[go: up one dir, main page]

JP7393238B2 - Method for producing inorganic oxide particles - Google Patents

Method for producing inorganic oxide particles Download PDF

Info

Publication number
JP7393238B2
JP7393238B2 JP2020022530A JP2020022530A JP7393238B2 JP 7393238 B2 JP7393238 B2 JP 7393238B2 JP 2020022530 A JP2020022530 A JP 2020022530A JP 2020022530 A JP2020022530 A JP 2020022530A JP 7393238 B2 JP7393238 B2 JP 7393238B2
Authority
JP
Japan
Prior art keywords
raw material
oxide particles
inorganic oxide
stirring
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020022530A
Other languages
Japanese (ja)
Other versions
JP2021127266A (en
Inventor
秀樹 徳田
諒一 末松
広樹 山崎
雄一 館山
紀彦 三崎
賢太 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2020022530A priority Critical patent/JP7393238B2/en
Publication of JP2021127266A publication Critical patent/JP2021127266A/en
Application granted granted Critical
Publication of JP7393238B2 publication Critical patent/JP7393238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、無機酸化物粒子の製造方法に関する。 The present invention relates to a method for producing inorganic oxide particles.

無機酸化物粒子の製造方法の一つとして、噴霧熱分解法がある(特許文献1~3)。噴霧熱分解法は、所定の組成濃度に調製した原料溶液を熱分解炉の加熱部分に噴霧し、瞬時に溶媒の蒸発、析出した無機塩の熱分解、及び固相反応を起こさせて、目的とする無機酸化物粒子を得る方法である。噴霧熱分解法のメリットとして、製造工程が簡便でかつ極めて微細な一次粒子が得られることが挙げられる。 One of the methods for producing inorganic oxide particles is a spray pyrolysis method (Patent Documents 1 to 3). In the spray pyrolysis method, a raw material solution prepared to a predetermined composition concentration is sprayed onto the heating part of a pyrolysis furnace, causing instantaneous evaporation of the solvent, thermal decomposition of precipitated inorganic salts, and solid phase reaction. This is a method for obtaining inorganic oxide particles. Advantages of the spray pyrolysis method include that the manufacturing process is simple and extremely fine primary particles can be obtained.

特開平7-96165号公報Japanese Patent Application Publication No. 7-96165 特開2003-89519号公報Japanese Patent Application Publication No. 2003-89519 特開2016-17027号公報JP 2016-17027 Publication

しかしながら、無機化合物を含む溶液を用いて噴霧熱分解法により無機酸化物粒子を製造すると、製造開始から時間が経過するにつれ、得られる無機酸化物粒子の粒子密度が徐々に上昇し、粒子密度のばらつきが大きくなるという課題が存在することが判明した。
本発明の課題は、粒子密度の経時的な上昇を抑制し、安定した品質の無機酸化物粒子の製造方法を提供することにある。
However, when inorganic oxide particles are produced by spray pyrolysis using a solution containing an inorganic compound, the particle density of the obtained inorganic oxide particles gradually increases as time passes from the start of production. It has been found that there is a problem in that the dispersion becomes large.
An object of the present invention is to provide a method for producing inorganic oxide particles of stable quality by suppressing the increase in particle density over time.

本発明者らは、かかる粒子密度のばらつきの要因が原料溶液の性状変化にあると考え種々検討した。その結果、原料溶液を所定の速度で撹拌しながらノズルに送液し、その際に撹拌槽内径と撹拌翼の回転直径が一定の関係を満たす撹拌翼を用いて撹拌することで、原料溶液の性状が経時で変化し難くなり、無機酸化物粒子の粒子密度の経時的な上昇が抑えられ、粒子密度のばらつきの少ない安定した品質の無機酸化物粒子を製造できることを見出した。 The present inventors considered that the cause of such variation in particle density was a change in the properties of the raw material solution, and conducted various studies. As a result, by feeding the raw material solution to the nozzle while stirring it at a predetermined speed, and stirring it using a stirring blade that satisfies a certain relationship between the inner diameter of the stirring tank and the rotating diameter of the stirring blade, the raw material solution can be It has been found that the properties of the inorganic oxide particles are less likely to change over time, the increase in particle density of the inorganic oxide particles over time is suppressed, and inorganic oxide particles of stable quality with less variation in particle density can be produced.

すなわち、本発明は、次の〔1〕~〔6〕を提供するものである。
〔1〕原料無機化合物含有溶液を噴霧装置に送液し、該噴霧装置から原料無機化合物含有溶液の液滴を噴霧して熱分解する工程を含む無機酸化物粒子の製造方法であって、
撹拌槽に原料無機化合物含有溶液を収容し、撹拌翼を40~600rpmで回転させて撹拌槽内の原料無機化合物含有溶液を撹拌しながらノズルに送液し、
撹拌翼として、撹拌槽内径(d1)に対する撹拌翼の回転直径(d2)の比(d2/d1)が0.15~0.7の範囲内であるものを用いる、
無機酸化物粒子の製造方法。
〔2〕原料無機化合物含有溶液中の原料無機化合物の濃度が0.1mol/L以上である、〔1〕記載の無機酸化物粒子の製造方法。
〔3〕撹拌翼がプロペラ翼、パドル翼又はタービン翼である、〔1〕又は〔2〕記載の無機酸化物粒子の製造方法。
〔4〕原料無機化合物含有溶液が原料無機化合物含有水溶液である、〔1〕~〔3〕のいずれか一に記載の無機酸化物粒子の製造方法。
〔5〕原料無機化合物含有水溶液のpHが5以下である、〔4〕記載の無機酸化物粒子の製造方法。
〔6〕原料無機化合物がアルミニウム塩、チタン塩、マグネシウム塩、カルシウム塩、ナトリウム塩、ホウ酸塩、アルミノケイ酸塩、アルミニウムアルコキシド及びケイ酸アルコキシドから選ばれる1種又は2種以上である、〔1〕~〔5〕のいずれか一に記載の無機酸化物粒子の製造方法。
That is, the present invention provides the following [1] to [6].
[1] A method for producing inorganic oxide particles, comprising a step of feeding a raw material inorganic compound-containing solution to a spraying device, spraying droplets of the raw material inorganic compound-containing solution from the spraying device, and thermally decomposing the solution,
A raw material inorganic compound-containing solution is stored in a stirring tank, and a stirring blade is rotated at 40 to 600 rpm to send the raw material inorganic compound-containing solution in the stirring tank to a nozzle while stirring,
As the stirring blade, use one in which the ratio (d2/d1) of the rotational diameter (d2) of the stirring blade to the inner diameter of the stirring tank (d1) is within the range of 0.15 to 0.7.
Method for producing inorganic oxide particles.
[2] The method for producing inorganic oxide particles according to [1], wherein the concentration of the raw inorganic compound in the raw inorganic compound-containing solution is 0.1 mol/L or more.
[3] The method for producing inorganic oxide particles according to [1] or [2], wherein the stirring blade is a propeller blade, a paddle blade, or a turbine blade.
[4] The method for producing inorganic oxide particles according to any one of [1] to [3], wherein the raw material inorganic compound-containing solution is a raw material inorganic compound-containing aqueous solution.
[5] The method for producing inorganic oxide particles according to [4], wherein the aqueous solution containing the raw material inorganic compound has a pH of 5 or less.
[6] The raw material inorganic compound is one or more selected from aluminum salt, titanium salt, magnesium salt, calcium salt, sodium salt, borate, aluminosilicate, aluminum alkoxide, and silicate alkoxide, [1 ] to [5]. The method for producing inorganic oxide particles according to any one of [5].

