[go: up one dir, main page]

JP7354799B2 - vacuum cooling device - Google Patents

vacuum cooling device Download PDF

Info

Publication number
JP7354799B2
JP7354799B2 JP2019216042A JP2019216042A JP7354799B2 JP 7354799 B2 JP7354799 B2 JP 7354799B2 JP 2019216042 A JP2019216042 A JP 2019216042A JP 2019216042 A JP2019216042 A JP 2019216042A JP 7354799 B2 JP7354799 B2 JP 7354799B2
Authority
JP
Japan
Prior art keywords
pressure
holding
cooling
temperature
processing tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019216042A
Other languages
Japanese (ja)
Other versions
JP2021085628A (en
Inventor
拓也 松本
雅夫 蔵野
圭 平田
将平 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2019216042A priority Critical patent/JP7354799B2/en
Publication of JP2021085628A publication Critical patent/JP2021085628A/en
Application granted granted Critical
Publication of JP7354799B2 publication Critical patent/JP7354799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、処理槽内を減圧して食品を冷却する真空冷却装置に関するものである。 The present invention relates to a vacuum cooling device that cools food by reducing the pressure inside a processing tank.

従来、下記特許文献1に開示される真空冷却装置が知られている。この装置では、当該文献の図3に示されるように、食品の冷却目標温度(17℃)よりも設定値(2℃)低い温度(15℃)における飽和圧力(17hPa)を設定圧力とし、この設定圧力まで処理槽内を減圧後、設定圧力で第一時間(15分)保持する。第一時間の経過時、品温センサの検出温度が冷却目標温度(17℃)に到達していない場合、設定圧力を1℃相当分下げて、第二時間(2分)保持する。以後、同様に、第二時間の経過時、品温センサの検出温度が冷却目標温度(17℃)に到達していない場合、設定圧力を1℃相当分ずつ下げて第二時間(2分)保持することを繰り返して、食品を冷却目標温度まで冷却する。食品が冷却目標温度になると、冷却を終了して、処理槽内を大気圧まで復圧する。 Conventionally, a vacuum cooling device disclosed in Patent Document 1 below is known. In this device, as shown in Figure 3 of the document, the set pressure is the saturation pressure (17 hPa) at a temperature (15°C) lower by a set value (2°C) than the target food cooling temperature (17°C). After reducing the pressure in the processing tank to the set pressure, the set pressure is maintained for a first time (15 minutes). When the temperature detected by the product temperature sensor has not reached the cooling target temperature (17° C.) after the first time has elapsed, the set pressure is lowered by the equivalent of 1° C. and held for a second time (2 minutes). Thereafter, in the same way, if the temperature detected by the product temperature sensor has not reached the cooling target temperature (17°C) after the second time has elapsed, the set pressure is lowered by 1°C equivalent for the second time (2 minutes). By repeating this holding process, the food is cooled to the cooling target temperature. When the food reaches the cooling target temperature, cooling is finished and the pressure inside the processing tank is restored to atmospheric pressure.

しかしながら、品温センサは食品中の特定箇所の温度を検出するので、品温センサの検出温度が冷却目標温度になっても、食品に温度ムラがあり得る。温度ムラを防止するために、品温センサの検出温度が冷却目標温度になるまでの冷却工程後、その時点の圧力のまま処理槽内を保持する保持工程を実行することも考えられるが、次のような不都合を生じるおそれがある。すなわち、前述したとおり、食品の冷却が進まない場合、設定圧力を徐々に下げる制御を行うので、品温センサの検出温度が冷却目標温度に到達した時点では、冷却目標温度と槽内圧力換算温度(処理槽内圧力における飽和温度)との温度差が大きくなっており、そのままの圧力で保持したのでは食品に過冷却を生じるおそれがある。 However, since the product temperature sensor detects the temperature at a specific location in the food, even if the temperature detected by the product temperature sensor reaches the cooling target temperature, there may be temperature unevenness in the food. In order to prevent temperature unevenness, after the cooling process until the temperature detected by the product temperature sensor reaches the cooling target temperature, it is possible to perform a holding process to maintain the pressure inside the processing tank at that point, but There is a risk that such inconveniences may occur. In other words, as mentioned above, if the cooling of the food does not progress, the set pressure is controlled to be gradually lowered, so when the temperature detected by the product temperature sensor reaches the cooling target temperature, the cooling target temperature and tank pressure conversion temperature are (The saturation temperature at the pressure inside the processing tank) has become large, and if the pressure is maintained as it is, there is a risk of overcooling of the food.

一方で、処理槽内を所定圧力まで復圧して保持するにしても、保持圧力をどの程度にするかについて課題がある。また、冷却工程から保持工程への移行時、処理槽内を保持圧力まで復圧する際、槽内圧力調整用の給気弁の開度が大きくなり、保持圧力に対してオーバーシュートしてしまうおそれもある。 On the other hand, even if the pressure inside the processing tank is restored to a predetermined pressure and maintained, there is a problem in determining the level of the holding pressure. In addition, when transitioning from the cooling process to the holding process, when the pressure inside the processing tank is restored to the holding pressure, the opening degree of the air supply valve for adjusting the tank internal pressure becomes large, and there is a risk of overshooting the holding pressure. There is also.

特開2017-161118号公報(段落0049-0058、図3)JP 2017-161118 (Paragraph 0049-0058, Figure 3)

本発明が解決しようとする課題は、食品を温度ムラなく、また過冷却することなく、冷却目標温度まで冷却できる真空冷却装置を提供することにある。また、冷却工程から保持工程への移行時のオーバーシュートを抑制して、保持工程において安定した圧力保持を実現することを課題とする。 The problem to be solved by the present invention is to provide a vacuum cooling device that can cool food to a cooling target temperature without temperature unevenness and without overcooling. Another object is to suppress overshoot at the time of transition from the cooling process to the holding process, and to realize stable pressure maintenance in the holding process.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、食品が収容される処理槽と、この処理槽内の気体を外部へ吸引排出する減圧手段と、減圧された前記処理槽内へ外気を導入する復圧手段と、前記処理槽内の圧力を検出する圧力センサと、前記処理槽内に収容された食品の温度を検出する品温センサと、前記各手段を制御する制御手段とを備え、前記制御手段は、前記品温センサの検出温度が冷却目標温度になるまで冷却工程を実行した後、保持工程を実行し、前記冷却工程では、食品の冷却目標温度よりも設定値低い温度における飽和圧力を設定圧力とし、前記処理槽内を前記設定圧力まで減圧する減圧操作と、前記設定圧力で設定待機時間保持する待機操作とを実行すると共に、前記待機操作の終了時に前記品温センサの検出温度が冷却目標温度に到達していない場合、到達するまでの間、前記設定値を増加させて前記減圧操作と前記待機操作とを実行することを繰り返し、前記保持工程では、前記冷却工程における初回の待機操作の設定圧力を保持圧力として、設定保持時間経過するまで、前記処理槽内を前記保持圧力に保持し、前記冷却工程における初回の減圧操作では、前記圧力センサの検出圧力が前記保持圧力よりも高い所定圧力になると、減圧速度を低下させて前記設定圧力まで減圧し、前記所定圧力は、前記冷却目標温度における飽和圧力であることを特徴とする真空冷却装置である。 The present invention has been made to solve the above problem, and the invention according to claim 1 includes: a processing tank in which food is stored; a decompression means for sucking and discharging the gas in the processing tank to the outside; a pressure restoring means for introducing outside air into the reduced pressure processing tank; a pressure sensor for detecting the pressure within the processing tank; a product temperature sensor for detecting the temperature of the food stored in the processing tank; and a control means for controlling each means, the control means executes a cooling step until the temperature detected by the food temperature sensor reaches the cooling target temperature, and then executes a holding step, and in the cooling step, the food A saturation pressure at a temperature lower than the cooling target temperature by a set value is set as a set pressure, and a depressurization operation is performed to reduce the pressure in the processing tank to the set pressure, and a standby operation is maintained at the set pressure for a set standby time, and the If the temperature detected by the product temperature sensor has not reached the cooling target temperature at the end of the standby operation, the set value is increased and the depressurization operation and the standby operation are repeated until the temperature reaches the cooling target temperature. In the holding step, the pressure set in the first standby operation in the cooling step is used as the holding pressure, and the inside of the processing tank is held at the holding pressure until the set holding time elapses , and in the first depressurization operation in the cooling step, , when the detected pressure of the pressure sensor reaches a predetermined pressure higher than the holding pressure, the pressure is reduced to the set pressure by reducing the pressure reduction rate, and the predetermined pressure is a saturation pressure at the cooling target temperature. This is a vacuum cooling device.

