形成する。そのための演算処理は、従来のスペクトラルドメインOCTと同様である。
<
演算制御ユニット200は、例えば、プロセッサ、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスクドライブ、通信インターフェイスなどを含む。ハードディスクドライブ等の記憶装置には各種のコンピュータプログラムが格納されている。演算制御ユニット200は、操作デバイス、入力デバイス、表示デバイスなどを含んでいてもよい。
The
図3Aに示すように、ユーザーインターフェイス240は、表示部241と操作部242とを含む。表示部241は、例えば表示装置3を含む。操作部242は、各種の操作デバイスや入力デバイスを含む。ユーザーインターフェイス240は、例えばタッチパネルのような表示機能と操作機能とが一体となったデバイスを含んでいてもよい。幾つかの例示的な態様に係る眼科装置は、ユーザーインターフェイスの少なくとも一部を含まなくてよい。例えば、表示デバイス及び/又は操作デバイスは、眼科装置の周辺機器であってよい。
As shown in FIG. 3A,
〈前眼部カメラ300〉
前眼部カメラ300は、被検眼Eの前眼部を異なる2以上の方向から撮影する。前眼部カメラ300は、CCDイメージセンサー又はCMOSイメージセンサーなどの撮像素子を含む。本態様では、眼底カメラユニット2の前面(被検者に向く面)に2台の前眼部カメラ300が設けられている(図4Aに示す前眼部カメラ300A及び300Bを参照)。図1及び図4Aに示すように、前眼部カメラ300A及び300Bは、対物レンズ22を通過する光路から外れた位置に設けられている。本開示では、前眼部カメラ300A及び300Bの一方を符号300で示すことがあり、また双方をまとめて符号300で示すことがある。また、前眼部カメラ300A及び300Bの代わりに採用可能な前眼部カメラを符号300で示すことがある。
<
The
本態様では、2台の前眼部カメラ300A及び300Bが設けられているが、前眼部カメラ300の個数は1以上の任意の個数であってよい。後述の演算処理を考慮すると、異なる2方向から前眼部を撮影可能な構成であれば十分である(しかし、これに限定されるものではない)。或いは、移動可能な前眼部カメラ300を設け、互いに異なる2以上の位置から順次に前眼部撮影を行うようにしてもよい。
In this aspect, two
本態様では照明光学系10及び撮影光学系30とは別個に2つの前眼部カメラ300が設けられているが、例えば撮影光学系30を用いて前眼部撮影を行うことができる。すなわち、2以上の前眼部カメラ300のうちの1つは、撮影光学系30であってよい。本態様に係る前眼部カメラ300は、互いに異なる2(以上の)方向から前眼部を撮影可能であればよい。
In this embodiment, two
前眼部を照明するための構成が設けられていてもよい。この前眼部照明手段には、例えば、1以上の光源が含まれる。典型的には、2以上の前眼部カメラ300のそれぞれの近傍に少なくとも1つの光源(例えば、赤外光源)を設けることができる。
Arrangements may be provided for illuminating the anterior segment. The anterior segment illumination means includes, for example, one or more light sources. Typically, at least one light source (eg, an infrared light source) can be provided near each of the two or more
典型的には、互いに異なる2以上の方向からの前眼部撮影は、実質的に同時に実行される。「実質的に同時」とは、互いに異なる2以上の方向からの前眼部撮影のタイミングが同時である場合に加え、例えば、眼球運動を無視できる程度のタイミング差が介在する場合も許容されることを示す。このような実質的同時撮影によって、被検眼Eが実質的に同じ位置及び向きにあるときに、互いに異なる2以上の方向から前眼部を撮影することが可能である。 Typically, anterior segment imaging from two or more different directions is performed substantially simultaneously. "Substantially simultaneous" refers to cases in which the timing of anterior eye segment imaging from two or more different directions is simultaneous, but also cases in which there is a difference in timing to the extent that eye movement can be ignored, for example, is also acceptable. Show that. Through such substantially simultaneous imaging, it is possible to image the anterior segment of the eye from two or more different directions when the subject's eye E is in substantially the same position and orientation.
互いに異なる2以上の方向からの前眼部撮影は、動画撮影でも静止画撮影でもよい。動画撮影の場合、例えば、2以上の前眼部カメラ300による撮影開始タイミングを合わせるよう制御したり、フレームレートや各フレームの取得タイミングを制御したりすることによって、上記のような実質的に同時の前眼部撮影を実現することができる。一方、静止画撮影の場合、例えば、2以上の前眼部カメラ300による撮影タイミングを合わせるよう制御を行うことによって、実質的に同時の前眼部撮影を実現することができる。
Anterior segment photography from two or more different directions may be video photography or still image photography. In the case of video shooting, for example, by controlling the shooting start timings of two or more
なお、後述のように模型眼を撮影する場合には、このような実質的同時撮影を行う必要はない。 Note that when photographing a model eye as described later, it is not necessary to carry out such substantially simultaneous photographing.
〈制御系〉
眼科装置1の制御系(処理系)の構成の例を図3A及び図3Bに示す。制御部210、画像形成部220、及びデータ処理部230は、例えば演算制御ユニット200に設けられる。
<Control system>
An example of the configuration of the control system (processing system) of the
〈制御部210〉
制御部210は、プロセッサを含み、眼科装置1の各部を制御する。制御部210は、主制御部211と記憶部212とを含む。
<
The
〈主制御部211〉
主制御部211は、プロセッサを含み、眼科装置1の各要素(図1~図3Bに示された要素を含む)を制御する。主制御部211は、例えば、回路を含むハードウェアと、制御ソフトウェアとの協働により実現される。
<
The
撮影光路に配置された撮影合焦レンズ31と照明光路に配置されたフォーカス光学系60とは、主制御部211の制御の下に、図示しない撮影合焦駆動部によって、一体的に又は連係的に移動される。測定アームに設けられたリトロリフレクタ41は、主制御部211の制御の下に、リトロリフレクタ(RR)駆動部41Aによって移動される。測定アームに配置されたOCT合焦レンズ43は、主制御部211の制御の下に、OCT合焦駆動部43Aによって移動される。なお、OCT合焦レンズ43の移動を、撮影合焦レンズ31及びフォーカス光学系60の移動と連係的に行うことができる。参照アームに配置されたリトロリフレクタ114は、主制御部211の制御の下に、リトロリフレクタ(RR)駆動部114Aによって移動される。ここに例示した機構のそれぞれは、典型的には、主制御部211の制御の下に動作するパルスモータ等のアクチュエータを含む。測定アームに設けられた光スキャナ44は、主制御部211の制御の下に動作する。更に、主制御部211は、偏波コントローラ103、偏波コントローラ118、アッテネータ120、各種光源、各種光学要素、各種デバイス、各種機構など、眼科装置1に含まれる任意の要素を制御することができる。また、主制御部211は、眼科装置1に接続された任意の周辺機器(装置、機器、デバイス等)の制御や、眼科装置1によりアクセス可能な任意の装置、機器、デバイス等の制御を実行可能であってよい。
The photographic focusing
移動機構150は、例えば、少なくとも眼底カメラユニット2を3次元的に移動する。典型的な例において、移動機構150は、±x方向(左右方向)に移動可能なxステージと、xステージを移動するx移動機構と、±y方向(上下方向)に移動可能なyステージと、yステージを移動するy移動機構と、±z方向(奥行き方向)に移動可能なzステージと、zステージを移動するz移動機構とを含む。これら移動機構のそれぞれは、主制御部211の制御の下に動作するパルスモータ等のアクチュエータを含む。
The moving
〈記憶部212〉
記憶部212は各種のデータを記憶する。記憶部212に記憶されるデータとしては、例えば、OCT画像の画像データ、眼底像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者情報や、左眼/右眼の識別情報や、電子カルテ情報などを含む。
<
The
〈画像形成部220〉
画像形成部220は、分光器130により取得されたデータに基づいてOCT画像データを形成する。画像形成部220は、プロセッサを含む。画像形成部220は、例えば、回路を含むハードウェアと、画像形成ソフトウェアとの協働により実現される。
<
The
画像形成部220は、分光器130により取得されたデータに基づいて断面像データを形成する。この画像形成処理は、従来のスペクトラルドメインOCTと同様に、サンプリング(A/D変換)、ノイズ除去(ノイズ低減)、フィルタ処理、高速フーリエ変換(FFT)などの信号処理を含む。
The
画像形成部220により形成される画像データは、OCTスキャンが適用されたエリアに配列された複数のAライン(z方向に沿うスキャンライン)における反射強度プロファイルを画像化することによって形成された一群の画像データ(一群のAスキャン画像データ)を含むデータセットである。
The image data formed by the
画像形成部220により形成される画像データは、例えば、1以上のBスキャン画像データ、又は、複数のBスキャン画像データを単一の3次元座標系に埋め込んで形成されたスタックデータである。画像形成部220は、スタックデータにボクセル化処理を施してボリュームデータ(ボクセルデータ)を構築することも可能である。スタックデータ及びボリュームデータは、3次元座標系により表現された3次元画像データの典型的な例である。
The image data formed by the