本発明によれば、粒子密度の経時的な上昇が抑制されるため、安定した品質の無機酸化物粒子を製造することができる。 According to the present invention, since the increase in particle density over time is suppressed, inorganic oxide particles of stable quality can be produced.

以下、本発明の無機酸化物粒子の製造方法について説明する。
先ず、原料無機化合物を溶媒に溶解させて、原料無機化合物含有溶液を調製する。
原料無機化合物としては、無機酸化物を構成する元素を含有し、水に溶解する化合物であれば特に限定されないが、例えば、無機塩、金属アルコキシド等を挙げることができる。無機塩としては、例えば、アルミニウム塩、チタン塩、マグネシウム塩、カルシウム塩、ナトリウム塩、ホウ酸塩、亜鉛塩、ジルコニウム塩、バリウム塩、セシウム塩、イットリウム塩、アルミノケイ酸塩が挙げられる。また、金属アルコキシドとしては、アルミニウムアルコキシド、ケイ酸アルコキシドを挙げることができる。原料無機化合物は、1種又は2種以上を使用することができる。
Hereinafter, the method for producing inorganic oxide particles of the present invention will be explained.
First, a raw material inorganic compound-containing solution is prepared by dissolving the raw material inorganic compound in a solvent.
The raw material inorganic compound is not particularly limited as long as it contains an element constituting an inorganic oxide and is soluble in water, and examples thereof include inorganic salts, metal alkoxides, and the like. Examples of inorganic salts include aluminum salts, titanium salts, magnesium salts, calcium salts, sodium salts, borates, zinc salts, zirconium salts, barium salts, cesium salts, yttrium salts, and aluminosilicates. Further, examples of the metal alkoxide include aluminum alkoxide and silicate alkoxide. One type or two or more types of raw material inorganic compounds can be used.

アルミニウム塩としては、例えば、硝酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、燐酸アルミニウム、水酸化アルミニウム、酢酸アルミニウム、シュウ酸アルミニウムが挙げられる。マグネシウム塩としては、例えば、硝酸マグネシウム、硫酸マグネシウム、塩化マグネシウム、燐酸マグネシウム、水酸化マグネシウムを挙げることができる。カルシウム塩としては、例えば、硝酸カルシウム、塩化カルシウム、水酸化カルシウム、蟻酸カルシウム、酢酸カルシウム、プロピオン酸カルシウムが挙げられる。ナトリウム塩としては、例えば、硝酸ナトリウム、塩化ナトリウム、水酸化ナトリウム、硫酸ナトリウムが挙げられる。ホウ酸塩としては、例えば、ホウ酸ナトリウム、ホウ酸カリウム等のメタホウ酸塩、四ホウ酸ナトリウム、四ホウ酸カリウム等の四ホウ酸塩、五ホウ酸ナトリウム、五ホウ酸カリウム等の五ホウ酸塩を挙げることができる。ケイ酸アルコキシドとしては、例えば、オルトケイ酸テトラメチル(TMOS)、オルトケイ酸テトラエチル(TEOS)、オルトケイ酸テトラプロピル(TPOS)、テトラブトキシシランを挙げることができる。また、アルミニウム酸化物、ケイ素酸化物を溶媒に分散した溶液、アルミニウム酸化物、ケイ素酸化物のゾル溶液も原料溶液として用いることができる。
中でも、原料無機化合物としては、本発明の効果を享受しやすい点で、アルミニウム塩、チタン塩、マグネシウム塩、カルシウム塩、ナトリウム塩、ホウ酸塩、アルミノケイ酸塩、アルミニウムアルコキシド及びケイ酸アルコキシドから選ばれる1種又は2種以上が好ましく、ケイ酸アルコキシドと、アルミニウム塩、チタン塩、マグネシウム塩、カルシウム塩、ナトリウム塩、ホウ酸塩、アルミノケイ酸塩及びアルミニウムアルコキシドから選ばれる1種又は2種以上との組み合わせがより好ましく、ケイ酸アルコキシドと、アルミニウム塩、マグネシウム塩、ナトリウム塩、カルシウム塩及びホウ酸塩から選ばれる1種又は2種以上との組み合わせが更に好ましい。
Examples of aluminum salts include aluminum nitrate, aluminum sulfate, aluminum chloride, aluminum phosphate, aluminum hydroxide, aluminum acetate, and aluminum oxalate. Examples of magnesium salts include magnesium nitrate, magnesium sulfate, magnesium chloride, magnesium phosphate, and magnesium hydroxide. Examples of calcium salts include calcium nitrate, calcium chloride, calcium hydroxide, calcium formate, calcium acetate, and calcium propionate. Examples of sodium salts include sodium nitrate, sodium chloride, sodium hydroxide, and sodium sulfate. Examples of borates include metaborate salts such as sodium borate and potassium borate, tetraborate salts such as sodium tetraborate and potassium tetraborate, and pentaborate salts such as sodium pentaborate and potassium pentaborate. Mention may be made of acid salts. Examples of the silicate alkoxide include tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS), and tetrabutoxysilane. Further, a solution of aluminum oxide or silicon oxide dispersed in a solvent, or a sol solution of aluminum oxide or silicon oxide can also be used as the raw material solution.
Among these, the raw material inorganic compound is selected from aluminum salts, titanium salts, magnesium salts, calcium salts, sodium salts, borates, aluminosilicates, aluminum alkoxides, and silicate alkoxides in terms of the ease with which the effects of the present invention can be enjoyed. One or more kinds selected from silicic acid alkoxides, aluminum salts, titanium salts, magnesium salts, calcium salts, sodium salts, borates, aluminosilicates, and aluminum alkoxides are preferred. A combination of a silicate alkoxide and one or more selected from aluminum salts, magnesium salts, sodium salts, calcium salts, and borates is even more preferable.

原料無機化合物から得られる酸化物としては、例えば、金属酸化物、アルミナ、シリカ、アルミニウム及びケイ素を含む酸化物等が挙げられる。より具体的には、アルミナ、シリカ、アルミニウム及びケイ素を含む酸化物、チタン酸化物、マグネシウム酸化物、カルシウム酸化物、ナトリウム酸化物、ホウ素酸化物、亜鉛酸化物、ジルコニウム酸化物、バリウム酸化物、セリウム酸化物、イットリウム酸化物等が挙げられ、これら酸化物を組みあわせた複合酸化物も挙げることができる。 Examples of the oxide obtained from the raw material inorganic compound include metal oxides, oxides containing alumina, silica, aluminum, and silicon. More specifically, oxides containing alumina, silica, aluminum and silicon, titanium oxides, magnesium oxides, calcium oxides, sodium oxides, boron oxides, zinc oxides, zirconium oxides, barium oxides, Examples include cerium oxide, yttrium oxide, and composite oxides that are a combination of these oxides.

