[go: up one dir, main page]

JP7247713B2 - Biological treatment equipment for organic wastewater - Google Patents

Biological treatment equipment for organic wastewater Download PDF

Info

Publication number
JP7247713B2
JP7247713B2 JP2019068249A JP2019068249A JP7247713B2 JP 7247713 B2 JP7247713 B2 JP 7247713B2 JP 2019068249 A JP2019068249 A JP 2019068249A JP 2019068249 A JP2019068249 A JP 2019068249A JP 7247713 B2 JP7247713 B2 JP 7247713B2
Authority
JP
Japan
Prior art keywords
biological treatment
microbial power
organic wastewater
tank
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019068249A
Other languages
Japanese (ja)
Other versions
JP2020163327A (en
Inventor
和也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019068249A priority Critical patent/JP7247713B2/en
Publication of JP2020163327A publication Critical patent/JP2020163327A/en
Application granted granted Critical
Publication of JP7247713B2 publication Critical patent/JP7247713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、揮発性物質や臭気の発生する物質を含む有機性廃水を生物処理するのに好適な生物処理装置に係り、特に微生物発電装置を採用した有機性排水の生物処理装置に関する。 The present invention relates to a biological treatment apparatus suitable for biologically treating organic wastewater containing volatile substances and odor-generating substances, and more particularly to a biological treatment apparatus for organic wastewater employing a microbial power generator.

揮発性物質や臭気の発生する物質を含む有機性排水を生物処理する場合、通常は臭気を防止するため、完全混合の反応槽を使用する。しかし、完全混合の反応槽では反応速度が極端に小さくなるために、滞留時間が長い大きな反応槽が必要である。また、完全混合の反応槽でも水の片流れや部分的な曝気強度の差などから、臭気物質の揮発を完全に防止するのは難しい。
反応速度を上げ槽容積を小さくするため、複数の反応槽を直列接続した多段反応槽等が用いられる。しかし、この場合、第1槽目の反応槽では臭気物質の分解が終了していないため、残存している臭気物質の一部が曝気によって揮発して臭気が発生したり、有毒物質が揮散する。プラグフロー型の反応槽の場合も同様である。
When bio-treating organic wastewater containing volatile or odor-producing substances, a fully mixed reactor is usually used to prevent odors. However, since the reaction rate is extremely low in a completely mixed reactor, a large reactor with a long residence time is required. In addition, even in a completely mixed reaction tank, it is difficult to completely prevent the volatilization of odorous substances due to the one-sided flow of water and the difference in partial aeration intensity.
In order to increase the reaction rate and reduce the tank volume, a multi-stage reaction tank or the like in which a plurality of reaction tanks are connected in series is used. However, in this case, since the decomposition of the odorant has not been completed in the first reaction tank, part of the remaining odorant volatilizes due to aeration, generating an odor and volatilizing toxic substances. . The same applies to plug flow type reactors.

微生物を用いた発電装置として、特許文献1~3には、微生物を保持する導電性充填材をアノード室内全体に存在させるとともに、アノード室とカソード室とを隔てる非導電性膜を、アノード室とカソード室とにそれぞれ配置される電極と密着させた微生物発電装置が記載されている。 As a power generating device using microorganisms, Patent Documents 1 to 3 disclose that a conductive filler that retains microorganisms is present throughout the anode chamber, and a non-conductive membrane that separates the anode chamber and the cathode chamber is provided in the anode chamber. A microbial power generator in intimate contact with electrodes respectively placed in the cathode compartment is described.

特開2009-152091号公報JP 2009-152091 A 特開2010-33823号公報JP 2010-33823 A 特開2009-224128号公報JP 2009-224128 A

本発明は、揮発性物質や臭気の発生する物質を含む有機性排水であっても、臭気の発生や有害物質の揮発なく、処理することができる有機性排水の生物処理装置を提供することを目的とする。 It is an object of the present invention to provide a biological treatment apparatus for organic wastewater that can treat even organic wastewater containing volatile substances and odor-generating substances without generating odors or volatilizing harmful substances. aim.

本発明の有機性排水の生物処理装置は、直列に接続された第1ないし第n(nは2以上)の生物処理槽を備え、各槽内で処理を行う有機性排水の生物処理装置において、少なくとも第1生物処理槽は、微生物を保持し電子供与体である有機物を含む原水が供給されるアノード室と、該アノード室に対しイオン透過性を有した非導電性膜を介して隔てられ、電子受容体が供給されるカソード室とを備えた微生物発電装置であり、少なくとも最終生物処理槽は好気性生物処理槽である。 A biological treatment apparatus for organic wastewater according to the present invention includes first to n-th (n is 2 or more) biological treatment tanks connected in series, wherein treatment is performed in each tank. , at least the first biological treatment tank is separated from an anode chamber to which raw water containing organic matter that retains microorganisms and is an electron donor is supplied, and the anode chamber is separated via a non-conductive membrane having ion permeability. , a cathode chamber supplied with an electron acceptor, wherein at least the final biological treatment tank is an aerobic biological treatment tank.

本発明の一態様では、前記有機性排水は、揮発性物質または臭気の発生する物質を含む有機性排水である。 In one aspect of the present invention, the organic wastewater is organic wastewater containing volatile substances or odor-generating substances.

本発明の一態様では、前記微生物発電装置以外の生物処理槽は、汚泥浮遊反応槽又は担体流動反応槽である。 In one aspect of the present invention, the biological treatment tank other than the microbial power generator is a sludge floating reaction tank or a carrier flow reaction tank.

本発明の一態様では、前記好気性生物処理槽の処理水及び/又は汚泥の一部を前記微生物発電装置に返送する手段を備える。 In one aspect of the present invention, there is provided means for returning part of the treated water and/or sludge from the aerobic biological treatment tank to the microbial power generator.

本発明の一態様では、酸素を含有する前記好気性生物処理槽の排ガスの少なくとも一部を前記微生物発電装置のカソード室に供給する手段を備える。 In one aspect of the present invention, there is provided means for supplying at least part of the exhaust gas containing oxygen from the aerobic biological treatment tank to the cathode chamber of the microbial power generation device.

本発明の一態様では、前記微生物発電装置がエアカソードを備え、酸素を含有するカソード室の排ガスの少なくとも一部を前記好気性生物処理槽に供給する手段を備える。 In one aspect of the present invention, the microbial power generation device includes an air cathode and means for supplying at least a portion of oxygen-containing exhaust gas from the cathode chamber to the aerobic biological treatment tank.

微生物発電装置は、有機性排水を曝気することなく、密閉されたアノード室にて処理できるため、微生物発電装置から揮発性物質が排気中に揮散することがない。被処理水由来または生物反応により生成した揮発性物質や臭気原因物質又は臭気性物質は、微生物発電装置において酸化分解されて少なくとも揮発性物質や臭気原因物質又は臭気性物質を含まない物質にまで分解されるため、放散して排ガスとして系外排出されることがない。 Since the microbial power generator can treat the organic wastewater in a sealed anode chamber without aeration, volatile substances do not volatilize into the exhaust gas from the microbial power generator. Volatile substances, odor-causing substances, or odorous substances originating from the water to be treated or generated by biological reactions are oxidatively decomposed in the microbial power generator and decomposed into substances that do not contain at least volatile substances, odor-causing substances, or odorous substances. Therefore, it is not discharged outside the system as exhaust gas.

なお、電極表面に形成される生物膜で処理を行う微生物発電装置は、極低濃度のBOD除去には不向きであるため、多段生物処理槽の最終槽に微生物発電装置を設置すると大きな反応槽が必要となり、場所、コストの点で不利になる。これらの点を考慮して、本発明では、最終段生物処理槽を好気処理槽とする。これにより、効率的、かつ、臭気発生及び揮発性物質の揮発のない生物処理が可能となる。 Since the microbial power generator that treats with the biofilm formed on the electrode surface is not suitable for removing BOD at extremely low concentrations, installing the microbial power generator in the final tank of the multi-stage biological treatment tank requires a large reaction tank. It becomes necessary and disadvantageous in terms of location and cost. In consideration of these points, in the present invention, the final biological treatment tank is an aerobic treatment tank. This enables efficient biological treatment without odor generation and volatilization of volatile substances.

本発明の生物処理装置によれば、揮発性物質や臭気の発生する物質を含む有機性排水であっても、臭気の発生や有害物質の揮発なく、処理することができる。 According to the biological treatment apparatus of the present invention, even organic wastewater containing volatile substances or odor-generating substances can be treated without generating odors or volatilizing harmful substances.

実施の形態に係る有機性排水の生物処理装置の概略図である。1 is a schematic diagram of a biological treatment apparatus for organic waste water according to an embodiment; FIG. 実施の形態に係る有機性排水の生物処理装置の概略図である。1 is a schematic diagram of a biological treatment apparatus for organic waste water according to an embodiment; FIG. 実施の形態に係る有機性排水の生物処理装置に用いられる微生物発電装置の模式的な縦断面図である。1 is a schematic vertical cross-sectional view of a microbial power generation device used in a biological treatment device for organic waste water according to an embodiment; FIG.

以下、図面を参照して本発明の有機性排水の生物処理装置の実施の形態を詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a biological treatment apparatus for organic wastewater according to the present invention will be described in detail below with reference to the drawings.

図1は第1の実施の形態に係る有機性排水の生物処理装置を示している。 FIG. 1 shows a biological treatment apparatus for organic waste water according to a first embodiment.

この有機性排水の生物処理装置は、第1微生物発電装置11及び第2微生物発電装置12と、好気性生物処理槽13と、沈殿槽14とを有する。 This biological treatment apparatus for organic waste water has a first microbial power generation device 11 and a second microbial power generation device 12 , an aerobic biological treatment tank 13 and a sedimentation tank 14 .

原水は、原水配管10を介して第1微生物発電装置11のアノード室4に供給され、発電微生物による生物処理が行われ、第1処理水が得られ、第1処理水が配管15を介して第2微生物発電装置12のアノード室4に供給される。第2微生物発電装置12で得られた第2処理水が配管16を介して好気性生物処理槽13に供給され、散気管13aから曝気されることにより好気性生物処理される。好気性生物処理水は、好気性生物処理槽13に設けられたスクリーン13bを通って配管17に流出し、その一部は配管18を介して原水配管10に返送される。好気性生物処理水の残部は、配管17から沈殿槽14に導入され、上澄水が処理水として流出する。沈殿槽14で沈殿した汚泥は、余剰汚泥として沈殿槽14の底部から排出される。 Raw water is supplied to the anode chamber 4 of the first microbial power generation device 11 through the raw water pipe 10, and is subjected to biological treatment by the power-generating microorganisms to obtain the first treated water, which is passed through the pipe 15. It is supplied to the anode chamber 4 of the second microbial power generator 12 . The second treated water obtained by the second microbial power generator 12 is supplied to the aerobic biological treatment tank 13 through the pipe 16, and aerated through the air diffusion pipe 13a to be aerobic biologically treated. The aerobic biologically treated water passes through the screen 13b provided in the aerobic biological treatment tank 13 and flows out to the pipe 17, and part of it is returned to the raw water pipe 10 via the pipe 18. The rest of the aerobic biologically treated water is introduced into the sedimentation tank 14 through the pipe 17, and the supernatant water flows out as treated water. The sludge settled in the sedimentation tank 14 is discharged from the bottom of the sedimentation tank 14 as excess sludge.

各微生物発電装置11,12のカソード室3には空気が配管7から供給される。カソード室3からの排気は配管8を介して流出する。 Air is supplied to the cathode chamber 3 of each of the microbial power generators 11 and 12 through a pipe 7 . Exhaust air from the cathode chamber 3 exits through the pipe 8 .

図1では、好気性生物処理槽13は担体流動反応槽であり、担体13cが充填されている。好気性生物処理槽13が、担体流動床の場合、スポンジ等の担体を30~50%容量となるよう投入し、反応槽流出部に担体流出防止用のスクリーン13bを設けたものが好適である。 In FIG. 1, the aerobic biological treatment tank 13 is a carrier flow reactor and is filled with carriers 13c. When the aerobic biological treatment tank 13 is a carrier fluidized bed, it is preferable that a carrier such as a sponge is charged to 30 to 50% of the volume, and a screen 13b for preventing carrier outflow is provided at the outflow part of the reaction tank. .

図2では、好気性生物処理槽13は汚泥浮遊反応槽であり、担体13cは充填されていない。好気性生物処理槽13からの流出水は、全量が配管17を介して沈殿槽14に供給され、上澄水が処理水として取り出され、その一部は配管18を介して原水配管10に返送される。沈殿汚泥の一部は返送配管19によって好気性生物処理槽13に返送され、残部は余剰汚泥として系外に排出される。 In FIG. 2, the aerobic biological treatment tank 13 is a sludge flotation reaction tank and is not filled with carriers 13c. The entire amount of the effluent from the aerobic biological treatment tank 13 is supplied to the sedimentation tank 14 through the pipe 17, the supernatant water is taken out as treated water, and part of it is returned to the raw water pipe 10 through the pipe 18. be. A part of the settled sludge is returned to the aerobic biological treatment tank 13 through the return pipe 19, and the remainder is discharged out of the system as excess sludge.

図2の有機性排水の生物処理装置のその他の構成は図1と同一であり、同一符号は同一部分を示している。 Other configurations of the biological treatment apparatus for organic wastewater in FIG. 2 are the same as in FIG. 1, and the same reference numerals denote the same parts.

図1,2では、有機性排水の生物処理装置は微生物発電装置11,12と好気性生物処理槽13とで構成されているが、その他の処理槽を備えてもよい。 In FIGS. 1 and 2, the biological treatment apparatus for organic wastewater is composed of the microbial power generators 11 and 12 and the aerobic biological treatment tank 13, but other treatment tanks may be provided.

有機物の全て、もしくは大部分が揮発性物質の場合、最終生物処理槽以外の生物処理槽は微生物発電装置とすることが望ましい。 If all or most of the organic substances are volatile substances, it is desirable that the biological treatment tanks other than the final biological treatment tank be microbial power generators.

有機物に占める揮発性成分の割合が小さい場合は、前半側の約1/2を微生物発電装置、後半側の約1/2を微生物発電装置以外とするのが望ましい。例えば、全体で4槽の場合であれば、前半側2槽を微生物発電装置とし、後半側2槽を微生物発電装置以外とすることが望ましい。 When the proportion of volatile components in the organic matter is small, it is desirable that about half of the front half be the microbial power generator and about half of the rear half be the non-microbial power generator. For example, in the case of four tanks in total, it is desirable that the first two tanks are microbial power generators and the latter two tanks are not microbial power generators.

原水中の有機物濃度が高い場合には(例えばBOD濃度200mg/L以上、好ましくは1,000mg/L以上)、微生物発電装置が効果的である。処理が進んで低濃度(例えばBOD濃度20~2,000mg/L、好ましくは50~1,000mg/L)となっている後段側の反応槽では、生物膜の形成が進みにくいので、曝気を伴う接触効率の高い浮遊法や流動床等の担体法を用いた方が効果的である。 If the organic matter concentration in the raw water is high (for example, the BOD concentration is 200 mg/L or more, preferably 1,000 mg/L or more), the microbial power generator is effective. In the latter reaction tank where the treatment progresses and the concentration is low (for example, the BOD concentration is 20 to 2,000 mg/L, preferably 50 to 1,000 mg/L), biofilm formation is difficult to proceed, so aeration is required. It is more effective to use a floating method with high contact efficiency or a carrier method such as a fluidized bed.

また、微生物発電装置は、有機物のエネルギーを電気エネルギーとして取り出すため、好気性処理に比べて汚泥が増殖しにくい。そこで、立上げ時などは、最終生物処理槽の汚泥、またはSSを含む処理水の一部を、種菌として微生物発電装置に返送することが望ましい。 In addition, since the microbial power generator takes out the energy of organic matter as electrical energy, sludge is less likely to grow than in aerobic treatment. Therefore, it is desirable to return part of the sludge in the final biological treatment tank or the treated water containing SS as an inoculum to the microbial power generator at the time of start-up.

原水としては、下水、食品工場排水などの有機性廃水が例示されるが、これに限定されない。 Examples of raw water include, but are not limited to, organic wastewater such as sewage and food factory wastewater.

上記実施の形態ではカソード室に空気を供給しているが、純酸素や、酸素を富化させた空気あるいは、好気性生物処理槽13の曝気排ガス等を用いることもできる。また、酸素以外の電子受容体、例えばヘキサシアノ鉄(III)カリウム(フェリシアン化カリウム)を含む液を供給してもよい。 In the above embodiment, air is supplied to the cathode chamber, but pure oxygen, oxygen-enriched air, aerated exhaust gas from the aerobic biological treatment tank 13, or the like can also be used. Alternatively, a liquid containing an electron acceptor other than oxygen, such as potassium hexacyanoferrate (III) (potassium ferricyanide) may be supplied.

次に、微生物発電装置11,12の構成について図3を参照して説明する。 Next, the configuration of the microbial power generators 11 and 12 will be described with reference to FIG.

図3は微生物発電装置の概略的な構成を示す模式的断面図である。 FIG. 3 is a schematic cross-sectional view showing a schematic configuration of the microbial power generator.

槽体1内に複数枚のイオン透過性非導電性膜2が平行に配置されることによってカソード室3とアノード室4とが交互に区画されている。各カソード室3内にあっては、イオン透過性非導電性膜2に接するように正極5が配置されている。 A plurality of ion-permeable non-conductive membranes 2 are arranged in parallel in the tank body 1 to alternately partition cathode chambers 3 and anode chambers 4 . A positive electrode 5 is arranged in each cathode chamber 3 so as to be in contact with the ion-permeable non-conductive membrane 2 .

なお、図3ではアノード室4及びカソード室3が複数設置されるマルチ(複層)セル型微生物発電装置が示されているが、単一セルであってもよい。 Although FIG. 3 shows a multi-cell type microbial power generator in which a plurality of anode chambers 4 and cathode chambers 3 are installed, a single cell may be used.

正極(カソード)5は、導電性材料(グラファイト、チタン、ステンレスなど)で構成された立体よりなる。正極を構成する素材は、電子受容体の種類によって適宜、選択すればよい。酸素を電子受容体とする場合は白金などの酸素還元触媒を用いることが好ましく、例えばグラファイトフェルトを基材として白金を担持させるとよい。 The positive electrode (cathode) 5 is a three-dimensional body made of a conductive material (graphite, titanium, stainless steel, etc.). The material constituting the positive electrode may be appropriately selected according to the type of electron acceptor. When oxygen is used as an electron acceptor, it is preferable to use an oxygen reduction catalyst such as platinum. For example, graphite felt may be used as a base material to support platinum.

各アノード室4内には、導電性材料(グラファイト、チタン、ステンレスなど)で構成された立体の負極6が配置されている。アノード室4内に発電微生物が保持されている。 A three-dimensional negative electrode 6 made of a conductive material (graphite, titanium, stainless steel, etc.) is arranged in each anode chamber 4 . Power-generating microorganisms are held in the anode chamber 4 .

この実施の形態では、カソード室3内は、空室であり、ガス流入管7を介して空気が導入され、ガス流出配管8を経て排ガスが流出する。 In this embodiment, the inside of the cathode chamber 3 is empty, air is introduced through the gas inlet pipe 7 and exhaust gas is discharged through the gas outlet pipe 8 .

カソード室3とアノード室4とを仕切るイオン透過性非導電性膜2としては、非導電性、かつイオン透過性を有するものであれば殆どのものが使用できる。イオン交換膜、紙、織布、不織布、いわゆる有機膜(精密濾過膜)、ハニカム成形体、格子状成形体等が使用できる。イオンを透過させ易くするために、厚さは10μm~1mm、特に30~100μm程度の薄いものが好ましい。 As the ion-permeable non-conductive film 2 for partitioning the cathode chamber 3 and the anode chamber 4, almost any material can be used as long as it is non-conductive and ion-permeable. Ion-exchange membranes, paper, woven fabrics, non-woven fabrics, so-called organic membranes (microfiltration membranes), honeycomb molded bodies, grid-like molded bodies, and the like can be used. In order to allow ions to easily pass through, the thickness is preferably as thin as 10 μm to 1 mm, particularly 30 to 100 μm.

原水又は第1処理水には、必要に応じ水酸化ナトリウム水溶液などのpH調整剤が添加され、pHが6~9に調整されることが好ましく、pH6.5~7.5に調整されることがさらに好ましい。アノード室の温度条件は常温から中高温、具体的には10~70℃程度とすることが好ましい。 A pH adjuster such as an aqueous sodium hydroxide solution is added to the raw water or the first treated water as necessary to adjust the pH to 6 to 9, preferably 6.5 to 7.5. is more preferred. The temperature condition of the anode chamber is preferably from room temperature to middle to high temperature, specifically about 10 to 70°C.

アノード室4に窒素ガスなどの酸素を含有しないガスを連続的、または、間欠的に通気してもよい。負極表面にガスによる剪断力が与えられ、生物膜の過度な付着による閉塞を防ぐ効果が高まるのに加え、特にカソード室3で酸素を電子受容体とする場合などには、好気性スライムの増殖などにより性能低下に繋がる、カソード室3からアノード室4に浸透する酸素を除去する効果もある。 An oxygen-free gas such as nitrogen gas may be continuously or intermittently supplied to the anode chamber 4 . A shearing force is applied to the negative electrode surface by the gas, and in addition to increasing the effect of preventing clogging due to excessive adhesion of biofilm, especially when oxygen is used as an electron acceptor in the cathode chamber 3, aerobic slime grows. It also has the effect of removing oxygen permeating from the cathode chamber 3 to the anode chamber 4, which leads to deterioration in performance.

正極5と負極6との間に生じた起電力により、端子20,21を介して外部抵抗(図示しない)に電流が流れる。 Due to the electromotive force generated between the positive electrode 5 and the negative electrode 6, current flows through terminals 20 and 21 to an external resistor (not shown).

カソード室3に酸素含有ガスを通気すると共に、負極溶液を流通させることにより、アノード室4内では、
(有機物)+HO→CO+H+e
なる反応が進行する。この電子eが負極6、端子21、外部抵抗、端子20を経て正極5へ流れる。
By passing the oxygen-containing gas through the cathode chamber 3 and circulating the negative electrode solution, in the anode chamber 4,
(Organic matter) + H 2 O→CO 2 + H + +e
reaction proceeds. This electron e flows through the negative electrode 6 , the terminal 21 , the external resistor, and the terminal 20 to the positive electrode 5 .

イオン透過性非導電性膜2がカチオン交換膜である場合、上記反応で生じたプロトンHは、カチオン交換膜を通って正極5に移動する。正極5では、
+4H+4e→2H
なる反応が進行する。この正極反応で生成したHOはカソード排ガスと共に排出される。
When the ion-permeable non-conductive membrane 2 is a cation exchange membrane, the protons H 2 + generated in the above reaction move to the positive electrode 5 through the cation exchange membrane. At the positive electrode 5,
O 2 +4H + +4e →2H 2 O
reaction proceeds. H 2 O generated by this positive electrode reaction is discharged together with the cathode exhaust gas.

イオン透過性非導電性膜2としてアニオン交換膜を用いた場合、正極5では、
+2HO+4e→4OH
なる反応が進行する。この正極反応で生成したOHがイオン透過性非導電性膜2としてのアニオン交換膜を透過する。
When an anion exchange membrane is used as the ion permeable non-conductive membrane 2, the positive electrode 5 is
O 2 +2H 2 O+4e →4OH
reaction proceeds. OH generated by this positive electrode reaction permeates the anion exchange membrane as the ion-permeable non-conductive membrane 2 .

本発明では、アノード室内に保持され、電気エネルギーを産生させる微生物は、電極に電子を供与する機能を有するものであれば特に制限されない。例えば、Saccharomyces、Hansenula、Candida、Micrococcus、Staphylococcus、Streptococcus、Leuconostoa、Lactobacillus、Corynebacterium、Arthrobacter、Bacillus、Clostridium、Neisseria、Escherichia、Enterobacter、Serratia、Achromobacter、Alcaligenes、Flavobacterium、Acetobacter、Moraxella、Nitrosomonas、Nitorobacter、Thiobacillus、Gluconobacter、Pseudomonas、Xanthomonas、Vibrio、Comamonas、Proteus(Proteus vulgaris)、Shewannell及びGeobacterの各属に属する細菌、糸状菌、酵母などを挙げることができる。このような微生物を含む汚泥として下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈澱池からの流出水に含まれる微生物、嫌気性消化汚泥等を植種としてアノード室に供給し、微生物を負極に保持させることができる。発電効率を高くするためには、アノード室内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1~50g/Lであることが好ましい。 In the present invention, the microorganism that is held in the anode chamber and that produces electrical energy is not particularly limited as long as it has the function of donating electrons to the electrode. For example, Saccharomyces, Hansenula, Candida, Micrococcus, Staphylococcus, Streptococcus, Leuconostoa, Lactobacillus, Corynebacterium, Arthrobacter, Bacillus, Clostridium, Neisseria, Escherichia, Enterobacter, Serratia, Achromobacter, Alcaligenes, Flavobacterium, Acetobacter, Moraxella, Nitrosomonas, Nitorobacter, Thiobacobacter, Bacteria belonging to the genera Gluconobacter, Pseudomonas, Xanthomonas, Vibrio, Comamonas, Proteus (Proteus vulgaris), Shewannell and Geobacter, filamentous fungi, yeast and the like can be mentioned. As sludge containing such microorganisms, activated sludge obtained from biological treatment tanks for treating organic matter-containing water such as sewage, microorganisms contained in effluent from primary sedimentation tanks of sewage, anaerobic digestion sludge, etc. are used as inoculum for the anode. A chamber can be supplied to retain the microorganisms on the negative electrode. In order to increase power generation efficiency, it is preferable that the amount of microorganisms retained in the anode chamber is high, for example, the concentration of microorganisms is preferably 1 to 50 g/L.

1 槽体
2 イオン透過性非導電性膜
3 カソード室
4 アノード室
5 正極
6 負極
11,12 微生物発電装置
13 好気性生物処理槽
14 沈殿槽
REFERENCE SIGNS LIST 1 tank body 2 ion-permeable non-conductive membrane 3 cathode chamber 4 anode chamber 5 positive electrode 6 negative electrode 11, 12 microbial power generator 13 aerobic biological treatment tank 14 sedimentation tank

Claims (6)

直列に接続された第1ないし第n(nは2以上)の生物処理槽を備え、各槽内で処理を行う有機性排水の生物処理装置において、
少なくとも第1生物処理槽は、微生物を保持し電子供与体である有機物を含む原水が供給されるアノード室と、該アノード室に対しイオン透過性を有した非導電性膜を介して隔てられ、電子受容体が供給されるカソード室とを備えた微生物発電装置であり、
少なくとも最終生物処理槽は好気性生物処理槽であり、前記好気性生物処理槽の処理水の一部を前記微生物発電装置に返送する手段を備える有機性排水の生物処理装置。
A biological treatment apparatus for organic wastewater comprising first to n-th (n is 2 or more) biological treatment tanks connected in series, and performing treatment in each tank,
At least the first biological treatment tank is separated from an anode chamber to which raw water containing organic matter that retains microorganisms and is an electron donor is supplied and the anode chamber is separated by a non-conductive membrane having ion permeability, a cathode chamber to which an electron acceptor is supplied; and
A biological treatment apparatus for organic wastewater, wherein at least the final biological treatment tank is an aerobic biological treatment tank, and the system comprises means for returning part of the treated water of the aerobic biological treatment tank to the microbial power generation apparatus.
前記有機性排水は、揮発性物質または臭気の発生する物質を含む有機性排水である請求項1記載の有機性排水の生物処理装置。 2. A biological treatment apparatus for organic wastewater according to claim 1, wherein said organic wastewater is organic wastewater containing volatile substances or odor-generating substances. 前記微生物発電装置以外の生物処理槽は、汚泥浮遊反応槽又は担体流動反応槽である請求項1または2に記載の有機性排水の生物処理装置。 3. The biological treatment apparatus for organic wastewater according to claim 1, wherein the biological treatment tank other than the microbial power generation apparatus is a sludge floating reaction tank or a carrier flow reaction tank. 前記微生物発電装置として、第1微生物発電装置(11)と、該第1微生物発電装置のアノード室からの第1処理水がアノード室に供給される第2微生物発電装置(12)とを備えており、
前記好気性生物処理槽の処理水の一部が、該第1微生物発電装置(11)に返送される請求項1ないし3のいずれかに記載の有機性排水の生物処理装置。
The microbial power generator includes a first microbial power generator (11) and a second microbial power generator (12) to which the first treated water from the anode chamber of the first microbial power generator is supplied to the anode chamber. cage,
4. A biological treatment apparatus for organic waste water according to any one of claims 1 to 3 , wherein part of the treated water in said aerobic biological treatment tank is returned to said first microbial power generator (11).
酸素を含有する前記好気性生物処理槽の排ガスの少なくとも一部を前記微生物発電装置のカソード室に供給する手段を備える請求項1ないし4のいずれかに記載の有機性排水の生物処理装置。 5. A biological treatment apparatus for organic wastewater according to claim 1, further comprising means for supplying at least part of exhaust gas containing oxygen from said aerobic biological treatment tank to a cathode chamber of said microbial power generation apparatus. 前記微生物発電装置がエアカソードを備え、酸素を含有するカソード室の排ガスの少なくとも一部を前記好気性生物処理槽に供給する手段を備える請求項1ないし5のいずれかに記載の有機性排水の生物処理装置。 6. Organic wastewater treatment according to any one of claims 1 to 5, wherein said microbial power generation device is equipped with an air cathode and means for supplying at least part of exhaust gas containing oxygen from a cathode chamber to said aerobic biological treatment tank. biological treatment equipment.
JP2019068249A 2019-03-29 2019-03-29 Biological treatment equipment for organic wastewater Active JP7247713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019068249A JP7247713B2 (en) 2019-03-29 2019-03-29 Biological treatment equipment for organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068249A JP7247713B2 (en) 2019-03-29 2019-03-29 Biological treatment equipment for organic wastewater

Publications (2)

Publication Number Publication Date
JP2020163327A JP2020163327A (en) 2020-10-08
JP7247713B2 true JP7247713B2 (en) 2023-03-29

Family

ID=72714729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068249A Active JP7247713B2 (en) 2019-03-29 2019-03-29 Biological treatment equipment for organic wastewater

Country Status (1)

Country Link
JP (1) JP7247713B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188306A1 (en) * 2022-03-31 2023-10-05 国立大学法人東北大学 Microbial fuel battery, waste water treatment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037261A1 (en) 2005-09-28 2007-04-05 Ebara Corporation Biological power plant, and method of treating organic solid contaminant-containing waste, method of treating organic high molecular substance-containing liquid waste and method of treating organic substance-containing liquid waste by using the biological power plant, and apparatus for conducting these methods
JP2010153115A (en) 2008-12-24 2010-07-08 Kurita Water Ind Ltd Microbial power generation method and microbial power generation device
JP2016031778A (en) 2014-07-25 2016-03-07 株式会社日立製作所 Microbial fuel battery system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037261A1 (en) 2005-09-28 2007-04-05 Ebara Corporation Biological power plant, and method of treating organic solid contaminant-containing waste, method of treating organic high molecular substance-containing liquid waste and method of treating organic substance-containing liquid waste by using the biological power plant, and apparatus for conducting these methods
JP2010153115A (en) 2008-12-24 2010-07-08 Kurita Water Ind Ltd Microbial power generation method and microbial power generation device
JP2016031778A (en) 2014-07-25 2016-03-07 株式会社日立製作所 Microbial fuel battery system

Also Published As

Publication number Publication date
JP2020163327A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
Yang et al. Sustainable ammonia-contaminated wastewater treatment in heterotrophic nitrifying/denitrifying microbial fuel cell
WO2008109911A1 (en) Microbial fuel cell
US7294270B2 (en) Method of treating photographic waste liquid
JP5428328B2 (en) Microbial power generation method and microbial power generation apparatus
WO2014082989A1 (en) Bioelectrochemical water treatment and apparatus
CN111448698B (en) Microbial power generation device and operation method thereof
JP2015033681A (en) Waste water treatment apparatus
KR101325209B1 (en) Method for wastewater treatment that simultaneous removal of organic matter and nitrogen in wastewater using a bio-electrochemical method
JP7247713B2 (en) Biological treatment equipment for organic wastewater
JP5359725B2 (en) Microbial power generation method and microbial power generation apparatus
JP6252702B1 (en) Microbial power generation method and apparatus
KR101391776B1 (en) Microbial fuel cell using sole cathodic electrode for the removal of nitrogen and organics
JP2002346566A (en) Apparatus and method for water treatment
JP7218648B2 (en) Microbial power generation method and apparatus
JP2017159210A (en) Nitrification denitration type wastewater treatment system
KR101852536B1 (en) Bioelectrochemical system for removing organic materials and nitrogen in waste water using nitrite accumulation process
JP5287149B2 (en) Microbial power generation method and microbial power generation apparatus
JP7268448B2 (en) BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER
KR101920428B1 (en) Method for wastewater treatment that simultaneous removal of organic matter and nitrogen in wastewater using microbial fuel cell
JP2000157995A (en) Treatment of water containing nitrogen in nitrate form
CN216141407U (en) Pretreatment device and treatment system for high-salinity wastewater of pickled vegetables
JP3117067B2 (en) Method and apparatus for treating oxidized nitrogen-containing water
JP6652149B2 (en) Microbial power generator using germicide and method of operating microbial power generator
JP2009238558A (en) Microbiological power generation method and device
CN115557594A (en) Late landfill leachate treatment system and method coupled with multiple bioelectrochemical systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7247713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150