画像形成部220は、3次元画像データを加工することができる。例えば、画像形成部220は、3次元画像データにレンダリングを適用して新たな画像データを構築することができる。レンダリングの手法としては、ボリュームレンダリング、最大値投影(MIP)、最小値投影(MinIP)、サーフェスレンダリング、多断面再構成(MPR)などがある。また、画像形成部220は、3次元画像データをz方向(Aライン方向、深さ方向)に投影してプロジェクションデータを構築することができる。また、画像形成部220は、3次元画像データの一部(3次元部分画像データ)をz方向に投影してシャドウグラムを構築することができる。なお、3次元部分画像データは、例えば、3次元画像データにセグメンテーションを適用することによって設定される。
The
〈データ処理部230〉
データ処理部230は、各種のデータ処理を実行する。例えば、データ処理部230は、OCT画像データに画像処理や解析処理を適用することや、観察画像データ又は撮影画像データに画像処理や解析処理を適用することが可能である。データ処理部230は、プロセッサを含む。データ処理部230は、例えば、回路を含むハードウェアと、データ処理ソフトウェアとの協働により実現される。
<
The
次に、図1~図3Aに示す要素(ハードウェア要素、ソフトウェア要素)により実現される眼科装置1の機能的構成について説明する。眼科装置1の機能的構成の一例を図3Bに示す。本例は、模型眼500を用いて眼科装置1の評価を行うための構成を提供している。
Next, the functional configuration of the
〈模型眼500〉
模型眼500は、眼科装置1の性能評価のために、アタッチメント460を介して顔保持部450に装着される。本態様では、被検眼Eと同様の位置に模型眼500が配置される。これにより、眼科装置1のアライメント機能を利用して模型眼500に対するデータ取得光学系410の位置合わせ(アライメント)を行って評価作業の容易化を図ることができ、更に、データ取得光学系410により取得されるデータの品質の評価だけでなく、アライメント系420により行われるアライメントの品質の評価も可能となる。
<
The
模型眼500の例示的な構成を図5に示す。本例の模型眼500は、角膜に相当する角膜部510(角膜相当レンズ)と、虹彩に相当する虹彩部520と、水晶体に相当する水晶体部550(水晶体相当レンズ)と、硝子体に相当する硝子体部560と、眼底に相当する眼底部570とを含む。模型眼500に含まれる要素の個数(例えば、レンズの枚数)は任意である。
An exemplary configuration of the
虹彩部520は、瞳孔に相当する開口540を形成する。また、虹彩部520は、開口540の大きさ(開口径)を変化させるための可変部530が設けられていてよい。可変部530は、例えば、虹彩部520に対して着脱可能であり、異なる開口径に対応する複数の部材が選択的に適用される。或いは、可変部530は、虹彩部520に対して移動可能に構成される。なお、開口540のサイズは固定であってもよい。硝子体部560には、例えば、オイル等の液体が充填されている。なお、硝子体部560に充填される物質は任意であり、例えば、任意の気体、任意の液体、及び任意の固体のいずれかであってよい。角膜部510と水晶体部550との間の空間には、典型的には、気体(空気)が存在する。なお、角膜部510と水晶体部550との間の空間に設けられる物質は任意であり、例えば、任意の気体、任意の液体、及び任意の固体のいずれかであってよい。
眼底部570は、人眼の眼底に応じた積層構造を備えている。例えば、眼底部570は、人眼の眼底の任意の組織に相当する1以上の層を備えている。眼底の組織としては、内境界膜、神経線維層、神経節細胞層、内網状層、内顆粒層、外網状層、外顆粒層、外境界膜、視細胞層、網膜色素上皮層、ブルッフ膜、脈絡膜、強膜などがある。眼底部570の各層の厚さや屈折率は、対応する1又は2以上の組織の厚さや屈折率と同等であってよい。眼底部570の形状は、図5のような平板形状には限定されず、球面形状又は楕円形状などの曲面形状であってもよい。また、眼底部570は、人眼の任意の部位や組織に相当する構造を備えていてよい。例えば、眼底部570は、黄斑部に相当する構造、視神経乳頭に相当する構造、血管に相当する構造などを備えていてよい。また、眼底部570は、任意の疾患や任意の病態や任意の病変に相当する構造を備えていてもよい。例えば、加齢黄斑変性状(AMD)に相当する構造(ドルーゼン等)、網膜剥離に相当する構造、出血に相当する構造、腫瘍に相当する構造、萎縮に相当する構造などを備えていてよい。
The
模型眼500のパラメータの値は、人眼と同等又は類似の値に設計されていてよい。模型眼500のパラメータの値は、例えば、標準的な模型眼又は臨床データから得られる。標準的な模型眼としては、Gullstrand模型眼、Navarro模型眼、Liou-Brennan模型眼、Badal模型眼、Arizona模型眼、Indiana模型眼、任意の規格化模型眼、及び、これらのいずれかと同等の模型眼などがある。また、模型眼500は、強度近視などの疾患を有する眼に基づいて設計されてもよい。また、模型眼500は、任意の疾患や任意の病態や任意の病変に相当する構造を備えていてもよい。例えば、模型眼500は、任意の角膜疾患、任意の水晶体疾患などに相当する構造を備えていてよい。また、模型眼500は、人工物に相当する構造を備えていてよい。例えば、模型眼500は、眼内レンズ(IOL)又はこれに相当する構造を備えていてもよい。
The parameter values of the
角膜部510の前面の中心位置(角膜頂点に相当する位置)と眼底部570の前面との間の距離は、人眼の眼軸長に基づき設計されていてよい。また、角膜部510、水晶体部550、及び硝子体部560の全体としての焦点距離は、人眼の焦点距離と同等の値に設計されていてよい。例えば、水晶体部550と眼底部570との間の光学距離を変更するための手段(例えば、スペーサー)を有していてよい。これにより、模型眼500の屈折力を変化させることが可能となり、例えば、眼軸長が長い眼に対する撮影や測定の評価を行うことが可能である。
The distance between the center position of the front surface of the corneal section 510 (position corresponding to the corneal apex) and the front surface of the
虹彩部520(可変部530)の前面(角膜部510側の面)の反射率は、人眼のそれと同等の反射率に設計されていてよい。この反射率は、例えば赤外波長の反射率であってよい。同様に、角膜部510の前面などについても、人眼のそれと同等の反射率に設計することが可能である。また、虹彩部520(可変部530、開口540)の入射瞳が、人眼の虹彩の入射瞳と同等の位置に配置されるように、模型眼500を設計してもよい。
The reflectance of the front surface (the surface on the
データ取得光学系410により用いられる光(本態様では測定光LS)や、アライメント系420により用いられる光(本態様では、前眼部カメラ300により検出される波長帯(例えば赤外波長))が模型眼500内において多重反射することを防止するために、レンズ等に反射防止膜を設けることや、内部部材に反射防止塗料を塗布することが可能である。
The light used by the data acquisition optical system 410 (measurement light LS in this embodiment) and the light used by the alignment system 420 (in this embodiment, the wavelength band detected by the anterior segment camera 300 (for example, infrared wavelength)) In order to prevent multiple reflections within the
本態様の眼科装置1のように2以上の前眼部カメラ300(赤外波長に感度を有するカメラ)を用いてアライメントを行う場合、例えば次のようなパラメータ値を設定することができる。まず、開口540の入射瞳は、角膜部510から略3.06ミリメートル離れた位置に配置されていてよい。また、開口540の径は、2~10ミリメートルの範囲内の値に設定されていてよい。更に、虹彩部520(可変部530)の赤外光反射率は、2.0~2.5パーセントの範囲内の値に設定されていてよい。このような設計により、人眼の瞳孔を基準としてアライメントを行う場合と同様に、開口540を基準として模型眼500に対するアライメントを行うことが可能になる。
When alignment is performed using two or more anterior segment cameras 300 (cameras sensitive to infrared wavelengths) as in the
他のアライメント手法が用いられる場合においても、その手法に応じて模型眼500のパラメータ値が設定される。例えば、角膜反射像(プルキンエ像)を利用してアライメントを行う場合、角膜部510の曲率半径(角膜相当レンズの前面の曲率半径)は、略7.7ミリメートルに設定されてよい。また、光テコを利用してアライメントを行う場合も同様に、角膜部510の曲率半径(角膜相当レンズの前面の曲率半径)を略7.7ミリメートルに設定することができる。
Even when another alignment method is used, the parameter values of the
〈顔保持部450、アタッチメント460〉
顔保持部450は、被検眼Eの位置を固定するために被検者の顔を保持する部材である。一般的な眼科装置には顎受けや額当てが設けられる(例えば、特開2010-200905号公報、特開2015-139527号公報を参照)。顎受けには、被検者の顎が載置される。額当てには、被検者の額があてがわれる(当接される)。
<Face holding
The
アタッチメント460は、模型眼500を眼科装置1に装着するための部材である。典型的には、アタッチメント460は、模型眼500と眼科装置1との間に介在する。幾つかの例示的な態様において、模型眼500とアタッチメント460とが一体的に構成されていてもよいが、本態様では模型眼500はアタッチメント460に着脱可能される。例えば、模型眼500がアタッチメント460に装着され、アタッチメント460が顔保持部450に装着される。換言すると、模型眼500は、アタッチメント460を介して眼科装置1に間接的に装着される。
なお、模型眼500(アタッチメント460)が装着される眼科装置1の箇所は顔保持部450に限定されない。例えば、データ取得光学系410を収容する筐体外面に模型眼500を装着する構成を採用することや、筐体に模型眼500を内蔵した構成を採用することが可能である。筐体に模型眼500が内蔵される場合、模型眼500は、データ取得光学系410の光路に挿入可能に構成されてもよいし、データ取得光学系410の光路から分岐した光路に配置されてもよい。後者の場合、例えば、模型眼500を用いた性能評価を行うときに、データ取得光学系410の光路に全反射ミラー又はビームスプリッタを挿入し、当該分岐光路を介してデータ取得光学系410からの光(例えば測定光LS)を模型眼500に導く。
Note that the location of the
模型眼500及びアタッチメント460の例を図6に示す。本例では、顔保持部450の顎受け451にアタッチメント460が装着される。より具体的には、被検者の顎が載置される台451の上面にアタッチメント460の下端の装着部461が装着される。台451と装着部461との装着態様は任意であり、例えばネジ止め又は嵌め込みによる。更に、アタッチメント460の上端の模型眼台462には、左眼に相当する左模型眼500Lと、右眼に相当する右模型眼500Rとが装着される。模型眼台462と模型眼500L及び500Rとの装着態様は任意であり、例えばネジ止め又は嵌め込みによる。このような態様によれば、実際の被検眼と同様の位置に模型眼500を配置することができるので、眼科装置1のアライメント機能を用いて模型眼500に対するデータ取得光学系410のアライメントを行うことが可能である。