原料無機化合物含有溶液の調製に使用する溶媒としては、原料無機化合物を溶解できれば特に限定されないが、水、有機溶媒を挙げることができる。中でも、環境への影響、製造コストの点から、水が好ましい。なお、原料無機化合物と溶媒との混合方法は、両者を同時に添加して混合しても、他方を一方に添加して混合してもよく、混合方法は特に限定されない。 The solvent used to prepare the raw material inorganic compound-containing solution is not particularly limited as long as it can dissolve the raw material inorganic compound, and examples include water and organic solvents. Among these, water is preferred from the viewpoint of environmental impact and manufacturing cost. Note that the method for mixing the raw material inorganic compound and the solvent may be such that both are added and mixed at the same time, or the other may be added to one and mixed, and the mixing method is not particularly limited.

原料無機化合物含有溶液中の原料無機化合物の濃度は、飽和濃度以下であれば特に限定されないが、粒子密度の経時的な上昇抑制の観点から、0.1mol/L以上が好ましく、0.1~0.8mol/Lがより好ましく、0.1~0.6mol/Lが更に好ましい。 The concentration of the raw material inorganic compound in the raw material inorganic compound-containing solution is not particularly limited as long as it is below the saturation concentration, but from the viewpoint of suppressing the increase in particle density over time, it is preferably 0.1 mol/L or more, and 0.1 to 0.1 mol/L. 0.8 mol/L is more preferable, and 0.1 to 0.6 mol/L is even more preferable.

原料無機化合物含有溶液の液温は、溶媒の凝固点よりも高い温度であればよく、溶媒の種類により適宜設定可能であるが、1~50℃が好ましく、1~40℃がより好ましく、1~30℃が更に好ましく、1~20℃が更に好ましい。なお、原料無機化合物含有溶液の液温の調整方法は、所望の温度に調整できれば特に限定されない。例えば、原料無機化合物含有溶液を室温以下に冷却する場合、撹拌槽に冷却装置を設置して原料無機化合物含有溶液を冷却し、原料溶液の液温を温度計で管理すればよい。冷却装置としては、例えば、チラー等を挙げることができる。 The liquid temperature of the raw material inorganic compound-containing solution only needs to be higher than the freezing point of the solvent, and can be set appropriately depending on the type of solvent, but is preferably 1 to 50°C, more preferably 1 to 40°C, and 1 to 40°C. The temperature is more preferably 30°C, and even more preferably 1 to 20°C. Note that the method for adjusting the temperature of the raw material inorganic compound-containing solution is not particularly limited as long as it can be adjusted to a desired temperature. For example, when cooling a raw material inorganic compound-containing solution to below room temperature, a cooling device may be installed in the stirring tank to cool the raw material inorganic compound-containing solution, and the liquid temperature of the raw material solution may be managed with a thermometer. Examples of the cooling device include a chiller.

原料無機化合物含有溶液が水溶液である場合、粒子密度の経時的な上昇抑制の観点から、原料無機化合物含有水溶液のpHは5以下が好ましく、1~3が更に好ましい。なお、pHは、液温を20℃に調整してpHメータにより測定するものとする。 When the raw material inorganic compound-containing solution is an aqueous solution, the pH of the raw material inorganic compound-containing aqueous solution is preferably 5 or less, more preferably 1 to 3, from the viewpoint of suppressing the increase in particle density over time. Note that pH is measured using a pH meter after adjusting the liquid temperature to 20°C.

pH調整は、例えば、原料無機化合物含有水溶液に酸を添加し、所望のpHに調整すればよい。
酸としては所望のpHに調整できれば特に限定されないが、例えば、無機酸、有機酸を挙げることができる。中でも、無機酸が好ましい。無機酸としては、例えば、塩酸、硝酸、硫酸、リン酸、ホウ酸、炭酸を挙げられる。なお、酸は、1種又は2種以上使用することができる。また、必要により、アルカリを用いても構わない。
酸の使用量は、所望のpHとなるように酸の種類により適宜選択することができる。
For example, the pH may be adjusted to a desired pH by adding an acid to the aqueous solution containing the raw material inorganic compound.
The acid is not particularly limited as long as it can be adjusted to a desired pH, and examples include inorganic acids and organic acids. Among these, inorganic acids are preferred. Examples of inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, and carbonic acid. In addition, one type or two or more types of acids can be used. Moreover, an alkali may be used if necessary.
The amount of acid used can be appropriately selected depending on the type of acid so as to achieve a desired pH.

原料無機化合物含有溶液の調製は、撹拌槽で行ってもよく、また予め調製した原料無機化合物含有溶液を撹拌槽に投入してもよい。
撹拌槽の形状は原料無機化合物含有溶液を均一に撹拌できれば特に限定されないが、例えば、円筒縦型、半楕円型、半円型、円錐型を挙げることができる。
撹拌槽の容量は、製造スケールにより適宜選択することが可能であるが、通常撹拌槽に収容される原料無機化合物含有溶液の容量は、撹拌槽の容量に対して40~100%が好ましく、50~98%が更に好ましい。
The raw material inorganic compound-containing solution may be prepared in a stirring tank, or a previously prepared raw material inorganic compound-containing solution may be put into the stirring tank.
The shape of the stirring tank is not particularly limited as long as it can uniformly stir the raw material inorganic compound-containing solution, and examples include a cylindrical vertical shape, a semi-elliptical shape, a semicircular shape, and a conical shape.
The capacity of the stirring tank can be selected as appropriate depending on the production scale, but the volume of the raw material inorganic compound-containing solution usually accommodated in the stirring tank is preferably 40 to 100% of the capacity of the stirring tank, and More preferably 98%.

次に、撹拌槽内の原料無機化合物含有溶液を、撹拌翼を用いて撹拌する。
撹拌翼としては、例えば、プロペラ翼、パドル翼、三枚後退翼、アンカー翼、スクリュー翼、タービン翼、リボン翼等を適宜選択して使用することができる。中でも、プロペラ翼、パドル翼、タービン翼が好ましい。なお、撹拌翼は、撹拌軸に1段でも、多段で設置してもよく、多段で設置する場合、同一でも、異なっていてもよい。
撹拌翼を構成する羽根の数は、2枚以上が好ましく、2~4枚が更に好ましい。
Next, the raw material inorganic compound-containing solution in the stirring tank is stirred using a stirring blade.
As the stirring blade, for example, propeller blades, paddle blades, triple swept blades, anchor blades, screw blades, turbine blades, ribbon blades, etc. can be appropriately selected and used. Among these, propeller blades, paddle blades, and turbine blades are preferred. Note that the stirring blades may be installed on the stirring shaft in one stage or in multiple stages, and when installed in multiple stages, they may be the same or different.
The number of blades constituting the stirring blade is preferably 2 or more, more preferably 2 to 4.

撹拌翼の設置位置は、1段設置する場合、撹拌槽の下方に設置することが好ましい。また、多段で設置する場合、撹拌槽の下方に1段目を設置し、それよりも上方に2段目以降を設置すればよい。3段目以降の撹拌翼は、1段目と2段目の撹拌翼の設置間隔と等間隔でも、異なる間隔でも構わない。 When the stirring blade is installed in one stage, it is preferable to install the stirring blade below the stirring tank. Moreover, when installing in multiple stages, the first stage may be installed below the stirring tank, and the second stage and subsequent stages may be installed above it. The stirring blades in the third and subsequent stages may be spaced equally or at different intervals from the installation interval of the stirring blades in the first and second stages.

