[go: up one dir, main page]

JP7323095B1 - 高強度鋼板およびその製造方法 - Google Patents

高強度鋼板およびその製造方法 Download PDF

Info

Publication number
JP7323095B1
JP7323095B1 JP2023528942A JP2023528942A JP7323095B1 JP 7323095 B1 JP7323095 B1 JP 7323095B1 JP 2023528942 A JP2023528942 A JP 2023528942A JP 2023528942 A JP2023528942 A JP 2023528942A JP 7323095 B1 JP7323095 B1 JP 7323095B1
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
content
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023528942A
Other languages
English (en)
Other versions
JPWO2023181643A1 (ja
Inventor
潤也 戸畑
勇樹 田路
秀和 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority claimed from PCT/JP2023/002917 external-priority patent/WO2023181643A1/ja
Application granted granted Critical
Publication of JP7323095B1 publication Critical patent/JP7323095B1/ja
Publication of JPWO2023181643A1 publication Critical patent/JPWO2023181643A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

TSが980MPa以上およびElが10%以上、かつ、靭性、板幅方向の平坦度および耐加工脆化特性に優れる高強度鋼板およびその製造方法を提供することを目的とする。所定の成分組成を有し、板厚1/4位置において、マルテンサイト量が面積分率で60%以上、残留オーステナイト量が体積分率で3%以上15%以下であり、フェライト量およびベイニティックフェライト量の合計が面積分率で10%超であり、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が面積分率で70%以下である、高強度鋼板。

Description

本発明は、引張強度、El、靭性、板幅方向の平坦度および耐加工脆化特性に優れる高強度鋼板およびその製造方法に関するものである。本発明の高強度鋼板は、自動車用部品等の構造部材として好適に用いることができる。
車輛の軽量化によるCO排出量削減と車体の軽量化による耐衝突性能向上の両立を目的に、自動車用薄鋼板の高強度化が進行しており、新たな法規制の導入も相次いでいる。そのため、車体強度の増加を目的として、自動車を形成する主要な構造部品では、引張強度(TS)で980MPa級以上の高強度鋼板の適用事例が増加している。
自動車に用いられる高強度鋼板には、優れたプレス成形が求められる。例えば、自動車のバンパー等の骨格部品では、Elの高い高強度鋼板を適用することが好適である。また、衝突安全性の観点から、優れた靭性および耐加工脆化特性が求められる。
また、自動車に用いられる高強度鋼板には、鋼板の平坦度にも優れていることが求められる。特許文献1には鋼板の反りが成形ラインでの操業トラブルや製品の寸法精度に悪影響を及ぼすことが記載されている。本発明者らは鋭意検討を重ねた結果、製品の寸法精度には鋼板の反りだけでなく、急峻度を用いて評価される板幅方向の平坦度も影響することを見出した。例えば、優れた寸法精度を実現するためには、幅方向の急峻度は0.02以下であることが好適である。
これらの要求に対し、例えば、特許文献2では、1100MPa以上の引張強度を有し、YR、表面性状および溶接性に優れた高強度鋼板およびその製造方法が提供されている。しかしながら、特許文献2に記載の技術では、El、靭性、板幅方向の平坦度および耐加工脆化特性については考慮していない。
特許文献3では、プレス成形性および低温靭性に優れた引張強度が980MPa以上の溶融亜鉛めっき鋼板およびその製造方法が提供されている。しかしながら、特許文献3に記載の技術では、温度低下による鋼板の脆化を改善できているが、加工による鋼板の脆化については考慮していない。板幅方向の平坦度についても考慮していない。
特許第4947176号公報 特許第6525114号公報 特許第6777272号公報
スマートプロセス学会誌2013年、2巻、3号p.110-118
本発明は、かかる事情に鑑み開発されたもので、TSが980MPa以上およびElが10%以上、かつ、靭性、板幅方向の平坦度および耐加工脆化特性に優れる高強度鋼板およびその製造方法を提供することを目的とする。
本発明者らは、上記した課題を達成するために、鋭意検討を重ねた結果、以下のことを見出した。
(1)マルテンサイト量を面積分率で60%以上とすることで、980MPa以上のTSを実現できる。
(2)残留オーステナイト量を体積分率で3%以上、かつ、フェライト量およびベイニティックフェライト量の合計を面積分率で10%超とすることで、10%以上のElを実現できる。
(3)残留オーステナイト量を体積分率で3%以上とすることで、優れた靭性を実現できる。
(4)旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値を面積分率で70%以下とすることで、優れた耐加工脆化特性を実現できる。
(5)残留オーステナイト量を体積分率で15%以下、かつ、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値を面積分率で70%以下とすることで、優れた耐加工脆化特性を実現できる。
本発明は、上記知見に基づいてなされたものである。すなわち、本発明の要旨構成は次のとおりである。
[1]質量%で、C:0.030%以上0.500%以下、Si:0.50%以上2.50%以下、Mn:1.00%以上5.00%以下、P:0.100%以下、S:0.0200%以下、Al:1.000%以下、N:0.0100%以下、および、O:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、板厚1/4位置において、マルテンサイト量が面積分率で60%以上、残留オーステナイト量が体積分率で3%以上15%以下であり、フェライト量およびベイニティックフェライト量の合計が面積分率で10%超であり、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が面積分率で70%以下である、高強度鋼板。
[2]前記成分組成は、さらに、質量%で、Ti:0.200%以下、Nb:0.200%以下、V:0.200%以下、Ta:0.10%以下、W:0.10%以下、B:0.0100%以下、Cr:1.00%以下、Mo:1.00%以下、Co:0.010%以下、Ni:1.00%以下、Cu:1.00%以下、Sn:0.200%以下、Sb:0.200%以下、Ca:0.0100%以下、Mg:0.0100%以下、REM:0.0100%以下、Zr:0.100%以下、Te:0.100%以下、Hf:0.10%以下、Bi:0.200%以下、のうちから選ばれる少なくとも1種の元素を含有する、[1]に記載の高強度鋼板。
[3]鋼板表面にめっき層を有する、[1]又は[2]に記載の高強度鋼板。
[4][1]又は[2]に記載の高強度鋼板の製造方法であって、前記成分組成を有する鋼に、熱間圧延、酸洗および冷間圧延を施し作製した冷延板を、焼鈍温度Taが700℃以上900℃以下、前記焼鈍温度Taでの保持時間が10秒以上1000秒以下の条件で加熱して焼鈍し、前記焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下となる加工を施し、700℃~600℃の温度範囲での平均冷却速度が20℃/s以上、499℃~Msの温度範囲での平均冷却速度が20℃/s未満で冷却し、前記499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下となる加工を施し、Ms~冷却停止温度Tbの温度範囲での平均冷却速度が150℃/s以下で冷却し、前記Ms~冷却停止温度Tbの温度範囲での鋼板に付与される張力を5MPa以上100MPa以下とし、前記冷却停止温度Tbが100℃以上(Ms-80℃)以下であり、なお、Msは式(1)にて規定するマルテンサイト変態開始温度(℃)であり、焼戻温度がTb以上450℃以下、前記焼戻温度での保持時間が10秒以上1000秒以下で焼き戻す、高強度鋼板の製造方法。
Ms=519-474×[%C]-30.4×[%Mn]-12.1×[%Cr]-7.5×[%Mo]-17.7×[%Ni]-Ta/80・・・・(1)
ここで、[%C]、[%Mn]、[%Cr]、[%Mo]、[%Ni]はC、Mn、Cr、Mo、Niそれぞれの含有量(質量%)を表し、含まない場合は0とする。
[5]めっき処理を施す、[4]に記載の高強度鋼板の製造方法。
本発明によれば、TSが980MPa以上およびElが10%以上、かつ、靭性、板幅方向の平坦度および耐加工脆化特性に優れる高強度鋼板を得ることができる。また、本発明の高強度鋼板を、例えば、自動車構造部材に適用することによって車体軽量化による燃費向上を図ることができる。したがって、産業上の利用価値は極めて大きい。
図1は、本発明に係る旧オーステナイト粒内の最大占有率を有するパケットの構造と当該パケットの占有率の算出方法を示す図である。 図2は、本発明に係る鋼板の幅方向の急峻度λの概念とその算出方法を示す図である。
以下、本発明の実施形態について説明する。
先ず、高強度鋼板の成分組成の適正範囲およびその限定理由について説明する。なお、以下の説明において、鋼の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。
[C:0.030%以上0.500%以下]
Cは、鋼の重要な基本成分の1つであり、特に本発明では、マルテンサイト量に影響する重要な元素である。Cの含有量が0.030%未満では、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。一方、Cの含有量が0.500%を超えると、マルテンサイトが脆化し、靭性および耐加工脆化特性が低下する。したがって、Cの含有量は、0.030%以上0.500%以下とする。Cの含有量の下限は、好ましくは0.050%以上とする。Cの含有量の上限は、好ましくは0.400%以下とする。Cの含有量の下限は、より好ましくは0.100%以上とする。Cの含有量の上限は、より好ましくは0.350%以下とする。
[Si:0.50%以上2.50%以下]
Siは、鋼の重要な基本成分の1つであり、TSおよび残留オーステナイト量に影響する重要な元素である。Siの含有量が0.50%未満では、マルテンサイトの強度が減少するため、980MPa以上のTSを実現することが困難になる。一方、Siの含有量が2.50%を超えると、残留オーステナイトが過度に増加し、靭性および耐加工脆化特性が低下する。したがって、Siの含有量は、0.50%以上2.50%以下とする。Siの含有量の下限は、好ましくは0.55%以上とする。Siの含有量の上限は、好ましくは2.00%以下とする。Siの含有量の下限は、より好ましくは0.60%以上とする。Siの含有量の上限は、より好ましくは1.80%以下とする。
[Mn:1.00%以上5.00%以下]
Mnは、鋼の重要な基本成分の1つであり、マルテンサイト量に影響する重要な元素である。Mnの含有量が1.00%未満では、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。一方、Mnの含有量が5.00%を超えると、マルテンサイトが脆化し、靭性および耐加工脆化特性が低下する。したがって、Mnの含有量は、1.00%以上5.00%以下とする。Mnの含有量の下限は、好ましくは1.50%以上とする。Mnの含有量の上限は、好ましくは4.50%以下とする。Mnの含有量の下限は、より好ましくは2.00%以上とする。Mnの含有量の上限は、より好ましくは4.00%以下とする。