An example of the
他の例示的な態様において、額当て452にアタッチメント460を介して模型眼500を装着するように構成されていてよい。本例のアタッチメント460は、例えば、その上端部分が額当て452に装着され、その下端部分に模型眼500が装着される。装着態様は任意である。
In another exemplary embodiment, the
図6に示す例では2つの模型眼500L及び500Rが眼科装置1に(間接的に)装着されるが、眼科装置1に装着される模型眼の個数は任意である。典型的には、1つ又は2つの模型眼が眼科装置1に装着される。
In the example shown in FIG. 6, two
〈データ取得光学系410〉
データ取得光学系410は、被検眼Eのデータを取得するための光学系である。眼科装置1の評価を行うときには、データ取得光学系410は、被検眼Eのデータを取得する場合と同じ要領で模型眼500のデータを取得する。例えば、本態様の眼科装置1は、模型眼500にOCTスキャンを適用することができる。また、本態様の眼科装置1は、眼底カメラユニット2を用いて模型眼500の眼底部570を撮影することができる。
<Data acquisition
The data acquisition
〈アライメント系420〉
アライメント系420は、所定位置に設置された模型眼500に対してデータ取得光学系410のアライメントを行うように構成されている。模型眼500が設置される所定位置は、例えば、図6に示す模型眼500L(及び/又は500R)の位置である。
<
The
本態様においては、アライメント系420は、2つの前眼部カメラ300と、処理部430と、移動機構150とを含む。前述したように、2つの前眼部カメラ300は、赤外波長に感度を有する撮像素子を含み、所定位置に設置された模型眼500を異なる2つの方向から撮影するように構成されている。また、移動機構150は、データ取得光学系410を移動するように構成されている。
In this embodiment,
〈処理部430〉
処理部430は、2つの前眼部カメラ300により取得された模型眼500の2以上の画像に基づいて移動機構150を制御する。
<
The
処理部430は、例えば、本出願人による特開2013-248376号公報に記載された処理を実行するように構成される。より具体的には、処理部430は、まず、2つの前眼部カメラ300により取得された模型眼500の2つの画像のそれぞれを解析することで、各画像中の瞳孔領域を特定する。
The
次に、処理部430は、2つの画像から特定された2つの瞳孔領域に基づいてデータ取得光学系410の3次元移動量を算出する。この演算には三角法が利用される。
Next, the
更に、処理部430は、算出された3次元移動量に基づいて移動機構150を制御する。より具体的には、処理部430は、算出された3次元移動量(x方向の移動量、y方向の移動量、z方向の移動量)だけデータ取得光学系410を移動するように移動機構150の制御を行う。
Further, the
処理部430が実行する処理の詳細については、例えば特開2013-248376号公報や特開2014-113385号公報など、2以上の前眼部カメラを用いた発明に関する本出願人による一連の文献を参照されたい。処理部430は、例えば、主制御部211とデータ処理部230とによって実現される。
For details of the processing executed by the
なお、本態様の眼科装置1は、アライメント光学系50を用いて、模型眼500に対するデータ取得光学系410のアライメントを行ってもよい。この場合、アライメント指標を用いたオートアライメント(前述)が模型眼500に対して適用される。
Note that the
幾つかの例示的な態様の眼科装置は、本出願人による特開2018-164616号公報に記載されたXYアライメント及び/又はZアライメントを実行可能であってよい。XYアライメントは角膜反射像(プルキンエ像)を利用したアライメント手法であり、Zアライメントは光テコを利用したアライメント手法である。 Some exemplary embodiments of the ophthalmic apparatus may be capable of performing the XY alignment and/or Z alignment described in Japanese Patent Application Publication No. 2018-164616 by the present applicant. XY alignment is an alignment method that uses a corneal reflection image (Purkinje image), and Z alignment is an alignment method that uses an optical lever.
角膜反射像(プルキンエ像)を利用した手法を模型眼500に対するデータ取得光学系410のアライメントに適用する場合、図3Bに示す構成の代わりに、例えば図7Aに示す構成を採用することができる。図7Aに示す構成例では、図3Bに示すアライメント系420がアライメント系420Aに置換されている。図7Aに示された要素のうち図3Bと同様の要素は同じ符号で示されており、特に言及しない限り、その要素の説明は繰り返さない。
When applying a method using a corneal reflection image (Purkinje image) to alignment of the data acquisition
本例の模型眼500は、角膜に相当する角膜部(510)を少なくとも含み、この角膜部の曲率半径は略7.7ミリメートルに設定されている。
The
アライメント系420Aは、投射部421Aと、撮影部422Aと、処理部430Aと、移動機構150とを含む。
The
投射部421Aは、模型眼500に光束を投射する。特に、投射部421Aは、模型眼500に正面から光束を投射する。典型的には、投射部421Aは、データ取得光学系410の光路の一部を通じて模型眼500に平行光束を投射するように構成される。これにより、模型眼500の角膜部に輝点像(角膜反射像、プルキンエ像)が形成される。
The
撮影部422Aは、投射部421Aにより光束が投射されている状態の模型眼500を撮影する。撮影部422Aにより得られる模型眼500の画像には角膜反射像が描出されている。撮影部422Aにより得られた模型眼500の画像は処理部430Aに入力される。撮影部422Aは、複数の受光素子(光電変換素子)が2次元的に配列されたエリアセンサーである。
The photographing
処理部430Aは、撮影部422Aにより取得された模型眼500の画像を解析して角膜反射像を特定する。この解析は、例えば、輝度値の変化に基づく画像処理(例えば、エッジ検出)を含む。
The
更に、処理部430Aは、模型眼500の画像から特定された角膜反射像に基づいて移動機構150を制御する。例えば、処理部430Aは、所定の基準位置(例えば、データ取得光学系410の光軸に対応する位置)に対する角膜反射像の偏位を算出し、この偏位を打ち消すように(角膜反射像が基準位置に配置されるように)移動機構150を制御する。これにより、模型眼500の角膜部の頂点位置にデータ取得光学系410の光軸を誘導することができる。
Further, the
処理部430Aが実行する処理の詳細については、例えば特開2018-164616号公報や特開平10-024019号公報などを参照されたい。処理部430Aは、例えば、主制御部211とデータ処理部230とによって実現される。
For details of the processing executed by the
光テコを利用した手法を模型眼500に対するデータ取得光学系410のアライメントに適用する場合、図3Bに示す構成の代わりに、例えば図7Bに示す構成を採用することができる。図7Bに示す構成例では、図3Bに示すアライメント系420がアライメント系420Bに置換されている。図7Bに示された要素のうち図3Bと同様の要素は同じ符号で示されており、特に言及しない限り、その要素の説明は繰り返さない。
When applying a method using an optical lever to the alignment of the data acquisition
本例の模型眼500は、角膜に相当する角膜部(510)を少なくとも含み、この角膜部の曲率半径は略7.7ミリメートルに設定されている。
The
アライメント系420Bは、投射部421Bと、撮影部422Bと、処理部430Bと、移動機構150とを含む。
投射部421Bは、模型眼500に光束を投射する。特に、投射部421Bは、模型眼500に斜方から光束を投射する。典型的には、投射部421Bは、データ取得光学系410の光路から外れた位置から模型眼500に平行光束を投射するように構成される。これにより、模型眼500の角膜部に投射された光束は、角膜部の表面にて反射される。
The
撮影部422Bは、データ取得光学系410の光軸に関して、投射部421Bによる光束の投射方向に略対称な方向に配置されている。典型的には、投射部421Bと撮影部422Bとは、データ取得光学系410の光軸を基準として互いに略対称な位置に配置されている。撮影部422Bは、典型的には、複数の受光素子が1次元的に配列されたラインセンサーである。なお、撮影部422Bは、複数の受光素子が2次元的に配列されたエリアセンサーであってもよい。模型眼500とデータ取得光学系410との間の距離が所定範囲内にあるとき、投射部421Bから出射された光束の角膜部による反射光(角膜反射光)は、撮影部422Bに検出される。角膜反射光が撮影部422Bに検出されないとき、撮影部422Bにより得られる画像は全面黒の画像である。一方、角膜反射光が撮影部422Bに検出されるとき、撮影部422Bにより得られる画像には輝点像が含まれる。撮影部422Bにより得られた画像は処理部430Bに入力される。
The photographing
処理部430Bは、撮影部422Bにより取得された画像を解析して輝点像の有無を判定し、輝点像が無い場合には所定の制御信号を移動機構150に送る。一方、輝点像が有る場合、処理部430Bは、輝点像の位置を特定し、所定の基準位置に対する輝点像の位置の偏位を求める。換言すると、処理部430Bは、撮影部422Bの複数の受光素子のうち、角膜反射光を検出した受光素子のアドレスを特定し、この受光素子のアドレスと所定の基準アドレスとの間の偏位を求める。
The
更に、処理部430Bは、このようにして特定された偏位に基づいて移動機構150を制御する。例えば、処理部430Bは、この偏位を打ち消すように(角膜反射光が基準アドレスの受光素子に検出されるように)移動機構150を制御する。これにより、模型眼500とデータ取得光学系410との間の距離を所定の作動距離(ワーキングディスタンス)に誘導することができる。
Furthermore, the
処理部430Bが実行する処理の詳細については、例えば特開2018-164616号公報や特開2015-146859号公報などを参照されたい。処理部430Bは、例えば、主制御部211とデータ処理部230とによって実現される。
For details of the processing executed by the
〈評価部440〉
アライメント系420(420A、420B)によりアライメントが実行された後、データ取得光学系410は、模型眼500のデータを取得する。例えば、眼科装置1は、アライメント系420によって模型眼500に対するデータ取得光学系410のアライメントを行った後、データ取得光学系410によって模型眼500にOCTスキャンを適用する。
<
After alignment is performed by alignment system 420 (420A, 420B), data acquisition