本発明においては、撹拌翼として、撹拌槽内径(d1)に対する撹拌翼の回転直径(d2)の比(d2/d1)が0.15~0.7の範囲内であるものを用いる。かかる比(d2/d1)が0.15未満であると、原料無機化合物含有溶液にせん断力が十分に付与されないため、原料無機化合物の一部が溶解し難く、無機酸化物粒子を製造できない。また、かかる比(d2/d1)が0.7を超えると、原料無機化合物含有溶液にせん断力が過度に付与されるため、原料無機化合物含有溶液の性状が経時で変化し、無機酸化物粒子の粒子密度が経時で上昇して無機酸化物粒子の粒子密度のばらつきが大きくなる。
ここで、本明細書において「撹拌槽内径」とは、撹拌軸に固定された撹拌翼と同一水平面上の撹拌槽の最大内径をいう。また、「撹拌翼の回転直径」とは、撹拌翼を回転させたときに撹拌翼により形成される円周の直径をいう。なお、撹拌翼が多段で設置されている場合には、各撹拌翼において、比(d2/d1)が上記した範囲を満たせばよい。
かかる比(d2/d1)は、原料無機化合物の溶解促進、粒子密度の経時的な上昇抑制の観点から、0.18~0.65が好ましく、0.2~0.6がより好ましく、0.23~0.55が更に好ましい。
In the present invention, the stirring blade used has a ratio (d2/d1) of the rotating diameter (d2) of the stirring blade to the inner diameter (d1) of the stirring tank within the range of 0.15 to 0.7. When the ratio (d2/d1) is less than 0.15, sufficient shearing force is not applied to the raw material inorganic compound-containing solution, so a part of the raw material inorganic compound is difficult to dissolve, and inorganic oxide particles cannot be produced. In addition, when the ratio (d2/d1) exceeds 0.7, excessive shearing force is applied to the raw material inorganic compound-containing solution, so the properties of the raw material inorganic compound-containing solution change over time, and the inorganic oxide particles The particle density of the inorganic oxide particles increases over time, and the variation in the particle density of the inorganic oxide particles increases.
Here, in this specification, the "stirring tank inner diameter" refers to the maximum inner diameter of the stirring tank on the same horizontal plane as the stirring blade fixed to the stirring shaft. Moreover, "the rotational diameter of the stirring blade" refers to the diameter of the circumference formed by the stirring blade when the stirring blade is rotated. In addition, when the stirring blades are installed in multiple stages, the ratio (d2/d1) only needs to satisfy the above range in each stirring blade.
This ratio (d2/d1) is preferably from 0.18 to 0.65, more preferably from 0.2 to 0.6, from the viewpoint of promoting dissolution of the raw inorganic compound and suppressing the increase in particle density over time. More preferably .23 to 0.55.

また、撹拌翼の回転数は、40~600rpmである。回転数が40rpm未満であると、原料無機化合物含有溶液にせん断力が十分に付与されないため、原料無機化合物含有溶液が凝固し、無機酸化物粒子を製造できない。また、回転数が600rpmを超えると、原料無機化合物含有溶液にせん断力が過度に付与されるため、原料無機化合物含有溶液の性状が経時で変化し、無機酸化物粒子の粒子密度が経時で上昇して無機酸化物粒子の粒子密度のばらつきが大きくなる。
撹拌翼の回転数は、原料無機化合物の凝固抑制、粒子密度の経時的な上昇抑制の観点から、43~580rpmが好ましく、45~550rpmがより好ましく、48~530rpmが更に好ましい。
撹拌翼が多段で設置されている場合、各撹拌翼の回転数は上記範囲内であれば、同一でも、異なっていてもよい。
Further, the rotation speed of the stirring blade is 40 to 600 rpm. When the rotational speed is less than 40 rpm, sufficient shearing force is not applied to the raw material inorganic compound-containing solution, so that the raw material inorganic compound-containing solution solidifies, making it impossible to produce inorganic oxide particles. In addition, when the rotation speed exceeds 600 rpm, excessive shear force is applied to the raw material inorganic compound-containing solution, so the properties of the raw material inorganic compound-containing solution change over time, and the particle density of the inorganic oxide particles increases over time. This increases the variation in particle density of inorganic oxide particles.
The rotation speed of the stirring blade is preferably 43 to 580 rpm, more preferably 45 to 550 rpm, and even more preferably 48 to 530 rpm, from the viewpoint of suppressing coagulation of the raw material inorganic compound and suppressing increase in particle density over time.
When the stirring blades are installed in multiple stages, the rotational speed of each stirring blade may be the same or different as long as it is within the above range.

次に、撹拌槽内の原料無機化合物含有溶液を送液ポンプで噴霧装置に送液し、該噴霧装置から熱分解炉内に原料無機化合物含有溶液の液滴を噴霧する。
熱分解炉は、炉材として使用されている材質であれば何れも用いることができ、加熱温度等を考慮して選定すればよい。熱分解炉の形状は、円筒縦型が好ましく、熱分解炉の大きさは、製造スケールにより適宜選択することができる。
Next, the raw material inorganic compound-containing solution in the stirring tank is sent to a spray device using a liquid feed pump, and droplets of the raw material inorganic compound-containing solution are sprayed from the spray device into the pyrolysis furnace.
The pyrolysis furnace can be made of any material that is used as a furnace material, and may be selected in consideration of heating temperature and the like. The shape of the pyrolysis furnace is preferably a cylindrical vertical type, and the size of the pyrolysis furnace can be appropriately selected depending on the manufacturing scale.

噴霧装置としては特に限定されないが、例えば、2流体ノズル、3流体ノズル、4流体ノズル等の流体ノズルを使用することができる。ここで、流体ノズルの方式には、ガスと原料無機化合物含有水溶液とをノズル内部で混合する内部混合方式と、ノズル外部でガスと原料無機化合物含有水溶液を混合する外部混合方式があるが、いずれも採用できる。ノズルに供給する気体としては、例えば、空気や、窒素、アルゴン等の不活性ガス等を使用することができる。中でも、経済性の観点から、空気が好ましい。なお、噴霧装置は、1基又は2基以上設置することが可能であり、また熱分解炉の下部及び上部のいずれにも設置することができる。 Although the spray device is not particularly limited, for example, fluid nozzles such as a two-fluid nozzle, a three-fluid nozzle, a four-fluid nozzle, etc. can be used. Here, there are two types of fluid nozzle methods: an internal mixing method in which the gas and the raw material inorganic compound-containing aqueous solution are mixed inside the nozzle, and an external mixing method in which the gas and the raw material inorganic compound-containing aqueous solution are mixed outside the nozzle. can also be adopted. As the gas supplied to the nozzle, for example, air, an inert gas such as nitrogen, argon, etc. can be used. Among them, air is preferred from the viewpoint of economy. Note that one or more spray devices can be installed, and can be installed both at the lower part and the upper part of the pyrolysis furnace.

