JP7339080B2 - Zirconium nitride powder and method for producing the same - Google Patents
Zirconium nitride powder and method for producing the same Download PDFInfo
- Publication number
- JP7339080B2 JP7339080B2 JP2019160829A JP2019160829A JP7339080B2 JP 7339080 B2 JP7339080 B2 JP 7339080B2 JP 2019160829 A JP2019160829 A JP 2019160829A JP 2019160829 A JP2019160829 A JP 2019160829A JP 7339080 B2 JP7339080 B2 JP 7339080B2
- Authority
- JP
- Japan
- Prior art keywords
- zirconium nitride
- powder
- zirconium
- nitride powder
- black
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Description
本発明は、高い紫外線透過率及び高い黒色度を有し、更に高い絶縁性を有する黒色顔料として好適に用いられる窒化ジルコニウム粉末及びその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a zirconium nitride powder that has high ultraviolet transmittance and high blackness, and is suitably used as a black pigment having high insulating properties, and a method for producing the same.
従来、BET法により測定される比表面積が20m2/g~90m2/gであり、X線回折プロファイルにおいて、窒化ジルコニウムのピークを有する一方、二酸化ジルコニウムのピーク及び低次酸化ジルコニウムのピークを有しない窒化ジルコニウム粉末が開示されている(例えば、特許文献1(請求項1、段落[0016])参照。)。この窒化ジルコニウム粉末は、この粉末濃度50ppmの分散液透過スペクトルにおいて、370nmの光透過率Xが少なくとも18%であり、550nmの光透過率Yが12%以下であって、370nmの光透過率Xに対する550nmの光透過率Y(X/Y)が2.5以上である。 Conventionally, the specific surface area measured by the BET method is 20 m 2 /g to 90 m 2 /g, and the X-ray diffraction profile has a peak of zirconium nitride, a peak of zirconium dioxide, and a peak of low order zirconium oxide. A zirconium nitride powder that does not contain a zirconium nitride is disclosed (see, for example, Patent Document 1 (claim 1, paragraph [0016])). This zirconium nitride powder has a light transmittance X at 370 nm of at least 18%, a light transmittance Y at 550 nm of 12% or less, and a light transmittance X at 370 nm in the dispersion liquid transmission spectrum with a powder concentration of 50 ppm. The light transmittance Y (X/Y) at 550 nm is 2.5 or more.
このように構成された窒化ジルコニウム粉末は、比表面積が20m2/g以上であるため、レジストとした場合の沈降抑制の効果があり、また90m2/g以下であるため、十分な遮光性を有する効果がある。またX線回折プロファイルにおいて、窒化ジルコニウムのピークを有する一方、二酸化ジルコニウムのピーク、低次酸化ジルコニウムのピーク及び低次酸窒化ジルコニウムのピークを有しないため、粉末濃度50ppmの分散液透過スペクトルにおいて、370nmの光透過率Xが少なくとも18%であり、550nmの光透過率Yが12%以下である特徴を有し、またX/Yが2.5以上である特徴を有する。X/Yが2.5以上であることにより、紫外線をより一層透過する特長がある。この結果、黒色顔料として黒色パターニング膜を形成するときに高解像度のパターニング膜を形成することができ、しかも形成したパターニング膜は高い遮光性能を有するようになる。 Since the zirconium nitride powder thus constituted has a specific surface area of 20 m 2 /g or more, it has the effect of suppressing sedimentation when used as a resist. have the effect of In addition, in the X-ray diffraction profile, although it has a zirconium nitride peak, it does not have a zirconium dioxide peak, a low-order zirconium oxide peak, or a low-order zirconium oxynitride peak. The light transmittance X at 550 nm is at least 18%, the light transmittance Y at 550 nm is 12% or less, and X/Y is 2.5 or more. When X/Y is 2.5 or more, there is a feature that ultraviolet rays are transmitted more. As a result, when a black patterning film is formed using a black pigment, a high-resolution patterning film can be formed, and the formed patterning film has high light-shielding performance.
上記特許文献1に示された窒化ジルコニウム粉末では、窒化ジルコニウム粗粉末を分散媒に分散させ、ビーズミル(メディア:ジルコニア)などを用いて分散性を高めると、高い絶縁性が得られるけれども、この窒化ジルコニウム粉末を高粘度の樹脂ペーストに直接練り込むと、窒化ジルコニウム粗粉末が残って、分散性が不足する。このため、窒化ジルコニウム粉末を黒色顔料として用いたときに、黒色塗料の着色力が低下するとともに、窒化ジルコニウム粗粉末の残留により抵抗値が低くなる不具合があった。また、上記窒化ジルコニウム粗粉末を乾式粉砕機などで強制的に粉砕すると、粉末径が小さくなり、かつ粉末表面の酸化反応が起こるため、絶縁性は向上するけれども、黒色塗料の黒色度が低下する問題点があった。 In the zirconium nitride powder disclosed in Patent Document 1, high insulation can be obtained by dispersing coarse zirconium nitride powder in a dispersion medium and increasing dispersibility using a bead mill (media: zirconia) or the like. If the zirconium powder is directly kneaded into the high-viscosity resin paste, coarse zirconium nitride powder remains, resulting in insufficient dispersibility. For this reason, when zirconium nitride powder is used as a black pigment, the coloring power of the black paint is lowered, and the residual coarse zirconium nitride powder causes a decrease in the resistance value. Further, if the zirconium nitride coarse powder is forcibly pulverized with a dry pulverizer or the like, the powder diameter becomes small and an oxidation reaction occurs on the powder surface, which improves the insulation properties but lowers the blackness of the black paint. There was a problem.
本発明の第1の目的は、高い黒色度を得ることができるとともに、高い絶縁性を有する、窒化ジルコニウム粉末及びその製造方法を提供することにある。本発明の第2の目的は、低温湿式メディア粉砕により或いは発熱量の少ないジェットミルでの粉砕により、高い黒色度を維持することができる、窒化ジルコニウム粉末の製造方法を提供することにある。本発明の第3の目的は、不活性ガス雰囲気中での焼成により、黒色膜の絶縁性を向上できる、窒化ジルコニウム粉末の製造方法を提供することにある。 A first object of the present invention is to provide a zirconium nitride powder having high blackness and high insulating properties, and a method for producing the same. A second object of the present invention is to provide a method for producing a zirconium nitride powder that can maintain a high degree of blackness by low-temperature wet media pulverization or by pulverization with a jet mill that generates less heat. A third object of the present invention is to provide a method for producing a zirconium nitride powder that can improve the insulating properties of a black film by firing in an inert gas atmosphere.
本発明の第1の観点は、一次粒子が凝集した二次粒子の状態であり、低次酸化ジルコニウム及び低次酸窒化ジルコニウムを含まず、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が107Ω・cm以上であり、かつ水又は炭素数2~5の範囲内にあるアルコールで希釈した状態で5分間超音波分散したときの二次粒子の粒度分布D90が10μm以下である。 The first aspect of the present invention is the state of secondary particles in which primary particles are aggregated, does not contain low zirconium oxide and low zirconium oxynitride, and is compacted under a pressure of 5 MPa. Resistivity of 10 7 Ω·cm or more and secondary particle size distribution D 90 of 10 μm or less when ultrasonically dispersed for 5 minutes in a state diluted with water or alcohol having a carbon number of 2 to 5 is.
本発明の第2の観点は、テルミット法又はプラズマ合成法により、比表面積が20m 2 /g~90m 2 /gである窒化ジルコニウム粗粉末を生成する工程と、この窒化ジルコニウム粗粉末を10℃以下の分散媒温度で低温湿式メディア粉砕を行うか又は0.3MPa以上のガス圧でジェットミル粉砕を行うことにより、水又は炭素数2~5の範囲内にあるアルコールで希釈した状態で5分間超音波分散したときの粒度分布D90が10μm以下である窒化ジルコニウム前駆体粉末を作製する工程と、前記粉砕した窒化ジルコニウム前駆体粉末を不活性ガス雰囲気中で、焼成温度が250℃~550℃、焼成時間が1時間焼~5時間の条件で焼成することにより、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が107Ω・cm以上である窒化ジルコニウム粉末を製造する工程と、を含む窒化ジルコニウム粉末の製造方法である。 A second aspect of the present invention is a step of producing coarse zirconium nitride powder having a specific surface area of 20 m 2 /g to 90 m 2 /g by a thermite method or a plasma synthesis method; By performing low-temperature wet media pulverization at a dispersion medium temperature of , or jet mill pulverization at a gas pressure of 0.3 MPa or more, it is diluted with water or an alcohol having a carbon number of 2 to 5 for more than 5 minutes. a step of producing a zirconium nitride precursor powder having a particle size distribution D 90 of 10 μm or less when sonically dispersed; firing the pulverized zirconium nitride precursor powder in an inert gas atmosphere at a temperature of 250° C. to 550° C.; a step of producing a zirconium nitride powder having a volume resistivity of 10 7 Ω·cm or more in the state of a green compact compacted at a pressure of 5 MPa by firing under conditions of firing for 1 hour to 5 hours; A method for producing a zirconium nitride powder comprising:
本発明の第3の観点は、第1の観点に記載の窒化ジルコニウム粉末がアクリルモノマー又はエポキシモノマーに分散されたモノマー分散体である。 A third aspect of the present invention is a monomer dispersion in which the zirconium nitride powder according to the first aspect is dispersed in an acrylic monomer or an epoxy monomer.
本発明の第4の観点は、第1の観点に記載の窒化ジルコニウム粉末が黒色顔料として分散媒に分散され更に樹脂が混合された黒色組成物である。 A fourth aspect of the present invention is a black composition in which the zirconium nitride powder according to the first aspect is dispersed as a black pigment in a dispersion medium and further mixed with a resin.
本発明の第5の観点は、第3の観点に記載のモノマー分散体を基板に塗布して塗膜を形成する工程と、この塗膜を熱硬化又は紫外線硬化させて黒色膜を作製する工程とを含む黒色膜の作製方法である。 A fifth aspect of the present invention is a step of applying the monomer dispersion according to the third aspect to a substrate to form a coating film, and a step of thermosetting or ultraviolet curing the coating film to prepare a black film. and a method for producing a black film.
本発明の第6の観点は、第4の観点に記載の黒色組成物を基板に塗布して塗膜を形成する工程と、この塗膜を熱硬化又は紫外線硬化させて黒色膜を作製する工程とを含む黒色膜の作製方法である。 A sixth aspect of the present invention is a step of applying the black composition according to the fourth aspect to a substrate to form a coating film, and a step of thermally curing or ultraviolet curing the coating film to produce a black film. and a method for producing a black film.
本発明の第1の観点の窒化ジルコニウム粉末は、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が107Ω・cm以上であるので、厚さ10μm~100μm程度の黒色厚膜を作製したときの絶縁性を向上できる。また、窒化ジルコニウム粉末は、水又は炭素数2~5の範囲内にあるアルコールで希釈した状態で5分間超音波分散したときの粒度分布D90が10μm以下であるので、窒化ジルコニウム粗粉末が存在せず、良好な分散体や分散液を得ることができる。この結果、上記窒化ジルコニウム粉末を用いた分散体や分散液により作製された黒色膜は、高い遮光性即ち高い黒色度を得ることができるとともに、高い絶縁性を有する。 The zirconium nitride powder of the first aspect of the present invention has a volume resistivity of 10 7 Ω·cm or more in the state of a green compact compacted at a pressure of 5 MPa, so that a black thick film having a thickness of about 10 μm to 100 μm is formed. Insulation can be improved when the is produced. In addition, since the zirconium nitride powder has a particle size distribution D90 of 10 μm or less when ultrasonically dispersed for 5 minutes in a state diluted with water or an alcohol having a carbon number in the range of 2 to 5, coarse zirconium nitride powder is present. good dispersions and liquid dispersions can be obtained. As a result, a black film produced from a dispersion or a dispersion liquid using the zirconium nitride powder has high light-shielding properties, that is, a high degree of blackness, and also has high insulating properties.
本発明の第2の観点の窒化ジルコニウム粉末の製造方法では、窒化ジルコニウム粗粉末を10℃以下の分散媒温度で低温湿式メディア粉砕を行うと、発熱量が少ないため、窒化ジルコニウムの表面酸化が進まず、高い黒色度を維持することができる。また、窒化ジルコニウム粗粉末を0.3MPa以上のガス圧でジェットミル粉砕を行うと、窒化ジルコニウム粗粉末が残らず、黒色膜の絶縁性を向上できる。更に、上記粉砕した窒化ジルコニウム前駆体粉末を不活性ガス雰囲気中で焼成することにより、黒色膜の絶縁性を向上できる。 In the method for producing zirconium nitride powder according to the second aspect of the present invention, if the zirconium nitride coarse powder is subjected to low-temperature wet media pulverization at a dispersion medium temperature of 10° C. or less, the amount of heat generated is small, so the surface oxidation of zirconium nitride proceeds. First, a high degree of blackness can be maintained. Further, when the coarse zirconium nitride powder is pulverized by a jet mill under a gas pressure of 0.3 MPa or more, the coarse zirconium nitride powder does not remain and the insulation of the black film can be improved. Furthermore, the insulating properties of the black film can be improved by firing the pulverized zirconium nitride precursor powder in an inert gas atmosphere.