評価部440は、アライメント後に取得された模型眼500のデータに基づいて評価情報を生成する。例えば、評価部440は、データ取得光学系410により取得されるデータの品質を示すデータ品質評価情報を生成するように構成されてよい。また、評価部440は、アライメント系により行われるアライメントの品質を示すアライメント品質評価情報を生成するように構成されてよい。
The
データ品質評価情報を生成する場合、評価部440は、所定のデータ品質評価処理を実行する。例えば、前述したように、模型眼500の眼底部570が、人眼の眼底に応じた積層構造を備えている場合、眼科装置1は、データ取得光学系410によって眼底部570にOCTスキャンを適用する。画像形成部220は、データ取得光学系410により取得されたOCTデータから眼底部570の画像を形成する。評価部440は、例えば、形成された眼底部570の画像を所定の評価用画像と比較する。この評価用画像は、例えば、高いデータ品質の眼底部570の画像である。評価部440は、眼底部570の画像と評価用画像との比較の結果に基づいて、データ品質評価情報を生成することができる。
When generating data quality evaluation information, the
データ品質評価情報の生成の他の例として、評価部440は、データ取得光学系410により取得されたデータを解析することで、データ品質を表す所定の評価パラメータの値を求めることができる。この評価パラメータは、例えば、コントラストやSN比などの画像品質評価パラメータであってよい。また、評価パラメータは、例えば、測定確度パラメータや測定精度パラメータなどの測定品質評価パラメータであってよい。
As another example of generating data quality evaluation information, the
アライメント品質評価情報を生成する場合、評価部440は、所定のアライメント品質評価処理を実行する。例えば、評価部440は、アライメントに掛かった時間や処理内容や結果に基づいてアライメント品質を評価することができる。
When generating alignment quality evaluation information, the
幾つかの例示的な態様において、評価部440は、アライメントの開始から好適なアライメント状態(例えば、アライメント誤差が所定範囲内にある状態)に到達するまでの時間(アライメント時間)の長さに基づいてアライメント品質評価情報を生成することができる。例えば、評価部440は、アライメント時間を所定の閾値と比較し、アライメント時間が閾値を超える場合には「低品質」と評価し、アライメント時間が閾値以下の場合には「高品質」と評価することができる。或いは、評価部440は、所定の複数のレンジ(高品質レンジ、許容可能レンジ、不良レンジ)のうちのいずれのレンジにアライメント時間が属するか判定し、アライメント時間が属するレンジに基づいてアライメント品質評価情報を生成するように構成されてもよい。
In some exemplary aspects, the
幾つかの例示的な態様において、評価部440は、アライメント系420(420A、420B)が実行した処理の内容に基づきアライメント品質評価情報を生成することができる。例えば、評価部440は、アライメントの開始から好適なアライメント状態に到達するまでに実行された、アライメント動作の反復回数に基づいてアライメント品質評価情報を生成することができる。アライメント動作は、例えば、処理部430(430A、430B)が前眼部カメラ300からの画像を処理した回数である。例えば、評価部440は、アライメント動作の反復回数を所定の閾値と比較し、反復回数が閾値を超える場合には「低品質」と評価し、反復回数が閾値以下の場合には「高品質」と評価することができる。或いは、評価部440は、所定の複数のレンジ(高品質レンジ、許容可能レンジ、不良レンジ)のうちのいずれのレンジに反復回数が属するか判定し、反復回数が属するレンジに基づいてアライメント品質評価情報を生成するように構成されてもよい。
In some exemplary aspects, the
幾つかの例示的な態様において、評価部440は、アライメント系420(420A、420B)が実行した処理の結果に基づきアライメント品質評価情報を生成することができる。例えば、評価部440は、アライメント系420が所定時間にわたってアライメント動作を行って到達したアライメント状態(例えば、アライメント誤差)を求め、このアライメント誤差に基づいてアライメント品質評価情報を生成することができる。例えば、評価部440は、アライメント誤差を所定の閾値と比較し、アライメント誤差が閾値を超える場合には「低品質」と評価し、アライメント誤差が閾値以下の場合には「高品質」と評価することができる。或いは、評価部440は、所定の複数のレンジ(高品質レンジ、許容可能レンジ、不良レンジ)のうちのいずれのレンジにアライメント誤差が属するか判定し、アライメント誤差が属するレンジに基づいてアライメント品質評価情報を生成するように構成されてもよい。
In some exemplary aspects, the
〈動作〉
本態様に係る眼科装置1の動作の例を説明する。眼科装置1の動作の一例を図8に示す。
<motion>
An example of the operation of the
まず、模型眼500を設置する(S1)。本態様では、例えば、アタッチメント460を用いて2つの模型眼500L及び500Rを顎受け451に装着する。なお、模型眼500を顎受け451に直接的に装着することや、模型眼500を額当て452に直接的又は間接的に装着することや、模型眼500を眼科装置1の他の箇所に直接的又は間接的に装着することが可能であってもよい。
First, a
模型眼500が眼科装置1に装着された後、眼科装置1は、模型眼500に対するアライメントを開始する(S2)。このアライメントは、例えば、図3Bのアライメント系420、図7Aのアライメント系420A、及び、図7Bのアライメント系420Bのいずれかを用いて実行される。
After the
アライメントは、例えば、好適なアライメント状態が達成されるまで実行される。又は、アライメントは、所定時間にわたって実行される。或いは、アライメントは、アライメント動作の反復回数が所定回数に達するまで実行される。 Alignment is performed, for example, until a suitable alignment condition is achieved. Alternatively, alignment is performed over a predetermined period of time. Alternatively, alignment is performed until the number of repetitions of the alignment operation reaches a predetermined number.
アライメントが終了すると(S3)、眼科装置1は、模型眼500に対してOCTスキャンを適用する(S4)。このOCTスキャンは、例えば、眼底部570に対するOCTスキャン、又は、前眼部に相当する部分(角膜部510、虹彩部520、可変部530、開口540、及び水晶体部550のうちのいずれか1つ以上)に対するOCTスキャンであってよい。
When the alignment is completed (S3), the
眼科装置1は、評価部440によって評価情報を生成する(S5)。例えば、眼科装置1は、評価部440により、ステップS4のOCTスキャンで取得されたOCTデータに基づいてデータ品質評価情報を生成することができる。また、眼科装置1は、評価部440により、ステップS3のアライメントについて得られたデータに基づいてアライメント品質評価情報を生成することができる。
The
ステップS5で生成された評価情報は、例えば、表示部241に表示される。また、ステップS5で生成された評価情報は、眼科装置1から外部装置に送信される。また、ステップS5で生成された評価情報は、記録媒体に記録される。以上、本動作例は終了である。
The evaluation information generated in step S5 is displayed on the
〈効果〉
本態様に係る眼科装置1の幾つかの特徴、幾つかの作用、及び幾つかの効果について説明する。
<effect>
Some features, some actions, and some effects of the
眼科装置1は、データ取得光学系410と、アライメント系420(420A、420B)と、評価部440とを含む。データ取得光学系410は、眼のデータを取得するための光学系を含む。アライメント系420は、所定位置に設置された模型眼500に対してデータ取得光学系410のアライメントを行うように構成されている。評価部440は、アライメント系420(420A、420B)によるアライメントの後にデータ取得光学系410により取得された模型眼500のデータに基づいて評価情報を生成するように構成されている。
The
このように構成された本態様によれば、模型眼を用いた眼科装置の評価作業の容易化を図ることが可能である。すなわち、模型眼を用いた評価を適切に行うためには、評価対象の眼科装置の光学系に対して模型眼を正確に配置する必要があるが、本態様の眼科装置によれば、模型眼の位置の調整を手作業で行うといった煩雑な作業が必要なくなる。 According to this aspect configured in this way, it is possible to facilitate the evaluation work of an ophthalmological apparatus using a model eye. That is, in order to appropriately perform evaluation using a model eye, it is necessary to accurately place the model eye with respect to the optical system of the ophthalmological device to be evaluated. This eliminates the need for complicated work such as manually adjusting the position of the
また、本態様によれば、好適なアライメント状態に模型眼が設置された状態で眼科装置の評価を行うことができる。よって、眼科装置の評価を適切に行うことが可能である。例えば、本態様によれば、眼科装置の評価における確度や精度や再現性の向上を図ることが可能である。 Further, according to this aspect, it is possible to evaluate the ophthalmological apparatus with the model eye installed in a suitable alignment state. Therefore, it is possible to appropriately evaluate the ophthalmological device. For example, according to this aspect, it is possible to improve accuracy, precision, and reproducibility in evaluating an ophthalmological device.
また、本態様によれば、眼科装置の撮影性能評価や測定性能評価だけでなく、アライメント性能評価も行うことが可能である。 Furthermore, according to this aspect, it is possible to evaluate not only the imaging performance and measurement performance of the ophthalmological apparatus, but also the alignment performance.