液滴(ミスト)の噴出速度は、通常1~50m/sであるが、熱分解反応の促進、熱分解炉壁面の固着物発生防止の観点から、5~35m/sが好ましく、10~20m/sが更に好ましい。 The ejection speed of the droplets (mist) is usually 1 to 50 m/s, but from the viewpoint of promoting the thermal decomposition reaction and preventing the formation of adhered substances on the wall surface of the thermal decomposition furnace, the ejection speed is preferably 5 to 35 m/s, and the speed is preferably 10 to 20 m/s. /s is more preferable.

液滴の平均粒子径は、好ましくは0.5~60μm、より好ましくは1~20μm、更に好ましくは1~15μmである。なお、液滴の平均粒子径は、噴霧装置の吐出口の形状や空気の圧力によって調整することが可能である。 The average particle size of the droplets is preferably 0.5 to 60 μm, more preferably 1 to 20 μm, and still more preferably 1 to 15 μm. Note that the average particle diameter of the droplets can be adjusted by adjusting the shape of the discharge port of the spray device and the air pressure.

噴霧装置から噴霧された液滴は、熱分解炉内の加熱装置により加熱されて無機化合物を含む膜が形成され、それを起点に無機酸化物粒子が形成される。
加熱装置としては、例えば、燃焼バーナー、熱風ヒータ、電気ヒータが挙げられる。加熱装置は、1基又は2基以上設置することができる。なお、燃焼バーナー、熱風ヒータ及び電気ヒータは、一般的に販売されているものあれば、いずれも使用することができる。
加熱温度は、400~1800℃が好ましく、600~1500℃がより好ましく、700~1400℃が更に好ましく、800~1200℃がより更に好ましい。400℃未満であると、熱分解が不十分となりやすく、1800℃を超えると、粒子が熱分解炉外に排出されたときに十分冷却され難く、粒子同士が凝集しやすくなる。
The droplets sprayed from the spray device are heated by a heating device in the pyrolysis furnace to form a film containing an inorganic compound, and from this film, inorganic oxide particles are formed.
Examples of the heating device include a combustion burner, a hot air heater, and an electric heater. One or more heating devices can be installed. Note that any commonly available combustion burner, hot air heater, and electric heater can be used.
The heating temperature is preferably 400 to 1,800°C, more preferably 600 to 1,500°C, even more preferably 700 to 1,400°C, and even more preferably 800 to 1,200°C. If the temperature is less than 400°C, thermal decomposition tends to be insufficient, and if it exceeds 1800°C, it is difficult for the particles to be sufficiently cooled when they are discharged outside the pyrolysis furnace, and the particles tend to aggregate with each other.

本発明の方法により製造される無機酸化物粒子は、中実粒子、多孔質粒子、中空粒子のいずれでも、これら2以上の混合物でも構わない。ここで、本明細書において「中実粒子」とは、内部に空洞を有さない構造の粒子をいい、例えば、単一の層からなる粒子、及び、コア(内核とも言われる)とシェル層(外殻とも言われる)を有する粒子を挙げることができる。また、「中空粒子」とは、内部に空洞(中空部)を有する構造のものであり、外殻に包囲された空洞を有する粒子をいう。空洞の数は、単数でも複数でもよい。更に、「多孔質粒子」とは、粒子表面から内部まで連結した貫通孔を多数有する粒子をいう。貫通孔の大きさや形状は、特に限定されない。また、粒子内部に閉気孔を有していてもよい。 The inorganic oxide particles produced by the method of the present invention may be solid particles, porous particles, hollow particles, or a mixture of two or more of these particles. Here, in this specification, a "solid particle" refers to a particle with a structure that does not have a cavity inside, and includes, for example, a particle consisting of a single layer, a core (also called an inner core) and a shell layer. Mention may be made of particles having an outer shell (also called an outer shell). Further, the term "hollow particle" refers to a particle having a structure having a cavity (hollow part) inside, and having a cavity surrounded by an outer shell. The number of cavities may be singular or plural. Furthermore, the term "porous particle" refers to a particle having a large number of through holes connected from the surface to the inside of the particle. The size and shape of the through hole are not particularly limited. Further, the particles may have closed pores inside.

無機酸化物中空粒子を製造する場合、熱分解後の無機酸化物粒子の表面を溶融すればよい。これにより、無機酸化物粒子の表面に存在する孔が閉塞され、粒子外殻に孔がなく、粒子強度の高い無機酸化物中空粒子が得られる。無機酸化物粒子の表面を溶融させるには、例えば、加熱温度を無機酸化物粒子の溶融温度以上にすればよい。 When producing inorganic oxide hollow particles, the surface of the inorganic oxide particles after thermal decomposition may be melted. As a result, the pores existing on the surface of the inorganic oxide particles are closed, and inorganic oxide hollow particles having no pores in the particle outer shell and having high particle strength are obtained. In order to melt the surface of the inorganic oxide particles, for example, the heating temperature may be set to be equal to or higher than the melting temperature of the inorganic oxide particles.

熱分解、必要により溶融を行った後、無機酸化物粒子を回収する。無機酸化物粒子の回収は、例えば、噴霧熱分解装置の下流側から誘引ファンによって粉体回収装置に移動させて行えばよい。また、粉体回収装置の下流側に、必要に応じて、スクラバー等の除塵、浄化設備を配置することもできる。粉体回収装置としては、例えば、サイクロン粉体回収機、バグフィルター等を挙げることができる。更に、無機酸化物粒子の回収にあたっては、フィルターを通過させることにより、粒子径を調整してもよい。 After thermal decomposition and, if necessary, melting, the inorganic oxide particles are recovered. The inorganic oxide particles may be recovered, for example, by moving them from the downstream side of the spray pyrolysis device to the powder recovery device using an induced fan. Further, dust removal and purification equipment such as a scrubber can be arranged downstream of the powder recovery device, if necessary. Examples of the powder recovery device include a cyclone powder recovery machine, a bag filter, and the like. Furthermore, when collecting inorganic oxide particles, the particle size may be adjusted by passing them through a filter.

このようにして無機酸化物粒子を製造することができるが、本発明の方法により製造される無機酸化物粒子は、粒子密度の経時的な上昇が抑制されている。例えば、噴霧熱分解炉内で無機酸化物粒子の製造開始から1時間経過後、及び6時間経過後に回収した無機酸化物粒子の粒子密度の差を、通常0.015g/cm3以下、好ましくは0.01g/cm3以下、更に好ましくは0.008g/cm3以下とすることができる。 Although inorganic oxide particles can be produced in this manner, the inorganic oxide particles produced by the method of the present invention have a suppressed increase in particle density over time. For example, the difference in particle density between inorganic oxide particles collected in a spray pyrolysis furnace after 1 hour and 6 hours from the start of production of inorganic oxide particles is usually 0.015 g/cm 3 or less, preferably It can be 0.01 g/cm 3 or less, more preferably 0.008 g/cm 3 or less.