請求項1に記載の発明によれば、冷却工程では、設定圧力までの減圧操作と設定圧力での待機操作とを行うが、冷却の進行状況に応じて、設定圧力を段階的に下げて減圧操作と待機操作とを繰り返すことで、食品の確実な冷却を図ることができる。品温センサの検出温度が冷却目標温度になると、保持工程へ移行するが、保持工程での保持圧力は、必ずしも冷却工程終了時の圧力ではなく、冷却工程における初回の待機操作の設定圧力とされる。つまり、冷却工程において段階的に設定圧力を下げた場合には、初回の設定圧力(「冷却目標温度-初期設定値」相当圧力)まで復圧して保持することになる。これにより、食品を温度ムラなく、また過冷却することなく、冷却目標温度まで冷却することができる。
請求項1に記載の発明によれば、冷却工程における初回の減圧操作では、圧力センサの検出圧力が保持圧力(初回の設定圧力)よりも高い所定圧力になると、減圧速度を低下させるので、設定圧力への移行を円滑に図ることができる。しかも、冷却目標温度における飽和圧力を前記所定圧力とすることで、無駄に運転時間を長引かせることなく、設定圧力への移行を円滑に図ることができる。
According to the invention set forth in claim 1, in the cooling process, a pressure reduction operation to a set pressure and a standby operation at the set pressure are performed, and the set pressure is lowered in stages depending on the progress of cooling. By repeating the operation and the standby operation, it is possible to reliably cool the food. When the temperature detected by the product temperature sensor reaches the cooling target temperature, the process moves to the holding process, but the holding pressure in the holding process is not necessarily the pressure at the end of the cooling process, but is the set pressure for the first standby operation in the cooling process. Ru. That is, when the set pressure is lowered stepwise in the cooling process, the pressure is restored to the initial set pressure (pressure equivalent to "cooling target temperature - initial set value") and held. Thereby, the food can be cooled to the cooling target temperature without temperature unevenness and without overcooling.
According to the invention described in claim 1, in the first depressurization operation in the cooling process, when the detected pressure of the pressure sensor reaches a predetermined pressure higher than the holding pressure (initial set pressure), the depressurization speed is reduced, so that the setting A smooth transition to pressure can be achieved. Moreover, by setting the saturation pressure at the cooling target temperature to the predetermined pressure, a smooth transition to the set pressure can be achieved without unnecessarily prolonging the operation time.

請求項2に記載の発明は、前記冷却工程から前記保持工程への移行時、前記保持圧力よりも低い圧力から前記保持圧力へ復圧する際、その復圧幅を複数の圧力域に分けて、圧力域ごとに前記処理槽内を段階的に復圧することを特徴とする請求項1に記載の真空冷却装置である。 In the invention according to claim 2, when the pressure is restored from a pressure lower than the holding pressure to the holding pressure at the time of transition from the cooling step to the holding step, the pressure restoring width is divided into a plurality of pressure regions, 2. The vacuum cooling device according to claim 1, wherein the pressure inside the processing tank is restored in stages for each pressure region.

請求項2に記載の発明によれば、冷却工程から保持工程への移行時、処理槽内を復圧する必要がある場合には、段階的に復圧することができる。これにより、処理槽内を復圧する際のオーバーシュートを抑制して、保持工程において安定した圧力保持が可能となる。 According to the second aspect of the invention, when it is necessary to restore the pressure in the processing tank during transition from the cooling process to the holding process, the pressure can be restored in stages. This suppresses overshoot when restoring the pressure inside the processing tank, making it possible to maintain stable pressure in the holding step.

請求項3に記載の発明は、前記段階的に復圧する操作は、前記保持圧力よりも所定以上低い圧力から前記保持圧力へ復圧する際に行うことを特徴とする請求項2に記載の真空冷却装置である。 The invention according to claim 3 is characterized in that the operation of restoring the pressure in stages is performed when the pressure is restored to the holding pressure from a pressure lower than the holding pressure by a predetermined value or more. It is a device.

請求項3に記載の発明によれば、冷却工程から保持工程への移行時、保持圧力よりも所定以上低い圧力から保持圧力へ復圧する際にだけ、その復圧幅を複数の圧力域に分けて、圧力域ごとに処理槽内を段階的に復圧する。このようにして、オーバーシュートが想定される場合にのみ、処理槽内を段階的に復圧することができる。 According to the invention described in claim 3, only when the pressure is restored to the holding pressure from a pressure lower than the holding pressure by a predetermined value during the transition from the cooling process to the holding process, the width of the restoration pressure is divided into a plurality of pressure ranges. Then, the pressure inside the processing tank is restored in stages for each pressure region. In this way, the pressure inside the processing tank can be restored in stages only when overshoot is expected.

請求項4に記載の発明は、前記冷却工程から前記保持工程への移行時、前記保持圧力よりも低い圧力から前記保持圧力へ復圧する際、設定復圧速度で復圧することを特徴とする請求項1に記載の真空冷却装置である。 The invention according to claim 4 is characterized in that when the pressure is restored from a pressure lower than the holding pressure to the holding pressure during transition from the cooling step to the holding step, the pressure is restored at a set pressure restoring rate. This is the vacuum cooling device according to item 1.

請求項4に記載の発明によれば、冷却工程から保持工程への移行時、復圧速度を調整しつつ復圧する。これにより、処理槽内を復圧する際のオーバーシュートを抑制して、保持工程において安定した圧力保持が可能となる。 According to the invention set forth in claim 4, when transitioning from the cooling process to the holding process, the pressure is restored while adjusting the pressure restoration rate. This suppresses overshoot when restoring the pressure inside the processing tank, making it possible to maintain stable pressure in the holding step.

本発明の真空冷却装置によれば、食品を温度ムラなく、また過冷却することなく、冷却目標温度まで冷却することができる。また、冷却工程から保持工程への移行時のオーバーシュートを抑制して、保持工程において安定した圧力保持を実現することができる。 According to the vacuum cooling device of the present invention, food can be cooled to a cooling target temperature without temperature unevenness and without overcooling. Moreover, overshoot at the time of transition from the cooling process to the holding process can be suppressed, and stable pressure maintenance can be realized in the holding process.

本発明の一実施例の真空冷却装置を示す概略図であり、一部を断面にして示している。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a vacuum cooling device according to an embodiment of the present invention, with a portion thereof shown in cross section. 図1の真空冷却装置の運転例を示すグラフであり、品温Tと槽内圧力Pの変化を示しており、縦軸は品温Tまたは圧力P、横軸は運転開始からの経過時間tを示している。This is a graph showing an example of operation of the vacuum cooling device in FIG. 1, and shows changes in product temperature T and tank pressure P, where the vertical axis is product temperature T or pressure P, and the horizontal axis is elapsed time t from the start of operation. It shows. 図2の別の例を示す概略図である。FIG. 3 is a schematic diagram showing another example of FIG. 2; 図3に対する比較例を示す概略図である。4 is a schematic diagram showing a comparative example with respect to FIG. 3. FIG.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の真空冷却装置1を示す概略図であり、一部を断面にして示している。
Hereinafter, specific embodiments of the present invention will be described in detail based on the drawings.
FIG. 1 is a schematic diagram showing a vacuum cooling device 1 according to an embodiment of the present invention, with a portion thereof shown in cross section.

本実施例の真空冷却装置1は、食品Fが収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出する減圧手段3と、減圧された処理槽2内へ外気を導入する復圧手段4と、これら各手段を制御して処理槽2内の食品Fを冷却する制御手段(図示省略)とを備える。 The vacuum cooling device 1 of this embodiment includes a processing tank 2 in which food F is stored, a pressure reducing means 3 for sucking and discharging the gas in the processing tank 2 to the outside, and introducing outside air into the reduced pressure processing tank 2. and a control means (not shown) that controls each of these means to cool the food F in the processing tank 2.

処理槽2は、内部空間の減圧に耐える中空容器であり、ドア(図示省略)で開閉可能とされる。処理槽2は、典型的には略矩形の箱状に形成され、正面の開口部がドアで開閉可能とされる。ドアを開けることで、処理槽2に食品Fを出し入れすることができ、ドアを閉じることで、処理槽2の開口部を気密に閉じることができる。ドアは、処理槽2の正面および背面の双方に設けられてもよい。 The processing tank 2 is a hollow container that can withstand reduced pressure in its internal space, and can be opened and closed with a door (not shown). The processing tank 2 is typically formed in a substantially rectangular box shape, and the front opening can be opened and closed with a door. By opening the door, food F can be taken in and out of the processing tank 2, and by closing the door, the opening of the processing tank 2 can be airtightly closed. The door may be provided on both the front and back sides of the processing tank 2.

減圧手段3は、処理槽2内の気体(空気や蒸気)を外部へ吸引排出して、処理槽2内を減圧する手段である。本実施例では、減圧手段3は、処理槽2内からの排気路5に、蒸気エゼクタ6、蒸気凝縮用の熱交換器7、逆止弁8、および水封式の真空ポンプ9を順に備える。 The pressure reducing means 3 is a means for sucking and discharging the gas (air or steam) in the processing tank 2 to the outside to reduce the pressure inside the processing tank 2. In this embodiment, the pressure reducing means 3 includes, in order, a steam ejector 6, a heat exchanger 7 for steam condensation, a check valve 8, and a water ring type vacuum pump 9 in an exhaust path 5 from inside the processing tank 2. .

蒸気エゼクタ6は、吸引口6aが処理槽2に接続されて設けられ、入口6bから出口6cへ向けて、エゼクタ給蒸路10からの蒸気がノズルで噴出可能とされる。入口6bから出口6cへ向けて蒸気を噴出させることで、処理槽2内の気体も吸引口6aを介して出口6cへ吸引排出される。エゼクタ給蒸路10に設けたエゼクタ給蒸弁11の開閉を操作することで、蒸気エゼクタ6の作動の有無を切り替えることができる。 The steam ejector 6 is provided with a suction port 6a connected to the processing tank 2, and steam from the ejector steam supply path 10 can be ejected from the inlet 6b toward the outlet 6c with a nozzle. By spouting steam from the inlet 6b toward the outlet 6c, the gas in the processing tank 2 is also suctioned and discharged to the outlet 6c via the suction port 6a. By opening and closing an ejector steam supply valve 11 provided in the ejector steam supply path 10, it is possible to switch whether or not the steam ejector 6 is operated.