眼科装置1は、被検者の顎が載置される顎受け451と、顎受け451に装着可能なアタッチメント460とを更に含んでいてよい。更に、模型眼500は、アタッチメント460に装着される。
The
このように構成された本態様によれば、眼科装置による撮影や測定の実際の対象となる被検眼と同様の位置に模型眼500を配置することができるので、眼科装置のアライメント機能を模型眼500にそのまま好適に適用することが可能である。
According to this aspect configured in this manner, the
眼科装置1は、被検者の額があてがわれる額当て452と、額当て452に装着可能なアタッチメント(図示せず)とを更に含んでいてよい。更に、模型眼500は、このアタッチメントに装着される。
The
このように構成された本態様によれば、眼科装置による撮影や測定の実際の対象となる被検眼と同様の位置に模型眼500を配置することができるので、眼科装置のアライメント機能を模型眼500にそのまま好適に適用することが可能である。
According to this aspect configured in this manner, the
眼科装置1のアライメント系は、アライメント系420であってよい。アライメント系420は、移動機構150と、2つ(以上)の前眼部カメラ300と、処理部430とを含む。移動機構150は、データ取得光学系410を移動するように構成されている。2つ(以上)の前眼部カメラ300は、模型眼500を異なる2つ(以上)の方向から撮影するように構成されている。処理部430は、2つ(以上)の前眼部カメラ300により取得された模型眼500の2つ(以上)の画像に基づいて移動機構150を制御するように構成されている。
The alignment system of the
このように構成された本態様によれば、2つ(以上)の前眼部カメラ300を用いたアライメント手法を利用して模型眼500に対するデータ取得光学系410のアライメントを行うことが可能である。つまり、2つ(以上)の前眼部を用いたアライメントの機能を有する眼科装置に本態様を適用することが可能である。
According to this aspect configured in this way, it is possible to align the data acquisition
このように構成された本態様において、模型眼500は、角膜に相当する角膜部510と、虹彩に相当し、瞳孔に相当する開口540を形成する虹彩部520(及び可変部530)とを含んでいてよい。更に、開口540の入射瞳は、角膜部510から略3.06ミリメートル離れた位置に配置されていてよく、開口540の径は、2~10ミリメートルの範囲内の値に設定されていてよい。また、虹彩部520(及び可変部530)の赤外光反射率は、2.0~2.5パーセントの範囲内の値に設定されていてよい。加えて、2つ(以上)の前眼部カメラ300は、赤外波長に感度を有していてよい。更に、処理部430は、2つ(以上)の前眼部カメラ300により取得された2つ(以上)の画像のそれぞれにおける瞳孔領域を特定し、特定された2以上の瞳孔領域に基づいてデータ取得光学系410の3次元移動量を算出し、この3次元移動量に基づいて移動機構150を制御するように構成されていてよい。
In this aspect configured in this manner, the
このように構成された本態様によれば、人眼と同等のパラメータ値を有する模型眼を用いて、人眼に対するアライメントと同一態様のアライメント動作を実行することが可能である。 According to this aspect configured in this way, it is possible to perform an alignment operation in the same manner as alignment for the human eye using a model eye having parameter values equivalent to those of the human eye.
眼科装置1のアライメント系は、アライメント系420A又は420Bであってよい。アライメント系420A又は420Bは、移動機構150と、投射部421A又は421Bと、撮影部422A又は422Bと、処理部430A又は430Bとを含む。移動機構150は、データ取得光学系410を移動するように構成されている。投射部421A(421B)は、模型眼500に光束を投射するように構成されている。撮影部422A(422B)は、模型眼500を撮影するように構成されている。処理部430A(430B)は、撮影部422A(又は422B)により取得された画像に基づいて移動機構150を制御するように構成されている。
The alignment system of the
このように構成された本態様によれば、対象物(被検眼、模型眼)に光束を投射するタイプのアライメント手法を利用して模型眼500に対するデータ取得光学系410のアライメントを行うことが可能である。つまり、対象物(被検眼、模型眼)に光束を投射するタイプのアライメントの機能を有する眼科装置に本態様を適用することが可能である。
According to this aspect configured in this way, it is possible to align the data acquisition
眼科装置1のアライメント系は、アライメント系420Aであってよい。この場合、模型眼500は、角膜に相当する角膜部510を含む。角膜部510の曲率半径は、略7.7ミリメートルに設計されている。アライメント系420Aは、移動機構150と、投射部421Aと、撮影部422Aと、処理部430Aとを含む。移動機構150は、データ取得光学系410を移動するように構成されている。投射部421Aは、模型眼500に正面から光束を投射するように構成されている。撮影部422Aは、模型眼500を撮影するように構成されている。典型的には、撮影部422Aは模型眼500を正面から撮影するように構成されており、投射部421Aと撮影部422Aとは同軸に配置されている。処理部430Aは、撮影部422Aにより取得された画像における上記光束の角膜部510による反射像を特定し、特定された反射像に基づいて移動機構150を制御するように構成されている。
The alignment system of the
このように構成された本態様によれば、角膜反射像(プルキンエ像)を利用したアライメント手法を用いて模型眼500に対するデータ取得光学系410のアライメントを行うことが可能である。つまり、角膜反射像(プルキンエ像)を利用したアライメントの機能を有する眼科装置に本態様を適用することが可能である。
According to this aspect configured in this way, it is possible to align the data acquisition
眼科装置1のアライメント系は、アライメント系420Bであってよい。この場合、模型眼500は、角膜に相当する角膜部510を含む。角膜部510の曲率半径は、略7.7ミリメートルに設計されている。アライメント系420Bは、移動機構150と、投射部421Bと、撮影部422Bと、処理部430Bとを含む。移動機構150は、データ取得光学系410を移動するように構成されている。投射部421Bは、模型眼500に斜方から光束を投射するように構成されている。撮影部422Bは、データ取得光学系410の光軸に関して上記光束の投射方向に略対称な方向に配置されたラインセンサー又はエリアセンサーを含む。典型的には、投射部421Bとラインセンサー(エリアセンサー)とは、データ取得光学系410の光軸に関して略対称な位置に配置されている。処理部430Bは、角膜部510による上記光束の反射光を検出したラインセンサー(エリアセンサー)の受光素子の位置に基づいて移動機構150を制御するように構成されている。
The alignment system of the
このように構成された本態様によれば、光テコを利用したアライメント手法を用いて模型眼500に対するデータ取得光学系410のアライメントを行うことが可能である。つまり、光テコを利用したアライメントの機能を有する眼科装置に本態様を適用することが可能である。
According to this aspect configured in this way, it is possible to align the data acquisition
なお、2つ(以上)の前眼部カメラ300を用いたアライメント手法を適用することで、模型眼500に対するデータ取得光学系410の3次元アライメントが可能である。また、角膜反射像(プルキンエ像)を利用したアライメント手法と光テコを利用したアライメント手法とを組み合わせることで、模型眼500に対するデータ取得光学系410の3次元アライメントが可能である。
Note that by applying an alignment method using two (or more)
模型眼500は、左眼に相当する左模型眼500Lと、右眼に相当する右模型眼500Rとを含んでいてよい。更に、眼科装置1は、左模型眼500Lを第1位置に設置し、且つ、右模型眼を第2位置に設置するアタッチメント460を更に含んでいてよい(図6を参照)。
The
このように構成された本態様によれば、左模型眼500L及び右被検眼500Rの双方に対して、データ取得光学系410のアライメントを適用することが可能である。更に、左模型眼500Lに基づく評価と右被検眼500Rに基づく評価とを個別に又は総合的に行うことが可能である。また、データ取得光学系410の対象物を左眼と右眼とに切り替える機能の性能評価も行うことが可能である。
According to this aspect configured in this way, it is possible to apply the alignment of the data acquisition
評価部440は、データ取得光学系410により取得されるデータの品質を示すデータ品質評価情報を生成するように構成されてよい。また、評価部440は、アライメント系420(420A、420B)により行われるアライメントの品質を示すアライメント品質評価情報を生成するように構成されてよい。評価情報の種別はこれらに限定されない。
The
本態様の眼科装置1によって次のような例示的な評価方法を提供することが可能である。この評価方法は、眼のデータを取得するための光学系を含む眼科装置の性能を評価する方法である。
The
幾つかの例示的な態様に係る眼科装置評価方法は、まず、所定位置に模型眼を設置する。次に、所定位置に設置された模型眼に対して光学系のアライメントを行う。更に、このアライメントの後に光学系により取得された模型眼のデータに基づいて評価情報を生成する。 In an ophthalmological device evaluation method according to some exemplary embodiments, first, a model eye is installed at a predetermined position. Next, the optical system is aligned with respect to the model eye installed at a predetermined position. Furthermore, evaluation information is generated based on the data of the model eye acquired by the optical system after this alignment.
幾つかの例示的な態様において、所定位置に模型眼を設置する工程は、眼科装置の顎受けに第1アタッチメントを装着する工程と、第1アタッチメントに模型眼を装着する工程とを含んでいてよい。 In some exemplary embodiments, placing the eye model in place includes attaching a first attachment to a chinrest of an ophthalmological device and attaching the eye model to the first attachment. good.
幾つかの例示的な態様において、所定位置に模型眼を設置する工程は、眼科装置の額当てに第2アタッチメントを装着する工程と、第2アタッチメントに模型眼を装着する工程とを含んでいてよい。 In some exemplary embodiments, placing the eye model in place includes attaching a second attachment to the forehead rest of the ophthalmological device and attaching the eye model to the second attachment. good.
幾つかの例示的な態様において、アライメントを行う工程は、模型眼を異なる2以上の方向から撮影する工程と、2以上の方向からの撮影により取得された模型眼の2以上の画像に基づいて光学系を移動する工程とを含んでいてよい。 In some exemplary embodiments, the step of performing the alignment includes the step of photographing the model eye from two or more different directions, and the step of performing the alignment based on the two or more images of the model eye obtained by photographing from the two or more directions. The method may include a step of moving the optical system.
幾つかの例示的な態様において、模型眼は、角膜に相当する角膜部と、虹彩に相当し、瞳孔に相当する開口を形成する虹彩部とを含んでいてよい。開口の入射瞳は、角膜部から略3.06ミリメートル離れた位置に配置されていてよい。開口の径は、2~10ミリメートルの範囲内の値に設定されていてよい。虹彩部の赤外光反射率は、2.0~2.5パーセントの範囲内の値に設定されていてよい。更に、模型眼を異なる2以上の方向から撮影する工程は、赤外波長に感度を有する撮影を含んでいてよい。2以上の画像に基づいて光学系を移動する工程は、2以上の画像のそれぞれにおける瞳孔領域を特定する工程と、特定された2以上の瞳孔領域に基づいて光学系の3次元移動量を算出する工程と、この3次元移動量に基づいて光学系を移動する工程とを含んでいてよい。 In some exemplary embodiments, the model eye may include a corneal portion that corresponds to the cornea, and an iris portion that corresponds to the iris and forms an aperture that corresponds to the pupil. The entrance pupil of the aperture may be located approximately 3.06 millimeters from the cornea. The diameter of the aperture may be set to a value within the range of 2 to 10 millimeters. The infrared light reflectance of the iris may be set to a value within the range of 2.0 to 2.5 percent. Further, the step of photographing the model eye from two or more different directions may include photographing sensitive to infrared wavelengths. The step of moving the optical system based on two or more images includes the step of specifying the pupil area in each of the two or more images, and calculating the three-dimensional movement amount of the optical system based on the specified two or more pupil areas. and a step of moving the optical system based on this three-dimensional movement amount.
幾つかの例示的な態様において、アライメントを行う工程は、模型眼に光束を投射する工程と、模型眼を撮影する工程と、模型眼の撮影により取得された画像に基づいて光学系を移動する工程とを含んでいてよい。 In some exemplary embodiments, performing the alignment includes projecting a light beam onto the model eye, photographing the model eye, and moving the optical system based on the image obtained by photographing the model eye. It may include a process.
幾つかの例示的な態様において、模型眼は、角膜に相当する角膜部を含んでいてよい。角膜部の曲率半径は、略7.7ミリメートルであってよい。更に、光束を投射する工程は、模型眼に正面から光束を投射する工程を含んでいてよい。光学系を移動する工程は、模型眼の撮影により取得された画像における上記光束の角膜部による反射像を特定する工程と、特定された反射像に基づいて光学系を移動する工程とを含んでいてよい。 In some exemplary embodiments, the model eye may include a corneal portion that corresponds to the cornea. The radius of curvature of the corneal portion may be approximately 7.7 millimeters. Furthermore, the step of projecting the light beam may include the step of projecting the light beam onto the model eye from the front. The step of moving the optical system includes a step of identifying a reflected image of the light beam by the cornea in an image obtained by photographing the model eye, and a step of moving the optical system based on the identified reflected image. It's okay to stay.
幾つかの例示的な態様において、模型眼は、角膜に相当する角膜部を含んでいてよい。角膜部の曲率半径は、略7.7ミリメートルであってよい。更に、光束を投射する工程は、模型眼に斜方から光束を投射する工程を含んでいてよい。模型眼を撮影する工程は、光学系の光軸に関して上記光束の投射方向に略対称な方向に配置されたラインセンサー又はエリアセンサーによって角膜部による上記光束の反射光を検出する工程を含んでいてよい。光学系を移動する工程は、反射光を検出したラインセンサー又はエリアセンサーの受光素子の位置に基づいて光学系を移動する工程を含んでいてよい。 In some exemplary embodiments, the model eye may include a corneal portion that corresponds to the cornea. The radius of curvature of the corneal portion may be approximately 7.7 millimeters. Furthermore, the step of projecting the light beam may include the step of projecting the light beam onto the model eye obliquely. The step of photographing the model eye includes the step of detecting the light reflected from the cornea by a line sensor or an area sensor arranged in a direction substantially symmetrical to the projection direction of the light beam with respect to the optical axis of the optical system. good. The step of moving the optical system may include the step of moving the optical system based on the position of the light receiving element of the line sensor or area sensor that detected the reflected light.
幾つかの例示的な態様において、模型眼は、左眼に相当する左模型眼と、右眼に相当する右模型眼とを含んでいてよい。更に、所定位置に模型眼を設置する工程は、眼科装置に第3アタッチメントを装着する工程と、左模型眼を第3アタッチメントに装着して左模型眼を第1位置に設置する工程と、右模型眼を第3アタッチメントに装着して右模型眼を第2位置に設置する工程とを含んでいてよい。 In some exemplary embodiments, the model eye may include a left model eye corresponding to the left eye and a right model eye corresponding to the right eye. Further, the step of installing the model eye in a predetermined position includes a step of attaching a third attachment to the ophthalmological apparatus, a step of attaching the left model eye to the third attachment and installing the left model eye in the first position, and a step of attaching the left model eye to the third attachment. The method may include a step of attaching the model eye to a third attachment and setting the right model eye at the second position.
幾つかの例示的な態様において、評価情報を生成する工程は、光学系により取得されるデータの品質を示す第1評価情報を生成する工程を含んでいてよい。 In some example aspects, generating evaluation information may include generating first evaluation information indicative of the quality of data acquired by the optical system.
幾つかの例示的な態様において、評価情報を生成する工程は、アライメント系により行われるアライメントの品質を示す第2評価情報を生成する工程を含んでいてよい。 In some example aspects, generating evaluation information may include generating second evaluation information indicative of the quality of alignment performed by the alignment system.
なお、前述した例示的な態様において説明した任意の事項(構成、要素、処理、動作、作用、機能など)や任意の公知事項を、上記した評価方法のいずれかに組み合わせることが可能である。 Note that it is possible to combine any matter (configuration, element, process, operation, action, function, etc.) or any publicly known matter explained in the above-mentioned exemplary embodiments with any of the above-described evaluation methods.
このような評価方法を眼科装置(コンピュータを含む)に実行させるプログラムを構成することが可能である。このプログラムは、例えば、例示的な態様の眼科装置1を動作させるための前述のプログラムのいずれかを含んでいてよい。
It is possible to configure a program that causes an ophthalmological apparatus (including a computer) to execute such an evaluation method. This program may include, for example, any of the aforementioned programs for operating the
また、このようなプログラムを記録したコンピュータ可読な非一時的記録媒体を作成することが可能である。この非一時的記録媒体は任意の形態であってよく、その例として、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリなどがある。 Furthermore, it is possible to create a computer-readable non-temporary recording medium that records such a program. This non-transitory recording medium may be in any form, examples of which include magnetic disks, optical disks, magneto-optical disks, and semiconductor memory.
以上に説明した態様は、この発明の実施の例示に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を施すことが可能である。 The embodiments described above are merely illustrative of the implementation of this invention. Those who wish to carry out this invention can make any modifications (omissions, substitutions, additions, etc.) within the scope of the gist of this invention.
1 眼科装置
150 移動機構
300、300A、300B 前眼部カメラ
410 データ取得光学系
420、420A、420B アライメント系
421A、421B 投射部
422A、422B 撮影部
430、430A、430B 処理部
440 評価部
450 顔保持部
451 顎受け
452 額当て
460 アタッチメント
500、500L、500R 模型眼
510 角膜部
520 虹彩部
570 眼底部
1
Claims (22)
所定位置に設置された模型眼に対して前記光学系のアライメントを行うアライメント系と、
前記アライメントの後に前記光学系により取得された前記模型眼のデータに基づいて評価情報を生成する評価部と
を含み、
前記模型眼は、
左眼に相当する左模型眼と、
右眼に相当する右模型眼と
を含み、
前記左模型眼を第1位置に設置し、且つ、前記右模型眼を第2位置に設置する第3アタッチメントを更に含む、
眼科装置。 an optical system for acquiring eye data;
an alignment system that aligns the optical system with respect to a model eye installed at a predetermined position;
an evaluation unit that generates evaluation information based on data of the model eye acquired by the optical system after the alignment ;
The model eye is
A left model eye corresponding to the left eye,
The right model eye corresponds to the right eye.
including;
further comprising a third attachment for installing the left model eye in a first position and installing the right model eye in a second position;
Ophthalmology equipment.
所定位置に設置された模型眼に対して前記光学系のアライメントを行うアライメント系と、
前記アライメントの後に前記光学系により取得された前記模型眼のデータに基づいて評価情報を生成する評価部と
を含み、
前記評価部は、前記アライメント系により行われるアライメントの品質を示す第2評価情報を生成する、
眼科装置。 an optical system for acquiring eye data;
an alignment system that aligns the optical system with respect to a model eye installed at a predetermined position;
an evaluation unit that generates evaluation information based on data of the model eye acquired by the optical system after the alignment ;
The evaluation unit generates second evaluation information indicating the quality of alignment performed by the alignment system.
Ophthalmology equipment.
前記顎受けに装着可能な第1アタッチメントと
を更に含み、
前記第1アタッチメントに前記模型眼が装着される、
請求項1又は2の眼科装置。 a chin rest on which the subject's chin is placed;
and a first attachment attachable to the chin rest,
the model eye is attached to the first attachment;
The ophthalmological device according to claim 1 or 2 .
前記額当てに装着可能な第2アタッチメントと
を更に含み、
前記第2アタッチメントに前記模型眼が装着される、
請求項1又は2の眼科装置。 A forehead pad to which the forehead of the subject is applied;
and a second attachment attachable to the forehead rest,
the model eye is attached to the second attachment;
The ophthalmological device according to claim 1 or 2 .