無機酸化物粒子の粒子密度は、通常0.2~3.0g/cm3であり、好ましくは0.2~2.0g/cm3であり、更に好ましくは0.2~1.0g/cm3である。なお、粒子密度は、乾式自動密度計を用いて、定容積膨張法により測定することができる。ここで、ここで、「定容積膨張法」とは、セル内に試料を投入した後、これに不活性ガスを充填して試料の体積を測定し、この体積と、予め測定しておいた試料の質量とから粒子密度を求める方法をいう。乾式自動密度計として、例えば、乾式自動密度計「アキュピック(島津製作所製)」を使用することができる。 The particle density of the inorganic oxide particles is usually 0.2 to 3.0 g/cm 3 , preferably 0.2 to 2.0 g/cm 3 , and more preferably 0.2 to 1.0 g/cm 3 It is 3 . Note that the particle density can be measured by a constant volume expansion method using a dry automatic densitometer. Here, the "constant volume expansion method" refers to a method in which a sample is put into a cell, then filled with inert gas to measure the volume of the sample, and this volume and a previously measured A method of determining particle density from the mass of the sample. As the dry automatic density meter, for example, a dry automatic density meter "Accupic (manufactured by Shimadzu Corporation)" can be used.

無機酸化物粒子の平均粒子径は、通常0.5~50μmであり、好ましくは0.5~20μmであり、更に好ましくは1~10μmである。ここで、本明細書において「平均粒子径」とは、JIS R 1629に準拠して試料の粒度分布を体積基準で作成したときに積算分布曲線の50%に相当する粒子径(d50)を意味する。なお、粒子径分布測定装置として、例えば、マイクロトラック(日機装株式会社製)を使用することができる。 The average particle diameter of the inorganic oxide particles is usually 0.5 to 50 μm, preferably 0.5 to 20 μm, and more preferably 1 to 10 μm. Here, in this specification, the "average particle diameter" refers to the particle diameter (d 50 ) corresponding to 50% of the integrated distribution curve when the particle size distribution of the sample is created on a volume basis in accordance with JIS R 1629. means. In addition, as a particle size distribution measuring device, for example, Microtrack (manufactured by Nikkiso Co., Ltd.) can be used.

以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本発明は、下記の実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples.

1.粒子密度の測定
粒子密度は、乾式自動密度計(アキュピック1340、島津製作所製)を用いて、定容積膨張法により測定した。
1. Measurement of Particle Density Particle density was measured by a constant volume expansion method using a dry automatic densitometer (Accupic 1340, manufactured by Shimadzu Corporation).

実施例1
撹拌槽(内径280mm)内に水道水を収容し、水道水にモル濃度が0.012mol/Lとなるように四ホウ酸ナトリウム(関東化学製)を添加し、室温において、3枚羽根プロペラ(翼の回転直径70mm)の撹拌機を用いて900rpmで2時間30分攪拌した。なお、撹拌槽内径(d1)に対する撹拌翼の回転直径(d2)の比(d2/d1)は、0.25である。次に、モル濃度が0.045mol/Lとなるよう、硝酸カルシウム(林純薬工業製)と、硝酸マグネシウム(林純薬工業製)を撹拌槽に投入した後、0.75mol/Lとなるよう硝酸アルミニウム(林純薬工業製)を撹拌槽に投入し、撹拌機で撹拌して原料を水に溶解させた。さらに、この溶液にモル濃度が0.57mol/Lとなるようオルトケイ酸テトラエチル(東京化成工業製)を投入し、撹拌機を用いて3時間攪拌し、オルトケイ酸テトラエチルを溶解させた。このとき水溶液の液温を、チラーを用いて5℃に調整した。続いて、水溶液のpHが2.0となるよう硝酸(関東化学製)を添加して原料無機化合物含有水溶液を調製した。この原料無機化合物含有水溶液を50rpmで攪拌しながら2流体ノズルに送液し、ノズルから噴霧熱分解炉内に原料無機化合物含有水溶液に噴霧し、1000℃で焼成した。そして、製造開始から1hr経過後、6hr経過後に回収した無機酸化物粒子の粒子密度をそれぞれ測定し、両者の差を求めた。その結果を表1に示す。
Example 1
Tap water was placed in a stirring tank (inner diameter 280 mm), sodium tetraborate (manufactured by Kanto Kagaku) was added to the tap water so that the molar concentration was 0.012 mol/L, and a three-blade propeller ( The mixture was stirred at 900 rpm for 2 hours and 30 minutes using a stirrer with a blade rotation diameter of 70 mm. Note that the ratio (d2/d1) of the rotational diameter (d2) of the stirring blade to the inner diameter (d1) of the stirring tank was 0.25. Next, calcium nitrate (manufactured by Hayashi Pure Chemical Industries) and magnesium nitrate (manufactured by Hayashi Pure Chemical Industries) were put into a stirring tank so that the molar concentration became 0.75 mol/L. Aluminum nitrate (manufactured by Hayashi Pure Chemical Industries) was placed in a stirring tank and stirred with a stirrer to dissolve the raw material in water. Furthermore, tetraethyl orthosilicate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to this solution so that the molar concentration was 0.57 mol/L, and the mixture was stirred for 3 hours using a stirrer to dissolve the tetraethyl orthosilicate. At this time, the temperature of the aqueous solution was adjusted to 5° C. using a chiller. Subsequently, nitric acid (manufactured by Kanto Kagaku) was added to adjust the pH of the aqueous solution to 2.0 to prepare an aqueous solution containing the raw material inorganic compound. This raw material inorganic compound-containing aqueous solution was fed to a two-fluid nozzle while being stirred at 50 rpm, and the raw material inorganic compound-containing aqueous solution was sprayed from the nozzle into a spray pyrolysis furnace and fired at 1000°C. Then, the particle density of the inorganic oxide particles collected after 1 hr and 6 hr had passed from the start of production was measured, and the difference between the two was determined. The results are shown in Table 1.

実施例2~4
表1に示す撹拌速度に変更したこと以外は、実施例1と同様の操作により無機酸化物粒子を製造した。そして、製造開始から1hr経過後、6hr経過後に回収した無機酸化物粒子の粒子密度をそれぞれ測定し、両者の差を求めた。その結果を表1に示す。
Examples 2-4
Inorganic oxide particles were produced in the same manner as in Example 1, except that the stirring speed was changed to the one shown in Table 1. Then, the particle density of the inorganic oxide particles collected after 1 hr and 6 hr had passed from the start of production was measured, and the difference between the two was determined. The results are shown in Table 1.

実施例5
撹拌翼としてパドル翼(翼の回転直径105mm)を用い、表1に示す比(d2/d1)に変更したこと以外は、実施例1と同様の操作により無機酸化物粒子を製造した。そして、製造開始から1hr経過後、6hr経過後に回収した無機酸化物粒子の粒子密度をそれぞれ測定し、両者の差を求めた。その結果を表1に示す。
Example 5
Inorganic oxide particles were produced in the same manner as in Example 1, except that a paddle blade (rotational diameter of the blade: 105 mm) was used as the stirring blade, and the ratio (d2/d1) shown in Table 1 was changed. Then, the particle density of the inorganic oxide particles collected after 1 hr and 6 hr had passed from the start of production was measured, and the difference between the two was determined. The results are shown in Table 1.

実施例6~8
表1に示す撹拌速度に変更したこと以外は、実施例5と同様の操作により無機酸化物粒子を製造した。そして、製造開始から1hr経過後、6hr経過後に回収した無機酸化物粒子の粒子密度をそれぞれ測定し、両者の差を求めた。その結果を表1に示す。
Examples 6-8
Inorganic oxide particles were produced in the same manner as in Example 5, except that the stirring speed was changed to the one shown in Table 1. Then, the particle density of the inorganic oxide particles collected after 1 hr and 6 hr had passed from the start of production was measured, and the difference between the two was determined. The results are shown in Table 1.