本発明の第3の観点のモノマー分散体は、本発明の第1の観点の窒化ジルコニウム粉末をアクリルモノマー又はエポキシモノマーに分散したので、これらのモノマーの粘度が比較的高くても、窒化ジルコニウム粉末の上記モノマーに対する分散性を良好に保つことができる。この結果、モノマー分散体を用いた黒色膜は、高い遮光性即ち高い黒色度を得ることができるとともに、高い絶縁性を有する。 The monomer dispersion of the third aspect of the present invention is obtained by dispersing the zirconium nitride powder of the first aspect of the present invention in acrylic monomers or epoxy monomers. can maintain good dispersibility in the above monomers. As a result, the black film using the monomer dispersion can obtain high light-shielding properties, that is, high blackness, and has high insulating properties.
本発明の第4の観点の黒色組成物は、本発明の第1の観点の窒化ジルコニウム粉末を黒色顔料として分散媒に分散し更に樹脂を混合したので、窒化ジルコニウム粉末が分散媒に均一に分散する。この結果、黒色組成物を用いた黒色膜は、高い遮光性即ち高い黒色度を得ることができるとともに、高い絶縁性を有する。 The black composition of the fourth aspect of the present invention is obtained by dispersing the zirconium nitride powder of the first aspect of the present invention as a black pigment in a dispersion medium and further mixing a resin, so that the zirconium nitride powder is uniformly dispersed in the dispersion medium. do. As a result, the black film using the black composition can obtain high light-shielding properties, that is, high blackness, and has high insulating properties.
本発明の第5の観点の黒色膜の作製方法では、上記モノマー分散体を基板に塗布して塗膜を形成した後、この塗膜を熱硬化又は紫外線硬化させて黒色膜を作製したので、黒色膜は、高い遮光性即ち高い黒色度を得ることができるとともに、高い絶縁性を有する。 In the method for producing a black film according to the fifth aspect of the present invention, the monomer dispersion is applied to a substrate to form a coating film, and then the coating film is thermally or ultraviolet cured to produce a black film. A black film can obtain a high light-shielding property, that is , a high degree of blackness, and has a high insulating property.
本発明の第6の観点の黒色膜の作製方法では、上記黒色組成物を基板に塗布して塗膜を形成した後、この塗膜を熱硬化又は紫外線硬化させて黒色膜を作製したので、黒色膜は、高い遮光性即ち高い黒色度を得ることができるとともに、高い絶縁性を有する。 In the method for producing a black film according to the sixth aspect of the present invention, the black composition is applied to a substrate to form a coating film, and then the coating film is thermally or ultraviolet cured to produce a black film. A black film can obtain a high light-shielding property, that is , a high degree of blackness, and has a high insulating property.
次に本発明を実施するための形態を説明する。本実施の形態の窒化ジルコニウム粉末は、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が107Ω・cm以上、好ましくは108Ω・cm以上であり、かつ水又は炭素数2~5の範囲内にあるアルコールで希釈した状態で5分間超音波分散したときの粒度分布D90が10μm以下、好ましくは8μm以下である。ここで、上記体積抵抗率を107Ω・cm以上に限定したのは、107Ω・cm未満では窒化ジルコニウム粉末を用いて厚さ1μm~100μm程度の黒色厚膜を作製したときの絶縁性が低下してしまうからである。また、上記粒度分布D90を10μm以下に限定したのは、10μmを超えると窒化ジルコニウム粗粉末が残存し、良好な分散体や黒色膜が得られないからである。 Next, a mode for carrying out the present invention will be described. The zirconium nitride powder of the present embodiment has a volume resistivity of 10 7 Ω·cm or more, preferably 10 8 Ω·cm or more in the state of a compact compacted at a pressure of 5 MPa, and water or carbon number The particle size distribution D 90 is 10 μm or less, preferably 8 μm or less when ultrasonically dispersed for 5 minutes in a state of being diluted with an alcohol within the range of 2 to 5. Here, the reason why the volume resistivity is limited to 10 7 Ω·cm or more is that if the volume resistivity is less than 10 7 Ω·cm, the insulating properties when a black thick film having a thickness of about 1 μm to 100 μm is produced using zirconium nitride powder. This is because the The reason why the particle size distribution D 90 is limited to 10 μm or less is that if the particle size exceeds 10 μm, coarse zirconium nitride powder remains and a good dispersion or black film cannot be obtained.
上記体積抵抗率は、例えば、三菱化学社製の低抵抗率計ロレスタ-GP(型式:UV-3101PC)を用いて、四端子四探針法により測定される。この四端子四探針法とは、試料(圧粉体)の表面に4本の針状電極を所定の間隔をあけて一直線上に置き、外側の2本の針状電極間に一定の電流を流し、内側の2本の針状電極間に生じる電位差を測定することにより体積抵抗率を求める方法である。 The volume resistivity is measured by a four-terminal four-probe method using, for example, a low resistivity meter Loresta-GP (model: UV-3101PC) manufactured by Mitsubishi Chemical Corporation. This four-terminal four-probe method involves placing four needle-like electrodes on the surface of a sample (powder compact) in a straight line with a predetermined interval, and applying a constant electric current between the outer two needle-like electrodes. is allowed to flow, and the potential difference generated between the inner two needle-like electrodes is measured to determine the volume resistivity.
また、窒化ジルコニウム粉末は、一次粒子が凝集した二次粒子の状態であり、この粉末の二次粒子の粒度分布はレーザ回折散乱法により測定される体積基準の粒度分布である。ここで、レーザ回折散乱法による体積基準の粒度分布の測定は、次のように行う。先ず、窒化ジルコニウム粉末(二次粒子)0.1gをイオン交換水20g中に投入し、25kHzの超音波を5分間照射して、イオン交換水に窒化ジルコニウム粉末を分散させる。次に、得られた窒化ジルコニウム粉末の分散液を、レーザ回折散乱式粒度分布測定装置(堀場製作所製商品名:LA-300)の観察セルに適量滴下し、この装置の手順に従い粒度分布を測定する。このレーザ回折散乱法によって測定された粒度分布は、窒化ジルコニウム粉末の一次粒子が凝集した二次粒子の粒度分布である。なお、イオン交換水に替えて、炭素数2~5の範囲内にあるアルコールを用いてもよい。炭素数2のアルコールとして、エタノールが挙げられ、炭素数3のアルコールとして、1-プロパノール、2-プロパノール等が挙げられ、炭素数4のアルコールとして、1-ブタノール、2-ブタノール等が挙げられ、炭素数5のアルコールとして、1-ペンタノール、2-ペンタノール等が挙げられる。なお、炭素数が1以下では揮発性が高く測定値が安定しないという不具合があり、炭素数が6以上では親和性が不足し測定値が安定しないという不具合がある。 Zirconium nitride powder is in the state of secondary particles in which primary particles are aggregated, and the particle size distribution of the secondary particles of this powder is a volume-based particle size distribution measured by a laser diffraction scattering method. Here, the volume-based particle size distribution is measured by the laser diffraction scattering method as follows. First, 0.1 g of zirconium nitride powder (secondary particles) is put into 20 g of ion-exchanged water, and ultrasonic waves of 25 kHz are applied for 5 minutes to disperse the zirconium nitride powder in the ion-exchanged water. Next, an appropriate amount of the obtained zirconium nitride powder dispersion is dropped into an observation cell of a laser diffraction/scattering particle size distribution analyzer (manufactured by Horiba Ltd., trade name: LA-300), and the particle size distribution is measured according to the procedure of this apparatus. do. The particle size distribution measured by this laser diffraction scattering method is the particle size distribution of secondary particles in which the primary particles of the zirconium nitride powder are aggregated. An alcohol having a carbon number of 2 to 5 may be used instead of ion-exchanged water. Alcohols with 2 carbon atoms include ethanol, alcohols with 3 carbon atoms include 1-propanol, 2-propanol, etc., and alcohols with 4 carbon atoms include 1-butanol, 2-butanol, etc. Examples of alcohols having 5 carbon atoms include 1-pentanol and 2-pentanol. If the number of carbon atoms is 1 or less, the volatility is high and the measured value is unstable. If the number of carbon atoms is 6 or more, the affinity is insufficient and the measured value is unstable.
このように構成された窒化ジルコニウム粉末の製造方法を説明する。先ず、テルミット法又はプラズマ合成法により窒化ジルコニウム粗粉末を生成する。本明細書において、テルミット法とは、酸化ジルコニウム粉末を金属マグネシウムの存在下でN2ガス(窒素ガス)と反応させて還元する方法をいう。この実施の形態では、酸化ジルコニウム粉末として、二酸化ジルコニウム(ZrO2)粉末又はシリカがコーティングされた二酸化ジルコニウム(ZrO2)粉末が用いられる。また、金属マグネシウム粉末に窒化マグネシウム(Mg3N2)粉末が添加される。これらの粉末を出発原料として、特定の雰囲気下で、特定の温度と時間で焼成することにより、BET法により測定される比表面積が20m2/g~90m2/gである窒化ジルコニウム粗粉末を生成する。 A method for producing the zirconium nitride powder thus configured will be described. First, zirconium nitride coarse powder is produced by the thermite method or plasma synthesis method. As used herein, the thermite method refers to a method of reducing zirconium oxide powder by reacting it with N 2 gas (nitrogen gas) in the presence of metallic magnesium. In this embodiment, zirconium dioxide (ZrO 2 ) powder or silica-coated zirconium dioxide (ZrO 2 ) powder is used as the zirconium oxide powder. Also, magnesium nitride (Mg 3 N 2 ) powder is added to metallic magnesium powder. Using these powders as starting materials, they are fired under a specific atmosphere at a specific temperature and for a specific period of time to obtain coarse zirconium nitride powder having a specific surface area of 20 m 2 /g to 90 m 2 /g as measured by the BET method. Generate.
[二酸化ジルコニウム粉末]
二酸化ジルコニウム粉末としては、例えば、単斜晶系二酸化ジルコニウム、立方晶系二酸化ジルコニウム、イットリウム安定化二酸化ジルコニウム等の二酸化ジルコニウムの粉末がいずれも使用可能であるが、窒化ジルコニウム粉末の生成率が高くなる観点から、単斜晶系二酸化ジルコニウム粉末が好ましい。また、二酸化ジルコニウム粉末又はシリカがコーティングされた二酸化ジルコニウム粉末の各平均一次粒径、及び酸化マグネシウム粉末の平均一次粒径は、BET法により測定される比表面積が20m2/g~90m2/gの窒化ジルコニウム粗粉末を得るためには、比表面積の測定値から球形換算した平均一次粒径で500nm以下であることが好ましく、粉末の取扱い易さから、平均一次粒径で500nm以下で10nm以上であることが好ましい。
[Zirconium dioxide powder]
As the zirconium dioxide powder, for example, zirconium dioxide powders such as monoclinic zirconium dioxide, cubic zirconium dioxide, and yttrium-stabilized zirconium dioxide can be used, but the yield of zirconium nitride powder increases. From this point of view, monoclinic zirconium dioxide powder is preferred. In addition, each average primary particle size of the zirconium dioxide powder or the zirconium dioxide powder coated with silica and the average primary particle size of the magnesium oxide powder have a specific surface area measured by the BET method of 20 m 2 /g to 90 m 2 /g. In order to obtain the zirconium nitride coarse powder, the average primary particle size, which is sphere-converted from the measured value of the specific surface area, is preferably 500 nm or less. is preferably
[シリカがコーティングされた二酸化ジルコニウム粉末]
シリカがコーティングされた二酸化ジルコニウム粉末は、二酸化ジルコニウム粉末とシリケートゾルゲル液とを混合してスラリーを調製し、このスラリーを乾燥し粉砕して得られる。二酸化ジルコニウムとシリケートゾルゲル液との混合割合は、質量比で二酸化ジルコニウム:シリケートゾルゲル液のシリカ分が(90.0~99.5):(10.0~0.5)であることが好ましい。シリカ分が下限値未満では、二酸化ジルコニウム表面のシリカ被覆率が低すぎ、シリカ分が上限値を超えると、得られた窒化ジルコニウム粉末を用いてパターニング膜を形成したときに遮光性が不足する不具合がある。
[Zirconium dioxide powder coated with silica]
Zirconium dioxide powder coated with silica is obtained by mixing zirconium dioxide powder and a silicate sol-gel liquid to prepare a slurry, drying and pulverizing this slurry. The mixing ratio of zirconium dioxide and the silicate sol-gel liquid is preferably such that the mass ratio of zirconium dioxide:silica content of the silicate sol-gel liquid is (90.0 to 99.5):(10.0 to 0.5). If the silica content is less than the lower limit, the silica coverage on the zirconium dioxide surface is too low. There is
二酸化ジルコニウム粉末を水、アルコールなどの分散媒に入れて混合した後、この混合液をシリケートゾルゲル液に添加混合することが、二酸化ジルコニウムがゾルゲル液に均一に混合するため、好ましい。シリケートゾルゲル液は、メチルシリケート、エチルシリケートなどのシリケートが水、アルコールなどの溶媒に溶解した液が好ましい。二酸化ジルコニウムとゾルゲル液との混合割合は、得られるスラリーの固形分濃度が固形分で10質量%~50質量%になるように決められる。得られたスラリーを大気中又は真空雰囲気下60℃~350℃の温度で1分間~360分間乾燥して、シリカがコーティングされた二酸化ジルコニウム粉末が得られる。 It is preferable to mix the zirconium dioxide powder in a dispersion medium such as water or alcohol, and then add and mix the mixed liquid with the silicate sol-gel liquid because the zirconium dioxide is uniformly mixed with the sol-gel liquid. The silicate sol-gel liquid is preferably a liquid in which a silicate such as methyl silicate or ethyl silicate is dissolved in a solvent such as water or alcohol. The mixing ratio of zirconium dioxide and the sol-gel liquid is determined so that the solid content concentration of the resulting slurry is 10% by mass to 50% by mass in terms of solid content. The obtained slurry is dried at a temperature of 60° C. to 350° C. for 1 minute to 360 minutes in air or in a vacuum atmosphere to obtain silica-coated zirconium dioxide powder.