前記光学系を移動する移動機構と、
前記模型眼を異なる2以上の方向から撮影する第1撮影部と、
前記第1撮影部により取得された前記模型眼の2以上の画像に基づいて前記移動機構を制御する第1処理部と
を含む、
請求項1~4のいずれかの眼科装置。 The alignment system is
a moving mechanism that moves the optical system;
a first imaging unit that photographs the model eye from two or more different directions;
a first processing unit that controls the movement mechanism based on two or more images of the model eye acquired by the first imaging unit;
The ophthalmological device according to any one of claims 1 to 4 .
角膜に相当する角膜部と、
虹彩に相当し、瞳孔に相当する開口を形成する虹彩部と
を含み、
前記開口の入射瞳は、前記角膜部から略3.06ミリメートル離れた位置に配置され、
前記開口の径は、2~10ミリメートルの範囲内の値に設定され、
前記虹彩部の赤外光反射率は、2.0~2.5パーセントの範囲内の値に設定され、
前記第1撮影部は、赤外波長に感度を有し、
前記第1処理部は、前記2以上の画像のそれぞれにおける瞳孔領域を特定し、特定された2以上の瞳孔領域に基づいて前記光学系の3次元移動量を算出し、前記3次元移動量に基づいて前記移動機構を制御する、
請求項5の眼科装置。 The model eye is
A corneal part corresponding to the cornea,
an iris portion corresponding to an iris and forming an aperture corresponding to a pupil;
an entrance pupil of the aperture is located approximately 3.06 mm away from the cornea;
The diameter of the opening is set to a value within a range of 2 to 10 mm,
The infrared light reflectance of the iris is set to a value within a range of 2.0 to 2.5%,
The first imaging unit has sensitivity to infrared wavelengths,
The first processing unit specifies a pupil area in each of the two or more images, calculates a three-dimensional movement amount of the optical system based on the two or more specified pupil areas, and calculates a three-dimensional movement amount of the optical system based on the three-dimensional movement amount. controlling the moving mechanism based on
The ophthalmological device according to claim 5 .
前記光学系を移動する移動機構と、
前記模型眼に光束を投射する投射部と、
前記模型眼を撮影する第2撮影部と、
前記第2撮影部により取得された画像に基づいて前記移動機構を制御する第2処理部と
を含む、
請求項1~4のいずれかの眼科装置。 The alignment system is
a moving mechanism that moves the optical system;
a projection unit that projects a light beam onto the model eye;
a second imaging unit that photographs the model eye;
a second processing unit that controls the movement mechanism based on the image acquired by the second imaging unit;
The ophthalmological device according to any one of claims 1 to 4 .
前記角膜部の曲率半径は、略7.7ミリメートルであり、
前記投射部は、前記模型眼に正面から光束を投射する第1投射部を含み、
前記第2処理部は、前記第2撮影部により取得された画像における前記光束の前記角膜部による反射像を特定し、特定された前記反射像に基づいて前記移動機構を制御する、
請求項7の眼科装置。 The model eye includes a corneal part corresponding to the cornea,
The radius of curvature of the corneal portion is approximately 7.7 mm,
The projection unit includes a first projection unit that projects a light beam onto the model eye from the front,
The second processing unit specifies a reflected image of the light flux by the corneal portion in the image acquired by the second imaging unit, and controls the moving mechanism based on the specified reflected image.
The ophthalmological device according to claim 7 .
前記角膜部の曲率半径は、略7.7ミリメートルであり、
前記投射部は、前記模型眼に斜方から光束を投射する第2投射部を含み、
前記第2撮影部は、前記光学系の光軸に関して前記光束の投射方向に略対称な方向に配置されたラインセンサー又はエリアセンサーを含み、
前記第2処理部は、前記角膜部による前記光束の反射光を検出した前記ラインセンサー又は前記エリアセンサーの受光素子の位置に基づいて前記移動機構を制御する、
請求項7又は8の眼科装置。 The model eye includes a corneal part corresponding to the cornea,
The radius of curvature of the corneal portion is approximately 7.7 mm,
The projection unit includes a second projection unit that projects a light beam obliquely onto the model eye,
The second imaging unit includes a line sensor or an area sensor arranged in a direction substantially symmetrical to the projection direction of the luminous flux with respect to the optical axis of the optical system,
The second processing unit controls the moving mechanism based on the position of a light receiving element of the line sensor or the area sensor that detects the reflected light of the luminous flux by the cornea part.
The ophthalmological device according to claim 7 or 8 .
請求項1~9のいずれかの眼科装置。 The evaluation unit generates first evaluation information indicating the quality of data acquired by the optical system.
The ophthalmological device according to any one of claims 1 to 9.
所定位置に模型眼を設置し、
前記所定位置に設置された模型眼に対して前記光学系のアライメントを行い、
前記アライメントの後に前記光学系により取得された前記模型眼のデータに基づいて評価情報を生成し、
前記模型眼は、左眼に相当する左模型眼と、右眼に相当する右模型眼とを含み、
前記所定位置に前記模型眼を設置する工程は、
前記眼科装置に第3アタッチメントを装着する工程と、
前記左模型眼を前記第3アタッチメントに装着して前記左模型眼を第1位置に設置する工程と、
前記右模型眼を前記第3アタッチメントに装着して前記右模型眼を第2位置に設置する工程と
を含む、
方法。 A method for evaluating the performance of an ophthalmological device including an optical system for acquiring ocular data, the method comprising:
Place the model eye in the specified position,
aligning the optical system with respect to the model eye installed at the predetermined position;
generating evaluation information based on data of the model eye acquired by the optical system after the alignment;
The model eye includes a left model eye corresponding to the left eye and a right model eye corresponding to the right eye,
The step of installing the model eye at the predetermined position includes:
attaching a third attachment to the ophthalmological device;
attaching the left model eye to the third attachment and placing the left model eye in a first position;
attaching the right model eye to the third attachment and placing the right model eye in a second position;
including,
Method.
所定位置に模型眼を設置し、
前記所定位置に設置された模型眼に対して前記光学系のアライメントを行い、
前記アライメントの後に前記光学系により取得された前記模型眼のデータに基づいて評価情報を生成し、
前記評価情報を生成する工程は、前記アライメントの品質を示す第2評価情報を生成する工程を含む、
方法。 A method for evaluating the performance of an ophthalmological device including an optical system for acquiring ocular data, the method comprising:
Place the model eye in the specified position,
aligning the optical system with respect to the model eye installed at the predetermined position;
generating evaluation information based on data of the model eye acquired by the optical system after the alignment;
The step of generating the evaluation information includes the step of generating second evaluation information indicating the quality of the alignment.
Method.
前記眼科装置の顎受けに第1アタッチメントを装着する工程と、
前記第1アタッチメントに前記模型眼を装着する工程と
を含む、
請求項11又は12の方法。 The step of installing the model eye at the predetermined position includes:
attaching a first attachment to the chin rest of the ophthalmological device;
and a step of attaching the model eye to the first attachment.
The method according to claim 11 or 12.
前記眼科装置の額当てに第2アタッチメントを装着する工程と、
前記第2アタッチメントに前記模型眼を装着する工程と
を含む、
請求項11又は12の方法。 The step of installing the model eye at the predetermined position includes:
attaching a second attachment to the forehead rest of the ophthalmological device;
and a step of attaching the model eye to the second attachment.
The method according to claim 11 or 12.
前記模型眼を異なる2以上の方向から撮影する工程と、
前記2以上の方向からの撮影により取得された前記模型眼の2以上の画像に基づいて前記光学系を移動する工程と
を含む、
請求項11~14のいずれかの方法。 The step of performing the alignment includes:
photographing the model eye from two or more different directions;
moving the optical system based on two or more images of the model eye obtained by photographing from the two or more directions;
The method according to any one of claims 11 to 14.
角膜に相当する角膜部と、
虹彩に相当し、瞳孔に相当する開口を形成する虹彩部と
を含み、
前記開口の入射瞳は、前記角膜部から略3.06ミリメートル離れた位置に配置され、
前記開口の径は、2~10ミリメートルの範囲内の値に設定され、
前記虹彩部の赤外光反射率は、2.0~2.5パーセントの範囲内の値に設定され、
前記模型眼を異なる2以上の方向から撮影する工程は、赤外波長に感度を有する撮影を行い、
前記2以上の画像に基づいて前記光学系を移動する工程は、
前記2以上の画像のそれぞれにおける瞳孔領域を特定する工程と、
特定された2以上の瞳孔領域に基づいて前記光学系の3次元移動量を算出する工程と、
前記3次元移動量に基づいて前記光学系を移動する工程と
を含む、
請求項15の方法。 The model eye is
A corneal part corresponding to the cornea,
an iris portion corresponding to an iris and forming an aperture corresponding to a pupil;
an entrance pupil of the aperture is located approximately 3.06 mm away from the cornea;
The diameter of the opening is set to a value within a range of 2 to 10 mm,
The infrared light reflectance of the iris is set to a value within a range of 2.0 to 2.5%,
The step of photographing the model eye from two or more different directions includes photographing with sensitivity to infrared wavelengths;
The step of moving the optical system based on the two or more images,
identifying a pupil area in each of the two or more images;
calculating a three-dimensional movement amount of the optical system based on the two or more identified pupil regions;
moving the optical system based on the three-dimensional movement amount;
16. The method of claim 15.
前記模型眼に光束を投射する工程と、
前記模型眼を撮影する工程と、
前記模型眼の撮影により取得された画像に基づいて前記光学系を移動する工程と
を含む、
請求項11~14のいずれかの方法。 The step of performing the alignment includes:
Projecting a light beam onto the model eye;
a step of photographing the model eye;
moving the optical system based on the image obtained by photographing the model eye;
The method according to any one of claims 11 to 14.