実施例9
撹拌翼としてタービン翼(翼の回転直径140mm)を用い、表1に示す比(d2/d1)に変更したこと以外は、実施例1と同様の操作により無機酸化物粒子を製造した。そして、製造開始から1hr経過後、6hr経過後に回収した無機酸化物粒子の粒子密度をそれぞれ測定し、両者の差を求めた。その結果を表1に示す。
Example 9
Inorganic oxide particles were produced in the same manner as in Example 1, except that a turbine blade (rotational diameter of the blade: 140 mm) was used as the stirring blade, and the ratio (d2/d1) shown in Table 1 was changed. Then, the particle density of the inorganic oxide particles collected after 1 hr and 6 hr had passed from the start of production was measured, and the difference between the two was determined. The results are shown in Table 1.

実施例10~12
表1に示す撹拌速度に変更したこと以外は、実施例9と同様の操作により無機酸化物粒子を製造した。そして、製造開始から1hr経過後、6hr経過後に回収した無機酸化物粒子の粒子密度をそれぞれ測定し、両者の差を求めた。その結果を表1に示す。
Examples 10-12
Inorganic oxide particles were produced in the same manner as in Example 9, except that the stirring speed was changed to the one shown in Table 1. Then, the particle density of the inorganic oxide particles collected after 1 hr and 6 hr had passed from the start of production was measured, and the difference between the two was determined. The results are shown in Table 1.

比較例1
表1に示す撹拌速度に変更し、実施例5と同様の操作により無機酸化物粒子の製造を試みたところ、原料無機化合物含有水溶液が凝固したため、無機酸化物粒子の製造を断念した。
Comparative example 1
When an attempt was made to produce inorganic oxide particles by changing the stirring speed shown in Table 1 and performing the same operations as in Example 5, the raw material inorganic compound-containing aqueous solution solidified, so production of inorganic oxide particles was abandoned.

比較例2
表1に示す撹拌速度に変更したこと以外は、実施例5と同様の操作により無機酸化物粒子を製造した。そして、製造開始から1hr経過後、6hr経過後に回収した無機酸化物粒子の粒子密度をそれぞれ測定し、両者の差を求めた。その結果を表1に示す。
Comparative example 2
Inorganic oxide particles were produced in the same manner as in Example 5, except that the stirring speed was changed to the one shown in Table 1. Then, the particle density of the inorganic oxide particles collected after 1 hr and 6 hr had passed from the start of production was measured, and the difference between the two was determined. The results are shown in Table 1.

比較例3
撹拌翼としてパドル翼(翼の回転直径35mm)を用い、表1に示す比(d2/d1)に変更したこと以外は、実施例3と同様の操作により無機酸化物粒子の製造を試みたところ、原料無機化合物の一部が溶解しなかったため、無機酸化物粒子の製造を断念した。
Comparative example 3
An attempt was made to produce inorganic oxide particles in the same manner as in Example 3, except that a paddle blade (rotational diameter of the blade: 35 mm) was used as the stirring blade, and the ratio (d2/d1) was changed as shown in Table 1. However, because some of the raw material inorganic compounds did not dissolve, production of inorganic oxide particles was abandoned.

比較例4
撹拌翼としてタービン翼(翼の回転直径210mm)を用い、表1に示す比(d2/d1)に変更したこと以外は、実施例3と同様の操作により無機酸化物粒子を製造した。そして、製造開始から1hr経過後、6hr経過後に回収した無機酸化物粒子の粒子密度をそれぞれ測定し、両者の差を求めた。その結果を表1に示す。
Comparative example 4
Inorganic oxide particles were produced in the same manner as in Example 3, except that a turbine blade (rotational diameter of the blade: 210 mm) was used as the stirring blade, and the ratio (d2/d1) shown in Table 1 was changed. Then, the particle density of the inorganic oxide particles collected after 1 hr and 6 hr had passed from the start of production was measured, and the difference between the two was determined. The results are shown in Table 1.

比較例1は、原料無機化合物含有溶液の攪拌速度が遅すぎてせん断力が十分に付与されなかったため、原料無機化合物含有溶液が凝固し、無機酸化物粒子を製造できなかった。
比較例2は、原料無機化合物含有溶液の攪拌速度が速すぎてせん断力が過度に付与されたため、原料無機化合物含有溶液の性状が経時で変化し、無機酸化物粒子の粒子密度が経時で上昇し、無機酸化物粒子の粒子密度のばらつきが大きくなった。
比較例3は、撹拌槽内径(d1)に対する撹拌翼の回転直径(d2)の比(d2/d1)が小さく、原料無機化合物含有溶液にせん断力が十分に付与されず、原料無機化合物の一部が溶解しなかったため、無機酸化物粒子を製造できなかった。
比較例4は、撹拌槽内径(d1)に対する撹拌翼の回転直径(d2)の比(d2/d1)が大きく、原料無機化合物溶液にせん断力が過度に付与されたため、原料無機化合物含有溶液の性状が経時で変化し、無機酸化物粒子の粒子密度が経時で上昇し、無機酸化物粒子の粒子密度のばらつきが大きくなった。
これに対し、実施例1~12は、原料無機化合物含有溶液の攪拌速度、及び撹拌槽内径(d1)に対する撹拌翼の回転直径(d2)の比(d2/d1)がそれぞれ特定範囲内に制御されているため、原料無機化合物含有溶液の性状が経時で変化し難く、無機酸化物粒子の粒子密度の経時的な上昇が抑えられ、粒子密度のばらつきの少ない安定した品質の無機酸化物粒子が得られることがわかる。
In Comparative Example 1, the stirring speed of the raw material inorganic compound-containing solution was too slow and sufficient shear force was not applied, so the raw material inorganic compound-containing solution solidified and inorganic oxide particles could not be produced.
In Comparative Example 2, the stirring speed of the raw material inorganic compound-containing solution was too high and excessive shear force was applied, so the properties of the raw material inorganic compound-containing solution changed over time, and the particle density of the inorganic oxide particles increased over time. However, the variation in particle density of inorganic oxide particles became large.
In Comparative Example 3, the ratio (d2/d1) of the rotational diameter (d2) of the stirring blade to the inner diameter (d1) of the stirring tank was small, and a sufficient shearing force was not applied to the raw material inorganic compound-containing solution. Since some parts were not dissolved, inorganic oxide particles could not be produced.
In Comparative Example 4, the ratio (d2/d1) of the rotational diameter (d2) of the stirring blade to the inner diameter (d1) of the stirring tank was large, and excessive shear force was applied to the raw material inorganic compound solution. The properties changed over time, the particle density of the inorganic oxide particles increased over time, and the variation in the particle density of the inorganic oxide particles became large.
On the other hand, in Examples 1 to 12, the stirring speed of the raw material inorganic compound-containing solution and the ratio (d2/d1) of the rotating diameter of the stirring blade (d2) to the inner diameter of the stirring tank (d1) were controlled within specific ranges. As a result, the properties of the raw material inorganic compound-containing solution do not easily change over time, suppressing the increase in the particle density of the inorganic oxide particles over time, and producing inorganic oxide particles of stable quality with little variation in particle density. You can see what you can get.