熱交換器7は、排気路5内の流体と冷却水とを混ぜることなく熱交換する間接熱交換器である。熱交換器7により、排気路5内の蒸気を、冷却水により冷却し凝縮させることができる。 The heat exchanger 7 is an indirect heat exchanger that exchanges heat between the fluid in the exhaust path 5 and the cooling water without mixing them. The heat exchanger 7 allows the steam in the exhaust path 5 to be cooled and condensed with cooling water.

真空ポンプ9は、本実施例では水封式であり、周知のとおり、封水と呼ばれる水が供給されつつ運転される。そのために、真空ポンプ9の給水口9aには、封水給水路12を介して水が供給される。封水給水路12には封水給水弁13が設けられており、封水給水弁13を開けることで、真空ポンプ9に封水を供給することができる。封水給水弁13を開けた状態で真空ポンプ9を作動させると、真空ポンプ9は、吸気口9bから気体を吸入し、排気口9cへ排気および排水する。真空ポンプ9は、オンオフ制御されてもよいし、インバータ制御されてもよい。 The vacuum pump 9 in this embodiment is of a water seal type, and as is well known, is operated while being supplied with water called a water seal. For this purpose, water is supplied to the water supply port 9a of the vacuum pump 9 via the water seal water supply channel 12. The sealed water supply channel 12 is provided with a sealed water supply valve 13, and by opening the sealed water supply valve 13, sealed water can be supplied to the vacuum pump 9. When the vacuum pump 9 is operated with the water sealing water supply valve 13 open, the vacuum pump 9 takes in gas from the intake port 9b, and exhausts and drains the gas to the exhaust port 9c. The vacuum pump 9 may be controlled on/off or may be controlled by an inverter.

熱交換器7および真空ポンプ9への給水系統について説明すると、本実施例では、熱交換器7および真空ポンプ9には、常温水と冷水とを切り替えて供給可能とされる。冷水とは、チラー(図示省略)により所定温度に冷却を図られた水であり、常温水とは、そのような冷却を図られない水である。 To explain the water supply system to the heat exchanger 7 and the vacuum pump 9, in this embodiment, the heat exchanger 7 and the vacuum pump 9 can be supplied with normal temperature water and cold water while being switched. Cold water is water that has been cooled to a predetermined temperature by a chiller (not shown), and normal temperature water is water that cannot be cooled in this way.

図示例の場合、常温水と冷水の切り替えは、常温水給水路14に設けられた常温水給水弁15と、冷水給水路16に設けられた冷水給水弁17で行われる。常温水給水弁15より下流の常温水給水路14と、冷水給水弁17より下流の冷水給水路16とは、合流して共通給水路18とされている。そして、この共通給水路18は、熱交換器7への熱交給水路19と、真空ポンプ9への封水給水路12とに分岐されている。封水給水路12には、封水給水弁13が設けられている。常温水給水弁15または冷水給水弁17を開けることで、熱交換器7に給水され、さらに封水給水弁13を開けると、真空ポンプ9に給水される。 In the illustrated example, switching between room temperature water and cold water is performed by a room temperature water supply valve 15 provided in the room temperature water supply channel 14 and a cold water supply valve 17 provided in the cold water supply channel 16. The room temperature water supply channel 14 downstream of the room temperature water supply valve 15 and the cold water supply channel 16 downstream of the cold water supply valve 17 are joined together to form a common water supply channel 18 . The common water supply channel 18 is branched into a heat exchange water supply channel 19 to the heat exchanger 7 and a water seal water supply channel 12 to the vacuum pump 9. The water seal water supply channel 12 is provided with a water seal water supply valve 13 . By opening the room temperature water supply valve 15 or the cold water supply valve 17, water is supplied to the heat exchanger 7, and when the sealed water supply valve 13 is further opened, water is supplied to the vacuum pump 9.

熱交換器7は、熱交給水路19を介して水が供給され、熱交排水路20を介して水が排出される。熱交排水路20は、冷水タンク(チラーの給水源)への冷水戻し路21と、外部への排水出口路22とに分岐されており、冷水戻し路21には冷水戻し弁23が設けられ、排水出口路22には排水出口弁24が設けられている。冷水戻し弁23および排水出口弁24により、熱交換器7を通過後の水を、冷水タンクへ戻すか、排水出口路22から排出するか、あるいはいずれも行わずに熱交換器7の通水を阻止するか(つまり熱交換器7の冷却水出口側を閉じるか)を切り替えることができる。 Water is supplied to the heat exchanger 7 via a heat exchange supply channel 19 , and water is discharged via a heat exchange drainage channel 20 . The heat exchange drainage channel 20 is branched into a cold water return channel 21 to the cold water tank (water supply source for the chiller) and a drainage outlet channel 22 to the outside, and the cold water return channel 21 is provided with a cold water return valve 23. A drain outlet valve 24 is provided in the drain outlet passage 22. The cold water return valve 23 and the drain outlet valve 24 allow the water that has passed through the heat exchanger 7 to be returned to the cold water tank, to be discharged from the drain outlet passage 22, or to be passed through the heat exchanger 7 without any of the above. It is possible to switch between blocking (that is, closing the cooling water outlet side of the heat exchanger 7).

熱交換器7に冷水を供給する場合、排水出口弁24を閉じると共に冷水戻し弁23を開けることで、熱交換器7を通過後の冷水は冷水タンクへ戻される。冷水タンク内の貯留水は、チラーで冷却されて再び冷水給水路16へ供給可能とされる。一方、熱交換器7に常温水を供給する場合、冷水戻し弁23を閉じると共に排水出口弁24を開けることで、熱交換器7を通過後の常温水は排水出口路22から排出される。 When supplying cold water to the heat exchanger 7, the cold water after passing through the heat exchanger 7 is returned to the cold water tank by closing the drain outlet valve 24 and opening the cold water return valve 23. The water stored in the cold water tank is cooled by the chiller and can be supplied to the cold water supply channel 16 again. On the other hand, when normal temperature water is supplied to the heat exchanger 7, by closing the cold water return valve 23 and opening the drain outlet valve 24, the normal temperature water that has passed through the heat exchanger 7 is discharged from the drain outlet path 22.

復圧手段4は、減圧された処理槽2内へ外気を導入して、処理槽2内を復圧する手段である。本実施例では、復圧手段4は、処理槽2内への給気路25に、エアフィルタ26および給気弁27を順に備える。給気弁27は、電動弁のように、開度調整可能な弁から構成される。処理槽2内が減圧された状態で給気弁27を開けると、外気がエアフィルタ26を介して処理槽2内へ導入され、処理槽2内を復圧することができる。減圧手段3を作動させた状態で、給気弁27の開度を制御して、処理槽2内の圧力を調整することができる。 The pressure recovery means 4 is a means for introducing outside air into the reduced pressure processing tank 2 and restoring the pressure inside the processing tank 2. In this embodiment, the pressure recovery means 4 includes an air filter 26 and an air supply valve 27 in this order in an air supply path 25 into the processing tank 2 . The air supply valve 27 is configured of a valve whose opening degree can be adjusted, such as an electric valve. When the air supply valve 27 is opened in a state where the pressure inside the processing tank 2 is reduced, outside air is introduced into the processing tank 2 through the air filter 26, and the pressure inside the processing tank 2 can be restored. The pressure inside the processing tank 2 can be adjusted by controlling the opening degree of the air supply valve 27 while the pressure reducing means 3 is operated.

処理槽2には、さらに、処理槽2内の圧力を検出する圧力センサ28と、処理槽2内に収容された食品Fの温度(品温)を検出する品温センサ29とが設けられる。 The processing tank 2 is further provided with a pressure sensor 28 that detects the pressure inside the processing tank 2 and a product temperature sensor 29 that detects the temperature (product temperature) of the food F stored in the processing tank 2.

制御手段は、前記各センサ28,29の検出信号や経過時間などに基づき、前記各手段3,4を制御する制御器(図示省略)である。具体的には、真空ポンプ9、エゼクタ給蒸弁11、封水給水弁13、常温水給水弁15、冷水給水弁17、冷水戻し弁23、排水出口弁24、給気弁27の他、圧力センサ28および品温センサ29などは、制御器に接続されている。そして、制御器は、以下に述べるように、所定の手順(プログラム)に従い、処理槽2内の食品Fの真空冷却を図る。 The control means is a controller (not shown) that controls each of the means 3 and 4 based on detection signals from the sensors 28 and 29, elapsed time, and the like. Specifically, in addition to the vacuum pump 9, the ejector steam supply valve 11, the water sealing water supply valve 13, the room temperature water supply valve 15, the cold water supply valve 17, the cold water return valve 23, the drain outlet valve 24, and the air supply valve 27, the pressure The sensor 28, the product temperature sensor 29, and the like are connected to the controller. The controller then attempts to vacuum-cool the food F in the processing tank 2 according to a predetermined procedure (program), as described below.

以下、本実施例の真空冷却装置1の運転方法の具体例について説明する。
図2は、本実施例の真空冷却装置1の運転例を示すグラフであり、品温Tと槽内圧力Pの変化を示しており、縦軸は品温Tまたは圧力P、横軸は運転開始からの経過時間tを示している。
A specific example of the method of operating the vacuum cooling device 1 of this embodiment will be described below.
FIG. 2 is a graph showing an example of operation of the vacuum cooling device 1 of this embodiment, and shows changes in product temperature T and tank pressure P, where the vertical axis is the product temperature T or pressure P, and the horizontal axis is the operation. It shows the elapsed time t from the start.