前記角膜部の曲率半径は、略7.7ミリメートルであり、
前記光束を投射する工程は、前記模型眼に正面から光束を投射する工程を含み、
前記光学系を移動する工程は、
前記模型眼の撮影により取得された前記画像における前記光束の前記角膜部による反射像を特定する工程と、
特定された前記反射像に基づいて前記光学系を移動する工程と
を含む、
請求項17の方法。 The model eye includes a corneal part corresponding to the cornea,
The radius of curvature of the corneal portion is approximately 7.7 mm,
The step of projecting the light beam includes the step of projecting the light beam onto the model eye from the front,
The step of moving the optical system includes:
identifying a reflected image of the light beam by the cornea in the image obtained by photographing the model eye;
moving the optical system based on the identified reflected image;
18. The method of claim 17.
前記角膜部の曲率半径は、略7.7ミリメートルであり、
前記光束を投射する工程は、前記模型眼に斜方から光束を投射する工程を含み、
前記模型眼を撮影する工程は、前記光学系の光軸に関して前記光束の投射方向に略対称な方向に配置されたラインセンサー又はエリアセンサーによって前記角膜部による前記光束の反射光を検出する工程を含み、
前記光学系を移動する工程は、前記反射光を検出した前記ラインセンサー又は前記エリアセンサーの受光素子の位置に基づいて前記光学系を移動する工程を含む、
請求項17又は18の方法。 The model eye includes a corneal part corresponding to the cornea,
The radius of curvature of the corneal portion is approximately 7.7 mm,
The step of projecting the light beam includes the step of projecting the light beam obliquely onto the model eye,
The step of photographing the model eye includes the step of detecting the reflected light of the light beam by the cornea portion using a line sensor or an area sensor arranged in a direction substantially symmetrical to the projection direction of the light beam with respect to the optical axis of the optical system. including,
The step of moving the optical system includes the step of moving the optical system based on the position of the light receiving element of the line sensor or the area sensor that detected the reflected light.
The method according to claim 17 or 18.
請求項11~19のいずれかの方法。 The step of generating the evaluation information includes the step of generating first evaluation information indicating the quality of data acquired by the optical system.
The method according to any one of claims 11 to 19 .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019238173A JP7412170B2 (en) | 2019-12-27 | 2019-12-27 | Ophthalmological equipment, its evaluation method, program, and recording medium |
JP2023154943A JP7638344B2 (en) | 2019-12-27 | 2023-09-21 | Ophthalmic Equipment |
JP2023154941A JP2023165810A (en) | 2019-12-27 | 2023-09-21 | Ophthalmologic apparatus |
JP2023154942A JP7638343B2 (en) | 2019-12-27 | 2023-09-21 | Ophthalmic Equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019238173A JP7412170B2 (en) | 2019-12-27 | 2019-12-27 | Ophthalmological equipment, its evaluation method, program, and recording medium |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023154943A Division JP7638344B2 (en) | 2019-12-27 | 2023-09-21 | Ophthalmic Equipment |
JP2023154941A Division JP2023165810A (en) | 2019-12-27 | 2023-09-21 | Ophthalmologic apparatus |
JP2023154942A Division JP7638343B2 (en) | 2019-12-27 | 2023-09-21 | Ophthalmic Equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021104313A JP2021104313A (en) | 2021-07-26 |
JP7412170B2 true JP7412170B2 (en) | 2024-01-12 |
Family
ID=76919563
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019238173A Active JP7412170B2 (en) | 2019-12-27 | 2019-12-27 | Ophthalmological equipment, its evaluation method, program, and recording medium |
JP2023154942A Active JP7638343B2 (en) | 2019-12-27 | 2023-09-21 | Ophthalmic Equipment |
JP2023154941A Pending JP2023165810A (en) | 2019-12-27 | 2023-09-21 | Ophthalmologic apparatus |
JP2023154943A Active JP7638344B2 (en) | 2019-12-27 | 2023-09-21 | Ophthalmic Equipment |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023154942A Active JP7638343B2 (en) | 2019-12-27 | 2023-09-21 | Ophthalmic Equipment |
JP2023154941A Pending JP2023165810A (en) | 2019-12-27 | 2023-09-21 | Ophthalmologic apparatus |
JP2023154943A Active JP7638344B2 (en) | 2019-12-27 | 2023-09-21 | Ophthalmic Equipment |
Country Status (1)
Country | Link |
---|---|
JP (4) | JP7412170B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000237142A (en) | 1999-02-19 | 2000-09-05 | Canon Inc | Model eye for optometric apparatus |
JP2002065612A (en) | 2000-09-01 | 2002-03-05 | Topcon Corp | Non-contact tonometer and model eye device used for detecting dirt |
JP2005006869A (en) | 2003-06-19 | 2005-01-13 | Canon Inc | Ophthalmologic system and simulated eye |
JP2018538566A (en) | 2015-11-05 | 2018-12-27 | ノバルティス アーゲー | Eyeball model |
JP2019134975A (en) | 2019-05-17 | 2019-08-15 | 株式会社トプコン | Ophthalmologic apparatus |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100589751C (en) | 2007-10-31 | 2010-02-17 | 中国计量科学研究院 | Cylinder Standards for Testing Objective Refractors |
AU2009260126A1 (en) | 2008-06-17 | 2009-12-23 | Brien Holden Vision Institute | Physical model eye systems and methods |
US8480230B2 (en) | 2010-01-25 | 2013-07-09 | Rowe Technical Design, Inc. | Phantom for rendering biological tissue regions |
JP5808119B2 (en) | 2010-04-13 | 2015-11-10 | キヤノン株式会社 | Model eye, method for adjusting optical tomographic imaging apparatus, and evaluation method |
JP6009935B2 (en) | 2012-12-26 | 2016-10-19 | 株式会社トプコン | Ophthalmic equipment |
JP6354985B2 (en) | 2014-08-01 | 2018-07-11 | 株式会社ニデック | Handheld ophthalmic device mounting table |
CN207721895U (en) | 2017-05-12 | 2018-08-14 | 上海市计量测试技术研究院 | Non-contact tonometer calibration phantom bead device |
JP2019068930A (en) | 2017-10-06 | 2019-05-09 | 株式会社ニコン | Simulated eye, simulated eye device and method for manufacturing simulated eye |
JP2019076181A (en) | 2017-10-20 | 2019-05-23 | 株式会社ニコン | Simulated eye, and manufacturing method of simulated eye |
US20190200854A1 (en) | 2018-01-03 | 2019-07-04 | Leica Microsystems Inc. | Model Eye Design for Calibrating Imaging Systems and Related Methods, Systems and Devices |
JP7133995B2 (en) | 2018-06-14 | 2022-09-09 | 株式会社トプコン | Ophthalmic device and its control method |
-
2019
- 2019-12-27 JP JP2019238173A patent/JP7412170B2/en active Active
-
2023
- 2023-09-21 JP JP2023154942A patent/JP7638343B2/en active Active
- 2023-09-21 JP JP2023154941A patent/JP2023165810A/en active Pending
- 2023-09-21 JP JP2023154943A patent/JP7638344B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000237142A (en) | 1999-02-19 | 2000-09-05 | Canon Inc | Model eye for optometric apparatus |
JP2002065612A (en) | 2000-09-01 | 2002-03-05 | Topcon Corp | Non-contact tonometer and model eye device used for detecting dirt |
JP2005006869A (en) | 2003-06-19 | 2005-01-13 | Canon Inc | Ophthalmologic system and simulated eye |
JP2018538566A (en) | 2015-11-05 | 2018-12-27 | ノバルティス アーゲー | Eyeball model |
JP2019134975A (en) | 2019-05-17 | 2019-08-15 | 株式会社トプコン | Ophthalmologic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP7638344B2 (en) | 2025-03-03 |
JP2023165812A (en) | 2023-11-17 |
JP2023165810A (en) | 2023-11-17 |
JP2023165811A (en) | 2023-11-17 |
JP2021104313A (en) | 2021-07-26 |
JP7638343B2 (en) | 2025-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7609932B2 (en) | Ophthalmic apparatus, control method thereof, program, and recording medium | |
JP6009935B2 (en) | Ophthalmic equipment | |
JP7304780B2 (en) | ophthalmic equipment | |
JP6899632B2 (en) | Ophthalmologic imaging equipment | |
JP2022040372A (en) | Ophthalmic equipment | |
JP2022027879A (en) | Ophthalmologic imaging equipment, its control method, programs, and recording media | |
JP2023518549A (en) | Multimodal retinal imaging platform | |
JP2022075772A (en) | Ophthalmologic apparatus | |
JP7181135B2 (en) | ophthalmic equipment | |
JP7420476B2 (en) | Ophthalmological apparatus, control method thereof, ophthalmological information processing apparatus, control method thereof, program, and recording medium | |
JP7349807B2 (en) | ophthalmology equipment | |
JP7412170B2 (en) | Ophthalmological equipment, its evaluation method, program, and recording medium | |
JP7236927B2 (en) | Ophthalmic device, control method thereof, ophthalmic information processing device, control method thereof, program, and recording medium | |
JP7050488B2 (en) | Ophthalmologic imaging equipment, its control method, programs, and recording media | |
JP7499590B2 (en) | Laminate, model eye, and ophthalmic device | |
JP7288110B2 (en) | ophthalmic equipment | |
JP2025039681A (en) | Ophthalmic Equipment | |
JP7201855B2 (en) | Ophthalmic device and ophthalmic information processing program | |
JP7292072B2 (en) | ophthalmic equipment | |
JP7339011B2 (en) | Ophthalmic device, ophthalmic information processing device, program, and recording medium | |
JP6959158B2 (en) | Ophthalmic equipment | |
JP7116572B2 (en) | Ophthalmic device and ophthalmic information processing program | |
JP2021153959A (en) | Laminate, manufacturing method of the same, model eye, and ophthalmologic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7412170 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |