[go: up one dir, main page]

JP7261417B2 - 酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠 - Google Patents

酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠 Download PDF

Info

Publication number
JP7261417B2
JP7261417B2 JP2022528133A JP2022528133A JP7261417B2 JP 7261417 B2 JP7261417 B2 JP 7261417B2 JP 2022528133 A JP2022528133 A JP 2022528133A JP 2022528133 A JP2022528133 A JP 2022528133A JP 7261417 B2 JP7261417 B2 JP 7261417B2
Authority
JP
Japan
Prior art keywords
mol
same manner
tin oxide
mass
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022528133A
Other languages
English (en)
Other versions
JPWO2022131293A1 (ja
Inventor
知里 荒田
純貴 渡辺
克良 柿沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
University of Yamanashi NUC
Original Assignee
Nihon Kagaku Sangyo Co Ltd
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd, University of Yamanashi NUC filed Critical Nihon Kagaku Sangyo Co Ltd
Publication of JPWO2022131293A1 publication Critical patent/JPWO2022131293A1/ja
Application granted granted Critical
Publication of JP7261417B2 publication Critical patent/JP7261417B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing tantalum, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

本発明は、酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠に関し、ナノサイズ結晶子径を有しつつタンタルを含み特定の色を有する酸化スズ結晶子連珠に関する。
酸化スズは、燃料電池の電極等に使用される材料として知られている。
一方、燃料電池の電極に使用される触媒の担体には、高耐久性(強酸や高電位による酸化溶解耐性)、高導電性(電池内部抵抗や担体導電性《=粒子間界面抵抗+粒子内抵抗》の低減)、良気孔性(原料ガスや生成水の良通過性能)、高触媒活性(触媒金属の活性をできるだけ高くする)等の性能が要求される。
一般に、燃料電池の電極は、導電性を有する担体に触媒としての金属を担持させた構成を有し、従来、(1)炭素粒子に貴金属合金粒子を担持させたもの(特許文献1,6,7)あるいはペロブスカイト型酸化物微粒子や卑金属酸化物を担持させたもの(特許文献2~5)、(2)金属酸化物に貴金属を担持させたもの(特許文献5)があるが、(1)の炭素粒子を担体とするものは酸化耐性がなく、(2)の金属酸化物を担体とするものは溶解耐性が低いという問題がある。
また、(3)Nbをドープした酸化スズを担体とするもの(特許文献8)、(4)NbやTaをドープした酸化スズのナノ連珠構造体を担体とするもの(特許文献9)も知られているが、(3)のNbをドープしたものは通気性が悪いのみならず粒子の界面抵抗が高く導電性が低く、(4)のナノ連珠構造体としたものは気孔性がよく、界面抵抗も低減し、触媒活性も良好となっているものの、電池の内部抵抗の低減は未だ不十分である。
特開2001-15121 特開2008-4286 特開2006-26586 特開2004-363056 特開2005-174835 特開2008-155111 特開2005-44659 WO2011/65471 WO2015/050046
上記した従来の担体が有する種々の問題点を解決するために検討を行うなかで、燃料電池の電極触媒用担体以外にも種々の用途(例えば、他の触媒用担体はもとより、導電材料、ガスセンサー電極等)に適した物質を開発する要請が高まっており、この要請に応じて、導電性と耐久性に優れることはもとより、触媒活性をも高めることができ、更には気孔率の高い新規な物質を提案することを課題とする。
本発明者らは、上記先提案(特許文献8)の中でTaを含有する酸化スズのナノ連珠構造体について検討を重ねた。
この先提案の構造体と、本出願の構造体(以下、“本願構造体”と言うこともある)とについて、色相と導電性能を評価した。
この結果、本願構造体が先提案構造体に比べて特定の色相すなわち明度L*値と、色度a*値、色度b*値が特定の数値範囲を有しているものの導電率は10倍(内部抵抗が1/10)以上もの高い性能を示しているとの知見を得た。ただし先提案構造体と本願構造体共に色a*値は-7から-4の範囲で同じであった。また、この高い導電性能が長期間持続することも確認している。
次いで、本願構造体の構成を、透過型電子顕微鏡(TEM)像等について、先提案構造体と比較検討した。結果は、これら両構造体は何れも、連珠構造であることを確認することができた。
上記と同じ検討でTaを含有する酸化スズと酸化チタンの複合酸化物のナノ連珠構造体についても行った結果、上記と同様であることを確認している。
本発明の酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠は、上記の確認事項に基づいてなされたもので、
タンタルを含む酸化スズの結晶粒子塊または酸化スズと酸化チタンの複合酸化物結晶粒子塊であって、
該結晶粒子塊を、0.1MPaの圧力で1cmの厚みにし、分光測色計(コニカミノルタ社製、型式CM-5)を用い、正反射光除去光学系にてLab色空間で表される該結晶粒子塊の色相測定を行った。該粒子塊の色をLab色空間で表した明度L*値が80以下、色度a*値が-4以下、色度b*が-3以下であり、
結晶子径5~50nmの粒子を少なくとも1個含む酸化スズ結晶粒子塊または酸化スズと酸化チタンの複合酸化物結晶粒塊からなる連珠であることを特徴とする。
本発明の酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠は、優れた導電性を有し、各種の導電材料として使用することができるし、気孔率も高い。このため、燃料電池の電極用触媒の担体として従来の担体に比べて有効である。
もちろん、触媒成分の活性を良好にすることができるため、燃料電池の電極用触媒に限らず、他の各種触媒の担体としても有効に使用することができる。強酸によってはもとより、高電位によっても、酸化溶解することはなく、高い耐久性を有している。
酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠の構造を説明するためのモデル図。
本発明における酸化スズ結晶体または酸化スズと酸化チタンの複合酸化物結晶子体(以下、これら2種の結晶体をまとめて“酸化スズ結晶子体”と略すこともある)は、結晶体にタンタルを含有することで酸化スズ結晶体中の電子状態が変化し特定の色相を示すのみならず、導電性が向上する。
本発明において、Taの含有率は、
Ta(mоl)/(Ta+Sn)(mоl)×100≒0.1~30(mоl%)、または
Ta(mоl)/(Ta+Sn+Ti)(mоl)×100≒0.1~30(mоl%)
であり、このような含有率であれば、特定の色相を有し、しかも連珠構造を良好に形成する上で適している。
本発明の酸化スズ結晶子連珠は、上記の酸化スズ結晶粒子であって、該結晶粒子の径が5~50nmの粒子を、少なくとも1個含む粒子塊からなる。
この連珠は、図1のモデル図に示すように、酸化スズ結晶粒子1が、その一部において融着し、連鎖状あるいは房状の構造(この構造を“連珠”と言う)を有しており、本発明では、この連珠における酸化スズ結晶粒子1の少なくとも1個が、上記した酸化スズ結晶体にタンタルを含有しており、上記の粒子径を有している。
また、本発明における連珠は、酸化スズ結晶粒子塊を0.1MPaの圧力で押圧し、厚さが1cmになった時点で押圧を停止し、該押圧塊の色相を分光測色計(コニカミノルタ社製、型式CM-5)による正反射光除去光学系にて測定した。この色相をLab色空間で表し、明度L*値が80以下で、色度a*値が-4以下、色度b*値が-3以下を示す。このような明度と色度を有する連珠において、高い比表面積を有し、優れた導電性,気孔率、触媒活性、耐久性を有している。
上記した本発明の連珠は、例えば、次のようにして製造される。原料となる金属イオン(スズと、タンタルおよび/またはチタン)を含むミネラルターペン溶液を予め調製しておき、この溶液を、酸素および/または窒素を用いた噴霧器によりミストにし、化学炎(プロパン、メタン、アセチレン、水素、亜酸化窒素等による化学炎)またはプラズマなどの高温下へ導入する。
これにより、酸化スズ結晶粒子の少なくとも80%が5個以上相互に融着結合して、連鎖状および/または房状構造の連珠となる。
このときの温度は、連珠の収率を向上させる上で、600~2000℃、好ましくは1200~1800℃とすることが適している。
上記のミネラルターペン溶液は、有機スズ化合物(スズアルコキシド、アセチルアセトナトスズ等の有機酸スズ塩等の1種以上)と、有機タンタル化合物(タンタルアルコキシド等の有機酸タンタル塩等の1種以上)および/または有機チタン化合物(チタンアルコキシド等の有機酸チタン塩等の1種以上)を、有機溶媒(ターペンオイル、ヘプタン、メタノール、エタノール等の1種以上)に溶解させて調製する。
原料液におけるスズ化合物の濃度は、スズに換算して1~50質量%、好ましくは3~14質量%が適しており、タンタル化合物および/またはチタン化合物の濃度は、原料液におけるスズ化合物とタンタル化合物および/またはチタン化合物との比率は、最終製品すなわち本願構造体中のTa含有率が、前記の比率に一致するように調整すればよい。
このようにして得た原料液(ミネラルターペン溶液)を、例えばプロパン、メタン、アセチレン、水素、亜酸化窒素等の燃料ガスによる化学炎中に供給して燃焼させて、本発明の連鎖状および/または房状構造を有する酸化スズ結晶子連珠を得る。
すなわち、原料液が化学炎中に供給されると、瞬時に反応および冷却が行われて、一次粒子が製造されると同時に、この一次粒子同士が部分的に融着結合して、高い比表面積を有する本発明の連鎖状および/または房状構造が生成する。
[実施例1-1]
Ta/(Sn《mol》+Ta《mol》)で表されるTa含量が3mol%のTaドープSnO2を次のようにして合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)20g、タンタリウムエトキシド(北興化学工業社製品名“タンタリウムエトキシド”、Ta=44.5《質量%》)0.59g、ターペンオイル60gを混合し、原料溶液を調製した。
流量1~30L/min(本例では、5L/min)の酸素ガスと流量1~5L/min(本例では、1L/min)のプロパンガスとを混合して燃焼させたパイロット火炎中に、流量1~10g/min(本例では、5g/min)の上記調整溶液と流量1~30L/min(本例では、10L/min)のキャリア酸素ガスとを噴霧してパイロット火炎により燃焼させ、この燃焼により生じるガスを回収する。該ガスは、火炎合成により生成した粒子(すなわち、本発明の酸化スズ結晶子連珠)を含んでおり、この粒子を分離回収した。
この回収粒子を透過型電子顕微鏡で観察したところ、図1に示すように、結晶子径5~30nmの範囲にある粒子が5個以上数珠状に連なった鎖状構造部位を有していることが確認された。
また、上記の回収粒子塊を0.1MPaの圧力で1cmの厚みにして分光測色計(コニカミノルタ社製、型式CM-5、正反射光除去光学系による)にて色相を計測したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例1-2]
Ta/(Sn《mol》+Ta《mol》)で表されるTa含量が10mol%のTaドープSnO2を次のようにして合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)20g、タンタリウムエトキシド(北興化学工業株式会社製品名“タンタリウムエトキシド”、Ta=44.5《質量%》)2.1g、ターペンオイル70gを混合し、原料溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様に、透過型電子顕微鏡での観察の結果、実施例1-1と同様、結晶子径7~35nmの範囲にある粒子が5個以上数珠状に連なった鎖状構造部位を有しており、またこの回収粒子塊を0.1MPaの圧力で1cmの厚みにして分光測色計にて色相を計測したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例2-1]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が3mol%のTaドープSnO2を下記方法で合成した。
アセチルアセトナトスズ(II)(Sigma-Aldrich社製、Sn=36.9質量%)20g、タンタリウムエトキシド(北興化学工業社製、Ta=44.5質量%)0.78g、ターペンオイル90gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-1と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計での色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例2-2]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が10mol%のTaドープSnO2を下記方法で合成した。
アセチルアセトナトスズ(II)(Sigma-Aldrich社製、Sn=36.9質量%)20g、タンタリウムエトキシド(北興化学工業社製、Ta=44.5質量%)2.81g、ターペンオイル90gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-1と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計での色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例3-1]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が3mol%のTaドープSnO2を下記方法で合成した。
スズt-ブトキシド(富士フイルム和光純薬社製商品名“すず(IV)t-ブトキシド”、Sn=28質量%)20g、タンタリウムエトキシド(北興化学工業社製商品名“タンタリウムエトキシド”、Ta=44.5質量%)0.59g、ターペンオイル60gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-1と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計での色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例3-2]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が10mol%のTaドープSnO2を下記方法で合成した。
スズt-ブトキシド(富士フイルム和光純薬社製商品名“すず(IV)t-ブトキシド”、Sn=28質量%)20g、タンタリウムエトキシド(北興化学工業社製商品名“タンタリウムエトキシド”、Ta=44.5質量%)2.13g、ターペンオイル70gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-1と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計での色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例4-1]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が3mol%のTaドープSnO2を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)20g、タンタル(V)ブトキシド(Sigma-Aldrich社製、Sn=36.9質量%)0.80g、ターペンオイル60gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-1と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計での色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例4-2]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が10mol%のTaドープSnO2を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)20g、タンタル(V)ブトキシド(Sigma-Aldrich社製、Ta=33.1質量%)2.87g、ターペンオイル70gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-1と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計での色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例5-1]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が3mol%のTaドープSnO2を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)20g、タンタル(V)メトキシド(Sigma-Aldrich社製、Ta=33.1質量%)0.49g、ターペンオイル60gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-1と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計での色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例5-2]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が10mol%のTaドープSnO2を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)20g、タンタル(V)メトキシド(Sigma-Aldrich社製、Ta=33.1質量%)1.76g、ターペンオイル70gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-1と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計での色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例6]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が30mol%のTaドープSnO2を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)20g、タンタリウムエトキシド(北興化学工業社製品名“タンタリウムエトキシド”、Ta=44.5《質量%》)8.22g、ターペンオイル90gを混合し、原料溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-2と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計による色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例7-1]
Ta(mol)/(Sn《mol》、+Ta《mol》+Ti《mol》)で表されるTa含量が3mol%で、Ti(mol)/(Ti《mol》+Sn《mol》)で表されるTi含量が10mol%で、Sn:Ti(mol)=9:1のTaープTi・Sn複合酸化物を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)20g、Ti源としてテトラ-n-ブトキシチタン(日本曹達社製商品名“B-1”、Ti=14.1質量%)を1.78g、Ta源としてタンタリウムエトキシド(北興化学工業社製品名“タンタリウムエトキシド”、Ta=44.5《質量%》)0.66g、ターペンオイル70gを混合し、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-2と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計による色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例7-2]
Ta(mol)/(Sn《mol》+Ta《mol》+Ti《mol》)で表されるTa含量が3mol%で、Ti(mol)/(Ti《mol》+Sn《mol》)で表されるTi含量が50mol%で、Sn:Ti=5:5(mol比)のTaープTi・Sn複合酸化物を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)10g、Ti源としてテトラ-n-ブトキシチタン(日本曹達社製商品名“B-1”、Ti=14.1質量%)を8.03g、Ta源としてタンタリウムエトキシド(北興化学工業社製品名“タンタリウムエトキシド”、Ta=44.5《質量%》)0.59g、ターペンオイル70gを混合し、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-2と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計による色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例8-1]
Ta(mol)/(Sn《mol》+Ta《mol》+Ti《mol》)で表されるTa含量が10mol%で、Ti(mol)/(Ti《mol》+Sn《mol》)で表されるTi含量が10mol%で、Sn:Ti=9:1(mol比)のTaープTi・Sn複合酸化物を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)20g、Ti源としてテトラ-n-ブトキシチタン(日本曹達社製商品名“B-1”、Ti=14.1質量%)1.78g、Ta源としてタンタリウムエトキシド(北興化学工業社製品名“タンタリウムエトキシド”、Ta=44.5《質量%》)2.37g、ターペンオイル90gを混合し、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-2と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計による色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[実施例8-2]
Ta(mol)/(Sn《mol》+Ta《mol》+Ti《mol》)で表されるTa含量が10mol%で、Ti(mol)/(Ti《mol》+Sn《mol》)で表されるTi含量が50mol%で、Sn:Ti=5:5(mol比)のTaープTi・Sn複合酸化物を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28《質量%》)10g、Ti源としてテトラ-n-ブトキシチタン(日本曹達社製商品名“B-1”、Ti=14.1質量%)を8.03g、タンタリウムエトキシド(北興化学工業社製品名“タンタリウムエトキシド”、Ta=44.5《質量%》)2.13g、ターペンオイル90gを混合し、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、本発明の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、実施例1-1と同様にして、透過型電子顕微鏡での観察を行ったところ、実施例1-2と略同様の結果を得た。また、実施例1-1と同様にして、分光測色計による色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表1に示す通りであった。
[比較例1-1](特許文献8《WO2011/65471》と同様の例、以下の比較例において同じ)
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が3mol%のTaドープSnO2を下記方法で合成した。
オクチル酸スズ(日本化学産業社製商品名“ニッカオクチックス錫”、Sn=28質量%)38g、オクチル酸タンタル(日本化学産業社製商品名“ニッカオクチックスタンタル10%(T)”、Ta=10質量%)5g、ターペンオイル150gを混合して、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
この回収粒子を透過型電子顕微鏡で観察したところ、図1に示すように、結晶子径5~50nmの範囲にある粒子が5個以上数珠状に連なった鎖状構造部位を有していることが確認されたされたものの、図1には存在しない粒が多数存在することが確認された(モデル図は省略する)。
また、回収した粒子について、実施例1-1と同様に、回収粒子塊を0.1MPaの圧力で1cmの厚みにして分光測色計(コニカミノルタ社製、型式CM-5、正反射光除去光学系による)にて色相を計測したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[比較例1-2]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が10mol%のTaドープSnO2を下記方法で合成した。
オクチル酸スズ(日本化学産業社製商品名“ニッカオクチックス錫”、Sn=28質量%)33.9g、オクチル酸タンタル(日本化学産業社製商品名“ニッカオクチックスタンタル10%(T)”、Ta=10質量%)16.1g、ターペンオイル150gを混合して、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、比較例1-1と同様に透過型電子顕微鏡で観察したところ、連珠構造を有していることを確認しているものの、比較例1-1と同様にして分光測色計による色相測定を行ったところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[比較例2-1]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が3%(3atm%)のTaドープSnO2を下記方法で合成した。
オクチル酸スズ(日本化学産業社製商品名“ニッカオクチックス錫”、Sn=28質量%)40g、タンタリウムエトキシド(北興化学工業社製商品名“タンタリウムエトキシド”、Ta=44.5質量%)1.2g、ターペンオイル159gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、比較例1-1と同様に透過型電子顕微鏡で観察したところ、比較例1-1と略同様の結果を得た。また、比較例1-1と同様にして分光測色計による色相を測定したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[比較例2-2]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が10mol%のTaドープSnO2を下記方法で合成した。
オクチル酸スズ(日本化学産業社製商品名“ニッカオクチックス錫”、Sn=28質量%)45.2g、タンタリウムエトキシド(北興化学工業社製商品名“タンタリウムエトキシド”、Ta=44.5質量%)4.8g、ターペンオイル159gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、比較例1-1と同様に透過型電子顕微鏡で観察したところ、比較例1-1と略同様の結果を得た。また、比較例1-1と同様にして分光測色計による色相を測定したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[比較例3-1]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が3mol%のTaドープSnO2を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28質量%)33.9g、オクチル酸タンタル(日本化学産業社製商品名“ニッカオクチックスタンタル10%(T)”、Ta=10質量%)4.5g、ターペンオイル150gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、比較例1-1と同様に透過型電子顕微鏡で観察したところ、比較例1-1と略同様の結果を得た。また、比較例1-1と同様にして分光測色計による色相を測定したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[比較例3-2]
Ta(mol)/(Sn《mol》+Ta《mol》)で表されるTa含量が10mol%のTaドープSnO2を下記方法で合成した。
ジブチルスズビスアセチルアセトナート(日本化学産業社製商品名“ナーセム錫”、Sn=28質量%)33.9g、オクチル酸タンタル(日本化学産業社製商品名“ニッカオクチックスタンタル10%(T)”、Ta=10質量%)16.81g、ターペンオイル150gを混合し、溶液を調製した。
この調製溶液を、実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、比較例1-1と同様に透過型電子顕微鏡で観察したところ、比較例1-1と略同様の結果を得た。また、比較例1-1と同様にして分光測色計による色相を測定したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[比較例4-1]
Ta(mol)/(Sn《mol》+Ta《mol》+Ti《mol》)で表されるTa含量が3mol%で、Ti(mol)/(Ti《mol》+Sn《mol》)で表されるTi含量が10mol%のTaドープSnO2を下記方法で合成した。
オクチル酸スズ(日本化学産業社製商品名“ニッカオクチックス錫”、Sn=28質量%)20g、タンタリウムエトキシド(北興化学工業社製商品名“タンタリウムエトキシド”、Ta=44.5質量%)0.66g、Ti源としてテトラ-n-ブトキシチタン(日本曹達社製商品名“B-1”、Ti=14,1質量%)を1.78g、ターペンオイル70gを混合して溶液を調製した。この調整した溶液を実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、比較例1-1と同様に透過型電子顕微鏡で観察したところ、比較例1-1と略同様の結果を得た。また、比較例1-1と同様にして分光測色計による色相を測定したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[比較例4-2]
Ta(mol)/(Sn《mol》+Ta《mol》+Ti《mol》)で表されるTa含量が3mol%で、Ti(mol)/(Ti《mol》+Sn《mol》)で表されるTi含量が50mol%で、Sn:Ti=5:5(mol比)のTaープTi・Sn複合酸化物を下記方法で合成した。
オクチル酸スズ(日本化学産業社製商品名“ニッカオクチックス錫”、Sn=28質量%)10g、タンタリウムエトキシド(北興化学工業社製商品名“タンタリウムエトキシド”、Ta=44.5質量%)0.59g、Ti源としてテトラ-n-ブトキシチタン(日本曹達社製商品名“B-1”、Ti=14.1質量%)を8.03g、ターペンオイル70gを混合して溶液を調製した。この調整した溶液を実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、比較例1-1と同様に透過型電子顕微鏡で観察したところ、比較例1-1と略同様の結果を得た。また、比較例1-1と同様にして分光測色計による色相を測定したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[比較例5-1]
Ta(mol)/(Sn《mol》+Ta《mol》+Ti《mol》)で表されるTa含量が10mol%で、Ti(mol)/(Ti《mol》+Sn《mol》)で表されるTi含量が10mol%で、Sn:Ti=9:1(mol比)のTaープTi・Sn複合酸化物を下記方法で合成した。
オクチル酸スズ(日本化学産業社製商品名“ニッカオクチックス錫”、Sn=28質量%)20g、タンタリウムエトキシド(北興化学工業社製商品名“タンタリウムエトキシド”、Ta=44.5質量%)2.37g、Ti源としてテトラ-n-ブトキシチタン(日本曹達社製商品名“B-1”、Ti=14.1質量%)を1.78g、ターペンオイル90gを混合して溶液を調製した。この調整した溶液を実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、比較例1-1と同様に透過型電子顕微鏡で観察したところ、比較例1-1と略同様の結果を得た。また、比較例1-1と同様にして分光測色計による色相を測定したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[比較例5-2]
Ta(mol)/(Sn《mol》+Ta《mol》+Ti《mol》)で表されるTa含量が10mol%で、Ti(mol)/(Ti《mol》+Sn《mol》)で表されるTi含量が50mol%で、Sn:Ti=5:5(mol比)のTaープTi・Sn複合酸化物を下記方法で合成した。
オクチル酸スズ(日本化学産業社製商品名“ニッカオクチックス錫”、Sn=28質量%)10g、タンタリウムエトキシド(北興化学工業社製商品名“タンタリウムエトキシド”、Ta=44.5質量%)2.13g、Ti源としてテトラ-n-ブトキシチタン(日本曹達社製商品名“B-1”、Ti=14.1質量%)を8.03g、ターペンオイル90gを混合して溶液を調製した。この調整した溶液を実施例1-1と同様にして生成したパイロット火炎に実施例1-1と同様にして噴霧して燃焼させ、回収ガスから粒子(すなわち、比較の酸化スズ結晶子連珠)を分離回収した。
回収した粒子について、比較例1-1と同様に透過型電子顕微鏡で観察したところ、比較例1-1と略同様の結果を得た。また、比較例1-1と同様にして分光測色計による色相を測定したところ、Lab色空間で表した明度L*値、色度a*値、b*値は表2に示す通りであった。
[評価例]
[導電性(電池内部抵抗や担体導電性《=粒子間界面抵抗+粒子内抵抗》の低減)];
以上の実施例、比較例で得た酸化スズ結晶子連珠粉末の導電性(電池内部抵抗や担体導電性《=粒子間界面抵抗+粒子内抵抗》の低減)を、交流インピーダンス法により評価した。具体的には、東陽テクニカ社製電気化学計測システムSP-200及び試料ホルダーSH2-Zを用い、20~30℃、相対湿度30~70%の雰囲気温湿度で、試料ホルダーの平行電極間に試料を約0.1g充填し、電極外より1メガパスカルの荷重をかけた。この状態で7メガヘルツから10ミリヘルツの間で交流周波数を変えながらインピーダンス計測を行った。計測により得られるナイキストプロットに対し抵抗とコンデンサー成分からなる等価回路によるフィッティングに基づいて試料の抵抗値を求めた。求めた抵抗値とインピーダンス計測時の平行電極に挟まれる試料の厚み、および試料に接する平行電極の面積から試料の導電率を見積もった。結果は、表1,表2に示す通りであった。
Figure 0007261417000001
Figure 0007261417000002
表1,表2から明らかなように、L*が80以下、a*値が-4以下、b*が-5以下である色を有する実施例の導電率は、a*値は同程度であっても、L*が80より大きいか或いはb*が-5より大きいかのどちらかである比較例よりもはるかに高いことが判る。
本発明の酸化スズ結晶子連珠は、特定の色相を示すことで同じドーパントを含むが特性の色相を示さない金属酸化物を含む連珠に比べて、種々の優れた特性を有しており、例えば燃料電池用の電極材等として極めて有利に使用できる。

Claims (1)

  1. 酸化スズ結晶粒子塊または酸化スズと酸化チタンの複合酸化物結晶粒塊からなる連珠であって、
    前記結晶粒子塊は、
    タンタルを、Ta(mol)/(Ta+Sn)(mol)またはTa( mol)/(Ta+Sn+Ti)(mol)が0.1~30mol%の含有率で含み、
    結晶子径5~50nmの粒子を少なくとも1個含み、かつ
    該結晶粒子塊を、0.1MPaの圧力で1cmの厚みにした時の該粒子塊の色をLab色空間で表した明度L*値が80以下、色度a*値が-4以下、色度b*が-3以下であることを特徴とする酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠。
JP2022528133A 2020-12-16 2021-12-15 酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠 Active JP7261417B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020208580 2020-12-16
JP2020208580 2020-12-16
PCT/JP2021/046284 WO2022131293A1 (ja) 2020-12-16 2021-12-15 酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠

Publications (2)

Publication Number Publication Date
JPWO2022131293A1 JPWO2022131293A1 (ja) 2022-06-23
JP7261417B2 true JP7261417B2 (ja) 2023-04-20

Family

ID=82057644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022528133A Active JP7261417B2 (ja) 2020-12-16 2021-12-15 酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠

Country Status (5)

Country Link
US (1) US20240043283A1 (ja)
EP (1) EP4265569A4 (ja)
JP (1) JP7261417B2 (ja)
CN (1) CN116670866A (ja)
WO (1) WO2022131293A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065471A1 (ja) 2009-11-27 2011-06-03 国立大学法人山梨大学 固体高分子形燃料電池用酸化物系高電位安定担体
WO2014136908A1 (ja) 2013-03-06 2014-09-12 三井金属鉱業株式会社 燃料電池電極材料用タンタル含有酸化スズ
WO2015050046A1 (ja) 2013-10-03 2015-04-09 三井金属鉱業株式会社 電極触媒及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117812A1 (ja) * 2019-12-13 2021-06-17 国立大学法人山梨大学 担持金属触媒、電気化学セル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065471A1 (ja) 2009-11-27 2011-06-03 国立大学法人山梨大学 固体高分子形燃料電池用酸化物系高電位安定担体
WO2014136908A1 (ja) 2013-03-06 2014-09-12 三井金属鉱業株式会社 燃料電池電極材料用タンタル含有酸化スズ
WO2015050046A1 (ja) 2013-10-03 2015-04-09 三井金属鉱業株式会社 電極触媒及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yuichi SENOO et al.,Cathodic performance and high potential durability of Ta-SnO2-δ-supported Pt catalysts for PEFC cat,Electrochemistry Communications,2015年02月,Vol.51,Page.37-40,doi:10.1016/j.elecom.2014.12.005,2., 3., Fig.1(a), Fig.2

Also Published As

Publication number Publication date
US20240043283A1 (en) 2024-02-08
EP4265569A1 (en) 2023-10-25
WO2022131293A1 (ja) 2022-06-23
EP4265569A4 (en) 2024-07-03
CN116670866A (zh) 2023-08-29
JPWO2022131293A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
Tsuji et al. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution
Rani et al. Electrochemically active X WO 4 (X= Co, Cu, Mn, Zn) nanostructure for water splitting applications
Jing et al. Significantly enhanced photoelectrochemical cathodic protection performance of hydrogen treated Cr-doped SrTiO3 by Cr6+ reduction and oxygen vacancy modification
Damien et al. Direct deposition of MoSe 2 nanocrystals onto conducting substrates: towards ultra-efficient electrocatalysts for hydrogen evolution
JP5515019B2 (ja) 固体高分子形燃料電池用酸化物系高電位安定担体
Chang et al. Oxidative synthesis of RuOx⋅ n H 2 O with ideal capacitive characteristics for supercapacitors
Yuasa et al. Bi-functional oxygen electrodes using LaMnO3/LaNiO3 for rechargeable metal-air batteries
Hanumantha et al. A simple low temperature synthesis of nanostructured vanadium nitride for supercapacitor applications
Dhahri et al. Gas sensing properties of Al-doped ZnO for UV-activated CO detection
Tabet-Aoul et al. Interrelated functionalities of hierarchically CNT/CeO 2/Pt nanostructured layers: synthesis, characterization, and electroactivity
Mujtaba et al. Fabrication and electrocatalytic application of CuO@ Al2O3 hybrids
Aravinda et al. Fabrication and performance evaluation of hybrid supercapacitor electrodes based on carbon nanotubes and sputtered TiO2
TW201245046A (en) Fluorine-doped tin-oxide particles and manufacturing method therefor
Brimaud et al. Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: A combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt
Zoppi et al. Sol–gel titanium dioxide thin films on platinum substrates: preparation and characterization
Rajakumaran et al. Electrocatalytic studies of coral-shaped samarium stannate nanoparticles for selective detection of azathioprine in biological samples
JP7261417B2 (ja) 酸化スズ結晶子連珠または酸化スズと酸化チタンの複合酸化物結晶子連珠
Gu et al. Electro-oxidation of methanol on Pt particles dispersed on RuO2 nanorods
Toledo et al. Facile synthesis of TiO2/rGO neatly electrodeposited on carbon fiber applied as ternary electrode for supercapacitor
US20190177863A1 (en) Electrode and an electrochemical cell for producing propanol from carbon dioxide
Cole et al. Ionic liquids on oxide surfaces
Munawar et al. Effect of deposition temperature on topography and electrochemical water oxidation of NiO thin films
JP5522885B2 (ja) ニッケル粉及びその製造方法並びに導電性ペースト
Deshpande et al. Orthorhombic/cubic Cd 2 SnO 4 nanojunctions: enhancing solar water splitting efficiency by the suppression of charge recombination
Jin et al. High efficiency of self-assembly between exfoliated MXene and layered-double-hydroxide nanosheets in exploring high-performance oxygen evolution reaction electrocatalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220513

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230330

R150 Certificate of patent or registration of utility model

Ref document number: 7261417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150