運転開始前、給気弁27は開けられた状態にある一方、その他の前記各弁は閉じられた状態にあり、真空ポンプ9は停止している。その状態で、処理槽2内に食品Fが収容され、処理槽2のドアは気密に閉じられる。そして、スタートボタンが押されるなど運転開始を指示されると、制御器は、給気弁27を閉じると共に減圧手段3を作動させて、所定の終了条件を満たすまで、処理槽2内を減圧したり減圧下で保持したりして、食品Fを冷却する。本実施例では、冷却工程S1と保持工程S2とを順次に実行する。 Before the start of operation, the air supply valve 27 is open, the other valves are closed, and the vacuum pump 9 is stopped. In this state, the food F is stored in the processing tank 2, and the door of the processing tank 2 is hermetically closed. When the start button is pressed or other instructions are given to start operation, the controller closes the air supply valve 27 and operates the pressure reducing means 3 to reduce the pressure in the processing tank 2 until a predetermined termination condition is met. Food F is cooled by cooling or holding under reduced pressure. In this embodiment, the cooling process S1 and the holding process S2 are performed sequentially.

減圧手段3による処理槽2内の減圧中、熱交換器7および真空ポンプ9への給水や、蒸気エゼクタ6の作動は、たとえば次のように制御される。すなわち、冷却運転の開始時には、熱交換器7の通水を停止した状態で、真空ポンプ9に常温水を供給しつつ、真空ポンプ9により処理槽2内を減圧する。この段階では、エゼクタ給蒸弁11は閉じられており、蒸気エゼクタ6は作動していない。その後、通水開始条件として、たとえば品温センサ29の検出温度が通水開始温度(たとえば60℃)以下になると、熱交換器7の通水を開始する。この際、熱交換器7および真空ポンプ9には、冷水が供給される。その後、エゼクタ作動条件として、たとえば品温センサ29の検出温度がエゼクタ作動温度(たとえば30℃)以下で且つ圧力センサ28の検出圧力がエゼクタ作動圧力(たとえば45hPa)以下になると、エゼクタ給蒸弁11を開けて蒸気エゼクタ6を作動させる。減圧手段3の作動中、給気弁27の開度を調整することで、減圧速度を調整したり、減圧下の所望圧力で保持したりすることができる。但し、これに代えてまたはこれに加えて、減圧手段3による減圧能力を調整してもよい。 While the pressure in the processing tank 2 is being reduced by the pressure reducing means 3, the water supply to the heat exchanger 7 and the vacuum pump 9 and the operation of the steam ejector 6 are controlled, for example, as follows. That is, at the start of the cooling operation, the vacuum pump 9 depressurizes the inside of the processing tank 2 while supplying normal temperature water to the vacuum pump 9 while water flow through the heat exchanger 7 is stopped. At this stage, the ejector steam supply valve 11 is closed and the steam ejector 6 is not operating. Thereafter, as a water flow start condition, for example, when the temperature detected by the product temperature sensor 29 becomes lower than the water flow start temperature (for example, 60° C.), water flow through the heat exchanger 7 is started. At this time, cold water is supplied to the heat exchanger 7 and the vacuum pump 9. Thereafter, as an ejector operating condition, for example, when the temperature detected by the product temperature sensor 29 is lower than the ejector operating temperature (for example, 30° C.) and the pressure detected by the pressure sensor 28 is lower than the ejector operating pressure (for example, 45 hPa), the ejector steam supply valve 11 to operate the steam ejector 6. By adjusting the opening degree of the air supply valve 27 while the pressure reducing means 3 is in operation, the pressure reduction speed can be adjusted or the pressure can be maintained at a desired pressure under reduced pressure. However, instead of or in addition to this, the pressure reducing ability of the pressure reducing means 3 may be adjusted.

冷却工程S1では、設定圧力まで減圧する減圧操作S11と、その設定圧力で保持する待機操作S12とを実行する。減圧操作S11では、食品Fの冷却目標温度TZよりも設定値低い温度における飽和圧力を設定圧力とし、その設定圧力まで処理槽2内を減圧する。処理槽2内が設定圧力まで減圧されると、待機操作S12に切り替える。待機操作S12では、処理槽2内を設定圧力で設定待機時間保持する。待機操作S12の終了時(つまり待機操作S12の開始から設定待機時間経過時)、品温センサ29の検出温度が冷却目標温度TZに到達していない場合、前記設定値を設定量だけ増加(言い換えれば前記設定圧力を低下)させて、減圧操作S11と待機操作S12とを実行する。つまり、新たな設定圧力までの減圧操作S11と、その設定圧力での設定待機時間の待機操作S12とを実行する。このようにして、減圧操作S11と待機操作S12とのセットを実行する度に前記設定圧力を段階的に下げつつ、品温センサ29の検出温度が冷却目標温度TZ以下になるまで、減圧操作S11と待機操作S12とのセットを繰り返し実行する。 In the cooling step S1, a pressure reduction operation S11 for reducing the pressure to a set pressure and a standby operation S12 for maintaining the set pressure are performed. In the pressure reduction operation S11, the saturation pressure at a temperature lower than the cooling target temperature TZ of the food F by a set value is set as a set pressure, and the inside of the processing tank 2 is depressurized to the set pressure. When the pressure inside the processing tank 2 is reduced to the set pressure, the process is switched to standby operation S12. In the standby operation S12, the inside of the processing tank 2 is maintained at a set pressure for a set standby time. At the end of the standby operation S12 (that is, when the set standby time has elapsed from the start of the standby operation S12), if the temperature detected by the product temperature sensor 29 has not reached the cooling target temperature TZ, the set value is increased by the set amount (in other words, (for example, the set pressure is lowered), and a pressure reduction operation S11 and a standby operation S12 are executed. That is, a pressure reduction operation S11 to a new set pressure and a standby operation S12 for a set standby time at the set pressure are executed. In this way, each time a set of pressure reduction operation S11 and standby operation S12 is executed, the set pressure is lowered in stages until the temperature detected by the product temperature sensor 29 becomes equal to or lower than the cooling target temperature TZ. and standby operation S12 are repeatedly executed.

減圧操作S11と待機操作S12とを繰り返す際、前記設定量(前記設定値の増分)を変更したり、設定待機時間を変更したりしてもよい。たとえば、初回は、冷却目標温度TZよりも第一設定値低い温度(第一設定温度TA)における飽和圧力を設定圧力(第一設定圧力PA)とすると共に、その設定圧力で第一設定待機時間保持するが、これ以後は、直前の設定温度よりも第二設定値(前記設定量)低い温度(新たな設定温度)における飽和圧力を設定圧力とすると共に、その設定圧力で第二設定待機時間保持するようにする。そして、好適には、第二設定値は第一設定値よりも小さく、第二設定待機時間は第一設定待機時間よりも短く設定される。 When repeating the pressure reduction operation S11 and the standby operation S12, the set amount (increment of the set value) or the set standby time may be changed. For example, for the first time, the saturation pressure at a temperature (first set temperature TA) lower than the cooling target temperature TZ by a first set value is set as the set pressure (first set pressure PA), and the first set standby time is set at that set pressure. However, from this point on, the saturation pressure at a temperature (new set temperature) lower than the previous set temperature by the second set value (above set amount) will be the set pressure, and the second set standby time will be set at that set pressure. Try to keep it. Preferably, the second set value is smaller than the first set value, and the second set standby time is set shorter than the first set standby time.

処理槽2内を初回の設定圧力(第一設定圧力PA)まで減圧する際、典型的には次のように制御される。すなわち、運転開始からの経過時間と槽内圧力との関係が冷却パターン(徐冷曲線)として予め制御器に設定されており、制御器は、冷却パターンに沿うように処理槽2内の圧力を調整(典型的には給気弁27の開度を調整)しつつ、処理槽2内を減圧して食品Fを冷却する(徐冷制御)。但し、場合により、給気弁27を閉じて処理槽2内の圧力を迅速に低下させてもよい(急冷制御)。また、所定まで処理槽2内を急減圧した後、前記徐冷制御を行ってもよい。あるいは、詳細は後述するが、所定圧力まで前記徐冷制御を実行した後、減圧速度を低下させて設定圧力まで減圧してもよい。 When reducing the pressure inside the processing tank 2 to the initial set pressure (first set pressure PA), the control is typically performed as follows. That is, the relationship between the elapsed time from the start of operation and the pressure inside the tank is set in advance in the controller as a cooling pattern (slow cooling curve), and the controller adjusts the pressure inside the processing tank 2 in accordance with the cooling pattern. While adjusting (typically adjusting the opening degree of the air supply valve 27), the pressure inside the processing tank 2 is reduced to cool the food F (slow cooling control). However, depending on the situation, the air supply valve 27 may be closed to quickly reduce the pressure inside the processing tank 2 (quick cooling control). Alternatively, the slow cooling control may be performed after rapidly reducing the pressure in the processing tank 2 to a predetermined level. Alternatively, although details will be described later, after performing the slow cooling control to a predetermined pressure, the pressure reduction rate may be reduced to reduce the pressure to the set pressure.