Claims (1)

料化合物含有溶液を噴霧装置に送液し、該噴霧装置から原料化合物含有溶液の液滴を噴霧して熱分解する工程を含む無機酸化物粒子の製造方法であって、
撹拌槽として、撹拌槽に収容される原料化合物含有水溶液の容量が撹拌槽の容量に対して40~100%となる容量を有する撹拌槽を使用し、
撹拌翼として、プロペラ翼、パドル翼及びタービン翼から選択される撹拌翼であって、撹拌槽内径(d1)に対する撹拌翼の回転直径(d2)の比(d2/d1)が0.15~0.7の範囲内である撹拌翼を使用し、
撹拌槽にアルミニウム塩、チタン塩、マグネシウム塩、カルシウム塩、ナトリウム塩、ホウ酸塩、アルミノケイ酸塩、アルミニウムアルコキシド及びケイ酸アルコキシドから選ばれる1種又は2種以上の原料化合物を0.1~0.8mol/Lの濃度で含む原料化合物含有水溶液であって、pHが5以下である料化合物含有溶液を収容し、撹拌翼を40~600rpmで回転させて撹拌槽内の原料化合物含有溶液を撹拌しながらノズルに送液する、
無機酸化物粒子の製造方法。
A method for producing inorganic oxide particles comprising a step of feeding an aqueous solution containing a raw material compound to a spraying device, spraying droplets of the aqueous solution containing the raw material compound from the spraying device, and thermally decomposing the solution. hand,
As the stirring tank, use a stirring tank having a capacity such that the volume of the raw material compound-containing aqueous solution accommodated in the stirring tank is 40 to 100% of the capacity of the stirring tank,
The stirring blade is a stirring blade selected from propeller blades, paddle blades, and turbine blades, and the ratio (d2/d1) of the rotational diameter (d2) of the stirring blade to the stirring tank inner diameter (d1) is 0.15 to 0. Using a stirring blade that is within the range of .7,
One or more raw material compounds selected from aluminum salts, titanium salts, magnesium salts, calcium salts, sodium salts, borates, aluminosilicates, aluminum alkoxides, and silicate alkoxides are added to a stirring tank at a rate of 0.1 to 0. A raw material compound-containing aqueous solution containing a raw material compound at a concentration of .8 mol/L and a pH of 5 or less is contained , and the raw material in the stirring tank is rotated at 40 to 600 rpm with a stirring blade. Sending the compound -containing aqueous solution to the nozzle while stirring it ,
Method for producing inorganic oxide particles.
JP2020022530A 2020-02-13 2020-02-13 Method for producing inorganic oxide particles Active JP7393238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020022530A JP7393238B2 (en) 2020-02-13 2020-02-13 Method for producing inorganic oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022530A JP7393238B2 (en) 2020-02-13 2020-02-13 Method for producing inorganic oxide particles

Publications (2)

Publication Number Publication Date
JP2021127266A JP2021127266A (en) 2021-09-02
JP7393238B2 true JP7393238B2 (en) 2023-12-06

Family

ID=77487887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022530A Active JP7393238B2 (en) 2020-02-13 2020-02-13 Method for producing inorganic oxide particles

Country Status (1)

Country Link
JP (1) JP7393238B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275564A (en) 2002-03-25 2003-09-30 Hitachi Ltd Agitating apparatus
JP2004332103A (en) 2003-05-07 2004-11-25 Korea Mach Res Inst Method for producing nanostructured TaC-transition metal based composite powder
JP2006087998A (en) 2004-09-22 2006-04-06 Shi Mechanical & Equipment Inc Agitation method
JP2010162488A (en) 2009-01-16 2010-07-29 Dic Corp Apparatus and method for stirring
JP2014523809A (en) 2011-07-12 2014-09-18 ビーエーエスエフ ソシエタス・ヨーロピア Multi-metal oxide material containing Mo, Bi and Fe
JP2019025385A (en) 2017-07-26 2019-02-21 太平洋セメント株式会社 Spray pyrolysis equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172221A (en) * 1987-12-25 1989-07-07 Agency Of Ind Science & Technol Synthesis of starting material comprising fine oxide particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275564A (en) 2002-03-25 2003-09-30 Hitachi Ltd Agitating apparatus
JP2004332103A (en) 2003-05-07 2004-11-25 Korea Mach Res Inst Method for producing nanostructured TaC-transition metal based composite powder
JP2006087998A (en) 2004-09-22 2006-04-06 Shi Mechanical & Equipment Inc Agitation method
JP2010162488A (en) 2009-01-16 2010-07-29 Dic Corp Apparatus and method for stirring
JP2014523809A (en) 2011-07-12 2014-09-18 ビーエーエスエフ ソシエタス・ヨーロピア Multi-metal oxide material containing Mo, Bi and Fe
JP2019025385A (en) 2017-07-26 2019-02-21 太平洋セメント株式会社 Spray pyrolysis equipment

Also Published As

Publication number Publication date
JP2021127266A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
Zhu et al. Morphological control and thermal properties of nanoencapsulated n-octadecane phase change material with organosilica shell materials
RU2507178C2 (en) Method of obtaining proppant (versions) and method of hydraulic fracturing of stratum with application of obtained proppant (versions)
JPS58130135A (en) Swellable bead producing material and manufacture
CN103269975B (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
JP5339701B2 (en) Method for concentrating silica sol and mixture obtained by said method
US4022704A (en) Production of spray dried, high bulk density hydrous sodium silicate mixtures
JP3463328B2 (en) Method for producing acidic silica sol
JP2010047457A (en) Production method of powdery alumina precursor
JPH0151455B2 (en)
US5643844A (en) Method for stabilizing ceramic suspensions
JP7393238B2 (en) Method for producing inorganic oxide particles
JP7364395B2 (en) Method for producing hollow particles
US9695111B2 (en) Method of producing soluble silicates with organic cations
JP2019112614A (en) COMPOSITE MATERIAL CONTAINING AT LEAST ONE FIRST MATERIAL AND PARTICLE HAVING NEGATIVE HEAT EXPANSION COEFFICIENT α, AND ADHESIVE MATERIAL CONTAINING THE COMPOSITE MATERIAL
JPH1045412A (en) Heat-resistant transition alumina and method for producing the same
CN107759210A (en) A kind of Yb2SiO5The preparation method of spraying powder
JP2010513176A5 (en)
JP5158064B2 (en) Method for producing silica particles
CN111139037A (en) A kind of ternary composite carbonate phase change microcapsule and preparation method thereof
JP7467295B2 (en) Method for producing inorganic oxide particles
JP7611742B2 (en) Inorganic oxide micro hollow particles
JP4951908B2 (en) Method for producing spherical zinc oxide or acid carbide fine particles
JP2004359543A (en) Foamed silica gel and method for manufacturing it
JP6277387B2 (en) Method for producing forsterite fine particles
JP2607118B2 (en) Method for producing spherical organosilicic acid and spherical silica powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231124

R150 Certificate of patent or registration of utility model

Ref document number: 7393238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150