[P:0.100%以下]
Pは、旧オーステナイト粒界に偏析して粒界を脆化させるため、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Pの含有量は0.100%以下にする必要がある。なお、Pの含有量の下限は特に規定しないが、Pは固溶強化元素であり、鋼板の強度を上昇させることができることから、0.001%以上とすることが好ましい。したがって、Pの含有量は、0.100%以下とする。Pの含有量の下限は、好ましくは0.001%以上とする。Pの含有量の上限は、好ましくは0.070%以下とする。
[S:0.0200%以下]
Sは、硫化物として存在し、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Sの含有量は0.0200%以下にする必要がある。なお、Sの含有量の下限は特に規定しないが、生産技術上の制約から、0.0001%以上とすることが好ましい。したがって、Sの含有量は0.0200%以下とする。Sの含有量の下限は、好ましくは0.0001%以上とする。Sの含有量の上限は、好ましくは0.0050%以下とする。
[Al:1.000%以下]
Alは、酸化物として存在し、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Alの含有量は1.000%以下にする必要がある。なお、Alの含有量の下限は特に規定しないが、連続焼鈍中の炭化物生成を抑制し、残留オーステナイトの生成を促進することから、Alの含有量は0.001%以上とすることが好ましい。したがって、Alの含有量は1.000%以下とする。Alの含有量の下限は、好ましくは0.001%以上とする。Alの含有量の上限は、好ましくは0.500%以下とする。
[N:0.0100%以下]
Nは、窒化物として存在し、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Nの含有量は0.0100%以下にする必要がある。なお、Nの含有量の下限は特に規定しないが、生産技術上の制約から、Nの含有量は0.0001%以上とすることが好ましい。したがって、Nの含有量は0.0100%以下とする。Nの含有量の下限は、好ましくは0.0001%以上とする。Nの含有量の上限は、好ましくは0.0050%以下とする。
[O:0.0100%以下]
Oは、酸化物として存在し、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Oの含有量は0.0100%以下にする必要がある。なお、Oの含有量の下限は特に規定しないが、生産技術上の制約から、Oの含有量は0.0001%以上とすることが好ましい。したがって、Oの含有量は0.0100%以下とする。Oの含有量の下限は、好ましくは0.0001%以上とする。Oの含有量の上限は、好ましくは0.0050%以下とする。
本発明の一実施形態に従う高強度鋼板は、上記の成分を含有し、残部がFeおよび不可避的不純物を含む成分組成を有する。ここで不可避的不純物として、Zn、Pb、As、Ge、SrおよびCsが挙げられる。これら不純物は合計で0.100%以下含有されることは許容される。
本発明の高強度鋼板は、上記の成分組成に加えて、さらに、質量%で、
Ti:0.200%以下、Nb:0.200%以下、V:0.200%以下、Ta:0.10%以下、W:0.10%以下、B:0.0100%以下、Cr:1.00%以下、Mo:1.00%以下、Ni:1.00%以下、Co:0.010%以下、Cu:1.00%以下、Sn:0.200%以下、Sb:0.200%以下、Ca:0.0100%以下、Mg:0.0100%以下、REM:0.0100%以下、Zr:0.100%以下、Te:0.100%以下、Hf:0.10%以下、およびBi:0.200%以下から選ばれる少なくとも1種の元素を、単独で、あるいは組み合わせて含有しても良い。
Ti、NbおよびVは、それぞれ0.200%以下であれば粗大な析出物や介在物が多量に生成せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Ti、NbおよびVの含有量はそれぞれ0.200%以下にすることが好ましい。なお、Ti、NbおよびVの含有量の下限は特に規定しないが、熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、Ti、NbおよびVの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、Ti、NbおよびVを含有する場合には、その含有量はそれぞれ0.200%以下とする。Ti、NbおよびVを含有する場合の下限は、より好ましくは0.001%以上とする。Ti、NbおよびVを含有する場合の上限は、さらに好ましくは0.100%以下とする。
TaおよびWは、それぞれ0.10%以下であれば粗大な析出物や介在物が多量に生成せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、TaおよびWの含有量はそれぞれ0.10%以下にすることが好ましい。なお、TaおよびWの含有量の下限は特に規定しないが、熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、TaおよびWの含有量はそれぞれ0.01%以上とすることがより好ましい。したがって、TaおよびWを含有する場合には、その含有量はそれぞれ0.10%以下とする。TaおよびWを含有する場合の下限は、より好ましくは0.01%以上とする。TaおよびWを含有する場合の上限は、さらに好ましくは0.08%以下とする。
Bは、0.0100%以下であれば鋳造時あるいは熱間圧延時において鋼板内部に割れを生成せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Bの含有量は0.0100%以下にすることが好ましい。なお、Bの含有量の下限は特に規定しないが、焼鈍中にオーステナイト粒界に偏析し、焼入れ性を向上させる元素であることから、Bの含有量は0.0003%以上とすることがより好ましい。したがって、Bを含有する場合には、その含有量は0.0100%以下とする。Bを含有する場合の下限は、より好ましくは0.0003%以上とする。Bを含有する場合の上限は、さらに好ましくは0.0080%以下とする。
Cr、MoおよびNiは、それぞれ1.00%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Cr、MoおよびNiの含有量はそれぞれ1.00%以下にすることが好ましい。なお、Cr、MoおよびNiの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Cr、MoおよびNiの含有量はそれぞれ0.01%以上とすることがより好ましい。したがって、Cr、MoおよびNiを含有する場合には、その含有量はそれぞれ1.00%以下とする。Cr、MoおよびNiを含有する場合の下限は、より好ましくは0.01%以上とする。Cr、MoおよびNiを含有する場合の上限は、さらに好ましくは0.80%以下とする。
Coは、0.010%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Coの含有量は0.010%以下にすることが好ましい。なお、Coの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Coの含有量は0.001%以上とすることがより好ましい。したがって、Coを含有する場合には、その含有量は0.010%以下とする。Coを含有する場合の下限は、より好ましくは0.001%以上とする。Coを含有する場合の上限は、さらに好ましくは0.008%以下とする。
Cuは、1.00%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Cuの含有量は1.00%以下にすることが好ましい。なお、Cuの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Cuの含有量は0.01%以上とすることが好ましい。したがって、Cuを含有する場合には、その含有量は1.00%以下とする。Cuを含有する場合の下限は、より好ましくは、0.01%以上とする。Cuを含有する場合の上限は、さらに好ましくは0.80%以下とする。
Snは、0.200%以下であれば鋳造時あるいは熱間圧延時において鋼板内部に割れを生成せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Snの含有量は0.200%以下にすることが好ましい。なお、Snの含有量の下限は特に規定しないが、Snは焼入れ性を向上させる元素(一般的には耐食性を向上させる元素)であることから、Snの含有量は0.001%以上とすることがより好ましい。したがって、Snを含有する場合には、その含有量は0.200%以下とする。Snを含有する場合の下限は、より好ましくは0.001%以上とする。Snを含有する場合の上限は、さらに好ましくは0.100%以下とする。
Sbは、0.200%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Sbの含有量は0.200%以下にすることが好ましい。なお、Sbの含有量の下限は特に規定しないが、表層軟化厚みを制御し、強度調整を可能にする元素であることから、Sbの含有量は0.001%以上とすることがより好ましい。したがって、Sbを含有する場合には、その含有量は0.200%以下とする。Sbを含有する場合の下限は、より好ましくは0.001%以上とする。Sbを含有する場合の上限は、さらに好ましくは0.100%以下とする。
Ca、MgおよびREMは、それぞれ0.0100%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Ca、MgおよびREMの含有量は0.0100%以下にすることが好ましい。なお、Ca、MgおよびREMの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、鋼板の極限変形能を向上する元素であることから、Ca、MgおよびREMの含有量はそれぞれ0.0005%以上とすることがより好ましい。したがって、Ca、MgおよびREMを含有する場合には、その含有量はそれぞれ0.0100%以下とする。Ca、MgおよびREMを含有する場合の下限は、より好ましくは0.0005%以上とする。Ca、MgおよびREMを含有する場合の上限は、さらに好ましくは0.0050%以下とする。
ZrおよびTeは、それぞれ0.100%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、ZrおよびTeの含有量は0.100%以下にすることが好ましい。なお、ZrおよびTeの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、鋼板の極限変形能を向上する元素であることから、ZrおよびTeの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、ZrおよびTeを含有する場合には、その含有量はそれぞれ0.100%以下とする。ZrおよびTeを含有する場合の下限は、より好ましくは0.001%以上とする。ZrおよびTeを含有する場合の上限は、さらに好ましくは0.080%以下とする。
Hfは、0.10%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Hfの含有量は0.10%以下にすることが好ましい。なお、Hfの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、鋼板の極限変形能を向上する元素であることから、Hfの含有量は0.01%以上とすることがより好ましい。したがって、Hfを含有する場合には、その含有量は0.10%以下とする。Hfを含有する場合の下限は、より好ましくは0.01%以上とする。Hfを含有する場合の上限は、さらに好ましくは0.08%以下とする。
Biは、0.200%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Biの含有量は0.200%以下にすることが好ましい。なお、Biの含有量の下限は特に規定しないが、偏析を軽減する元素であることから、Biの含有量は0.001%以上とすることがより好ましい。したがって、Biを含有する場合には、その含有量は0.200%以下とする。Biを含有する場合の下限は、より好ましくは0.001%以上とする。Biを含有する場合の上限は、さらに好ましくは0.100%以下とする。
なお、上記したTi、Nb、V、Ta、W、B、Cr、Mo、Ni、Co、Cu、Sn、Sb、Ca、Mg、REM、Zr、Te、HfおよびBiについて、各含有量が好ましい下限値未満の場合には本発明の効果を害することがないため、不可避的不純物として含むものとする。
次に、本発明の高強度鋼板の鋼組織について説明する。
[マルテンサイト量が面積分率で60%以上]
本発明において、極めて重要な発明構成要件である。マルテンサイト量を面積分率で60%以上とすることで、980MPa以上のTSを実現することが可能となる。したがって、マルテンサイトが面積分率で60%以上とする。好ましくは62%以上である。より好ましくは64%以上である。
[残留オーステナイト量が体積分率で3%以上15%以下]
本発明において、極めて重要な発明構成要件である。残留オーステナイト量が体積分率で3%未満の場合、10%以上のElを実現することが困難になり、かつ、残留オーステナイトによる靭性の向上効果が得られず優れた靭性を実現することが困難になる。また、残留オーステナイト量が15%超えの場合、加工付与時により残留オーステナイトが硬質なマルテンサイトに過度に変態するため、鋼板の極限変形能が低下し、優れた耐加工脆化特性を得ることが困難になる。したがって、残留オーステナイトは3%以上15%以下とする。残留オーステナイト量の下限は、好ましくは5%以上とする。残留オーステナイト量の上限は、好ましくは14%以下とする。残留オーステナイト量の下限は、より好ましくは7%以上とする。残留オーステナイト量の上限は、より好ましくは13%以下とする。
ここで、残留オーステナイトの測定方法は、以下の通りである。残留オーステナイトは、鋼板を板厚1/4部から0.1mmの面まで研磨後、化学研磨によりさらに0.1mm研磨した面について、X線回折装置でCoKα線を用いて、fcc鉄の{200}、{220}、{311}面および、bcc鉄の{200}、{211}、{220}面の回折ピークの各々の積分強度比を測定し、得られた9つの積分強度比を平均化して求める。
[フェライト量およびベイニティックフェライト量の合計が面積分率で10%超]
本発明において、極めて重要な発明構成要件である。フェライト量およびベイニティックフェライト量の合計が10%以下の場合、10%以上のElを実現することが困難になる。したがって、フェライト量およびベイニティックフェライト量の合計は10%超とする。好ましくは12%以上とする。より好ましくは13%以上とする。なお、フェライト量およびベイニティックフェライト量の合計の上限は特に限定しない。
ここで、フェライト量およびベイニティックフェライト量の合計の測定方法は、以下の通りである。鋼板のL断面を研磨後、3vol.%ナイタールで腐食し、板厚1/4部(鋼板表面から深さ方向で板厚の1/4に相当する位置)を、SEMを用いて2000倍の倍率で10視野観察する。なお、上記の組織画像において、フェライトおよびベイニティックフェライトは凹部で組織内部が平坦な組織であり、かつ、内部に炭化物を有さない組織である。それらの値の平均値から、フェライト量およびベイニティックフェライト量の合計を求めることができる。
上記マルテンサイト量の測定方法は、以下の通りである。マルテンサイト量は、前述した方法に基づき残留オーステナイト量、フェライト量およびベイニティックフェライト量を測定し、それらの合計を100%から差し引くことで求めることができる。したがって本発明のマルテンサイト量とは、焼入れマルテンサイトと焼戻しマルテンサイトの両方を含んだ量である。なお、差し引きにおいて、残留オーステナイト量の体積率≒面積率であるので、面積率で表されるフェライト量およびベイニティックフェライト量と共に100%から差し引くこととする。
[旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が面積分率で70%以下]
本発明において、極めて重要な発明構成要件である。旧オーステナイト粒内の最大占有率を有するパケットの占有率は、板幅方向の平坦度および耐加工脆化特性に影響する。旧オーステナイト粒内の最大占有率を有するパケットとは、図1に示すように、旧オーステナイト粒内にはパケットと呼ばれる変態時の晶癖面が同じ領域が最大4つ存在しており、その中の最も大きい占有率を有するパケットのことを示す。
旧オーステナイト粒内の1つのパケットの占有率は、指定のパケットの面積を旧オーステナイト粒内の全体の面積で除することで求められる。
本発明者らは、鋭意検討を重ねた結果、旧オーステナイト粒内の最大占有率を有するパケットの占有率を減少させることで、パケット間の歪が緩和され、板幅方向の平坦度が改善されることを見出した。また、旧オーステナイト粒内の最大占有率を有するパケットの占有率を減少させることで、組織が微細化し、き裂の伝播を抑制できるため、鋼板の耐加工脆化特性を向上することも見出した。したがって、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値は70%以下とする。好ましくは60%以下とする。なお、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値の下限は特に限定しない。パケットの種類は最大で4つであり、4つのパケットが均等に存在する場合に旧オーステナイト粒内の最大占有率を有するパケットの占有率が25%となる。よって、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値の下限は25%以上が好ましいが、これに限定する必要はない。
ここで、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値の測定方法は、以下の通りである。まず、冷延鋼板から、組織観察用の試験片を採取する。次いで、採取した試験片を、圧延方向断面(L断面)が観察面となるように、コロイダルシリカ振動研磨により研磨する。観察面は鏡面とする。次いで、板厚1/4部(鋼板表面から深さ方向で板厚の1/4に相当する位置)に対して電子線後方散乱回折(EBSD)測定を実施し、局所結晶方位データを得る。このとき、SEM倍率は1000倍、ステップサイズは0.2μm、測定領域は80μm平方、WDは15mmとする。得られた局所方位データを、OIMAnalysis7(OIM)を用いて解析し、非特許文献1に記載の方法を用いてClose-packed Plane group(CPグループ)ごとに色分けした図(CPマップ)を作成する。本発明では、パケットを同じCPグループの属している領域と定義する。得られたCPマップから最も大きい占有率を有するパケットの面積を求め、旧オーステナイト粒内の全体の面積で除することで旧オーステナイト粒内の最大占有率を有するパケットの占有率が求められる。この解析を隣接する10個以上の旧オーステナイト粒に対して実施し、その平均の値を、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値とする。
次に、本発明の製造方法について説明する。
本発明において、鋼素材(鋼スラブ)の溶製方法は特に限定されず、転炉や電気炉等、公知の溶製方法いずれもが適合する。鋼スラブ(スラブ)は、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましい。
本発明において、熱間圧延におけるスラブ加熱温度、スラブ均熱保持時間および巻取温度は特に限定されない。鋼スラブを熱間圧延する方法としては、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などが挙げられる。熱間圧延におけるスラブ加熱温度、スラブ均熱保持時間、仕上げ圧延温度および巻取温度は特に限定されないが、スラブ加熱温度の下限は1100℃以上が好ましい。スラブ加熱温度の上限は1300℃以下が好ましい。スラブ均熱保持時間の下限は30min以上が好ましい。スラブ均熱保持時間の上限は250min以下が好ましい。仕上げ圧延温度の下限はAr変態点以上が好ましい。また、巻取温度の下限は350℃以上が好ましい。また、巻取温度の上限は650℃以下が好ましい。
このようにして製造した熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物の除去が可能であることから、最終製品の高強度鋼板における良好な化成処理性やめっき品質の確保のために重要である。また、酸洗は、一回でも良いし、複数回に分けても良い。また、熱延後酸洗処理板のままで冷間圧延を施してもよいし、熱処理を施したのちに冷間圧延を施してもよい。
冷間圧延における圧下率および圧延後の板厚は特に限定しないが、圧下率の下限は30%以上が好ましい。また、圧下率の上限は80%以下とすることが好ましい。なお、圧延パスの回数、各パスの圧下率については、特に限定されることなく本発明の効果を得ることができる。
上記のようにして得られた冷延鋼板に、焼鈍を行う。焼鈍条件は以下のとおりである。
[焼鈍温度Taが700℃以上900℃以下]
焼鈍温度Taが700℃未満の場合、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。一方、焼鈍温度が900℃超えの場合、フェライト量およびベイニティックフェライト量の合計が減少し、10%以上のElを実現することが困難になる。したがって、焼鈍温度は700℃以上900℃以下とする。焼鈍温度の下限は、好ましくは750℃以上である。焼鈍温度の上限は、好ましくは870℃以下である。
[焼鈍温度Taでの保持時間が10秒以上1000秒以下で焼鈍]
焼鈍温度Taでの保持時間が10秒未満の場合、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。一方、焼鈍温度Taでの保持時間が1000秒超えの場合、フェライト量およびベイニティックフェライト量の合計が減少し、10%以上のElを実現することが困難になる。したがって、焼鈍温度Taでの保持時間は10秒以上1000秒以下とする。焼鈍温度Taでの保持時間の下限は、好ましくは50秒以上である。焼鈍温度Taでの保持時間の上限は、好ましくは500秒以下である。
[焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下]
本発明者らは鋭意検討を重ねた結果、焼鈍中での鋼板への曲げ曲げ戻しの付与が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを行わない場合、マルテンサイト変態の核生成サイトが低減する。そのため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。一方、焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを16回以上行った場合、鋼板の極限変形能が低下し、耐加工脆化特性が低下する。したがって、焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下行うこととする。好ましくはロール径の半径は600mm以下である。好ましくは曲げ曲げ戻しの回数の下限は、合計3回以上である。好ましくは曲げ曲げ戻しの回数の上限は、合計10回以下である。ロール径の半径の下限は特に限定する必要はないが、50mm以上が好ましい。
なお、曲げ曲げ戻しとは、公知の方法により、ロールで一方向に曲げた後、逆方向に前記曲げた量だけ曲げ戻す処理を言う。曲げ曲げ戻しの回数は、曲げ-曲げ戻しで1回ではなく、曲げで1回、曲げ戻しで1回と数える。
[700℃~600℃の温度範囲での平均冷却速度が20℃/s以上]
本発明者らは鋭意検討を重ねた結果、700℃~600℃の温度範囲での平均冷却速度が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。700℃~600℃の温度範囲での平均冷却速度が20℃/s未満の場合、焼鈍中の鋼板への曲げ曲げ戻しの付与の影響が減少し、マルテンサイト変態の核生成サイトが低減する。そのため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。したがって、750℃~600℃の平均冷却速度は20℃/s以上とする。好ましくは30℃/s以上である。上限は特に限定する必要はないが、100℃/s以下が好ましい。
[499℃~Msの温度範囲での平均冷却速度が20℃/s未満]
499℃~Msの温度範囲での平均冷却速度は、フェライト量およびベイニティックフェライト量の合計面積分率に影響する。499℃~Msの温度範囲での平均冷却速度が20℃/s以上の場合、フェライト量およびベイニティックフェライト量の合計が減少し、10%以上のElを実現することが困難になる。したがって、499℃~Msの温度範囲での平均冷却速度は20℃/s未満とする。好ましくは18℃/s以下である。下限は特に限定する必要はないが、5℃/s以上が好ましい。
なお、マルテンサイト変態開始温度Ms(℃)は以下の(1)式にて規定する。
Ms=519-474×[%C]-30.4×[%Mn]-12.1×[%Cr]-7.5×[%Mo]-17.7×[%Ni]-Ta/80・・・・(1)
ここで、[%C]、[%Mn]、[%Cr]、[%Mo]、[%Ni]はC、Mn、Cr、Mo、Niそれぞれの含有量(質量%)を表し、含まない場合は0とする。
[499℃~Msの温度範囲で半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下]
本発明者らは鋭意検討を重ねた結果、499℃~Msの温度範囲での鋼板への曲げ曲げ戻しの付与が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを行わない場合、マルテンサイトの核生成サイトが低減する。そのため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。一方、499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを16回以上行った場合、鋼板の極限変形能を低下し、耐加工脆化特性が低下する。したがって、499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下行うこととする。好ましくはロール径の半径は600mm以下である。好ましくは曲げ曲げ戻しの回数の下限は、合計3回以上である。好ましくは曲げ曲げ戻しの回数の下限は、合計10回以下である。ロール径の半径の下限は特に限定する必要はないが、50mm以上が好ましい。
[Ms~冷却停止温度Tbの温度範囲での平均冷却速度が150℃/s以下]
本発明者らは鋭意検討を重ねた結果、Ms~冷却停止温度Tbの温度範囲での平均冷却速度が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。Ms~冷却停止温度Tbの温度範囲での平均冷却速度が150℃/s超えの場合、マルテンサイト変態速度が速いことに起因して1つのパケットが成長しやすいため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。したがって、Ms~冷却停止温度Tbの温度範囲での平均冷却速度は150℃/s以下とする。好ましくは120℃/s以下である。下限は特に限定する必要はないが、5℃/s以上が好ましい。
[Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力が5MPa以上100MPa以下]
本発明者らは鋭意検討を重ねた結果、Ms~冷却停止温度Tb温度範囲での鋼板への張力の付与が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力が5MPa未満の場合、マルテンサイトの核生成サイトが低減する。そのため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。一方、Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力が100MPa超えの場合、フェライト量およびベイニティックフェライト量の合計が過度に増加するため、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。したがって、Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力は5MPa以上100MPa以下とする。Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力の下限は、好ましくは6MPa以上である。Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力の上限は、好ましくは50MPa以下である。なお、張力の付与は公知の方法で行う。一例として、炉内のロールのロール速度を制御することによって張力を付与する方式を行っても良い。
なお、上記曲げ曲げ戻し工程は、マルテンサイト変態開始箇所である核生成サイトの数を増加させる一方、上記張力を付与する工程は、マルテンサイト変態自体を促進させる点で得られる効果が異なる。
[冷却停止温度Tbが100℃以上(Ms-80℃)以下]
冷却停止温度Tbが100℃未満の場合、残留オーステナイト量が減少し、曲げ性が低下する。一方、冷却停止温度Tbが(Ms-80℃)超えの場合、残留オーステナイト量が過度に増加し、旧オーステナイト粒径が過剰に増大し、耐加工脆化特性が低下する。したがって、冷却停止温度Tbは100℃以上(Ms-80℃)以下とする。冷却停止温度Tbの下限は、好ましくは120℃以上である。冷却停止温度Tbの上限は、好ましくは(Ms-100℃)以下である。
[焼戻温度がTb以上450℃以下]
上記冷却停止温度Tbにて冷却停止後、そのままの温度で保持を行うか、再加熱し450℃以下の温度で保持を行い、残留オーステナイトを安定化する。焼戻温度がTb未満の場合、所定の残留オーステナイトが得られないため、Elが低下し、かつ、優れた靭性を得ることが困難となる。焼戻温度が450℃超の場合、マルテンサイトの焼戻が過度に進行し、980MPa以上のTSを実現することが困難になる。したがって、焼戻温度はTb以上450℃以下とする。焼戻温度の下限は、好ましくは(Tb+10℃)以上である。焼戻温度の上限は、好ましくは420℃以下である。
[焼戻温度での保持時間が10秒以上1000秒以下]
焼戻温度での保持時間が10秒未満の場合、オーステナイトの安定化が不十分となり、所定の残留オーステナイトが得られないため、Elが低下し、かつ、優れた靭性を得ることが困難となる。焼戻温度での保持時間が1000秒超の場合、マルテンサイトの焼戻が過度に進行し、980MPa以上のTSを実現することが困難になる。したがって、焼戻温度での保持時間は10秒以上1000秒以下とする。焼戻温度での保持時間の下限は、好ましくは50秒以上である。焼戻温度での保持時間の上限は、好ましくは800秒以下である。
焼戻後の冷却は、特に規定する必要がなく、任意の方法により所望の温度に冷却してよい。なお、上記所望の温度は、室温程度が望ましい。
また、上記の高強度鋼板に0.10%以上5.00%以下の相当塑性歪量となる条件で加工を施してもよい。また、加工後に再度100℃以上400℃以下となる条件で再加熱を施してもよい。
なお、高強度鋼板が取引対象となる場合には、通常、室温まで冷却された後、取引対象となる。
焼鈍中または焼鈍後に、高強度鋼板にめっき処理を施してもよい。
焼鈍中のめっき処理として例えば、焼鈍後700℃~600℃の平均冷却速度が20℃/s以上の条件にて冷却中又は冷却後に溶融亜鉛めっき処理、溶融亜鉛めっき後に合金化を行う処理を例示できる。また、焼鈍後のめっき処理として例えば、焼戻し後にZn-Ni電気合金めっき処理、または、純Zn電気めっき処理を例示できる。電気めっきにより、めっき層を形成してもよいし、溶融亜鉛-アルミニウム-マグネシウム合金めっきを施してもよい。なお、上記のめっき処理では、亜鉛めっきの場合を中心に説明したが、Znめっき、Alめっき等のめっき金属の種類は特に限定されない。その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきの合金化処理などの一連の処理は、溶融亜鉛めっきラインであるCGL(Continuous Galvanizing Line)で行うのが好ましい。溶融亜鉛めっき後は、めっきの目付け量を調整するために、ワイピングが可能である。なお、上記した条件以外のめっき等の条件は、溶融亜鉛めっきの常法に依ることができる。
焼鈍後のめっき処理後に再度0.10%以上5.00以下の相当塑性歪量となる条件で加工を施してもよい。また、加工後に再度100℃以上400℃以下となる条件で再加熱を施してもよい。
表1、2に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にてスラブとした。次いで、得られたスラブを加熱して、熱間圧延後に酸洗処理を施した後、冷間圧延を施し、表3、4に示す焼鈍処理を施し、板厚が0.6~2.2mmである高強度冷延鋼板を得た。焼鈍中の曲げ曲げ戻しについては、半径300mmのロールを用い、499℃~Msの温度範囲の曲げ曲げ戻しについては、半径300mmのロールを用いた。なお、一部の鋼板については焼鈍中または焼鈍後めっき処理を施して製造している。
以上のようにして得られた高強度冷延鋼板を供試鋼として、以下の試験方法に従い、引張特性、板幅方向の平坦度、靭性および耐加工脆化特性を評価した。
Figure 0007323095000001
Figure 0007323095000002
Figure 0007323095000003
Figure 0007323095000004
(組織観察)
前述した方法にしたがって、マルテンサイト量、残留オーステナイト量、フェライト量、ベイニティックフェライト量の合計を求めた。
(旧オーステナイト粒内の最大占有率を有するパケットの占有率)
前述した方法にしたがって、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値を求めた。
(引張試験)
引張試験は、圧延方向と垂直方向が試験片の長手となるように、JIS5号試験片(標点距離50mm、平行部幅25mm)を採取し、JIS Z 2241に従って試験した。クロスヘッド速度が1.67×10-1mm/秒の条件で引張試験を行い、TSおよびElを測定した。なお、本発明では、TSが980MPa以上を合格と判断し、Elが10%以上を合格と判断した。
(靭性)
靭性はシャルピー試験により評価した。シャルピー試験片は、鋼板を複数枚重ね合わせてボルトで締結し、鋼板間に隙間が無いことを確認した上で、深さ2mmのVノッチ付き試験片を作製した。重ね合わせる鋼板の枚数は、積層後の試験片厚さが10mmに最も近づくように設定した。例えば、板厚が1.2mmの場合は8枚積層し、試験片厚さが9.6mmとなる。積層シャルピー試験片は、40J/cm以上のものを「靭性に優れる」と判断した。なお、上記以外の条件は、JIS Z 2242:2018に従った。
(板幅方向の平坦度)
上記のようにして得た各種冷延鋼板について、板幅方向の平坦度を図2に記載の方法で測定した。具体的には、コイルから圧延方向に500mm長さとなる板(コイル幅×500mmL×板厚)を切り出し、端面の反りが上向きになるように定盤上に設置し、触針が測定物上を移動する接触式変位計を用いて鋼板の高さを連続的に幅方向の全体に亘って測定した。その結果をもとに図2に示す方法に沿って、鋼板の形状の平坦さを示す指標である急峻度を測定した。急峻度が0.02超えのものを「×」、急峻度が0.01超え0.02以下のものを「○」、急峻度が0.01以下のものを「◎」と評価し、急峻度が0.02以下のものを「板幅方向の平坦度に優れる」と判断した。
(耐加工脆化特性)
耐加工脆化特性はシャルピー試験により評価した。シャルピー試験片は、鋼板を複数枚重ね合わせてボルトで締結し、鋼板間に隙間が無いことを確認した上で、深さ2mmのVノッチ付き試験片を作製した。重ね合わせる鋼板の枚数は、積層後の試験片厚さが10mmに最も近づくように設定した。例えば、板厚が1.2mmの場合は8枚積層し、試験片厚さが9.6mmとなる。積層シャルピー試験片は、板幅方向を長手として採取した。耐加工脆化特性を示す指標として、製造まま(未加工)の鋼板と10%圧延を施した鋼板における室温での衝撃吸収エネルギーの比vE0%/vE10%を測定した。vE0%/vE10%が0.6未満のものを「×」、vE0%/vE10%が0.6以上0.7未満のものを「○」、vE0%/vE10%が0.7以上のものを「◎」と評価し、vE0%/vE10%が0.6以上のものを「耐加工脆化特性に優れる」と判断した。なお、上記以外の条件は、JIS Z 2242:2018に従った。
結果を表5~7にまとめた。表5~7に示すように、本発明例では、TSが980MPa以上およびElが10%以上、かつ、靭性、板幅方向の平坦度および耐加工脆化特性に優れている。一方、比較例では、TS、El、靭性、板幅方向の平坦度、または、耐加工脆化特性のいずれか一つ以上が劣っている。
Figure 0007323095000005
Figure 0007323095000006
Figure 0007323095000007

Claims (5)

  1. 質量%で、
    C:0.030%以上0.500%以下、
    Si:0.50%以上2.50%以下、
    Mn:1.00%以上5.00%以下、
    P:0.100%以下、
    S:0.0200%以下、
    Al:1.000%以下、
    N:0.0100%以下、および、
    O:0.0100%以下
    を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
    板厚1/4位置において、
    マルテンサイト量が面積分率で60%以上、
    残留オーステナイト量が体積分率で3%以上15%以下であり、
    フェライト量およびベイニティックフェライト量の合計が面積分率で10%超であり、
    旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が面積分率で70%以下である、高強度鋼板。
  2. 前記成分組成が、さらに、質量%で、
    Ti:0.200%以下、Nb:0.200%以下、
    V:0.200%以下、Ta:0.10%以下、
    W:0.10%以下、B:0.0100%以下、
    Cr:1.00%以下、Mo:1.00%以下、
    Co:0.010%以下、Ni:1.00%以下、
    Cu:1.00%以下、Sn:0.200%以下、
    Sb:0.200%以下、Ca:0.0100%以下、
    Mg:0.0100%以下、REM:0.0100%以下、
    Zr:0.100%以下、Te:0.100%以下、
    Hf:0.10%以下、Bi:0.200%以下、
    のうちから選ばれる少なくとも1種の元素を含有する、請求項1に記載の高強度鋼板。
  3. 鋼板表面にめっき層を有する、請求項1又は2に記載の高強度鋼板。
  4. 請求項1又は2に記載の高強度鋼板の製造方法であって、
    前記成分組成を有する鋼に、熱間圧延、酸洗および冷間圧延を施し作製した冷延板を、
    焼鈍温度Taが700℃以上900℃以下、
    前記焼鈍温度Taでの保持時間が10秒以上1000秒以下の条件で加熱して焼鈍し、
    前記焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下となる加工を施し、
    700℃~600℃の温度範囲での平均冷却速度が20℃/s以上、
    499℃~Msの温度範囲での平均冷却速度が20℃/s未満で冷却し、
    前記499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下となる加工を施し、
    Ms~冷却停止温度Tbの温度範囲での平均冷却速度が150℃/s以下で冷却し、
    前記Ms~冷却停止温度Tbの温度範囲での鋼板に付与される張力を5MPa以上100MPa以下とし、
    前記冷却停止温度Tbが100℃以上(Ms-80℃)以下であり、なお、Msは式(1)にて規定するマルテンサイト変態開始温度(℃)であり、
    焼戻温度がTb以上450℃以下、
    前記焼戻温度での保持時間が10秒以上1000秒以下で焼き戻す、高強度鋼板の製造方法。
    Ms=519-474×[%C]-30.4×[%Mn]-12.1×[%Cr]-7.5×[%Mo]-17.7×[%Ni]-Ta/80・・・・(1)
    ここで、[%C]、[%Mn]、[%Cr]、[%Mo]、[%Ni]はC、Mn、Cr、Mo、Niそれぞれの含有量(質量%)を表し、含まない場合は0とする。
  5. めっき処理を施す、請求項4に記載の高強度鋼板の製造方法。
JP2023528942A 2022-03-25 2023-01-30 高強度鋼板およびその製造方法 Active JP7323095B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022049759 2022-03-25
JP2022049759 2022-03-25
PCT/JP2023/002917 WO2023181643A1 (ja) 2022-03-25 2023-01-30 高強度鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP7323095B1 true JP7323095B1 (ja) 2023-08-08
JPWO2023181643A1 JPWO2023181643A1 (ja) 2023-09-28

Family

ID=87519385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023528942A Active JP7323095B1 (ja) 2022-03-25 2023-01-30 高強度鋼板およびその製造方法

Country Status (5)

Country Link
EP (1) EP4474512A1 (ja)
JP (1) JP7323095B1 (ja)
KR (1) KR20240152339A (ja)
CN (1) CN118829740A (ja)
MX (1) MX2024011505A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124157A1 (ja) * 2016-12-27 2018-07-05 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
WO2018216522A1 (ja) * 2017-05-24 2018-11-29 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2020158066A1 (ja) * 2019-01-30 2020-08-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2022209519A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947176B1 (ja) 1970-09-21 1974-12-14
JPH0477272U (ja) 1990-11-20 1992-07-06
WO2019106895A1 (ja) 2017-11-29 2019-06-06 Jfeスチール株式会社 高強度亜鉛めっき鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124157A1 (ja) * 2016-12-27 2018-07-05 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
WO2018216522A1 (ja) * 2017-05-24 2018-11-29 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2020158066A1 (ja) * 2019-01-30 2020-08-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2022209519A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Also Published As

Publication number Publication date
EP4474512A1 (en) 2024-12-11
CN118829740A (zh) 2024-10-22
MX2024011505A (es) 2024-09-24
JPWO2023181643A1 (ja) 2023-09-28
KR20240152339A (ko) 2024-10-21

Similar Documents

Publication Publication Date Title
JP5971434B2 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP2005528519A5 (ja)
JP7215646B1 (ja) 高強度鋼板およびその製造方法
KR20040091751A (ko) 연성 및 내피로특성에 우수한 고장력 용융 아연도금강판의제조방법
JP7215647B1 (ja) 高強度鋼板およびその製造方法
CN113348259B (zh) 高强度热浸镀锌钢板和其制造方法
CN112867807B (zh) 高延展性高强度电镀锌系钢板及其制造方法
JP7028379B1 (ja) 鋼板、部材及びそれらの製造方法
WO2022004817A1 (ja) 鋼板、部材及びそれらの製造方法
KR20230049120A (ko) 핫 스탬프용 강판 및 그 제조 방법, 그리고, 핫 스탬프 부재 및 그 제조 방법
JP4367205B2 (ja) 鋼板の歪時効処理方法および高強度構造部材の製造方法
JP4826694B2 (ja) 薄鋼板の耐疲労特性改善方法
JP7323095B1 (ja) 高強度鋼板およびその製造方法
US20230357874A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these
JP7323096B1 (ja) 高強度鋼板およびその製造方法
JP7056631B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP7323093B1 (ja) 高強度鋼板およびその製造方法
JP7323094B1 (ja) 高強度鋼板およびその製造方法
JP7193044B1 (ja) 高強度鋼板およびその製造方法、ならびに、部材
JP4225082B2 (ja) 延性および耐疲労特性に優れる高張力溶融亜鉛めっき鋼板の製造方法
WO2023181643A1 (ja) 高強度鋼板およびその製造方法
JP7597272B1 (ja) 鋼板および部材、ならびに、それらの製造方法
JP4599768B2 (ja) プレス成形性と歪時効硬化特性に優れた高延性冷延鋼板およびその製造方法
JP7597270B1 (ja) 鋼板および部材、ならびに、それらの製造方法
JP3925063B2 (ja) プレス成形性と歪時効硬化特性に優れた冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230530

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7323095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150