冷却工程S1について、具体例を挙げると次のとおりである。たとえば、冷却目標温度TZが10℃(12.3hPa)、第一設定値が2℃、第二設定値が1℃、第一設定待機時間が15分、第二設定待機時間が2分であるとする。この場合、冷却工程S1では、まず8℃(冷却目標温度10℃-第一設定値2℃)相当の飽和圧力(10.7hPa)まで処理槽2内を減圧して(減圧操作S11)、当該圧力に到達後、第一設定待機時間の15分保持する(待機操作S12)。15分経過後も品温が冷却目標温度TZまで低下していない場合、さらに1℃(第二設定値)低い7℃相当の飽和圧力(10.0hPa)まで処理槽2内を減圧して(減圧操作S11)、当該圧力に到達後、第二設定待機時間の2分保持する(待機操作S12)。以後、同様に、2分経過後も品温が冷却目標温度TZまで低下していない場合、さらに1℃相当分だけ処理槽2内を減圧して2分保持することを、品温が冷却目標温度TZ以下になるまで繰り返す。 A specific example of the cooling step S1 is as follows. For example, the cooling target temperature TZ is 10°C (12.3 hPa), the first set value is 2°C, the second set value is 1°C, the first set standby time is 15 minutes, and the second set standby time is 2 minutes. shall be. In this case, in the cooling step S1, the pressure inside the processing tank 2 is first reduced to a saturation pressure (10.7 hPa) equivalent to 8°C (cooling target temperature 10°C - first set value 2°C) (pressure reduction operation S11), and the After reaching the pressure, the first set standby time is held for 15 minutes (standby operation S12). If the product temperature has not decreased to the cooling target temperature TZ after 15 minutes, the pressure inside the processing tank 2 is further reduced by 1°C (second set value) to the saturation pressure (10.0 hPa) equivalent to 7°C ( After the pressure reaches the pressure reduction operation S11), the pressure is maintained for 2 minutes, which is the second set standby time (standby operation S12). Thereafter, similarly, if the product temperature has not decreased to the cooling target temperature TZ after 2 minutes, the temperature in the processing tank 2 is further reduced by an amount equivalent to 1°C and held for 2 minutes. Repeat until the temperature is below TZ.

冷却工程S1中、品温センサ29の検出温度を監視して、品温センサ29の検出温度が冷却目標温度TZまで下がると、保持工程S2へ移行する。減圧操作S11中または待機操作S12中であっても、品温センサ29の検出温度が冷却目標温度TZ以下になれば、実行中の操作を終了して、保持工程S2へ移行すればよい。 During the cooling process S1, the temperature detected by the product temperature sensor 29 is monitored, and when the temperature detected by the product temperature sensor 29 falls to the cooling target temperature TZ, the process moves to the holding process S2. Even during the decompression operation S11 or the standby operation S12, if the temperature detected by the product temperature sensor 29 becomes equal to or lower than the cooling target temperature TZ, the operation in progress may be ended and the process may proceed to the holding step S2.

保持工程S2では、冷却工程S1における初回の待機操作S12の設定圧力(第一設定圧力PA)を保持圧力として、設定保持時間経過するまで、処理槽2内を保持圧力PAに保持する。ここでは、品温が冷却目標温度TZに到達した時点(つまり冷却工程S1の終了時)からの経過時間が設定保持時間になるまで、保持工程S2を実行する。 In the holding step S2, the pressure set in the first standby operation S12 in the cooling step S1 (first set pressure PA) is used as the holding pressure, and the inside of the processing tank 2 is held at the holding pressure PA until the set holding time elapses. Here, the holding step S2 is executed until the elapsed time from the time when the product temperature reaches the cooling target temperature TZ (that is, the end of the cooling step S1) reaches the set holding time.

初回の待機操作S12において、品温センサ29の検出温度が冷却目標温度TZになれば、その圧力を維持したまま設定保持時間保持すればよい。一方、品温が下がりにくく、処理槽2内の圧力を段階的に下げることで、品温センサ29の検出温度が冷却目標温度TZまで下がった場合、処理槽2内の圧力を初回の待機操作S12の設定圧力(保持圧力PA)まで復圧して保持する。この復圧時、次のように制御するのが好ましい。 In the first standby operation S12, if the temperature detected by the product temperature sensor 29 reaches the cooling target temperature TZ, the pressure may be maintained for the set holding time. On the other hand, if the product temperature is difficult to fall and the temperature detected by the product temperature sensor 29 falls to the cooling target temperature TZ by gradually lowering the pressure in the processing tank 2, the pressure in the processing tank 2 is lowered by the initial standby operation. The pressure is restored to the set pressure (holding pressure PA) in S12 and held. During this pressure restoration, it is preferable to control as follows.

すなわち、冷却工程S1から保持工程S2への移行時、保持圧力PAよりも低い圧力PBから保持圧力PAへ復圧する際、その復圧幅を複数の圧力域に分けて、それぞれの圧力域ごとに処理槽2内を段階的に復圧するのがよい。本実施例では、図2に示すように、品温が冷却目標温度TZに到達した際の槽内圧力PBと保持圧力PAとの差を、たとえば四等分し、各圧力を一定時間t1ずつかけて順に復圧する。 That is, when returning from a pressure PB lower than the holding pressure PA to the holding pressure PA during the transition from the cooling step S1 to the holding step S2, the width of the restoring pressure is divided into a plurality of pressure regions, and the pressure is adjusted for each pressure region. It is preferable to restore pressure in the processing tank 2 in stages. In this example, as shown in FIG. 2, the difference between the tank internal pressure PB and the holding pressure PA when the product temperature reaches the cooling target temperature TZ is divided into four equal parts, and each pressure is divided into four parts for a certain period of time t1. pressure in order.

冷却工程S1では、前述したとおり、品温が下がらないと判定すると、少しずつ槽内圧力を下げて冷却を行うので、冷えにくい食品Fの場合、冷却工程S1の終了時(つまり品温センサ29の検出温度が冷却目標温度TZになった時)には、槽内圧力が次工程の保持圧力PAと大きく乖離(たとえば5℃以上乖離)しているおそれがある。また、給気弁27は、圧力センサ28の検出圧力を目標圧力にするように開度調整(PID制御)される。 In the cooling process S1, as mentioned above, if it is determined that the product temperature does not decrease, the pressure inside the tank is gradually lowered to cool the food. When the detected temperature reaches the cooling target temperature TZ), there is a possibility that the tank internal pressure deviates greatly from the holding pressure PA of the next step (for example, by 5° C. or more). Further, the opening degree of the air supply valve 27 is adjusted (PID control) so that the pressure detected by the pressure sensor 28 becomes the target pressure.

この場合、冷却工程S1から保持工程S2への移行時、目標圧力が変更されると、その変更幅(つまり現在の槽内圧力と目標圧力との差圧)が大きい場合、給気弁27の開度変更が大きくなる。そのため、冷却工程S1から保持工程S2への移行時、目標圧力を保持圧力PAに切り替えて一気に復圧するのでは、給気弁27が大きく開き、図2において二点鎖線で示すように、槽内圧力が保持圧力PAよりも高い圧力までオーバーシュートするおそれがある。 In this case, when the target pressure is changed during the transition from the cooling process S1 to the holding process S2, if the change width (that is, the differential pressure between the current tank pressure and the target pressure) is large, the air supply valve 27 The opening change becomes larger. Therefore, when transitioning from the cooling process S1 to the holding process S2, if the target pressure is switched to the holding pressure PA and the pressure is restored all at once, the air supply valve 27 will open wide and the inside of the tank will be affected, as shown by the two-dot chain line in FIG. There is a risk that the pressure will overshoot to a pressure higher than the holding pressure PA.

ところが、本実施例では、復圧幅を等分して段階的に復圧(目標圧力を段階的に変更)することで、給気弁27が一気に大きく開くことを防止して、オーバーシュートを抑制することができる。オーバーシュートを抑制することで、保持工程S2において安定した圧力保持が可能となる。図示例の場合、段階的に復圧される度に、一旦その圧力を維持した後、次の段階に復圧されるように、各段階での復圧時間t1が設定されている。 However, in this embodiment, the pressure is restored in stages by dividing the pressure back width into equal parts (changing the target pressure in stages), thereby preventing the air supply valve 27 from opening wide all at once, thereby preventing overshoot. Can be suppressed. By suppressing overshoot, stable pressure can be maintained in the holding step S2. In the illustrated example, the pressure recovery time t1 at each stage is set so that each time the pressure is restored in stages, the pressure is maintained once and then the pressure is restored to the next stage.

いずれにしても、処理槽2内は所定の保持圧力PAまで復圧されて、所定の終了条件を満たすまで(ここでは冷却工程S1において品温が冷却目標温度TZに到達してから設定保持時間経過するまで)、保持される。そして、保持工程S2を終了すると、減圧手段3を停止すると共に、復圧手段4により処理槽2内を大気圧まで復圧して、冷却運転を終了する。 In any case, the pressure inside the processing tank 2 is restored to the predetermined holding pressure PA until the predetermined end condition is met (here, in the cooling process S1, the product temperature reaches the cooling target temperature TZ and then the set holding time (until the time has elapsed). When the holding step S2 is completed, the pressure reducing means 3 is stopped, and the pressure in the processing tank 2 is restored to atmospheric pressure by the pressure recovery means 4, and the cooling operation is ended.

本実施例の真空冷却装置1によれば、冷却工程S1では、設定圧力までの減圧操作S11と設定圧力での待機操作S12とを行うが、冷却の進行状況に応じて、設定圧力を段階的に下げて減圧操作S11と待機操作S12とを繰り返すことで、食品Fの確実な冷却を図ることができる。また、品温センサ29の検出温度が冷却目標温度TZになっても、処理槽2内を保持圧力PAに維持する保持工程S2を行うことで、食品Fをムラなく冷却することができる。しかも、保持工程S2での保持圧力PAは、冷却工程S1における初回の待機操作S12の設定圧力PAとされる。つまり、冷却工程S1において段階的に設定圧力を下げた場合でも、保持工程S2では処理槽2内を保持圧力PAまで復圧して保持するので、食品Fを過冷却することがない。 According to the vacuum cooling device 1 of this embodiment, in the cooling step S1, a pressure reduction operation S11 to the set pressure and a standby operation S12 at the set pressure are performed, but the set pressure is changed in stages according to the progress of cooling. The food F can be reliably cooled by repeating the pressure reduction operation S11 and the standby operation S12. Further, even if the temperature detected by the product temperature sensor 29 reaches the cooling target temperature TZ, the food F can be cooled evenly by performing the holding step S2 of maintaining the inside of the processing tank 2 at the holding pressure PA. Moreover, the holding pressure PA in the holding step S2 is the set pressure PA in the first standby operation S12 in the cooling step S1. That is, even if the set pressure is lowered stepwise in the cooling step S1, the food F will not be overcooled because the pressure inside the processing tank 2 is restored to and held at the holding pressure PA in the holding step S2.

特に液物の食品Fの場合、品温センサ29の温度検知部が底部付近にあると、液深の影響により検出温度が下がりにくいため、次のような課題がある。すなわち、品温センサ29の検出温度が冷却目標温度TZに到達した時点では、冷却目標温度TZと槽内圧力換算温度TBとの温度差が大きくなっており、そのままの圧力で保持すると、食品Fの表面(液面付近)に凍結を生じるおそれがある。ところが、本実施例では、初回の待機操作S12の設定圧力(「冷却目標温度TZ-初期設定値」相当圧力)を保持圧力とすることで、そのような不都合を防止することができる。 Particularly in the case of liquid food F, if the temperature detection part of the product temperature sensor 29 is located near the bottom, the detected temperature will be difficult to fall due to the influence of the liquid depth, resulting in the following problem. That is, at the time when the detected temperature of the product temperature sensor 29 reaches the cooling target temperature TZ, the temperature difference between the cooling target temperature TZ and the tank internal pressure conversion temperature TB has become large, and if the pressure is maintained as it is, the food F There is a risk of freezing on the surface (near the liquid level). However, in this embodiment, such inconvenience can be prevented by setting the set pressure (pressure corresponding to "cooling target temperature TZ - initial set value") of the first standby operation S12 as the holding pressure.

しかも、冷却工程S1から保持工程S2への移行時に、処理槽2内を保持圧力PAまで復圧する際には、段階的な復圧を行う。品温が冷却目標温度TZに到達時の槽内圧力PBと保持圧力PAとの差をたとえば四分割し、一定時間ごとに保持圧力PAまで1/4ずつ復圧目標圧力を変更して、処理槽2内の圧力を段階的に復圧する。そのため、処理槽2内の圧力を保持圧力PAに漸近させることができる。目標圧力の急激な変動を防止して、復圧時のオーバーシュートを抑制し、保持圧力PA到達後には、保持圧力PAに安定して保持することができる。 Moreover, when the pressure inside the processing tank 2 is restored to the holding pressure PA at the time of transition from the cooling step S1 to the holding step S2, the pressure is restored in stages. For example, the difference between the tank internal pressure PB and the holding pressure PA when the product temperature reaches the cooling target temperature TZ is divided into four parts, and the return pressure target pressure is changed by 1/4 up to the holding pressure PA at regular intervals, and the processing is performed. The pressure inside tank 2 is restored in stages. Therefore, the pressure within the processing tank 2 can be made to asymptotically approach the holding pressure PA. It is possible to prevent sudden fluctuations in the target pressure, suppress overshoot during pressure recovery, and stably maintain the holding pressure PA after reaching the holding pressure PA.

冷却工程S1から保持工程S2への移行時、保持圧力PAよりも低い圧力PBから保持圧力PAへ復圧する際、復圧幅を複数の圧力域に分けて、圧力域ごとに処理槽2内を段階的に復圧したが、このような段階的な復圧を常に行うのではなく、保持圧力PAよりも所定以上低い圧力PBから保持圧力PAへ復圧する際にだけ行ってもよい。つまり、品温が冷却目標温度TZに到達時の槽内圧力PBと保持圧力PAとの差が所定以上の場合にだけ、復圧幅を複数の圧力域に分けて、圧力域ごとに処理槽2内を段階的に復圧するようにしてもよい。その場合、品温が冷却目標温度TZに到達時の槽内圧力PBと保持圧力PAとの差が所定未満であれば、一段階で保持圧力PAに復圧すればよい。復圧幅が小さければ、復圧時のオーバーシュートのおそれがない。一方、一気に復圧したのではオーバーシュートが想定される場合にのみ、処理槽2内を段階的に復圧すればよい。 During the transition from the cooling step S1 to the holding step S2, when restoring pressure from a pressure PB lower than the holding pressure PA to the holding pressure PA, the restoring pressure width is divided into a plurality of pressure regions, and the inside of the processing tank 2 is controlled for each pressure region. Although the pressure was restored in stages, such stepwise restoration may not always be performed, but may be performed only when restoring the pressure from the pressure PB, which is lower than the holding pressure PA by a predetermined value, to the holding pressure PA. In other words, only when the difference between the tank internal pressure PB and the holding pressure PA when the product temperature reaches the cooling target temperature TZ is greater than a predetermined value, the repressurization width is divided into multiple pressure regions, and the processing tank is adjusted for each pressure region. 2 may be restored in stages. In that case, if the difference between the tank internal pressure PB and the holding pressure PA when the product temperature reaches the cooling target temperature TZ is less than a predetermined value, the pressure may be restored to the holding pressure PA in one step. If the recovery width is small, there is no risk of overshoot during recovery. On the other hand, if the pressure is restored all at once, it is only necessary to restore the pressure in the processing tank 2 in stages only when overshoot is expected.

図3は、図2の別の例を示す概略図である。図中、一点鎖線とこれに連続する実線は、前述した冷却パターン(徐冷曲線)PPである。冷却工程S1における初回の減圧操作S11では、基本的には、この冷却パターンPPに沿って処理槽2内の減圧が図られる。初回の減圧操作S11では、食品Fの冷却目標温度TZよりも設定値低い温度TA相当まで、冷却パターンPPに沿って減圧した後、保持操作S12へ移行してもよいが、次のように制御してもよい。 FIG. 3 is a schematic diagram showing another example of FIG. 2. In the figure, the dashed line and the continuous line are the cooling pattern (slow cooling curve) PP described above. In the first decompression operation S11 in the cooling step S1, the pressure inside the processing tank 2 is basically reduced along this cooling pattern PP. In the initial pressure reduction operation S11, the pressure may be reduced along the cooling pattern PP to a temperature equivalent to a temperature TA lower than the cooling target temperature TZ of the food F, and then the process may proceed to the holding operation S12, but the control is performed as follows. You may.

すなわち、冷却工程S1における初回の減圧操作S11では、圧力センサ28の検出圧力が保持圧力PAよりも高い所定圧力になると、減圧速度を低下(前記冷却パターンPPよりも低下)させて設定圧力(保持圧力PA)まで減圧するのがよい。減圧速度を低下させるタイミングとしての所定圧力は、高すぎる(設定圧力から遠すぎる)と減圧に時間を要する一方、低すぎる(設定圧力に近すぎる)と設定圧力に対しアンダーシュートするおそれがある。そこで、前記所定圧力は、冷却目標温度TZにおける飽和圧力PZとするのが好ましい。つまり、図3において、冷却目標温度TZ相当の圧力PZまでは冷却パターンPPに沿って減圧し、冷却目標温度TZ相当の圧力PZになると、減圧速度を下げて(つまりグラフの傾きを緩やかにして)、設定圧力まで減圧して保持すればよい。 That is, in the first depressurization operation S11 in the cooling step S1, when the pressure detected by the pressure sensor 28 reaches a predetermined pressure higher than the holding pressure PA, the depressurization speed is reduced (lower than the cooling pattern PP) and the set pressure (maintained pressure) is reduced. It is preferable to reduce the pressure to pressure PA). If the predetermined pressure as the timing for reducing the pressure reduction rate is too high (too far from the set pressure), it will take time to reduce the pressure, while if it is too low (too close to the set pressure), there is a risk of undershooting with respect to the set pressure. Therefore, it is preferable that the predetermined pressure is the saturation pressure PZ at the cooling target temperature TZ. In other words, in FIG. 3, the pressure is reduced along the cooling pattern PP until the pressure PZ corresponding to the cooling target temperature TZ is reached, and when the pressure PZ reaches the pressure PZ corresponding to the cooling target temperature TZ, the pressure reduction rate is lowered (that is, the slope of the graph is made gentler). ), the pressure can be reduced to the set pressure and held.

このように、冷却パターン(徐冷曲線)PPに沿って減圧し、槽内圧力が冷却目標温度TZ相当圧力PZに到達したら、目標圧力を「冷却目標温度TZ-設定値」相当に切り替えて、当該圧力に保持する。冷えやすい食品T1の場合、その間、品温センサ29の検出温度が冷却目標温度TZまで下がるので、設定保持時間、保持すればよい。一方、冷えにくい食品T2の場合、破線で示すように、設定圧力を段階的に下げればよい。そして、品温センサ29の検出温度が冷却目標温度TZまで下がれば、槽内圧力を保持圧力PAまで復圧して、保持すればよい。この復圧時、前述したとおり、段階的に復圧してもよいことは勿論である。 In this way, the pressure is reduced along the cooling pattern (slow cooling curve) PP, and when the pressure inside the tank reaches the pressure PZ equivalent to the cooling target temperature TZ, the target pressure is switched to the "cooling target temperature TZ - set value" equivalent, Maintain at that pressure. In the case of food T1 that cools easily, the temperature detected by the product temperature sensor 29 drops to the cooling target temperature TZ during that time, so it is sufficient to hold the food for the set holding time. On the other hand, in the case of food T2 that does not cool easily, the set pressure may be lowered in stages, as shown by the broken line. Then, if the temperature detected by the product temperature sensor 29 falls to the cooling target temperature TZ, the tank internal pressure may be restored to the holding pressure PA and held. At the time of this pressure restoration, it goes without saying that the pressure may be restored in stages as described above.

図4は、図3に対する比較例を示す概略図である。この図に示すように、仮に、品温が冷却目標温度TZに到達するまで、処理槽2内を冷却パターンPPに沿って減圧し、品温が冷却目標温度TZに到達したら、目標圧力を保持圧力PAに切り替えるとする。この場合、冷えやすい食品T1の場合は、保持圧力PAとの差圧が小さいので比較的早期に保持圧力PAに復圧できると共に、オーバーシュートも小さい。一方、冷えにくい食品T2の場合、品温が冷却目標温度TZに到達するころには、槽内圧力は保持圧力PAと大きく乖離し、0hPa付近まで到達することもある。この状態で、目標圧力を保持圧力PAに切り替えると、給気弁27の開度が大きくなり、保持圧力PAに対しオーバーシュートするおそれがある。 FIG. 4 is a schematic diagram showing a comparative example with respect to FIG. As shown in this figure, if the pressure inside the processing tank 2 is reduced along the cooling pattern PP until the product temperature reaches the cooling target temperature TZ, and when the product temperature reaches the cooling target temperature TZ, the target pressure is maintained. Suppose we switch to pressure PA. In this case, in the case of food T1 that is easily chilled, the differential pressure with the holding pressure PA is small, so the pressure can be returned to the holding pressure PA relatively quickly, and the overshoot is also small. On the other hand, in the case of food T2 that does not cool easily, by the time the product temperature reaches the cooling target temperature TZ, the tank internal pressure deviates greatly from the holding pressure PA and may even reach around 0 hPa. If the target pressure is switched to the holding pressure PA in this state, the opening degree of the air supply valve 27 will increase, and there is a risk of overshooting the holding pressure PA.

ところが、本実施例の真空冷却装置1によれば、初回の設定圧力PAよりもやや高い所定圧力(冷却目標温度TZ相当圧力PZ)になると、減圧速度を下げて設定圧力に円滑に到達させて保持することができる。また、設定圧力を段階的に下げて食品Fを冷却する場合でも、図2で説明したように、保持圧力PAまで段階的に復圧することで、オーバーシュートを抑制して、保持圧力PAに安定して保持することができる。 However, according to the vacuum cooling device 1 of this embodiment, when the predetermined pressure (pressure PZ equivalent to the cooling target temperature TZ) is reached, which is slightly higher than the initial set pressure PA, the pressure reduction rate is lowered to smoothly reach the set pressure. can be retained. In addition, even when cooling the food F by lowering the set pressure in stages, as explained in Figure 2, by gradually increasing the pressure to the holding pressure PA, overshoot is suppressed and the food is stabilized at the holding pressure PA. and can be held.

本発明の真空冷却装置1は、前記実施例の構成(制御を含む)に限らず適宜変更可能である。特に、(a)品温センサ29の検出温度が冷却目標温度TZになるまで冷却工程S1を実行した後、保持工程S2を実行し、(b)冷却工程S1では、食品Fの冷却目標温度TZよりも設定値低い温度における飽和圧力を設定圧力とし、処理槽2内を設定圧力まで減圧する減圧操作S11と、設定圧力で設定待機時間保持する待機操作S12とを実行すると共に、待機操作S12の終了時に品温センサ29の検出温度が冷却目標温度TZに到達していない場合、到達するまでの間、設定値を増加させて減圧操作S11と待機操作S12とを実行することを繰り返し、(c)保持工程S2では、冷却工程S1における初回の待機操作S12の設定圧力を保持圧力PAとして、設定保持時間経過するまで、処理槽2内を保持圧力PAに保持するのであれば、その他の構成は適宜に変更可能である。 The vacuum cooling device 1 of the present invention is not limited to the configuration (including control) of the embodiment described above, and can be modified as appropriate. In particular, (a) after performing the cooling step S1 until the temperature detected by the product temperature sensor 29 reaches the cooling target temperature TZ, the holding step S2 is performed; (b) in the cooling step S1, the cooling target temperature TZ of the food F The saturation pressure at a temperature lower than the set value is set as the set pressure, and the pressure reduction operation S11 is performed to reduce the pressure inside the processing tank 2 to the set pressure, and the standby operation S12 is held at the set pressure for a set standby time, and the standby operation S12 is performed. If the temperature detected by the product temperature sensor 29 has not reached the cooling target temperature TZ at the time of completion, the set value is increased and the decompression operation S11 and the standby operation S12 are repeated until the temperature reaches the cooling target temperature TZ, and (c ) In the holding step S2, if the setting pressure of the first standby operation S12 in the cooling step S1 is set as the holding pressure PA, and the inside of the processing tank 2 is held at the holding pressure PA until the set holding time elapses, the other configurations are as follows. It can be changed as appropriate.

たとえば、前記実施例では、冷却工程S1から保持工程S2への移行時、保持圧力PAよりも低い圧力PBから保持圧力PAへ復圧する際、復圧幅を四等分して段階的に復圧したが、復圧幅を何等分するかは適宜に変更可能である。復圧幅(品温が冷却目標温度TZに到達時の槽内圧力PBと保持圧力PAとの差圧)に応じて、分割数を変えてもよい。つまり、品温が冷却目標温度TZに到達時の槽内圧力PBと保持圧力PAとの差圧が大きければ、分割数を多くし、差圧が小さければ分割数を小さくしてもよい(あるいは分割しなくてもよい)。また、分割する場合でも、必ずしも等分する必要はない。 For example, in the above embodiment, when the pressure is restored from the pressure PB lower than the holding pressure PA to the holding pressure PA during the transition from the cooling step S1 to the holding step S2, the pressure is restored in stages by dividing the restoring width into four equal parts. However, how many equal parts the recompression width is divided can be changed as appropriate. The number of divisions may be changed depending on the pressure recovery width (the differential pressure between the tank internal pressure PB and the holding pressure PA when the product temperature reaches the cooling target temperature TZ). In other words, if the differential pressure between the tank internal pressure PB and the holding pressure PA when the product temperature reaches the cooling target temperature TZ is large, the number of divisions may be increased, and if the differential pressure is small, the number of divisions may be decreased (or (Does not need to be divided). Moreover, even when dividing, it is not necessarily necessary to divide into equal parts.

また、前記実施例では、冷却工程S1から保持工程S2への移行時、保持圧力PAよりも低い圧力PBから保持圧力PAへ復圧する際、その復圧幅を複数の圧力域に分けて段階的に復圧したが、次のように制御してもよい。すなわち、冷却工程S1から保持工程S2への移行時、保持圧力PAよりも低い圧力PBから保持圧力PAへ復圧する際、設定復圧速度で復圧するようにしてもよい。つまり、オーバーシュートを起こさない速度を、予め実験等により求めておき、その速度で処理槽2内を保持圧力PAまで復圧してもよい。 Furthermore, in the above embodiment, when the pressure is restored from the pressure PB lower than the holding pressure PA to the holding pressure PA during the transition from the cooling step S1 to the holding step S2, the width of the restoring pressure is divided into a plurality of pressure ranges and the pressure is gradually increased. Although the pressure was restored to , it may be controlled as follows. That is, when the pressure is restored from the pressure PB lower than the holding pressure PA to the holding pressure PA during the transition from the cooling step S1 to the holding step S2, the pressure may be restored at a set return pressure rate. That is, a speed that does not cause overshoot may be determined in advance through experiments or the like, and the pressure inside the processing tank 2 may be restored to the holding pressure PA at that speed.

また、前記実施例において、減圧手段3の構成は、適宜変更可能である。たとえば、前記実施例では、減圧手段3として蒸気エゼクタ6を備えたが、場合により蒸気エゼクタ6の設置を省略してもよい。 Furthermore, in the embodiments described above, the configuration of the pressure reducing means 3 can be changed as appropriate. For example, in the embodiment described above, the steam ejector 6 was provided as the pressure reducing means 3, but the steam ejector 6 may be omitted depending on the situation.

さらに、前記実施例では、真空冷却装置1は、冷却専用機として説明したが、真空冷却機能を有するのであれば、適宜に変更可能である。たとえば、蒸気による加熱手段を備えることで、蒸煮冷却装置や飽和蒸気調理装置のように構成されてもよい。あるいは、冷凍機やファンを用いた冷風冷却手段を備えることで、冷風真空複合冷却装置のように構成されてもよい。 Further, in the above embodiment, the vacuum cooling device 1 has been described as a cooling-only device, but it can be modified as appropriate as long as it has a vacuum cooling function. For example, by providing heating means using steam, it may be configured as a steam cooling device or a saturated steam cooking device. Alternatively, it may be configured like a cold air/vacuum composite cooling device by providing a cold air cooling means using a refrigerator or a fan.

1 真空冷却装置
2 処理槽
3 減圧手段
4 復圧手段
5 排気路
6 蒸気エゼクタ(6a:吸引口、6b:入口、6c:出口)
7 熱交換器
8 逆止弁
9 真空ポンプ(9a:給水口、9b:吸気口、9c:排気口)
10 エゼクタ給蒸路
11 エゼクタ給蒸弁
12 封水給水路
13 封水給水弁
14 常温水給水路
15 常温水給水弁
16 冷水給水路
17 冷水給水弁
18 共通給水路
19 熱交給水路
20 熱交排水路
21 冷水戻し路
22 排水出口路
23 冷水戻し弁
24 排水出口弁
25 給気路
26 エアフィルタ
27 給気弁
28 圧力センサ
29 品温センサ
S1 冷却工程(S11:減圧操作、S12:待機操作)
S2 保持工程
TA 第一設定温度
TZ 冷却目標温度
PA 第一設定圧力(保持圧力)
PB 品温が冷却目標温度TZに到達時の槽内圧力
PP 冷却パターン
1 Vacuum cooling device 2 Processing tank 3 Depressurizing means 4 Repressurizing means 5 Exhaust path 6 Steam ejector (6a: suction port, 6b: inlet, 6c: outlet)
7 Heat exchanger 8 Check valve 9 Vacuum pump (9a: water supply port, 9b: intake port, 9c: exhaust port)
10 Ejector steam supply channel 11 Ejector steam supply valve 12 Sealing water supply channel 13 Sealing water supply valve 14 Room temperature water supply channel 15 Room temperature water supply valve 16 Cold water supply channel 17 Cold water supply valve 18 Common water supply channel 19 Heat exchange supply channel 20 Heat exchanger Drain channel 21 Cold water return channel 22 Drain outlet channel 23 Cold water return valve 24 Drain outlet valve 25 Air supply channel 26 Air filter 27 Air supply valve 28 Pressure sensor 29 Product temperature sensor S1 Cooling process (S11: pressure reduction operation, S12: standby operation)
S2 Holding process TA First set temperature TZ Cooling target temperature PA First set pressure (holding pressure)
PB Pressure inside the tank when the product temperature reaches the cooling target temperature TZ PP Cooling pattern

Claims (4)

食品が収容される処理槽と、この処理槽内の気体を外部へ吸引排出する減圧手段と、減圧された前記処理槽内へ外気を導入する復圧手段と、前記処理槽内の圧力を検出する圧力センサと、前記処理槽内に収容された食品の温度を検出する品温センサと、前記各手段を制御する制御手段とを備え、
前記制御手段は、前記品温センサの検出温度が冷却目標温度になるまで冷却工程を実行した後、保持工程を実行し、
前記冷却工程では、食品の冷却目標温度よりも設定値低い温度における飽和圧力を設定圧力とし、前記処理槽内を前記設定圧力まで減圧する減圧操作と、前記設定圧力で設定待機時間保持する待機操作とを実行すると共に、前記待機操作の終了時に前記品温センサの検出温度が冷却目標温度に到達していない場合、到達するまでの間、前記設定値を増加させて前記減圧操作と前記待機操作とを実行することを繰り返し、
前記保持工程では、前記冷却工程における初回の待機操作の設定圧力を保持圧力として、設定保持時間経過するまで、前記処理槽内を前記保持圧力に保持し、
前記冷却工程における初回の減圧操作では、前記圧力センサの検出圧力が前記保持圧力よりも高い所定圧力になると、減圧速度を低下させて前記設定圧力まで減圧し、
前記所定圧力は、前記冷却目標温度における飽和圧力である
ことを特徴とする真空冷却装置。
A processing tank in which food is stored, a pressure reducing means for suctioning and discharging the gas in the processing tank to the outside, a pressure recovery means for introducing outside air into the reduced pressure processing tank, and detecting the pressure inside the processing tank. a pressure sensor that detects the temperature of the food stored in the processing tank, a temperature sensor that detects the temperature of the food stored in the processing tank, and a control means that controls each of the means,
The control means executes a cooling process until the detected temperature of the product temperature sensor reaches a cooling target temperature, and then executes a holding process,
In the cooling step, the saturation pressure at a temperature lower than the target food cooling temperature by a set value is set as the set pressure, and a depressurization operation in which the pressure inside the processing tank is reduced to the set pressure, and a standby operation in which the set pressure is maintained for a set standby time. At the same time, if the temperature detected by the product temperature sensor has not reached the cooling target temperature at the end of the standby operation, the set value is increased until the temperature reaches the cooling target temperature, and the depressurization operation and the standby operation are performed. Repeat and execute
In the holding step, the inside of the processing tank is maintained at the holding pressure until a set holding time elapses, using the set pressure of the first standby operation in the cooling step as the holding pressure ,
In the first depressurization operation in the cooling step, when the detected pressure of the pressure sensor reaches a predetermined pressure higher than the holding pressure, the depressurization speed is reduced to reduce the pressure to the set pressure,
The predetermined pressure is a saturation pressure at the cooling target temperature.
A vacuum cooling device characterized by:
前記冷却工程から前記保持工程への移行時、前記保持圧力よりも低い圧力から前記保持圧力へ復圧する際、その復圧幅を複数の圧力域に分けて、圧力域ごとに前記処理槽内を段階的に復圧する
ことを特徴とする請求項1に記載の真空冷却装置。
At the time of transition from the cooling step to the holding step, when returning the pressure from a pressure lower than the holding pressure to the holding pressure, the pressure return width is divided into a plurality of pressure regions, and the inside of the processing tank is controlled for each pressure region. The vacuum cooling device according to claim 1, wherein the pressure is restored in stages.
前記段階的に復圧する操作は、前記保持圧力よりも所定以上低い圧力から前記保持圧力へ復圧する際に行う
ことを特徴とする請求項2に記載の真空冷却装置。
The vacuum cooling device according to claim 2, wherein the stepwise pressure restoration operation is performed when the pressure is restored to the holding pressure from a pressure lower than the holding pressure by a predetermined value or more.
前記冷却工程から前記保持工程への移行時、前記保持圧力よりも低い圧力から前記保持圧力へ復圧する際、設定復圧速度で復圧する
ことを特徴とする請求項1に記載の真空冷却装置。
The vacuum cooling device according to claim 1, wherein when the pressure is restored from a pressure lower than the holding pressure to the holding pressure during transition from the cooling process to the holding process, the pressure is restored at a set pressure restoration rate.
JP2019216042A 2019-11-29 2019-11-29 vacuum cooling device Active JP7354799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019216042A JP7354799B2 (en) 2019-11-29 2019-11-29 vacuum cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019216042A JP7354799B2 (en) 2019-11-29 2019-11-29 vacuum cooling device

Publications (2)

Publication Number Publication Date
JP2021085628A JP2021085628A (en) 2021-06-03
JP7354799B2 true JP7354799B2 (en) 2023-10-03

Family

ID=76087332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019216042A Active JP7354799B2 (en) 2019-11-29 2019-11-29 vacuum cooling device

Country Status (1)

Country Link
JP (1) JP7354799B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333249A (en) 2001-05-02 2002-11-22 Nikku Ind Co Ltd Slow-cooling and slow-depressurizing device and method for vacuum cooling apparatus
JP2006266649A (en) 2005-03-25 2006-10-05 Miura Co Ltd Vacuum cooler, overcooling prevention device, and vacuum cooling method
JP2008249256A (en) 2007-03-30 2008-10-16 Miura Co Ltd Food machine with vacuum cooling function and its operation method
JP2010181042A (en) 2009-02-03 2010-08-19 Miura Co Ltd Cooling device and cooling method
WO2012082060A1 (en) 2010-12-16 2012-06-21 Revent International Ab Arrangement and method for rehydrating edible products
JP2016031181A (en) 2014-07-29 2016-03-07 株式会社サムソン Vacuum cooling device
JP2017161118A (en) 2016-03-08 2017-09-14 三浦工業株式会社 Vacuum cooling equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261620A (en) * 1995-03-20 1996-10-11 Miura Co Ltd Vacuum cooling method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333249A (en) 2001-05-02 2002-11-22 Nikku Ind Co Ltd Slow-cooling and slow-depressurizing device and method for vacuum cooling apparatus
JP2006266649A (en) 2005-03-25 2006-10-05 Miura Co Ltd Vacuum cooler, overcooling prevention device, and vacuum cooling method
JP2008249256A (en) 2007-03-30 2008-10-16 Miura Co Ltd Food machine with vacuum cooling function and its operation method
JP2010181042A (en) 2009-02-03 2010-08-19 Miura Co Ltd Cooling device and cooling method
WO2012082060A1 (en) 2010-12-16 2012-06-21 Revent International Ab Arrangement and method for rehydrating edible products
JP2016031181A (en) 2014-07-29 2016-03-07 株式会社サムソン Vacuum cooling device
JP2017161118A (en) 2016-03-08 2017-09-14 三浦工業株式会社 Vacuum cooling equipment

Also Published As

Publication number Publication date
JP2021085628A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP5251557B2 (en) Cooling device and cooling method
TW202044338A (en) Heat treatment apparatus and heat treatment method
JP7354799B2 (en) vacuum cooling device
JP6362467B2 (en) Vacuum cooling device
JP7376846B2 (en) vacuum cooling device
JP7223319B2 (en) vacuum cooling system
JP7124677B2 (en) vacuum cooling system
JP2018204860A (en) Vacuum cooler
JP7432103B2 (en) vacuum cooling device
JP5370670B2 (en) Operation method of cooking device
JP6417872B2 (en) Vacuum cooling device
JP4253844B2 (en) Vacuum cooling method and apparatus
JP7167572B2 (en) vacuum cooling system
JP7137131B2 (en) vacuum cooling system
JP7593179B2 (en) Vacuum Cooling Device
JP7600835B2 (en) Vacuum Cooling Device
JP2020096539A (en) Vacuum cooling device
JP2014159749A (en) Decompression system
JP7593197B2 (en) Vacuum Cooling Device
JP2020034199A (en) Vacuum cooling device
JP7529247B2 (en) Vacuum Cooling Device
JP2007252580A (en) Steam cooker
JP6457925B2 (en) Vacuum dryer and method for drying an object to be dried
JP7035541B2 (en) Vacuum defroster
JP6394299B2 (en) Vacuum cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7354799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150