出発原料にシリカがコーティングされた二酸化ジルコニウム粉末を用いることにより、焼成時に粒成長を抑えることが可能となり、BET法により測定される比表面積が20m2/g~90m2/gであるより微細な窒化ジルコニウム粉末を得ることができる。このとき、窒化ジルコニウム粉末は、酸化ケイ素及び/又は窒化ケイ素を10.0質量%以下、好ましくは9.0質量%以下の割合で含有する。10.0質量%を超えると、得られた窒化ジルコニウム粉末を用いてパターニング膜を形成したときに遮光性が不足する不具合がある。 By using silica-coated zirconium dioxide powder as a starting material, it is possible to suppress grain growth during firing, resulting in finer particles having a specific surface area of 20 m 2 /g to 90 m 2 /g as measured by the BET method. A zirconium nitride powder can be obtained. At this time, the zirconium nitride powder contains silicon oxide and/or silicon nitride in a proportion of 10.0 mass % or less, preferably 9.0 mass % or less. If it exceeds 10.0% by mass, there is a problem that the resulting zirconium nitride powder is used to form a patterned film, resulting in insufficient light shielding properties.
[金属マグネシウム粉末]
金属マグネシウム粉末は、粒径が小さすぎると、反応が急激に進行して操作上危険性が高くなるので、粒径が篩のメッシュパスで100μm~1000μmの粒状のものが好ましく、特に200μm~500μmの粒状のものが好ましい。ただし、金属マグネシウムは、すべて上記粒径範囲内になくても、その80質量%以上、特に90質量%以上が上記範囲内にあればよい。
[Metallic magnesium powder]
If the particle size of the metallic magnesium powder is too small, the reaction will proceed rapidly and the operation will be dangerous. is preferred. However, even if all of metallic magnesium does not fall within the above particle size range, 80% by mass or more, particularly 90% by mass or more thereof may be within the above range.
二酸化ジルコニウム粉末に対する金属マグネシウム粉末の添加量の多寡は、後述する雰囲気ガス中のアンモニアガス及び水素ガスの量とともに二酸化ジルコニウムの還元力に影響を与える。金属マグネシウムの量が少なすぎると、還元不足で目的とする窒化ジルコニウム粉末が得られにくくなり、多すぎると、過剰な金属マグネシウムにより反応温度が急激に上昇し、粉末の粒成長を引き起こすおそれがあるとともに不経済となる。金属マグネシウム粉末は、その粒径の大きさによって、金属マグネシウムが二酸化ジルコニウムの2.0倍モル~6.0倍モルの割合になるように、金属マグネシウム粉末を二酸化ジルコニウム粉末に添加して混合する。2.0倍モル未満では、二酸化ジルコニウムの還元反応が不十分であり、6.0倍モルを超えると、過剰な金属マグネシウムにより反応温度が急激に上昇し、粉末の粒成長を引き起こすおそれがあるとともに不経済となる。 The amount of metallic magnesium powder added to the zirconium dioxide powder affects the reducing power of zirconium dioxide together with the amount of ammonia gas and hydrogen gas in the atmospheric gas, which will be described later. If the amount of metallic magnesium is too small, it will be difficult to obtain the desired zirconium nitride powder due to insufficient reduction. become uneconomical. The metallic magnesium powder is added to and mixed with the zirconium dioxide powder so that the metallic magnesium powder is 2.0 to 6.0 times the molar ratio of the zirconium dioxide, depending on the size of the particle size. . If it is less than 2.0 times the molar amount, the reduction reaction of zirconium dioxide is insufficient, and if it exceeds 6.0 times the molar amount, the reaction temperature rises sharply due to excess metal magnesium, which may cause grain growth of the powder. become uneconomical.
[窒化マグネシウム粉末]
窒化マグネシウム粉末は、焼成時に窒化ジルコニウム表面をコーティングして、金属マグネシウムの還元力を緩和して、窒化ジルコニウム粉末の焼結及び粒成長を防止する。窒化マグネシウム粉末は、その粒径の大きさによって、窒化マグネシウムが二酸化ジルコニウムの0.3倍モル~3.0倍モルの割合になるように、二酸化ジルコニウムに添加して混合する。0.3倍モル未満では窒化ジルコニウム粉末の焼結防止にならず、3.0倍モルを超えると、焼成後の酸洗浄時に要する酸性溶液の使用量が増加する不具合がある。好ましくは0.4倍モル~2.0倍モルである。窒化マグネシウム粉末は、比表面積の測定値から球形換算した平均一次粒径で1000nm以下であることが好ましく、粉末の取扱い易さから、平均一次粒径で10nm以上500nm以下であることが好ましい。なお、窒化マグネシウムのみではなく、酸化マグネシウムも窒化ジルコニウムの焼結予防に有効であるため、窒化マグネシウムに一部酸化マグネシウムを混合して使用することも可能である。
[Magnesium nitride powder]
Magnesium nitride powder coats the surface of zirconium nitride during firing to reduce the reducing power of metallic magnesium, thereby preventing sintering and grain growth of zirconium nitride powder. The magnesium nitride powder is added to and mixed with zirconium dioxide so that the magnesium nitride is 0.3 to 3.0 times the molar ratio of zirconium dioxide, depending on the size of the particle size. If it is less than 0.3 mol, sintering of the zirconium nitride powder cannot be prevented, and if it exceeds 3.0 mol, there is a problem that the amount of acid solution required for acid washing after firing increases. It is preferably 0.4-fold molar to 2.0-fold molar. Magnesium nitride powder preferably has an average primary particle size of 1000 nm or less when converted to spheres from the measured specific surface area, and preferably has an average primary particle size of 10 nm or more and 500 nm or less from the viewpoint of easy handling of the powder. Since not only magnesium nitride but also magnesium oxide is effective in preventing sintering of zirconium nitride, it is possible to use a mixture of magnesium oxide and magnesium nitride.
[金属マグネシウム粉末による還元反応]
窒化ジルコニウム粗粉末を生成させるための金属マグネシウムによる還元反応時の温度は、650℃~900℃、好ましくは700℃~800℃である。650℃は金属マグネシウムの溶融温度であり、温度がそれより低いと、二酸化ジルコニウムの還元反応が十分に生じない。また、温度を900℃より高くしても、その効果は増加せず、熱エネルギーの無駄になるとともに粉末の焼結が進行し好ましくない。また還元反応時間は30分~90分が好ましく、30分~60分が更に好ましい。
[Reduction reaction with metallic magnesium powder]
The temperature during the reduction reaction with metallic magnesium for producing coarse zirconium nitride powder is 650°C to 900°C, preferably 700°C to 800°C. 650° C. is the melting temperature of metallic magnesium, and if the temperature is lower than 650° C., the reduction reaction of zirconium dioxide does not occur sufficiently. Also, even if the temperature is higher than 900° C., the effect does not increase, the heat energy is wasted, and the sintering of the powder proceeds, which is not preferable. The reduction reaction time is preferably 30 to 90 minutes, more preferably 30 to 60 minutes.
上記還元反応を行う際の反応容器は、反応時に原料や生成物が飛び散らないように、蓋を有するものが好ましい。これは、金属マグネシウムの溶融が開始されると、還元反応が急激に進行し、それに伴って温度が上昇して、容器内部の気体が膨張し、それによって、容器の内部のものが外部に飛び散るおそれがあるからである。 The reaction vessel in which the reduction reaction is carried out preferably has a lid so that the raw materials and products do not scatter during the reaction. This is because when the metal magnesium starts to melt, the reduction reaction proceeds rapidly, the temperature rises accordingly, the gas inside the container expands, and the contents inside the container scatter to the outside. Because it is possible.
[金属マグネシウム粉末による還元反応時の雰囲気ガス]
雰囲気ガスは、窒素ガス単体であるか、又は窒素ガスと水素ガスの混合ガスであるか、又は窒素ガスとアンモニアガスの混合ガスである。上記還元反応は上記混合ガスの気流中で行われる。混合ガス中の窒素ガスは、金属マグネシウムや還元生成物と酸素との接触を防ぎ、それらの酸化を防ぐとともに、窒素をジルコニウムと反応させ、窒化ジルコニウムを生成させる役割を有する。混合ガス中の水素ガス又はアンモニアガスは、金属マグネシウムとともに、二酸化ジルコニウムを還元させる役割を有する。水素ガスは、上記混合ガス中、0体積%~40体積%含むことが好ましく、10体積%~30体積%含むことが更に好ましい。またアンモニアガスは、上記混合ガス中、0体積%~50体積%含むことが好ましく、0体積%~40体積%含むことが更に好ましい。この還元力のある雰囲気ガスを使用することにより、最終的に低次酸化ジルコニウム及び低次酸窒化ジルコニウムを含まない窒化ジルコニウム粉末を製造することができる。一方、この範囲より水素ガスの割合、或いはアンモニアガスの割合が高いと還元は進むものの窒素源が少なくなるため、低次酸化ジルコニウム又は低次酸窒化ジルコニウムが生成してしまい、望ましくない。また、水素ガスの割合よりもアンモニアガスの割合が高いのは、ガスの窒化能力が水素よりアンモニアのほうが高いからと考えられる。
[Atmospheric gas during reduction reaction with metallic magnesium powder]
The atmospheric gas is nitrogen gas alone, a mixed gas of nitrogen gas and hydrogen gas, or a mixed gas of nitrogen gas and ammonia gas. The reduction reaction is carried out in an airflow of the mixed gas. Nitrogen gas in the mixed gas has a role of preventing metal magnesium and reduction products from coming into contact with oxygen and oxidizing them, and reacting nitrogen with zirconium to produce zirconium nitride. Hydrogen gas or ammonia gas in the mixed gas has a role of reducing zirconium dioxide together with metallic magnesium. Hydrogen gas is preferably included in the mixed gas in an amount of 0% to 40% by volume, more preferably 10% to 30% by volume. Further, ammonia gas is preferably contained in the mixed gas in an amount of 0% to 50% by volume, more preferably 0% to 40% by volume. By using this reducing atmosphere gas, zirconium nitride powder containing no low zirconium oxide and low zirconium oxynitride can be finally produced. On the other hand, if the proportion of hydrogen gas or the proportion of ammonia gas is higher than this range, the reduction progresses, but the nitrogen source decreases, so that low order zirconium oxide or low order zirconium oxynitride is produced, which is not desirable. In addition, the reason why the ratio of ammonia gas is higher than that of hydrogen gas is considered to be that the gas nitriding ability of ammonia is higher than that of hydrogen.
一方、プラズマ合成法による窒化ジルコニウム粗粉末の生成方法は、プラズマナノ粒子製造装置に金属ジルコニウム粉末を導入し、N2ガス雰囲気にて窒化ジルコニウムナノ粒子を得る方法である。この方法により合成される窒化ジルコニウムは、20m2/g~90m2/gのBET法により測定される比表面積のものを得ることができるが、原料である金属ジルコニウムの燃焼性が高く危険であること、及びコスト的に高くなるデメリットがある。なお、プラズマ合成法により生成されたナノ粒子は、冷却過程、製品取出し過程における急激な表面酸化、付着、凝集等により粗大化し、粗粉末になるものがあるため、プラズマ合成法により生成されたものも窒化ジルコニウム粗粉末とした。 On the other hand, the method of producing zirconium nitride coarse powder by plasma synthesis method is a method of introducing metal zirconium powder into a plasma nanoparticle production apparatus and obtaining zirconium nitride nanoparticles in an N 2 gas atmosphere. Zirconium nitride synthesized by this method can be obtained with a specific surface area measured by the BET method of 20 m 2 /g to 90 m 2 /g, but the raw material, metallic zirconium, is highly combustible and dangerous. and a disadvantage of high cost. In addition, nanoparticles generated by the plasma synthesis method may be coarsened due to rapid surface oxidation, adhesion, aggregation, etc. during the cooling process and product removal process, and may become coarse powder. zirconium nitride coarse powder.
次に、この窒化ジルコニウム粗粉末を10℃以下の分散媒温度で低温湿式メディア粉砕を行うか又は0.3MPa以上のガス圧でジェットミル粉砕を行うことにより、水又は炭素数2~5の範囲内にあるアルコールで希釈した状態で5分間超音波分散したときの粒度分布D90が10μm以下である窒化ジルコニウム前駆体粉末を作製する。なお、この窒化ジルコニウム前駆体粉末のBET法により測定される比表面積は22m2/g~120m2/gである。 Next, this zirconium nitride coarse powder is subjected to low-temperature wet media pulverization at a dispersion medium temperature of 10 ° C. or less, or jet mill pulverization at a gas pressure of 0.3 MPa or more, to water or a carbon number range of 2 to 5 A zirconium nitride precursor powder having a particle size distribution D 90 of 10 μm or less when ultrasonically dispersed for 5 minutes while being diluted with alcohol is prepared. The specific surface area of this zirconium nitride precursor powder measured by the BET method is 22 m 2 /g to 120 m 2 /g.
上記低温湿式メディア粉砕法とは、イオン交換水や炭素数2~5のアルコール等の分散媒に窒化ジルコニウム粗粉末を分散させ、分散媒温度を10℃以下に保った状態で、平均粒径50μm~500μmのジルコニア、アルミナ、ガラス、ウレタン樹脂等のメディアを用いたビーズミル粉砕法をいう。ここで、分散媒温度を10℃以下に保つのは、10℃を超えると窒化ジルコニウム前駆体粉末の粉砕が進んで、後述の黒色膜のOD値が低下してしまうからである。なお、分散媒温度を10℃以下に保つために、分散媒として液体窒素を用いたり、メディアとしてドライアイスビーズを用いてもよい。また、窒化ジルコニウム粗粉末を上記低温湿式メディア粉砕法で粉砕すると、発熱量が少ないため、窒化ジルコニウムの表面酸化が進まず、高い黒色度を維持することができる。 The low-temperature wet media pulverization method involves dispersing coarse zirconium nitride powder in a dispersion medium such as ion-exchanged water or an alcohol having 2 to 5 carbon atoms, and maintaining the temperature of the dispersion medium at 10 ° C. or less. It refers to a bead mill pulverization method using media such as zirconia, alumina, glass, and urethane resin of up to 500 μm. Here, the reason why the temperature of the dispersion medium is kept at 10° C. or less is that if the temperature exceeds 10° C., the zirconium nitride precursor powder is pulverized and the OD value of the black film, which will be described later, is lowered. In order to keep the temperature of the dispersion medium at 10° C. or lower, liquid nitrogen may be used as the dispersion medium, or dry ice beads may be used as the medium. In addition, when the zirconium nitride coarse powder is pulverized by the low-temperature wet media pulverization method, the zirconium nitride surface is not oxidized due to the small amount of heat generated, and a high degree of blackness can be maintained.
また、ガス圧0.3MPa以上のジェットミル粉砕とは、ノズルから噴射される0.3MPa以上の高圧の空気、窒素などの不活性ガス、又は蒸気を超高速ジェットとして粉末に衝突させ、粉末同士の衝撃によって数μmのレベルの微粉末にまで粉砕することをいい、噴射される空気又は蒸気は音速前後に達する。ジェットミルの特徴として、噴射されるガスが断熱膨張することにより温度が下がるため、低温での粉砕が可能であることが挙げられ、本発明における窒化ジルコニウムのような還元性の物質でも酸化を抑制することが可能である。ここで、上記ガス圧を0.3MPa以上に限定したのは、0.3MPa未満では窒化ジルコニウム粗粉末が残ってしまうからである。なお、窒化ジルコニウム粗粉末を上記ジェットミル粉砕法で粉砕すると、窒化ジルコニウム粗粉末が残らず、黒色膜の絶縁性を向上できる。 In addition, jet mill pulverization at a gas pressure of 0.3 MPa or more means that high-pressure air of 0.3 MPa or more injected from a nozzle, an inert gas such as nitrogen, or steam collides with the powder as an ultra-high-speed jet, It refers to pulverization to fine powder of several μm level by the impact of , and the jetted air or steam reaches around the speed of sound. A feature of the jet mill is that the temperature drops due to the adiabatic expansion of the injected gas, so pulverization at low temperatures is possible, and even reducing substances such as zirconium nitride in the present invention suppress oxidation. It is possible to Here, the reason why the gas pressure is limited to 0.3 MPa or more is that if the gas pressure is less than 0.3 MPa, coarse zirconium nitride powder remains. When the coarse zirconium nitride powder is pulverized by the jet mill pulverization method, the coarse zirconium nitride powder does not remain and the insulation of the black film can be improved.
更に、この粉砕した窒化ジルコニウム前駆体粉末を不活性ガス雰囲気中で焼成することにより、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が107Ω・cm以上である窒化ジルコニウム粉末を製造する。不活性ガスとしては、N2ガス、ヘリウムガス、アルゴンガス等が挙げられる。上記焼成温度は250℃~550℃の範囲内であることが好ましく、焼成時間は1時間~5時間の範囲内であることが好ましい。ここで、好ましい焼成温度を250℃~550℃の範囲内に限定したのは、250℃未満では抵抗値の上昇が不十分であり、550℃を超えると粉末同士の融着が進み粗粉末が増えてしまうからである。また、好ましい焼成時間を1時間~5時間の範囲内に限定したのは、1時間未満では抵抗値の上昇が不十分であり、5時間を超えても効果が変わらず不経済だからである。なお、窒化ジルコニウム前駆体粉末を不活性ガス雰囲気中で焼成することにより、黒色膜の絶縁性を向上できる。不活性ガス雰囲気中での焼成により、黒色膜の絶縁性が向上する詳細なメカニズムは不明であるが、窒化ジルコニウムの粗粉末がなくなって粉末の均一性が良好になったことや、接触点が減ることや、黒色膜の表面に極薄の絶縁層が形成されたことに起因していると推測される。 Furthermore, by firing this pulverized zirconium nitride precursor powder in an inert gas atmosphere, a zirconium nitride powder having a volume resistivity of 10 7 Ω·cm or more in the state of a compact compacted at a pressure of 5 MPa. to manufacture. Examples of inert gases include N 2 gas, helium gas, argon gas, and the like. The firing temperature is preferably in the range of 250° C. to 550° C., and the firing time is preferably in the range of 1 hour to 5 hours. Here, the reason why the preferred firing temperature is limited to the range of 250° C. to 550° C. is that if the temperature is less than 250° C., the increase in the resistance value is insufficient, and if the temperature exceeds 550° C., fusion between the powders progresses and coarse powder is formed. This is because it will increase. The preferred firing time is limited to the range of 1 hour to 5 hours because the increase in resistance value is insufficient if the firing time is less than 1 hour, and the effect remains unchanged even if the firing time exceeds 5 hours, which is uneconomical. The insulating properties of the black film can be improved by firing the zirconium nitride precursor powder in an inert gas atmosphere. Although the detailed mechanism by which the insulating properties of the black film are improved by sintering in an inert gas atmosphere is unknown, it is possible that the coarse powder of zirconium nitride was eliminated and that the uniformity of the powder was improved, and that the contact points were reduced. It is presumed that this is due to the fact that the black film is reduced and an ultra-thin insulating layer is formed on the surface of the black film.
上記窒化ジルコニウム粉末がアクリルモノマー又はエポキシモノマーに分散されてモノマー分散体が調製される。このモノマー分散体は、無機粉末を分散して含有する樹脂組成物、樹脂成形体等の用途に有用である。また、上記モノマー分散体は、更に金属酸化物粉末を含み、可塑剤を更に含有することができる。可塑剤としては、特に限定されるものではないが、例えば、リン酸トリブチル、リン酸2-エチルヘキシル等のリン酸エステル系可塑剤、フタル酸ジメチル、フタル酸ジブチル等のフタル酸エステル系可塑剤、オレイン酸ブチル、グリセリンモノオレイン酸エステル等の脂肪族- 塩基性エステル系可塑剤、アジピン酸ジブチル、セバシン酸ジ-2-エチルヘキシルなどの脂肪族二塩基酸エステル系可塑剤;ジエチレングリコールジベンゾエート、トリエチレングリコールジ-2-エチルブチラートなどの二価アルコールエステル系可塑剤;アセチルリシノール酸メチル、アセチルクエン酸トリブチルなどオキシ酸エステル系可塑剤等の従来公知の可塑剤を挙げることができる。更に、モノマー分散体に、更に別のモノマーを添加することができる。別のモノマーとしては、特に限定はなく、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル等の(メタ)アクリル系モノマー、スチレン、ビニルトルエン、ジビニルベンゼン等のスチレン系モノマー、塩化ビニル、酢酸ビニル等のビニル系モノマー、ウレタンアクリレート等のウレタン系モノマー、上記各種ポリオール類など、従来公知のモノマーを挙げることができる。なお、モノマー分散体の粘度は、窒化ジルコニウム粉末の分散性を考慮して10Pa・s~1000mPa・sの範囲内に設定されることが好ましい。モノマーへの分散は、溶剤への分散と同様に、粉砕メディアを使用したミル方式を使用することも可能である。また、必須成分ではないが、より分散性を向上させるため高分子分散剤を使用することも可能である。高分子分散剤は分子量が数千~数万であることが有効であり、また、顔料に吸着する官能基としては二級アミン、三級アミン、カルボン酸、リン酸、リン酸エステルなどが挙げられるが、特に三級アミン、カルボン酸が有効である。高分子分散剤の代わりに、シランカップリング剤を少量添加することも分散性向上に有効である。一方、遊星撹拌を施した後、三本ロールを数回通してモノマー分散体を得ることも可能である。一方、窒化ジルコニウム粉末が黒色顔料として分散媒に分散され更に樹脂が混合された黒色組成物が調製される。この上記分散媒としては、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、メチルエチルケトン(MEK)、酢酸ブチル(BA)等が挙げられる。また、上記樹脂としては、アクリル樹脂、エポキシ樹脂等が挙げられる。溶剤系分散についても、モノマー分散と同様に高分子分散剤の添加が有効であり、モノマー分散と同様に分子量が数千から数万であることが有効であり、官能基としては三級アミン、カルボン酸が有効である。 A monomer dispersion is prepared by dispersing the above zirconium nitride powder in an acrylic or epoxy monomer. This monomer dispersion is useful for applications such as resin compositions containing dispersed inorganic powder, resin moldings, and the like. In addition, the monomer dispersion may further contain a metal oxide powder and may further contain a plasticizer. The plasticizer is not particularly limited, but examples include phosphate ester plasticizers such as tributyl phosphate and 2-ethylhexyl phosphate, phthalate ester plasticizers such as dimethyl phthalate and dibutyl phthalate, Aliphatic-basic ester plasticizers such as butyl oleate and glycerin monooleate; aliphatic dibasic ester plasticizers such as dibutyl adipate and di-2-ethylhexyl sebacate; diethylene glycol dibenzoate, triethylene Dihydric alcohol ester plasticizers such as glycol di-2-ethylbutyrate; and conventionally known plasticizers such as oxyester plasticizers such as methyl acetylricinoleate and acetyl tributyl citrate. Additionally, further monomers can be added to the monomer dispersion. Other monomers are not particularly limited, and examples include (meth) acrylic monomers such as (meth) acrylic acid and (meth) acrylic acid esters, styrene monomers such as styrene, vinyl toluene and divinyl benzene, vinyl chloride, Conventionally known monomers such as vinyl-based monomers such as vinyl acetate, urethane-based monomers such as urethane acrylate, and the various polyols described above can be used. The viscosity of the monomer dispersion is preferably set within the range of 10 Pa·s to 1000 mPa·s in consideration of the dispersibility of the zirconium nitride powder. Dispersion in the monomer can also be carried out by a mill method using grinding media, similar to dispersion in the solvent. Although not an essential component, it is also possible to use a polymer dispersant in order to further improve the dispersibility. It is effective for the polymer dispersant to have a molecular weight of thousands to tens of thousands, and functional groups that can be adsorbed by pigments include secondary amines, tertiary amines, carboxylic acids, phosphoric acids, and phosphoric acid esters. However, tertiary amines and carboxylic acids are particularly effective. Adding a small amount of a silane coupling agent instead of the polymer dispersant is also effective in improving the dispersibility. On the other hand, after applying planetary stirring, it is also possible to pass through a triple roll several times to obtain a monomer dispersion . On the other hand, a black composition is prepared by dispersing zirconium nitride powder as a black pigment in a dispersion medium and further mixing a resin. Examples of the dispersion medium include propylene glycol monomethyl ether acetate (PGMEA), methyl ethyl ketone (MEK), butyl acetate (BA), and the like. Moreover, acrylic resin, epoxy resin, etc. are mentioned as said resin. For solvent-based dispersion, addition of a polymer dispersant is effective in the same manner as in monomer dispersion, and similar to monomer dispersion, it is effective to have a molecular weight of several thousand to several tens of thousands. Carboxylic acids are effective.
次に、上記モノマー分散体を用いて黒色膜を作製する方法を説明する。先ず、モノマー分散体に光重合開始剤を加えた後に、このモノマー分散体を基板に塗布して塗膜を形成する。次に、この塗膜を熱硬化又は紫外線硬化させて黒色膜を作製する。上記基板としては、例えば、ガラス、シリコン、ポリカーボネート、ポリエステル、芳香族ポリアミド、ポリアミドイミド、ポリイミド等を挙げることができる。また上記基板には、所望により、シランカップリング剤等による薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着等の適宜の前処理を施しておくこともできる。モノマー分散体を基板に塗布する際には、回転塗布、流延塗布、ロール塗布等の適宜の塗布法を採用することができる。 Next, a method for producing a black film using the above monomer dispersion will be described. First, after adding a photopolymerization initiator to a monomer dispersion, this monomer dispersion is applied to a substrate to form a coating film. Next, this coating film is thermally or ultraviolet cured to produce a black film. Examples of the substrate include glass, silicon, polycarbonate, polyester, aromatic polyamide, polyamideimide, and polyimide. If desired, the substrate may be subjected to appropriate pretreatments such as chemical treatment with a silane coupling agent, plasma treatment, ion plating, sputtering, vapor phase reaction method, vacuum deposition, and the like. When the monomer dispersion is applied to the substrate, an appropriate coating method such as spin coating, casting coating, roll coating, or the like can be employed.
上記塗膜を熱硬化させるには、大気中で80℃~250℃の温度に5分間~60分間保持することが好ましい。ここで、塗膜の熱硬化温度を80℃~250℃の範囲内に限定したのは、80℃未満では塗膜が十分に硬化せず、250℃を超えると基板が軟化してしまうからである。また、塗膜の熱硬化時間を5分間~60分間の範囲内に限定したのは、5分間未満では塗膜が十分に硬化せず、60分間を超えると必要以上に時間を要し不経済だからである。一方、上記塗膜を紫外線硬化させるには、予めモノマー分散体にイルガキュア184(BASF社製)、イルガキュア250(BASF社製)、イルガキュア270(BASF社製)、イルガキュア369(BASF社製)、イルガキュア500(BASF社製)、イルガキュア907(BASF社製)、アデカオプトマーN-1919(ADEKA社製)等の紫外線で開裂する光重合開始剤が添加される。そして、この光重合開始剤が添加されたモノマー分散体を基板上に塗布した後、プレベークを行って溶剤を蒸発させて、フォトレジスト膜を形成する。次にこのフォトレジスト膜にフォトマスクを介して所定のパターン形状に露光した後、アルカリ現像液を用いて現像して、フォトレジスト膜の未露光部を溶解除去し、その後好ましくはポストベークを行うことにより、所定の黒色膜が形成される。 In order to thermally cure the coating film, it is preferable to hold it at a temperature of 80° C. to 250° C. for 5 minutes to 60 minutes in the atmosphere. Here, the reason why the thermosetting temperature of the coating film is limited to within the range of 80° C. to 250° C. is that if the temperature is less than 80° C., the coating film is not sufficiently cured, and if it exceeds 250° C., the substrate softens. be. In addition, the reason why the thermal curing time of the coating film is limited to within the range of 5 minutes to 60 minutes is that the coating film does not fully cure if it is less than 5 minutes, and if it exceeds 60 minutes, it takes more time than necessary and is uneconomical. That's why. On the other hand, in order to cure the above coating film with ultraviolet rays, Irgacure 184 (manufactured by BASF), Irgacure 250 (manufactured by BASF), Irgacure 270 (manufactured by BASF), Irgacure 369 (manufactured by BASF), and Irgacure are added to the monomer dispersion in advance. 500 (manufactured by BASF), Irgacure 907 (manufactured by BASF), and ADEKA OPTOMER N-1919 (manufactured by ADEKA). Then, after coating the substrate with the monomer dispersion to which the photopolymerization initiator has been added, prebaking is performed to evaporate the solvent and form a photoresist film. Next, the photoresist film is exposed to light in a predetermined pattern through a photomask, developed with an alkaline developer to dissolve and remove the unexposed portions of the photoresist film, and then preferably post-baked. Thereby, a predetermined black film is formed.
硬化後の黒色膜の膜厚は、0.1μm~100μmの範囲内であることが好ましい。特に、膜厚が10μm~100μmという厚い黒色膜の作製に適している。また、黒色膜のOD値(Optical Density値)は、窒化ジルコニウム粉末を用いた黒色膜の遮光性(透過率の減衰)を表す指標としての光学濃度である。具体的には、OD値は、光が黒色膜を通過する際に吸収される度合を対数で表示したものであって、次の式(1)で定義される。式(1)中、Iは透過光量であり、I0は入射光量である。
OD値=-log10(I/I0) …………(1)
更に、上記黒色膜のOD値は、高い遮光性を確保するため、2.0以上であることが好ましく、黒色膜の体積抵抗率は、高い絶縁性を確保するため、1×1013Ω・cm以上であることが好ましい。
The thickness of the black film after curing is preferably in the range of 0.1 μm to 100 μm. In particular, it is suitable for producing a thick black film with a film thickness of 10 μm to 100 μm. Also, the OD value (optical density value) of the black film is an optical density as an index representing the light shielding property (attenuation of transmittance) of the black film using the zirconium nitride powder. Specifically, the OD value is a logarithmic representation of the degree of light absorption when passing through a black film, and is defined by the following equation (1). In equation (1), I is the amount of transmitted light and I 0 is the amount of incident light.
OD value = -log 10 (I/I 0 ) …………(1)
Furthermore, the OD value of the black film is preferably 2.0 or more in order to ensure high light shielding properties, and the volume resistivity of the black film is 1×10 13 Ω· in order to ensure high insulation properties. cm or more is preferable.
上記黒色組成物を用いて黒色膜を作製する方法を説明する。先ず、黒色組成物を基板に塗布して塗膜を形成する。次に、この塗膜を熱硬化又は紫外線硬化させて黒色膜を作製する。この黒色組成物を用いた黒色膜の作製方法は、上記モノマー分散体を用いた黒色膜の作製方法と略同様であるので、繰返しの説明を省略する。 A method for producing a black film using the black composition will be described. First, a black composition is applied to a substrate to form a coating film. Next, this coating film is thermally or ultraviolet cured to produce a black film. The method for producing a black film using this black composition is substantially the same as the method for producing a black film using the above-described monomer dispersion, and thus repeated description is omitted.
次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
<実施例1>
先ず、テルミット法により窒化ジルコニウム粗粉末を作製した。具体的には、BET法により測定される比表面積から算出される平均一次粒径が50nmの単斜晶系二酸化ジルコニウム粉末7.4gに、平均一次粒径が150μmの金属マグネシウム粉末7.3gと平均一次粒径が200nmの窒化マグネシウム粉末3.0gを添加し、石英製ガラス管に黒鉛のボートを内装した反応装置により均一に混合した。このとき金属マグネシウムの添加量は二酸化ジルコニウムの5.0倍モル、窒化マグネシウムの添加量は二酸化ジルコニウムの0.5倍モルであった。この混合物を窒素ガスの雰囲気下、700℃の温度で60分間焼成して焼成物を得た。この焼成物を、1リットルの水に分散し、10%塩酸を徐々に添加して、pHを1以上で、温度を100℃以下に保ちながら洗浄した後、25%アンモニア水にてpH7~pH8に調整し、濾過した。その濾過固形分を水中に400g/リットルに再分散し、もう一度、前記と同様に酸洗浄、アンモニア水でのpH調整をした後、濾過した。このように酸洗浄-アンモニア水によるpH調整を2回繰り返した後、濾過物をイオン交換水に固形分換算で500g/リットルで分散させ、60℃での加熱撹拌とpH7への調整をした後、吸引濾過装置で濾過し、更に等量のイオン交換水で洗浄し、設定温度:120℃の熱風乾燥機にて乾燥することにより、窒化ジルコニウム粗粉末を得た。
<Example 1>
First, zirconium nitride coarse powder was produced by the thermite method. Specifically, 7.4 g of monoclinic zirconium dioxide powder having an average primary particle size of 50 nm calculated from the specific surface area measured by the BET method, and 7.3 g of metallic magnesium powder having an average primary particle size of 150 μm. 3.0 g of magnesium nitride powder having an average primary particle size of 200 nm was added and uniformly mixed in a reaction apparatus having a graphite boat inside a quartz glass tube. At this time, the added amount of metallic magnesium was 5.0 times the molar amount of zirconium dioxide, and the added amount of magnesium nitride was 0.5 times the molar amount of zirconium dioxide. This mixture was baked at a temperature of 700° C. for 60 minutes in a nitrogen gas atmosphere to obtain a baked product. This baked product is dispersed in 1 liter of water, and 10% hydrochloric acid is gradually added to wash while maintaining the pH at 1 or more and the temperature at 100° C. or less. and filtered. The filtered solid matter was redispersed in water at 400 g/liter, washed with acid and pH adjusted with aqueous ammonia in the same manner as described above, and then filtered. After repeating acid washing and pH adjustment with aqueous ammonia twice in this way, the filtrate was dispersed in ion-exchanged water at a solid content conversion of 500 g/liter, heated and stirred at 60° C., and adjusted to pH 7. , filtered with a suction filtration device, further washed with an equal amount of ion-exchanged water, and dried with a hot air dryer set at 120°C to obtain coarse zirconium nitride powder.
次に、上記窒化ジルコニウム粗粉末20gをイソプロパノール5リットルに分散し、低温湿式メディア粉砕(メディア:アルミナ)を60分間行って、窒化ジルコニウム前駆体粉末を得た。このときのイソプロパノール(分散媒)の温度は5℃以下であった。更に、上記窒化ジルコニウム前駆体粉末を乾燥させた後、N2ガス雰囲気中で350℃の温度に4時間保持して焼成して、窒化ジルコニウム粉末を得た。この窒化ジルコニウム粉末を実施例1とした。 Next, 20 g of the coarse zirconium nitride powder was dispersed in 5 liters of isopropanol and subjected to low-temperature wet media pulverization (media: alumina) for 60 minutes to obtain a zirconium nitride precursor powder. The temperature of isopropanol (dispersion medium) at this time was 5° C. or lower. Furthermore, after drying the above zirconium nitride precursor powder, it was fired at a temperature of 350° C. for 4 hours in an N 2 gas atmosphere to obtain a zirconium nitride powder. This zirconium nitride powder was designated as Example 1.
<実施例2~12及び比較例1~10>
実施例2~12及び比較例1~10の窒化ジルコニウム粉末は、表1に示す方法で、窒化ジルコニウム粗粉末をそれぞれ生成し、それぞれ粉砕し、更にそれぞれ焼成した。なお、表1に示した生成方法、粉砕方法及び焼成方法以外は、実施例1と同様にして、窒化ジルコニウム粉末を作製した。なお、表1の窒化ジルコニウム粗粉末の生成方法の欄において、『TM』はテルミット法であり、『PZ』はプラズマ法である。また、表1の窒化ジルコニウム粗粉末の粉砕方法の欄において、『BM』はビーズミル法であり、『JM』はジェットミル法である。更に、表1の窒化ジルコニウム前駆体粉末の焼成時間/ガスの欄において、『N2』は窒素ガスであり、『He』はヘリウムガスであり、『Ar』はアルゴンガスである。
<Examples 2 to 12 and Comparative Examples 1 to 10>
For the zirconium nitride powders of Examples 2 to 12 and Comparative Examples 1 to 10, coarse zirconium nitride powders were produced, pulverized, and fired by the methods shown in Table 1. Zirconium nitride powder was produced in the same manner as in Example 1 except for the production method, pulverization method, and firing method shown in Table 1. In addition, in the column of the method of producing coarse zirconium nitride powder in Table 1, "TM" indicates the thermite method, and "PZ" indicates the plasma method. In addition, in the column of pulverization method of coarse zirconium nitride powder in Table 1, "BM" is the bead mill method, and "JM" is the jet mill method. Furthermore, in the column of firing time/gas for the zirconium nitride precursor powder in Table 1, "N 2 " is nitrogen gas, "He" is helium gas, and "Ar" is argon gas.
<比較試験1>
実施例1~12及び比較例1~10の窒化ジルコニウム粉末について、5MPaの圧力で固めた圧粉体の状態での体積抵抗率と、水で希釈した状態で5分間超音波分散したときの粒度分布D90をそれぞれ測定した。これらの結果を表1に示す。
<Comparative test 1>
Regarding the zirconium nitride powders of Examples 1 to 12 and Comparative Examples 1 to 10, the volume resistivity in the state of compacted powder compacted at a pressure of 5 MPa, and the particle size when ultrasonically dispersed for 5 minutes in a diluted state with water The distribution D90 was measured respectively. These results are shown in Table 1.
<比較試験2>
実施例1~11及び比較例1~9の窒化ジルコニウム粉末40gについては、表1に示すように、200ミリリットルのアクリルモノマー又はエポキシモノマーに分散してモノマー分散体を調製した。一方、実施例12及び比較例10の窒化ジルコニウム粉末40gについては、表1に示すように、アミン系分散剤を添加して、200ミリリットルのプロピレングリコールモノメチルエーテルアセテート(PGMEA)溶剤中で分散処理を行って黒色顔料分散液を調製した後、これらの黒色顔料分散液にアクリル樹脂を、質量比で黒色顔料:樹脂=3:7となる割合で添加し混合して黒色組成物を調製した。そして、上記モノマー分散体又は黒色組成物にイルガキュア500(光重合開始剤:BASF社製)を4g添加した。次に、上記モノマー分散体又は黒色組成物をガラス基板上に焼成後の膜厚が表1に示す厚さになるようにスピンコートした後に、プレベークを行って溶剤を蒸発させて、フォトレジスト膜を形成した。更に、このフォトレジスト膜にフォトマスクを介して所定のパターン形状に露光した後、アルカリ現像液を用いて現像して、フォトレジスト膜の未露光部を溶解除去し、その後、ポストベークを行うことにより、黒色膜をそれぞれ形成した。これらの黒色膜について、紫外線(中心波長370nm)及び可視光(中心波長560nm)のOD値を前述した式(1)に基づき、マクベス社製の品名D200の濃度計(densitometer)を用いてそれぞれ測定するとともに、黒色膜の体積抵抗率(Ω・cm)もそれぞれ測定した。これらの結果を表1に示した。
<Comparative test 2>
As shown in Table 1, 40 g of the zirconium nitride powders of Examples 1-11 and Comparative Examples 1-9 were dispersed in 200 ml of acrylic monomer or epoxy monomer to prepare a monomer dispersion. On the other hand, for 40 g of the zirconium nitride powder of Example 12 and Comparative Example 10, as shown in Table 1, an amine-based dispersant was added and dispersed in 200 ml of propylene glycol monomethyl ether acetate (PGMEA) solvent. After preparing black pigment dispersions, an acrylic resin was added to the black pigment dispersions at a mass ratio of black pigment:resin=3:7 and mixed to prepare a black composition. Then, 4 g of Irgacure 500 (photopolymerization initiator: manufactured by BASF) was added to the above monomer dispersion or black composition. Next, the monomer dispersion or the black composition is spin-coated on a glass substrate so that the film thickness after baking becomes the thickness shown in Table 1, and then pre-baking is performed to evaporate the solvent, thereby forming a photoresist film. formed. Furthermore, after exposing the photoresist film to a predetermined pattern shape through a photomask, the photoresist film is developed using an alkaline developer to dissolve and remove the unexposed portions of the photoresist film, and then post-baking is performed. A black film was formed by each. For these black films, the OD values of ultraviolet light (center wavelength 370 nm) and visible light (center wavelength 560 nm) were measured using a densitometer manufactured by Macbeth Co. under the product name D200 based on the above formula (1). At the same time, the volume resistivity (Ω·cm) of the black film was also measured. These results are shown in Table 1.
表1から明らかなように、比較例1及び10の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製したけれども、この窒化ジルコニウムを粉砕せずに、窒素ガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率がそれぞれ1×105Ω・cmと適切な範囲(1×107Ω・cm以上)より小さく、水で希釈した状態で5分間超音波分散したときの粒度分布D90がそれぞれ30μmと適切な範囲(10μm以下)より大きかった。また、比較例1の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は1.0と適切な範囲(2.0以上)より小さく、体積抵抗率は1×106Ω・cmと適切な範囲(1×1013以上)より小さく、塗膜が均一にならなかった。更に、比較例10の窒化ジルコニウム粉末をプロピレングリコールモノメチルエーテルアセテート(PGMEA)に分散させて作製した黒色膜のOD値は1.9と適切な範囲(2.0以上)より小さく、体積抵抗率は6×1012Ω・cmと適切な範囲(1×1013以上)より小さかった。 As is clear from Table 1, the zirconium nitride powders of Comparative Examples 1 and 10, that is, the zirconium nitride coarse powders were produced by the thermite method, but without pulverization, the zirconium nitride was heated to 350°C in a nitrogen gas atmosphere. The zirconium nitride powder that was fired for 4 hours had a volume resistivity of 1×10 5 Ω·cm and an appropriate range (1×10 7 Ω·cm) when compacted at a pressure of 5 MPa. above), and the particle size distribution D 90 when ultrasonically dispersed for 5 minutes in a state of being diluted with water was 30 µm, which was larger than the appropriate range (10 µm or less). In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 1 in the acrylic monomer was 1.0, which is smaller than the appropriate range (2.0 or more), and the volume resistivity was 1×10 6 Ω·. cm, which is smaller than the appropriate range (1×10 13 or more), and the coating film was not uniform. Furthermore, the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 10 in propylene glycol monomethyl ether acetate (PGMEA) was 1.9, which is smaller than the appropriate range (2.0 or more), and the volume resistivity was It was 6×10 12 Ω·cm, which is smaller than the appropriate range (1×10 13 or more).
比較例3の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を分散媒温度5℃以下のビーズミル法で粉砕(低温湿式メディア粉砕)したけれども、窒化ジルコニウム前駆体粉末を焼成しなかった窒化ジルコニウム粉末では、水で希釈した状態で5分間超音波分散したときの粒度分布D90が9μmと適切な範囲(10μm以下)内であったけれども、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が1×106Ω・cmと適切な範囲(1×107Ω・cm以上)より小さかった。また、比較例3の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.1と適切な範囲(2.0以上)内であったけれども、体積抵抗率は5×1011Ω・cmと適切な範囲(1×1013以上)より小さかった。 The zirconium nitride powder of Comparative Example 3, that is, the zirconium nitride coarse powder was produced by the thermite method, and this zirconium nitride coarse powder was pulverized by a bead mill method (low-temperature wet media pulverization) at a dispersion medium temperature of 5°C or less. The zirconium nitride powder, which was not calcined, had a particle size distribution D90 of 9 μm when ultrasonically dispersed for 5 minutes in a state of being diluted with water, which was within the appropriate range (10 μm or less). The volume resistivity in the green compact state was 1×10 6 Ω·cm, which was lower than the appropriate range (1×10 7 Ω·cm or more). In addition, although the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 3 in the acrylic monomer was 2.1, which was within the appropriate range (2.0 or more), the volume resistivity was 5 × 10 11 Ω·cm, which is smaller than the appropriate range (1×10 13 or more).
これらに対し、実施例1及び12の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウムを分散媒温度5℃以下のビーズミル法で粉砕(低温湿式メディア粉砕)した後に、窒素ガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率がそれぞれ1×108Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90がそれぞれ7μmと適切な範囲(10μm以下)内であった。また、実施例1の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.1と適切な範囲(2.0以上)内であり、体積抵抗率は5×1013Ω・cmと適切な範囲(1×1013以上)であった。更に、実施例12の窒化ジルコニウム粉末をプロピレングリコールモノメチルエーテルアセテート(PGMEA)に分散させて作製した黒色膜のOD値は2.1と適切な範囲(2.0以上)内であり、体積抵抗率は5×1013Ω・cmと適切な範囲(1×1013以上)内であった。 On the other hand, the zirconium nitride powders of Examples 1 and 12, that is, zirconium nitride coarse powders were prepared by the thermite method, and the zirconium nitride was pulverized by a bead mill method at a dispersion medium temperature of 5 ° C. or less (low-temperature wet media pulverization). The zirconium nitride powder sintered at a temperature of 350° C. for 4 hours in a nitrogen gas atmosphere has an appropriate volume resistivity of 1×10 8 Ω·cm when compacted at a pressure of 5 MPa. 1×10 7 Ω·cm or more, and the particle size distribution D 90 after being diluted with water and subjected to ultrasonic dispersion for 5 minutes was 7 μm, which was within an appropriate range (10 μm or less). In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Example 1 in the acrylic monomer was 2.1, which is within an appropriate range (2.0 or more), and the volume resistivity was 5×10 13 Ω.・It was in the appropriate range (1×10 13 or more). Furthermore, the OD value of the black film prepared by dispersing the zirconium nitride powder of Example 12 in propylene glycol monomethyl ether acetate (PGMEA) is 2.1, which is within an appropriate range (2.0 or more), and the volume resistivity was within an appropriate range (1×10 13 or more) of 5×10 13 Ω·cm.
実施例9の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウムを分散媒温度5℃のビーズミル法で粉砕(低温湿式メディア粉砕)した後に、ヘリウムガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が8×107Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90が7μmと適切な範囲(10μm以下)内であった。また、実施例9の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.2と適切な範囲(2.0以上)内であり、体積抵抗率は3×1013Ω・cmと適切な範囲(1×1013以上)内であった。 The zirconium nitride powder of Example 9, that is, the zirconium nitride coarse powder was produced by the thermite method, and the zirconium nitride was pulverized by the bead mill method (low-temperature wet media pulverization) at a dispersion medium temperature of 5 ° C., and then ground at 350 ° C. in a helium gas atmosphere. The zirconium nitride powder sintered for 4 hours at a temperature of 5 MPa has a volume resistivity of 8 × 10 7 Ω cm in the compacted state, which is an appropriate range (1 × 10 7 Ω cm or more), and the particle size distribution D 90 when ultrasonically dispersed for 5 minutes in a diluted state was 7 μm, which was within an appropriate range (10 μm or less). In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Example 9 in an acrylic monomer was 2.2, which is within an appropriate range (2.0 or more), and the volume resistivity was 3×10 13 Ω.・It was within the appropriate range of cm (1×10 13 or more).
実施例10の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウムを分散媒温度5℃のビーズミル法で粉砕(低温湿式メディア粉砕)した後に、アルゴンガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が8×107Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90が9μmと適切な範囲(10μm以下)内であった。また、実施例10の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.2と適切な範囲(2.0以上)内であり、体積抵抗率は3×1013Ω・cmと適切な範囲(1×1013以上)内であった。 The zirconium nitride powder of Example 10, that is, the zirconium nitride coarse powder was produced by the thermite method, and this zirconium nitride was pulverized by a bead mill method (low-temperature wet media pulverization) at a dispersion medium temperature of 5 ° C., and then ground at 350 ° C. in an argon gas atmosphere. The zirconium nitride powder sintered for 4 hours at a temperature of 5 MPa has a volume resistivity of 8 × 10 7 Ω cm in the compacted state, which is an appropriate range (1 × 10 7 Ω cm or more), and the particle size distribution D90 when ultrasonically dispersed for 5 minutes in a diluted state was 9 μm, which was within an appropriate range (10 μm or less). In addition, the black film prepared by dispersing the zirconium nitride powder of Example 10 in an acrylic monomer had an OD value of 2.2, which is within an appropriate range (2.0 or more), and a volume resistivity of 3×10 13 Ω.・It was within the appropriate range of cm (1×10 13 or more).
一方、比較例2の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をプラズマ法で作製したけれども、この窒化ジルコニウムを粉砕せずに、窒素ガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が3×104Ω・cmと適切な範囲(1×107Ω・cm以上)より小さく、水で希釈した状態で5分間超音波分散したときの粒度分布D90が14μmと適切な範囲(10μm以下)より大きかった。また、比較例2の窒化ジルコニウム粉末をエポキシモノマーに分散させて作製した黒色膜のOD値は1.2と適切な範囲(2.0以上)より小さく、体積抵抗率は2×106Ω・cmと適切な範囲(1×1013以上)より小さかった。 On the other hand, although the zirconium nitride powder of Comparative Example 2, that is, the zirconium nitride coarse powder was produced by the plasma method, this zirconium nitride was not pulverized and was sintered at a temperature of 350° C. for 4 hours in a nitrogen gas atmosphere. The zirconium nitride powder has a volume resistivity of 3×10 4 Ω·cm in the state of compacted powder solidified at a pressure of 5 MPa, which is lower than the appropriate range (1×10 7 Ω·cm or more). The particle size distribution D 90 when ultrasonically dispersed for 5 minutes in this state was 14 μm, which was larger than the appropriate range (10 μm or less). In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 2 in the epoxy monomer was 1.2, which is smaller than the appropriate range (2.0 or more), and the volume resistivity was 2×10 6 Ω·. cm and smaller than the appropriate range (1×10 13 or more).
比較例4の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をプラズマ法で作製し、この窒化ジルコニウム粗粉末を分散媒温度5℃以下のビーズミル法で粉砕(低温湿式メディア粉砕)したけれども、窒化ジルコニウム前駆体粉末を焼成しなかった窒化ジルコニウム粉末では、水で希釈した状態で5分間超音波分散したときの粒度分布D90が5μmと適切な範囲(10μm以下)内であったけれども、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が2×104Ω・cmと適切な範囲(1×107Ω・cm以上)より小さかった。また、比較例4の窒化ジルコニウム粉末をエポキシモノマーに分散させて作製した黒色膜のOD値は2.0と適切な範囲(2.0以上)内であったけれども、体積抵抗率は2×1010Ω・cmと適切な範囲(1×1013以上)より小さかった。 The zirconium nitride powder of Comparative Example 4, that is, the zirconium nitride coarse powder was produced by a plasma method, and this zirconium nitride coarse powder was pulverized by a bead mill method (low-temperature wet media pulverization) at a dispersion medium temperature of 5° C. or less. The zirconium nitride powder, which was not calcined, had a particle size distribution D90 of 5 μm when ultrasonically dispersed for 5 minutes in a state of being diluted with water, which was within the appropriate range (10 μm or less). The volume resistivity in the green compact state was 2×10 4 Ω·cm, which was smaller than the appropriate range (1×10 7 Ω·cm or more). In addition, although the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 4 in the epoxy monomer was 2.0, which was within an appropriate range (2.0 or more), the volume resistivity was 2 × 10 It was 10 Ω·cm, which is smaller than the appropriate range (1×10 13 or more).
これらに対し、実施例2及び4の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をプラズマ法で作製し、この窒化ジルコニウム粗粉末を分散媒温度5℃以下のビーズミル法で粉砕(低温湿式メディア粉砕)した後に、窒素ガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率がそれぞれ1×107Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90がそれぞれ5μmと適切な範囲(10μm以下)内であった。また、実施例2の窒化ジルコニウム粉末をエポキシモノマーに分散させて作製した黒色膜のOD値は2.2と適切な範囲(2.0以上)内であり、体積抵抗率は2×1013Ω・cmと適切な範囲(1×1013以上)内であった。更に、実施例4の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.3と適切な範囲(2.0以上)内であり、体積抵抗率は1×1013Ω・cmと適切な範囲(1×1013以上)内であった。 On the other hand, the zirconium nitride powders of Examples 2 and 4, that is, zirconium nitride coarse powders were produced by a plasma method, and the zirconium nitride coarse powders were pulverized by a bead mill method at a dispersion medium temperature of 5 ° C. or less (low-temperature wet media pulverization). The zirconium nitride powder that was later sintered at a temperature of 350° C. for 4 hours in a nitrogen gas atmosphere had a volume resistivity of 1×10 7 Ω·cm in the state of compacted powder compacted at a pressure of 5 MPa. and an appropriate range (1 × 10 7 Ω cm or more), and the particle size distribution D 90 when ultrasonically dispersed for 5 minutes in a state of being diluted with water is 5 µm respectively, which is within an appropriate range (10 µm or less). Ta. In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Example 2 in the epoxy monomer was 2.2, which is within an appropriate range (2.0 or more), and the volume resistivity was 2×10 13 Ω.・It was within the appropriate range of cm (1×10 13 or more). Furthermore, the OD value of the black film prepared by dispersing the zirconium nitride powder of Example 4 in an acrylic monomer is 2.3, which is within an appropriate range (2.0 or more), and the volume resistivity is 1×10 13 Ω.・It was within the appropriate range of cm (1×10 13 or more).
一方、比較例5の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製したけれども、この窒化ジルコニウム粗粉末を適切な分散媒温度範囲(10℃以下)より高い分散媒温度12℃のビーズミル法で粉砕(低温湿式メディア粉砕)した後に、窒素ガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、水で希釈した状態で5分間超音波分散したときの粒度分布D90が10μmと適切な範囲(10μm以下)内であったけれども、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が7×106Ω・cmと適切な範囲(1×107Ω・cm以上)より小さかった。また、比較例5の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.0と適切な範囲(2.0以上)内であったけれども、体積抵抗率は4×1012Ω・cmと適切な範囲(1×1013以上)より小さかった。 On the other hand, the zirconium nitride powder of Comparative Example 5, that is, the zirconium nitride coarse powder was produced by the thermite method. In the zirconium nitride powder that was pulverized (low-temperature wet media pulverization) at and then sintered at a temperature of 350 ° C. for 4 hours in a nitrogen gas atmosphere, the particle size distribution when ultrasonically dispersed for 5 minutes in a state diluted with water Although the D 90 was 10 μm, which was within the appropriate range (10 μm or less), the volume resistivity in the state of compacted powder compacted at a pressure of 5 MPa was 7×10 6 Ω·cm, which was within the appropriate range (1×10 7 Ω·cm or more). In addition, although the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 5 in the acrylic monomer was 2.0, which was within an appropriate range (2.0 or more), the volume resistivity was 4 × 10 It was 12 Ω·cm, which was smaller than the appropriate range (1×10 13 or more).
これに対し、実施例5の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を適切な分散媒温度範囲(10℃以下)内である分散媒温度10℃のビーズミル法で粉砕(低温湿式メディア粉砕)した後に、窒素ガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が8×107Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90が10μmと適切な範囲(10μm以下)内であった。また、実施例5の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.0と適切な範囲(2.0以上)内であり、体積抵抗率は3×1013Ω・cmと適切な範囲(1×1013以上)内であった。 On the other hand, the zirconium nitride powder of Example 5, that is, the zirconium nitride coarse powder was prepared by the thermite method, and this zirconium nitride coarse powder was prepared at a dispersion medium temperature of 10 ° C., which is within the appropriate dispersion medium temperature range (10 ° C. or less). Zirconium nitride powder that was pulverized by a bead mill method (low-temperature wet media pulverization) and then sintered at a temperature of 350 ° C. for 4 hours in a nitrogen gas atmosphere has a volume in the state of a green compact solidified at a pressure of 5 MPa The resistivity is 8×10 7 Ω·cm, which is within an appropriate range (1×10 7 Ω·cm or more), and the particle size distribution D 90 is 10 μm when ultrasonically dispersed for 5 minutes in a diluted state with water. range (10 μm or less). In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Example 5 in the acrylic monomer was 2.0, which is within an appropriate range (2.0 or more), and the volume resistivity was 3×10 13 Ω.・It was within the appropriate range of cm (1×10 13 or more).
一方、比較例6の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を分散媒温度5℃のビーズミル法で粉砕(低温湿式メディア粉砕)したけれども、窒素ガス雰囲気中で、焼成温度が適切な範囲(250℃~550℃)より低い200℃の温度に、焼成時間が適切な範囲(1時間~5時間)内である4時間保持する焼成を行った窒化ジルコニウム粉末では、水で希釈した状態で5分間超音波分散したときの粒度分布D90が8μmと適切な範囲(10μm以下)内であったけれども、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が1×106Ω・cmと適切な範囲(1×107Ω・cm以上)より小さかった。また、比較例6の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.0と適切な範囲(2.0以上)内であったけれども、体積抵抗率は1×1012Ω・cmと適切な範囲(1×1013以上)より小さかった。 On the other hand, the zirconium nitride powder of Comparative Example 6, that is, the zirconium nitride coarse powder was produced by the thermite method, and this zirconium nitride coarse powder was pulverized by the bead mill method (low-temperature wet media pulverization) at a dispersion medium temperature of 5 ° C., but in a nitrogen gas atmosphere. Zirconium nitride fired at a temperature of 200° C., which is lower than the appropriate firing temperature range (250° C. to 550° C.), and held for 4 hours, which is within the appropriate firing time range (1 hour to 5 hours). The powder had a particle size distribution D90 of 8 µm, which was within an appropriate range (10 µm or less) when it was diluted with water and ultrasonically dispersed for 5 minutes. The volume resistivity was 1×10 6 Ω·cm, which was lower than the appropriate range (1×10 7 Ω·cm or more). In addition, although the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 6 in the acrylic monomer was 2.0, which was within an appropriate range (2.0 or more), the volume resistivity was 1 × 10 It was 12 Ω·cm, which was smaller than the appropriate range (1×10 13 or more).
比較例7の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を分散媒温度5℃のビーズミル法で粉砕(低温湿式メディア粉砕)したけれども、窒素ガス雰囲気中で、焼成温度が適切な範囲(250℃~550℃)内である350℃の温度に、焼成時間が適切な範囲(1時間~5時間)より短い0.5時間保持する焼成を行った窒化ジルコニウム粉末では、水で希釈した状態で5分間超音波分散したときの粒度分布D90が7μmと適切な範囲(10μm以下)内であったけれども、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が3×106Ω・cmと適切な範囲(1×107Ω・cm以上)より小さかった。また、比較例7の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.0と適切な範囲(2.0以上)内であったけれども、体積抵抗率は2×1012Ω・cmと適切な範囲(1×1013以上)より小さかった。 The zirconium nitride powder of Comparative Example 7, that is, the zirconium nitride coarse powder was produced by the thermite method, and this zirconium nitride coarse powder was pulverized by the bead mill method (low-temperature wet media pulverization) at a dispersion medium temperature of 5°C, but in a nitrogen gas atmosphere. , zirconium nitride fired at a temperature of 350 ° C., which is within the appropriate range of firing temperature (250 ° C. to 550 ° C.), and held for 0.5 hours, which is shorter than the appropriate range of firing time (1 hour to 5 hours) The powder had a particle size distribution D90 of 7 µm, which was within an appropriate range (10 µm or less) when it was diluted with water and ultrasonically dispersed for 5 minutes. The volume resistivity was 3×10 6 Ω·cm, which was lower than the appropriate range (1×10 7 Ω·cm or more). In addition, although the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 7 in the acrylic monomer was 2.0, which was within an appropriate range (2.0 or more), the volume resistivity was 2 × 10 It was 12 Ω·cm, which was smaller than the appropriate range (1×10 13 or more).
比較例8の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を分散媒温度5℃のビーズミル法で粉砕(低温湿式メディア粉砕)したけれども、窒素ガス雰囲気中で、焼成温度が適切な範囲(250℃~550℃)より高い600℃の温度に、焼成時間が適切な範囲(1時間~5時間)内である1時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が4×106Ω・cmと適切な範囲(1×107Ω・cm以上)より小さく、水で希釈した状態で5分間超音波分散したときの粒度分布D90が14μmと適切な範囲(10μm以下)より大きかった。また、比較例8の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は1.2と適切な範囲(2.0以上)より小さく、体積抵抗率は1×109Ω・cmと適切な範囲(1×1013以上)より小さかった。 The zirconium nitride powder of Comparative Example 8, that is, the zirconium nitride coarse powder was produced by the thermite method, and this zirconium nitride coarse powder was pulverized by the bead mill method (low-temperature wet media pulverization) at a dispersion medium temperature of 5°C, but in a nitrogen gas atmosphere. , The zirconium nitride powder fired at a temperature of 600 ° C., which is higher than the appropriate firing temperature range (250 ° C. to 550 ° C.), and held for 1 hour, which is within the appropriate firing time range (1 hour to 5 hours). , the volume resistivity in the state of a green compact solidified at a pressure of 5 MPa is 4 × 10 6 Ω cm, which is smaller than the appropriate range (1 × 10 7 Ω cm or more), and diluted with water for 5 minutes. The particle size distribution D90 when ultrasonically dispersed was 14 μm, which was larger than the appropriate range (10 μm or less). In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 8 in the acrylic monomer was 1.2, which is smaller than the appropriate range (2.0 or more), and the volume resistivity was 1×10 9 Ω·. cm and smaller than the appropriate range (1×10 13 or more).
これらに対し、実施例6の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を分散媒温度5℃のビーズミル法で粉砕(低温湿式メディア粉砕)した後に、窒素ガス雰囲気中で、焼成温度が適切な範囲(250℃~550℃)内である250℃の温度に、焼成時間が適切な範囲(1時間~5時間)内である4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が3×107Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90が8μmと適切な範囲(10μm以下)内であった。また、実施例6の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.0と適切な範囲(2.0以上)内であり、体積抵抗率は2×1013Ω・cmと適切な範囲(1×1013以上)内であった。 On the other hand, the zirconium nitride powder of Example 6, that is, the zirconium nitride coarse powder was produced by the thermite method, and this zirconium nitride coarse powder was pulverized by the bead mill method at a dispersion medium temperature of 5 ° C. (low temperature wet media pulverization). In a gas atmosphere, firing is performed at a temperature of 250 ° C., which is within the appropriate firing temperature range (250 ° C. to 550 ° C.), for 4 hours, which is within the appropriate firing time range (1 hour to 5 hours). The zirconium nitride powder has a volume resistivity of 3×10 7 Ω·cm in the state of compacted powder solidified at a pressure of 5 MPa, which is within an appropriate range (1×10 7 Ω·cm or more). The particle size distribution D 90 after ultrasonic dispersion for 5 minutes in a diluted state was 8 μm, which was within an appropriate range (10 μm or less). In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Example 6 in the acrylic monomer was 2.0, which is within an appropriate range (2.0 or more), and the volume resistivity was 2×10 13 Ω.・It was within the appropriate range of cm (1×10 13 or more).
実施例7の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を分散媒温度5℃のビーズミル法で粉砕(低温湿式メディア粉砕)した後に、窒素ガス雰囲気中で、焼成温度が適切な範囲(250℃~550℃)内である350℃の温度に、焼成時間が適切な範囲(1時間~5時間)内である1時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が1×107Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90が7μmと適切な範囲(10μm以下)内であった。また、実施例7の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.0と適切な範囲(2.0以上)内であり、体積抵抗率は1×1013Ω・cmと適切な範囲(1×1013以上)内であった。 The zirconium nitride powder of Example 7, that is, the zirconium nitride coarse powder was produced by the thermite method, and this zirconium nitride coarse powder was pulverized by the bead mill method (low-temperature wet media pulverization) at a dispersion medium temperature of 5 ° C., and then in a nitrogen gas atmosphere. , The zirconium nitride powder fired at a temperature of 350 ° C., which is within the appropriate range of firing temperature (250 ° C. to 550 ° C.), and for 1 hour, which is within the appropriate range of firing time (1 hour to 5 hours). In , the volume resistivity in the state of compacted powder solidified at a pressure of 5 MPa is 1×10 7 Ω·cm, which is within an appropriate range (1×10 7 Ω·cm or more), and in the state diluted with water, The particle size distribution D 90 after ultrasonic dispersion for 5 minutes was 7 μm, which was within an appropriate range (10 μm or less). In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Example 7 in an acrylic monomer was 2.0, which is within an appropriate range (2.0 or more), and the volume resistivity was 1×10 13 Ω.・It was within the appropriate range of cm (1×10 13 or more).
実施例8の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を分散媒温度5℃のビーズミル法で粉砕(低温湿式メディア粉砕)した後に、窒素ガス雰囲気中で、焼成温度が適切な範囲(250℃~550℃)内である550℃の温度に、焼成時間が適切な範囲(1時間~5時間)内である1時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が1×108Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90が8μmと適切な範囲(10μm以下)内であった。また、実施例8の窒化ジルコニウム粉末をアクリルモノマーに分散させて作製した黒色膜のOD値は2.4と適切な範囲(2.0以上)内であり、体積抵抗率は1×1014Ω・cmと適切な範囲(1×1013以上)内であった。 The zirconium nitride powder of Example 8, that is, the zirconium nitride coarse powder was produced by the thermite method, and the zirconium nitride coarse powder was pulverized by the bead mill method (low-temperature wet media pulverization) at a dispersion medium temperature of 5 ° C., and then in a nitrogen gas atmosphere. , The zirconium nitride powder fired at a temperature of 550 ° C., which is within the appropriate range of firing temperature (250 ° C. to 550 ° C.), and for 1 hour, which is within the appropriate range of firing time (1 hour to 5 hours). In , the volume resistivity in the state of compacted powder compacted at a pressure of 5 MPa is 1×10 8 Ω·cm, which is within an appropriate range (1×10 7 Ω·cm or more), and in the state diluted with water, The particle size distribution D90 after ultrasonic dispersion for 5 minutes was 8 μm, which was within an appropriate range (10 μm or less). In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Example 8 in an acrylic monomer was 2.4, which is within an appropriate range (2.0 or more), and the volume resistivity was 1×10 14 Ω.・It was within the appropriate range of cm (1×10 13 or more).
一方、比較例9の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製したけれども、この窒化ジルコニウム粗粉末を、粉砕圧力が適切な範囲(0.3MPa以上)内より小さい0.2MPaの粉砕圧力でジェットミル粉砕した後に、窒素ガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が2×106Ω・cmと適切な範囲(1×107Ω・cm以上)より小さく、水で希釈した状態で5分間超音波分散したときの粒度分布D90が14μmと適切な範囲(10μm以下)より大きかった。また、比較例9の窒化ジルコニウム粉末をエポキシモノマーに分散させて作製した黒色膜のOD値は1.3と適切な範囲(2.0以上)より小さく、体積抵抗率は1×1011Ω・cmと適切な範囲(1×1013以上)より小さかった。 On the other hand, the zirconium nitride powder of Comparative Example 9, that is, the zirconium nitride coarse powder was produced by the thermite method. The zirconium nitride powder that was pulverized with a jet mill under pressure and then fired at a temperature of 350° C. for 4 hours in a nitrogen gas atmosphere had a volume resistivity of 2× in the state of a green compact solidified at a pressure of 5 MPa. 10 6 Ω·cm, which is smaller than the appropriate range (1 × 10 7 Ω·cm or more), and the particle size distribution D 90 when ultrasonically dispersed for 5 minutes in a diluted state with water is 14 µm, which is the appropriate range (10 µm or less). was bigger In addition, the OD value of the black film prepared by dispersing the zirconium nitride powder of Comparative Example 9 in the epoxy monomer was 1.3, which is smaller than the appropriate range (2.0 or more), and the volume resistivity was 1×10 11 Ω·. cm and smaller than the appropriate range (1×10 13 or more).
これに対し、実施例3の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を、粉砕圧力が適切な範囲(0.3MPa以上)内である0.5MPaの粉砕圧力でジェットミル粉砕した後に、窒素ガス雰囲気中で350℃の温度に4時間保持する焼成を行った窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が2×108Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90が6μmと適切な範囲(10μm以下)内であった。また、実施例3の窒化ジルコニウム粉末をエポキシモノマーに分散させて作製した黒色膜のOD値は2.2と適切な範囲(2.0以上)内であり、体積抵抗率は2×1014Ω・cmと適切な範囲(1×1013以上)内であった。 On the other hand, the zirconium nitride powder of Example 3, that is, the zirconium nitride coarse powder was produced by the thermite method, and this zirconium nitride coarse powder was crushed at a crushing pressure of 0.5 MPa within an appropriate range (0.3 MPa or more). The zirconium nitride powder that was pulverized by a jet mill at a pulverization pressure and then sintered at a temperature of 350 ° C. for 4 hours in a nitrogen gas atmosphere has a volume resistivity of 2 in the state of a green compact solidified at a pressure of 5 MPa. × 10 8 Ω·cm and within an appropriate range (1 × 10 7 Ω·cm or more), and the particle size distribution D 90 when ultrasonically dispersed for 5 minutes in a diluted state with water is 6 µm and within an appropriate range (10 µm below). In addition, the black film prepared by dispersing the zirconium nitride powder of Example 3 in an epoxy monomer had an OD value of 2.2, which is within an appropriate range (2.0 or more), and a volume resistivity of 2×10 14 Ω.・It was within the appropriate range of cm (1×10 13 or more).
実施例11の窒化ジルコニウム粉末、即ち窒化ジルコニウム粗粉末をテルミット法で作製し、この窒化ジルコニウム粗粉末を、粉砕圧力が適切な範囲(0.3MPa以上)内である0.3MPaの粉砕圧力でジェットミル粉砕した後に、窒素ガス雰囲気中で350℃の温度に4時間保持する焼成を行った実施例11の窒化ジルコニウム粉末では、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が2×107Ω・cmと適切な範囲(1×107Ω・cm以上)内であり、水で希釈した状態で5分間超音波分散したときの粒度分布D90が10μmと適切な範囲(10μm以下)内であった。また、実施例11の窒化ジルコニウム粉末をエポキシモノマーに分散させて作製した黒色膜のOD値は2.4と適切な範囲(2.0以上)内であり、体積抵抗率は1×1013Ω・cmと適切な範囲(1×1013以上)内であった。 The zirconium nitride powder of Example 11, that is, the zirconium nitride coarse powder was produced by the thermite method, and the zirconium nitride coarse powder was jetted at a pulverization pressure of 0.3 MPa, which is within an appropriate range (0.3 MPa or more). The zirconium nitride powder of Example 11 , which was milled and then sintered at a temperature of 350° C. for 4 hours in a nitrogen gas atmosphere, had a volume resistivity of 2 in the state of a green compact solidified at a pressure of 5 MPa. × 10 7 Ω · cm and appropriate range (1 × 10 7 Ω · cm or more), and the particle size distribution D 90 when ultrasonically dispersed for 5 minutes in a diluted state with water is 10 μm and appropriate range (10 μm below). In addition, the black film prepared by dispersing the zirconium nitride powder of Example 11 in an epoxy monomer had an OD value of 2.4, which is within an appropriate range (2.0 or more), and a volume resistivity of 1×10 13 Ω.・It was within the appropriate range of cm (1×10 13 or more).
本発明の窒化ジルコニウム粉末は、高い黒色度及び高い絶縁性を有する黒色膜を得るための黒色顔料として利用できる。
The zirconium nitride powder of the present invention can be used as a black pigment for obtaining a black film having high blackness and high insulating properties.
Claims (6)
5MPaの圧力で固めた圧粉体の状態での体積抵抗率が107Ω・cm以上であり、かつ水又は炭素数2~5の範囲内にあるアルコールで希釈した状態で5分間超音波分散したときの二次粒子の粒度分布D90が10μm以下である窒化ジルコニウム粉末。 It is in the state of secondary particles in which primary particles are aggregated, and does not contain low zirconium oxide and low zirconium oxynitride,
The volume resistivity is 10 7 Ω·cm or more in the state of compacted powder solidified at a pressure of 5 MPa, and it is ultrasonically dispersed for 5 minutes in a state diluted with water or an alcohol having a carbon number within the range of 2 to 5. A zirconium nitride powder having a particle size distribution D 90 of secondary particles of 10 µm or less.
この窒化ジルコニウム粗粉末を10℃以下の分散媒温度で低温湿式メディア粉砕を行うか又は0.3MPa以上のガス圧でジェットミル粉砕を行うことにより、水又は炭素数2~5の範囲内にあるアルコールで希釈した状態で5分間超音波分散したときの粒度分布D90が10μm以下である窒化ジルコニウム前駆体粉末を作製する工程と、
前記粉砕した窒化ジルコニウム前駆体粉末を不活性ガス雰囲気中で、焼成温度が250℃~550℃、焼成時間が1時間焼~5時間の条件で焼成することにより、5MPaの圧力で固めた圧粉体の状態での体積抵抗率が107Ω・cm以上である窒化ジルコニウム粉末を製造する工程と
を含む窒化ジルコニウム粉末の製造方法。 a step of producing coarse zirconium nitride powder having a specific surface area of 20 m 2 /g to 90 m 2 /g by a thermite method or a plasma synthesis method;
This zirconium nitride coarse powder is subjected to low-temperature wet media pulverization at a dispersion medium temperature of 10 ° C. or less, or jet mill pulverization at a gas pressure of 0.3 MPa or more, so that water or carbon atoms are in the range of 2 to 5 a step of producing a zirconium nitride precursor powder having a particle size distribution D90 of 10 μm or less when ultrasonically dispersed for 5 minutes in an alcohol-diluted state;
The pulverized zirconium nitride precursor powder is fired in an inert gas atmosphere at a firing temperature of 250° C. to 550° C. for a firing time of 1 hour to 5 hours , thereby compacting it at a pressure of 5 MPa. A method for producing a zirconium nitride powder, comprising: producing a zirconium nitride powder having a bulk resistivity of 10 7 Ω·cm or more.
前記塗膜を熱硬化又は紫外線硬化させて黒色膜を作製する工程とを含む黒色膜の作製方法。 A step of applying the monomer dispersion according to claim 3 to a substrate to form a coating film;
A method for producing a black film, comprising the step of thermally curing or ultraviolet curing the coating film to produce a black film.
前記塗膜を熱硬化又は紫外線硬化させて黒色膜を作製する工程とを含む黒色膜の作製方法。 A step of applying the black composition according to claim 4 to a substrate to form a coating film;
A method for producing a black film, comprising the step of thermally curing or ultraviolet curing the coating film to produce a black film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019160829A JP7339080B2 (en) | 2019-09-04 | 2019-09-04 | Zirconium nitride powder and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019160829A JP7339080B2 (en) | 2019-09-04 | 2019-09-04 | Zirconium nitride powder and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021038119A JP2021038119A (en) | 2021-03-11 |
JP7339080B2 true JP7339080B2 (en) | 2023-09-05 |
Family
ID=74848195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019160829A Active JP7339080B2 (en) | 2019-09-04 | 2019-09-04 | Zirconium nitride powder and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7339080B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023065891A (en) | 2021-10-28 | 2023-05-15 | 三菱マテリアル株式会社 | Black fluid dispersion, ultraviolet curable black composition, resin composition, black matrix for color filter, cmos camera module |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009091205A (en) | 2007-10-10 | 2009-04-30 | Tayca Corp | Fine particle low-order zirconium oxide / zirconium nitride composite and method for producing the same |
CN102001634A (en) | 2010-10-26 | 2011-04-06 | 锦州市金属材料研究所 | Method for producing zirconium nitride powder |
JP2015117302A (en) | 2013-12-18 | 2015-06-25 | 三菱マテリアル株式会社 | Black titanium oxynitride powder, and resin compound for encapsulating semiconductor using the same |
JP2017222559A (en) | 2016-09-29 | 2017-12-21 | 三菱マテリアル電子化成株式会社 | Zirconium nitride powder and manufacturing method therefor |
WO2019013343A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
JP2019104651A (en) | 2017-12-13 | 2019-06-27 | テイカ株式会社 | Zirconium nitride-based black filler and method of producing the same, coating composition containing the filler, and coating film thereof |
US20190225550A1 (en) | 2018-01-23 | 2019-07-25 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Metal nitrides and/or metal carbides with nanocrystalline grain structure |
-
2019
- 2019-09-04 JP JP2019160829A patent/JP7339080B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009091205A (en) | 2007-10-10 | 2009-04-30 | Tayca Corp | Fine particle low-order zirconium oxide / zirconium nitride composite and method for producing the same |
CN102001634A (en) | 2010-10-26 | 2011-04-06 | 锦州市金属材料研究所 | Method for producing zirconium nitride powder |
JP2015117302A (en) | 2013-12-18 | 2015-06-25 | 三菱マテリアル株式会社 | Black titanium oxynitride powder, and resin compound for encapsulating semiconductor using the same |
JP2017222559A (en) | 2016-09-29 | 2017-12-21 | 三菱マテリアル電子化成株式会社 | Zirconium nitride powder and manufacturing method therefor |
WO2019013343A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
JP2019104651A (en) | 2017-12-13 | 2019-06-27 | テイカ株式会社 | Zirconium nitride-based black filler and method of producing the same, coating composition containing the filler, and coating film thereof |
US20190225550A1 (en) | 2018-01-23 | 2019-07-25 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Metal nitrides and/or metal carbides with nanocrystalline grain structure |
Also Published As
Publication number | Publication date |
---|---|
JP2021038119A (en) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5152444B2 (en) | Method for producing porous silica particles, resin composition for antireflection film, article having antireflection film, and antireflection film | |
EP3521242A1 (en) | Zirconium nitride powder and method for producing same | |
TWI439419B (en) | Aggregate of spherical core shell type cerium oxide/polymeric hybrid nano particles and manufacturing method thereof | |
US7157024B2 (en) | Metal oxide particle and process for producing same | |
JP7339080B2 (en) | Zirconium nitride powder and method for producing the same | |
TWI761595B (en) | Near-infrared curable ink composition, near infrared cured film, and production method thereof, and optical shaping method | |
CN115667416A (en) | Halogenated zinc phthalocyanine pigment and process for producing the same | |
JPWO2018235820A1 (en) | Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing anti-counterfeit ink composition | |
JP4765300B2 (en) | Coating composition and method for producing the same. | |
TWI787282B (en) | Near infrared curable ink composition and method for producing the same, near infrared cured film, and stereolithography | |
CN109739068A (en) | Carbon black dispersion, Photosensitve resin composition, colored filter, display device | |
TWI840626B (en) | Zirconium nitride powder and method for producing the same | |
US11697156B2 (en) | Zirconium nitride powder and method for producing same | |
EP4015582B1 (en) | Zirconium nitride powder and method for producing same | |
KR100841880B1 (en) | Aqueous / organic metal oxide dispersions and coating substrates and moldings prepared thereby | |
CN114507073A (en) | Zirconium nitride powder and method for producing same | |
KR20220056680A (en) | Zirconium nitride powder and production method therefor | |
CN112074582A (en) | Surface treatment infrared absorbing particle dispersion and infrared absorbing transparent substrate | |
JP4839602B2 (en) | Method for producing a coating composition | |
JP5093442B2 (en) | Color filter colorant, color filter color composition containing the color filter colorant, and color filter | |
JP2023107263A (en) | Zirconium nitride powder containing zinc-based composition and method for producing the same | |
JP7354708B2 (en) | Method for manufacturing composite tungsten oxide fine particles, method for manufacturing composite tungsten oxide fine particle dispersion, and method for manufacturing composite tungsten oxide fine particle dispersion | |
JPH03227376A (en) | Production of inorganic electrically conductive coating material | |
WO2023053809A1 (en) | Aluminum-oxide-based-composition-containing zirconium nitride powder and method for producing same | |
JP2005330177A (en) | Anhydrous zinc antimonate sol and process for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20201030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20201203 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20220427 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220629 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230824 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7339080 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |