JP7202235B2 - Low lead copper alloy - Google Patents
Low lead copper alloy Download PDFInfo
- Publication number
- JP7202235B2 JP7202235B2 JP2019063630A JP2019063630A JP7202235B2 JP 7202235 B2 JP7202235 B2 JP 7202235B2 JP 2019063630 A JP2019063630 A JP 2019063630A JP 2019063630 A JP2019063630 A JP 2019063630A JP 7202235 B2 JP7202235 B2 JP 7202235B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- content
- copper alloy
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Conductive Materials (AREA)
Description
この発明は、鉛の含有量を抑えた鉛含有青銅合金に関する。 The present invention relates to lead-containing bronze alloys with reduced lead content.
従来、水道用資機材や給水装置の部品に用いられてきた青銅鋳物(JIS H5120 CAC406)は、鋳造性、耐食性、切削性、耐圧性に優れており、バルブ、ポンプ部品、給水用具、水道用資機材、軸受、一般機械部品など、様々な分野に用いられている。この青銅鋳物(CAC406)は、鉛を4.0~6.0重量%含むことで高い切削性を有しており、加工しやすいという特徴がある。しかし、含有する鉛は、近年、人体や環境への影響が懸念されるため、水質規制やRoHS、REACH指令などの環境規制の整備とともに、使用環境が制限されつつある。このため、鉛の浸出量を削減することを目標として、鉛の含有量を低下させた、又は鉛を使用しない鉛フリー銅合金が検討されている。 Bronze castings (JIS H5120 CAC406), which have been conventionally used for water supply equipment and parts of water supply equipment, are excellent in castability, corrosion resistance, machinability, and pressure resistance, and are used in valves, pump parts, water supply equipment, and water supply equipment. It is used in various fields such as materials and equipment, bearings, and general machine parts. This bronze casting (CAC406) contains 4.0 to 6.0% by weight of lead, so that it has high machinability and is easy to process. However, in recent years, there are concerns about the effects of lead on the human body and the environment. Therefore, environmental regulations such as water quality regulations, RoHS, and REACH directives are being developed, and usage environments are being restricted. For this reason, lead-free copper alloys with reduced lead content or no lead are being studied with the goal of reducing the amount of lead leaching.
例えば特許文献1には、Cuを71.5~78.5質量%、Siを2.0~4.5質量%、鉛を0.005質量%以上0.02質量%未満の範囲で含有し、かつ残部がZnからなる合金組成をなす快削性銅合金が開示されている。この銅合金では上記の範囲でさらに、次の条件をみたすことで、求める性能を発揮させている。まず、Cu、Si、及びPbが質量%単位で61-50Pb≦Cu-4Si≦66+50Pbの不等式を満足し、かつ、0.5質量%を超えないFeを不純物として含む合金組成をなす。その上で、α相からなるマトリックスにγ相及び/又はκ相が均一に分散されており且つ総相面積においてα相≧30%、0%≦β相≦5%、0%≦μ相≦20%及び18-500(Pb)%≦κ相+γ相+0.3μ相-β相≦56+500(Pb)%を満足する金属組織をなす。これにより鉛を超低量含む快削銅合金となる。 For example, in Patent Document 1, Cu is 71.5 to 78.5% by mass, Si is 2.0 to 4.5% by mass, and lead is contained in a range of 0.005% by mass to less than 0.02% by mass. and a free-cutting copper alloy with a balance of Zn. In this copper alloy, the required performance is exhibited by further satisfying the following conditions within the above range. First, Cu, Si, and Pb satisfy the inequality of 61-50Pb≤Cu-4Si≤66+50Pb in mass% units, and form an alloy composition containing Fe as an impurity not exceeding 0.5 mass%. In addition, the γ phase and/or the κ phase are uniformly dispersed in the matrix composed of the α phase, and the total phase area is α phase ≥ 30%, 0% ≤ β phase ≤ 5%, 0% ≤ μ phase ≤ 20% and 18-500(Pb)%≦κ phase+γ phase+0.3μ phase−β phase≦56+500(Pb)%. This results in a free-cutting copper alloy containing an ultra-low amount of lead.
また、特許文献2には、Sn:0.8~8.0重量%、Bi:0.2~7.0重量%、Niを0.2~3.0重量%、及び残部のCuからなり、合金内にCu-Sn-Ni化合物を析出させて切削性を向上させた、鋳塊・溶接に向いた鉛フリー銅合金が開示されている。Pbの含有量は不純物として含まれうる0.02~0.03重量%程度である。また、さらにこの合金に、Se:0.1~3.0重量%未満を含有させる旨、P:0.5重量%未満を含有させる旨が開示されている。 Further, in Patent Document 2, Sn: 0.8 to 8.0 wt%, Bi: 0.2 to 7.0 wt%, Ni 0.2 to 3.0 wt%, and the balance Cu , discloses a lead-free copper alloy suitable for ingots and welding in which a Cu--Sn--Ni compound is precipitated in the alloy to improve machinability. The content of Pb is about 0.02 to 0.03% by weight, which can be included as an impurity. Further, it is disclosed that the alloy contains Se: 0.1 to less than 3.0% by weight and P: less than 0.5% by weight.
さらに、特許文献3には、0.5~15mass%のSnと、0.001~0.049mass%のZrと、0.01~0.35mass%のPと、0.01~15mass%のPb、0.01~15mass%のBi、0.01~1.2mass%のSe及び0.05~1.2mass%のTeから選択された1種以上の元素と、残部であって73mass%以上のCuとからなり、Fe及び/又はNiが不可避不純物として含有される場合であって、その何れかが含有される場合にはFe又はNiの含有量が0.2mass%以下に、またFe及びNiが含有される場合にはそれらの合計含有量が0.25mass%以下に、夫々制限されており、f1=[P]/[Zr]=0.5~100、f2=3[Sn]/[Zr]=300~15000、f3=3[Sn]/[P]=40~2500、f4=[Zn]+3[Sn]=10~43及びf5=[Cu]-0.5[Sn]-3[P]+0.5([Pb]+[Bi]+[Se]+[Te])-0.5([As]+[Sb])-1.8[Al]+[Mn]+[Mg]=60~90(元素aの含有量を[a]mass%とし、含有しない元素aについては[a]=0とする)であり、α相、γ相及びδ相の合計含有量が面積率で95%以上であり、溶融固化時のマクロ組織での平均結晶粒径が300μm以下であることを特徴とする被削性、強度、耐摩耗性及び耐蝕性に優れた銅合金鋳物が記載されている。 Furthermore, in Patent Document 3, 0.5 to 15 mass% Sn, 0.001 to 0.049 mass% Zr, 0.01 to 0.35 mass% P, and 0.01 to 15 mass% Pb , one or more elements selected from 0.01 to 15 mass% of Bi, 0.01 to 1.2 mass% of Se and 0.05 to 1.2 mass% of Te, and the balance of 73 mass% or more Cu and Fe and/or Ni are contained as inevitable impurities, and when either of them is contained, the content of Fe or Ni is 0.2 mass% or less, and Fe and Ni are contained, their total content is limited to 0.25 mass% or less, respectively, f1 = [P] / [Zr] = 0.5 to 100, f2 = 3 [Sn] / [ Zr] = 300 to 15000, f3 = 3 [Sn] / [P] = 40 to 2500, f4 = [Zn] + 3 [Sn] = 10 to 43 and f5 = [Cu] - 0.5 [Sn] - 3 [P] + 0.5 ([Pb] + [Bi] + [Se] + [Te]) - 0.5 ([As] + [Sb]) - 1.8 [Al] + [Mn] + [Mg ] = 60 to 90 (the content of element a is [a] mass%, and [a] = 0 for element a that is not contained), and the total content of α phase, γ phase, and δ phase is the area It describes a copper alloy casting with excellent machinability, strength, wear resistance and corrosion resistance, characterized by having a ratio of 95% or more and an average crystal grain size in the macrostructure at the time of melting and solidification of 300 μm or less. It is
しかしながら、特許文献1及び2に記載された鉛フリー銅合金では、従来のCAC406に比べて実際の鋳造現場において取り扱う際の注意点が大きく変わってしまうため、従来のCAC406を用いた鋳造や加工工程などの製造手順からスムーズな移行を行うことが難しい。また、鉛含有銅合金で製造する現場との間でコンタミネーションが起きるおそれがあり、欠陥が増大する懸念もあった。 However, with the lead-free copper alloys described in Patent Documents 1 and 2, the points to be noted when handling at actual casting sites are significantly different from those of conventional CAC406, so casting and processing processes using conventional CAC406 It is difficult to make a smooth transition from manufacturing procedures such as In addition, there was a concern that contamination could occur with the site where lead-containing copper alloys are manufactured, resulting in an increase in defects.
また、特許文献3に記載の合金のようにZrを含有させると、青銅鋳物系においてはSiのように微細引け巣を誘発するため、健全な製品を製造することが困難となり、CAC406での習熟された手順を踏まえた移行が難しくなった。 In addition, when Zr is contained as in the alloy described in Patent Document 3, fine shrinkage cavities are induced in the bronze casting system like Si, making it difficult to produce sound products, and proficiency in CAC406 is difficult. It became difficult to migrate based on the procedures given.
一方、近年の自動車業界におけるEV化推進に必要な電気系統製品需要の高まりを受けて、純銅を中心とした銅の使用量が拡大しており、銅の供給不足や価格高騰が懸念されている。このため、銅の使用量はできるだけ低下させる必要性に迫られている。 On the other hand, in response to the increasing demand for electric system products necessary for the promotion of EV in the automobile industry in recent years, the amount of copper used, mainly pure copper, is increasing, raising concerns about copper supply shortages and soaring prices. . Therefore, there is an urgent need to reduce the amount of copper used as much as possible.
そこでこの発明は、鉛の浸出を抑えるだけでなく、銅の使用量も抑制しながら、従来からスタンダードとなっているCAC406に近い手順で扱うことが出来る青銅合金を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a bronze alloy that can be handled in a procedure close to CAC406, which has been a standard, while suppressing not only the leaching of lead but also the amount of copper used.
この発明は、Znを13.0質量%以上21.0質量%以下、Snを1.2質量%以上5.7質量%以下、Pbを0.30質量%以上4.0質量%以下、Pを0.5質量%以下含有し、残部がCuと不可避不純物とである銅合金により、上記の課題を解決したのである。 In the present invention, Zn is 13.0% by mass or more and 21.0% by mass or less, Sn is 1.2% by mass or more and 5.7% by mass or less, Pb is 0.30% by mass or more and 4.0% by mass or less, P The above problem has been solved by a copper alloy containing 0.5% by mass or less of and the balance being Cu and inevitable impurities.
また、上記の成分に加えて、1.5質量%以下のNiを含有する構成を選択することもできる。 Moreover, in addition to the above components, a configuration containing 1.5% by mass or less of Ni can also be selected.
この発明にかかる銅合金は、鉛を4.0~6.0質量%含有するCAC406に比べて鉛の含有量を低下させることで、鉛の規制に対応することができる。また、Znを適切な範囲で増加させSnを適切な範囲に調整することでCuの必要量を削減することができる。 The copper alloy according to the present invention has a lower lead content than CAC406, which contains 4.0 to 6.0% by mass of lead, and can comply with lead regulations. Moreover, the necessary amount of Cu can be reduced by increasing Zn within an appropriate range and adjusting Sn within an appropriate range.
この銅合金は、他の不可避不純物として混入しうる元素を限定的に含んでいてもよい。ただし、その合計量は、本発明の効果を阻害しない範囲に留める必要があり、0.5質量%未満であると好ましく、かつ一つの当該元素あたりの含有量が0.1質量%未満であると好ましい。 This copper alloy may contain, to a limited extent, elements that can be mixed as other unavoidable impurities. However, the total amount must be kept within a range that does not impair the effects of the present invention, and is preferably less than 0.5% by mass, and the content per element is less than 0.1% by mass. and preferred.
この発明により、Pbの使用量を抑制しつつ、Cuの必要量も削減しながら、必要な強度や伸びを確保し、かつ従来のCAC406に近い取り扱いが出来る銅合金を得ることができる。これにより、従来はCAC406が用いられていた様々な銅合金製品について、製造現場における手順変更の負荷を抑制しながら、低鉛化と使用する銅の節約とを実現することができる。 According to the present invention, it is possible to obtain a copper alloy that can secure necessary strength and elongation while suppressing the amount of Pb used and reducing the necessary amount of Cu, and that can be handled close to conventional CAC406. As a result, various copper alloy products, for which CAC406 has been used in the past, can be reduced in lead and can be used to save copper while suppressing the burden of changing procedures at the manufacturing site.
以下、この発明について詳細に説明する。
この発明は、CAC406に比して、Pbの含有量を抑制すると共にCuの使用量を削減した青銅系の銅合金である。
The present invention will be described in detail below.
The present invention is a bronze-based copper alloy in which the content of Pb is suppressed and the amount of Cu used is reduced as compared with CAC406.
上記銅合金のZn含有量は、13.0質量%以上である必要がある。13.0質量%未満であると、CAC406に比べて引張強さおよび伸びが悪化しすぎてしまい、従来通りには扱いにくくなってしまう。一方で、21.0質量%以下である必要があり、19.5質量%以下であると好ましい。Zn含有量が21.0質量%を超えると引張強さが悪化してしまう。 The Zn content of the copper alloy should be 13.0% by mass or more. If it is less than 13.0% by mass, the tensile strength and elongation are too poor compared to CAC406, making it difficult to handle as before. On the other hand, it must be 21.0% by mass or less, preferably 19.5% by mass or less. If the Zn content exceeds 21.0% by mass, the tensile strength deteriorates.
上記銅合金のSn含有量は、1.2質量%以上である必要があり、2.0質量%以上であると好ましい。1.2質量%未満であると耐力が低くなりすぎてしまう。一方、5.7質量%以下である必要があり、4.0質量%以下であると好ましい。5.7質量%を超えると伸びと引張強さが極端に悪くなってしまう。 The Sn content of the copper alloy should be 1.2% by mass or more, preferably 2.0% by mass or more. If it is less than 1.2% by mass, the yield strength will be too low. On the other hand, it must be 5.7% by mass or less, preferably 4.0% by mass or less. If it exceeds 5.7% by mass, the elongation and tensile strength are extremely deteriorated.
上記銅合金のPb含有量は、0.30質量%以上である必要があり、0.50質量%を超えると好ましい。0.30質量%未満では、CAC406と同一条件で切削加工を行うと切粉がヘリカルに繋がってしまい、切削不良が起きやすくなる。0.30質量%以上0.50質量%以下では、切削性は多少改善し、切粉が一部ヘリカルに繋がってしまうものの、切粉の分断は起きるため、多少の切削性の低下を許容することで利用可能である。一方、Pb含有量は、4.0質量%以下が必要であり、3.9質量%以下が好ましく、3.5質量%以下であるとより好ましい。3.5質量%を超えると引張強さの低下が起き始める。さらに、4.0質量%を超えると、環境規制に対応できなくなってしまう。 The Pb content of the copper alloy should be 0.30% by mass or more, and preferably exceeds 0.50% by mass. If it is less than 0.30% by mass, cutting chips will be helically connected when cutting is performed under the same conditions as CAC406, which tends to cause poor cutting. When the content is 0.30% by mass or more and 0.50% by mass or less, the machinability is slightly improved, and some chips are helically connected. It is available by On the other hand, the Pb content must be 4.0% by mass or less, preferably 3.9% by mass or less, and more preferably 3.5% by mass or less. Above 3.5% by mass, the tensile strength begins to decrease. Furthermore, when it exceeds 4.0% by mass, it becomes impossible to comply with environmental regulations.
上記銅合金のP含有量は、0.5質量%以下である必要がある。Pが過剰に含まれていると、引け巣の増大などが懸念されるが、0.5質量%までは特に問題なく含めることができる。上記の範囲でPが含まれていると、溶湯の健全性に寄与し、脱酸効果を発揮して鋳造後の機械的性質を安定化させる。含有させる場合、0.005質量%以上が好ましく、0.01質量%以上がより好ましい。ただし、上記銅合金はZnの含有量が比較的高いことから、Pによる脱酸工程を省いてもある程度安定した品質の鋳物を得ることができる。 The P content of the copper alloy should be 0.5% by mass or less. If P is contained excessively, there is concern about an increase in shrinkage cavities, but up to 0.5% by mass can be contained without any particular problem. When P is contained in the above range, it contributes to the soundness of the molten metal, exhibits a deoxidizing effect, and stabilizes the mechanical properties after casting. When it is contained, it is preferably 0.005% by mass or more, more preferably 0.01% by mass or more. However, since the above-mentioned copper alloy has a relatively high Zn content, it is possible to obtain castings of somewhat stable quality even if the deoxidizing step with P is omitted.
上記銅合金は、上記の元素の他に、Niを含んでいてもよい。上記銅合金においてNiは全率固溶型元素であり、強度や伸びを安定させる。Niの添加は、引張強さおよび伸びを、添加しない場合よりも向上させる。一方で、1.5質量%以下であることが必要である。1.5質量%を超えると、水素吸収の増加による溶湯の品質低下が懸念される。また、鋳造された製品のNiの溶出量の増大も懸念される。 The copper alloy may contain Ni in addition to the above elements. In the above copper alloy, Ni is a solid-solution element and stabilizes strength and elongation. The addition of Ni improves tensile strength and elongation over no addition. On the other hand, it must be 1.5% by mass or less. If it exceeds 1.5% by mass, there is concern that the quality of the molten metal will deteriorate due to increased hydrogen absorption. In addition, there is concern about an increase in the amount of Ni eluted from cast products.
上記銅合金は、残分としてCuの他に、この発明にかかる効果を阻害しない範囲で、不純物となる上記以外の元素を含有してもよい。ただし、含有する量は原材料や製造時の問題から不可避的に含有される不可避不純物として含まれる程度に抑えることが好ましい。その不可避不純物となる元素の合計量は、0.5質量%未満であると好ましく、0.1質量%未満であるとより好ましい。予期せぬ元素が多すぎると上記の元素の範囲であっても、物性に支障を来すおそれがあるからである。また、一つの元素あたりの含有量は、0.1質量%未満であると好ましい。 In addition to Cu, the above copper alloy may contain, as a remainder, elements other than those mentioned above that serve as impurities within a range that does not impair the effects of the present invention. However, it is preferable to suppress the content to the extent that it is included as unavoidable impurities that are inevitably included due to problems in raw materials and production. The total amount of elements that become inevitable impurities is preferably less than 0.5% by mass, more preferably less than 0.1% by mass. This is because if there are too many unexpected elements, the physical properties may be impaired even if the elements are within the above range. Also, the content per element is preferably less than 0.1% by mass.
上記銅合金が含有しうる不可避不純物となる元素のうち、Biの含有量は、0.1質量%未満であると好ましく、0.05質量%未満であるとより好ましく、検出限界未満であると最も好ましい。Biは、Cuに固溶せずに分散し、同じく分散されているPbと低融点(125℃)の共晶化合物を作る。Biの含有量が多いと、分散されたPb-Biの共晶化合物が多くなり引張強さなどの強度低下を招く起点となってしまうおそれがある。また、分散したBiによって砂型鋳造時に引け巣が発生しやすくなる傾向にある。さらに、Biが多すぎると、上記銅合金を用いて製造した鋳造製品をリサイクルするにあたり、リサイクルする合金にBiが混入することで生じる機械的性質の低下などの様々なデメリットを生じるため、当該鋳造製品を別途回収しなければならなくなってしまう。 Among the elements that become inevitable impurities that the copper alloy may contain, the content of Bi is preferably less than 0.1% by mass, more preferably less than 0.05% by mass, and is less than the detection limit. Most preferred. Bi disperses in Cu without forming a solid solution, and forms a low melting point (125° C.) eutectic compound with similarly dispersed Pb. If the Bi content is high, the amount of dispersed Pb--Bi eutectic compound increases, which may become a starting point for lowering strength such as tensile strength. In addition, dispersed Bi tends to cause shrinkage cavities during sand mold casting. Furthermore, if the amount of Bi is too large, various disadvantages such as deterioration of mechanical properties caused by the inclusion of Bi in the alloy to be recycled occur when recycling cast products manufactured using the above copper alloy. The product will have to be collected separately.
上記銅合金が含有しうる不可避不純物となる元素のうち、特に、Zrの含有量は、0.003質量%未満であると好ましく、検出限界未満であるとより好ましい。Znを多く含んだ青銅系合金において、Zrは微量でも含まれていると物性に大きな影響を及ぼす可能性が高いためである。 Among the elements that can be contained as inevitable impurities in the copper alloy, the content of Zr is preferably less than 0.003% by mass, and more preferably less than the detection limit. This is because, in bronze-based alloys containing a large amount of Zn, if even a small amount of Zr is contained, there is a high possibility that the physical properties will be greatly affected.
上記銅合金が含有しうる不可避不純物となる元素のうち、特に、Siの含有量は、0.01質量%未満であると好ましく、0.005質量%未満であるとより好ましい。Siが多すぎると引け巣を助長し、健全な鋳物ができなくなってしまう。 Among the elements that can be included as inevitable impurities in the copper alloy, the content of Si is preferably less than 0.01% by mass, and more preferably less than 0.005% by mass. Too much Si promotes shrinkage cavities, making it impossible to produce sound castings.
上記銅合金が含有しうる不可避不純物となる元素のうち、Bの含有量は、0.02質量%未満であると好ましく、0.01質量%未満であるとより好ましい。Bは微量でも性質に与える影響が大きく、0.02質量%以上であると切削性の低下や引張強度の低下が無視できなくなる。 Among the elements that become inevitable impurities that the copper alloy may contain, the content of B is preferably less than 0.02% by mass, and more preferably less than 0.01% by mass. Even a very small amount of B has a large effect on properties, and if it is 0.02% by mass or more, the reduction in machinability and tensile strength cannot be ignored.
上記銅合金が含有しうるその他の不可避不純物となる元素は、いずれも0.1質量%未満であると好ましく、0.05質量%未満であるとより好ましく、検出限界未満であるとさらに好ましい。このような不純物としては、例えば、Fe、Mn、Cr、Mg、Ti、Te、Se、Cd、Sbなどが挙げられる。この中でも特に、毒性が知られているSe、Cdは、0.1質量%未満であることが望ましく、検出限界未満であるとさらに望ましい。 Any of the other unavoidable impurity elements that the copper alloy may contain is preferably less than 0.1% by mass, more preferably less than 0.05% by mass, and even more preferably less than the detection limit. Examples of such impurities include Fe, Mn, Cr, Mg, Ti, Te, Se, Cd, and Sb. Among these, Se and Cd, which are known to be toxic, are desirably less than 0.1% by mass, and more desirably less than the detection limit.
なお、この発明における含有量の値は、原料における比ではなく、合金として得られた素材あるいは鋳造や鍛造などにより製品を製造した時点における含有量を示す。 In addition, the value of the content in the present invention indicates the content at the time when the product is manufactured by the raw material obtained as an alloy or by casting, forging, etc., not the ratio in the raw material.
上記銅合金の残分はCuである。この発明にかかる銅合金は、一般的な銅合金の製造方法で得ることができ、この銅合金で製品を製造する際には、一般的な鋳造方法(例えば砂型鋳造)により製造することができる。例えば、重油炉、ガス炉、高周波誘導溶解炉などを用いて合金の溶解を行い、各形状の鋳型に鋳造する方法が挙げられる。 The balance of the copper alloy is Cu. The copper alloy according to the present invention can be obtained by a general copper alloy production method, and when producing a product from this copper alloy, it can be produced by a general casting method (for example, sand casting). . For example, a method of melting an alloy using a heavy oil furnace, a gas furnace, a high-frequency induction melting furnace, etc., and casting it into a mold of each shape can be mentioned.
以下、この発明にかかる銅合金を実際に製造した例を挙げて報告する。まず、銅合金に対して行う試験方法について説明する。 Examples of actual production of copper alloys according to the present invention will be reported below. First, the test method for copper alloys will be described.
<機械的性質試験>
10t-Yブロック(10mm×70mm×100mm)のCO2鋳型へ鋳造し、最下部を底から10mmで切り出したもの(10mm×70mm×10mm)を、JIS Z2241で規定する14A号試験片に加工した。具体的形状は、図1の通りであり、平行部の原断面積S0と原標点距離L0とがL0=5.65×S0^(1/2)の関係にある比例試験片である。棒状部の直径d0は5mm、原標点距離L0は25mm、円柱状とした並行部長さLcは30mm、肩部の半径Rは15mmとした。(L0=5.65×(2.5×2.5×π)^(1/2)=25.03)
<Mechanical property test>
It was cast into a 10t-Y block (10 mm × 70 mm × 100 mm) CO 2 mold, and the lowest part was cut out at 10 mm from the bottom (10 mm × 70 mm × 10 mm). . The specific shape is as shown in FIG. 1, and the proportional test in which the original cross-sectional area S 0 of the parallel portion and the original gauge length L 0 have a relationship of L 0 = 5.65 × S 0 ^ (1/2) It's a piece. The diameter d0 of the rod-shaped portion was 5 mm, the original gauge length L0 was 25 mm, the length Lc of the cylindrical parallel portion was 30 mm, and the radius R of the shoulder portion was 15 mm. (L 0 =5.65×(2.5×2.5×π)^(1/2)=25.03)
この試験片について、JIS Z2241に従って引張強さと伸びと耐力とを測定した。その機械的性質としての評価基準を表1に、製造した銅合金の成分比と評価結果を表2に示す。 The tensile strength, elongation and yield strength of this test piece were measured according to JIS Z2241. Table 1 shows the evaluation criteria for the mechanical properties, and Table 2 shows the component ratios and evaluation results of the produced copper alloys.
<切削性試験>
10t-Yブロック(10mm×70mm×100mm)のCO2鋳型へ鋳造し、最下部を底から10mmで切り出した(10mm×70mm×10mm)。この切り出した試料をφ8mm×70mmの円柱状に加工した試験片を汎用旋盤により、超硬ロウ付けバイトを用いて、送り0.15mm/rev、回転数550rpmにて乾式切削加工を行い、発生した切粉を次のように評価した。評価結果を表2に示す。
・×:切粉が繋がりヘリカルに伸びたもの
・○:分断されているが、ヘリカルなものが含まれる
・◎:分断され、切粉が二重巻き以下である
<Machinability test>
A 10t-Y block (10 mm x 70 mm x 100 mm) was cast into a CO 2 mold and the bottom was cut out 10 mm from the bottom (10 mm x 70 mm x 10 mm). A test piece obtained by processing this cut sample into a cylindrical shape of φ8 mm × 70 mm is dry cut using a general-purpose lathe using a carbide brazing bit at a feed of 0.15 mm / rev and a rotation speed of 550 rpm. Chips were evaluated as follows. Table 2 shows the evaluation results.
・×: Chips connected and helically extended ・○: Divided, but helical chips included ・◎: Divided, chips less than double winding
なお、基準材となるCAC406を同様に切削した際の写真を図2(a)として示す。 FIG. 2(a) shows a photograph of CAC406 as a reference material cut in the same manner.
<製造方法>
それぞれの元素を構成する材料を混合し、高周波誘導溶解炉にて溶製した後、CO2鋳型により鋳造して表2に記載の含有量となる各々の例で供試材を作製した。なお、含有量の値は全て質量%であり、製造後の測定値である。それぞれの得られた銅合金について、上記の試験を行った。表中「―」は検出限界未満であることを示す。なお、いずれの例においても、B、Bi、Sb、Si、Feは検出限界未満であった。また、比較例6以外はZrも検出限界未満であった。総合評価は、試験した項目全てが◎であれば◎とし、試験した項目のうち一つでも○があれば○とし、一つでも×があれば×とした。
<Manufacturing method>
Materials constituting each element were mixed, melted in a high-frequency induction melting furnace, and then cast in a CO 2 mold to prepare test materials having the contents shown in Table 2 in each example. In addition, all the values of content are the mass %, and are the measured value after manufacture. The above tests were performed on each of the obtained copper alloys. "-" in the table indicates that it is below the detection limit. In addition, in any example, B, Bi, Sb, Si, and Fe were below the detection limit. In addition, Zr was also below the detection limit except for Comparative Example 6. Comprehensive evaluation was evaluated as ⊙ when all the tested items were ⊚, ◯ when even one of the tested items was ◯, and × when even one of the tested items was ×.
まず、Snの含有量を変化させ、Sn以外の元素の含有量をできるだけ近いものとした比較例1、実施例1~5、比較例2を調製した。表2中の第一項目においてこれらをSnの含有量順に並べた。Snが5.7質量%を超える比較例2では、引張強さおよび伸びが悪化する傾向が見られた。一方、Snが1.2質量%を下回る比較例1では耐力に問題を生じてしまった。また、切粉の形状はいずれも良好であった。実施例3の切粉の写真を図2(b)として示す。 First, Comparative Example 1, Examples 1 to 5, and Comparative Example 2 were prepared by varying the Sn content and making the contents of the elements other than Sn as close as possible. In the first item in Table 2, these are arranged in order of Sn content. Comparative Example 2, in which Sn exceeded 5.7% by mass, tended to deteriorate in tensile strength and elongation. On the other hand, Comparative Example 1, in which the Sn content is less than 1.2% by mass, has a problem with yield strength. In addition, the shapes of chips were all good. A photograph of chips of Example 3 is shown as FIG. 2(b).
次に、実施例3を基準としてZnの含有量を変化させ、Zn以外の元素の含有量を出来るだけ近いものとした比較例3、実施例6、7、8、比較例4を調製した。表2中の第二項目にこれらをZnの含有量順に並べた。Znが13.0質量%を下回る比較例3では、引張強さが悪化してしまった。一方、Znが19.5質量%を超える実施例8ではやや伸びが低下する傾向を示し、Znが21.0質量%を超える比較例4ではさらに伸びが低下し、また、引張強さに問題を生じてしまった。 Next, Comparative Example 3, Examples 6, 7, 8, and Comparative Example 4 were prepared by changing the content of Zn on the basis of Example 3 and making the content of elements other than Zn as close as possible. These are listed in the second item in Table 2 in order of Zn content. Comparative Example 3, in which Zn is less than 13.0% by mass, deteriorated in tensile strength. On the other hand, Example 8, in which Zn exceeds 19.5% by mass, tends to slightly decrease in elongation, and Comparative Example 4, in which Zn exceeds 21.0% by mass, exhibits a further decrease in elongation, and also has problems with tensile strength. has occurred.
次に、実施例3を基準としてPbの含有量を変化させ、Pb以外の元素の含有量を出来るだけ近いものとした比較例5、実施例9、10、11、12、13を調製した。表2中の第三項目にこれらをPbの含有量順に並べた。Pbが0.30質量%を下回る比較例5では、切粉がヘリカル構造を示してしまい、切削性が著しく問題となった。その写真を図2(c)に示す。Pbが0.50質量%となる実施例9ではややヘリカルではあるものの、分断された切粉が得られた。その写真を図2(d)に示す。 Next, Comparative Example 5, Examples 9, 10, 11, 12 and 13 were prepared by changing the content of Pb based on Example 3 and making the content of elements other than Pb as close as possible. These are listed in the third item in Table 2 in order of Pb content. In Comparative Example 5, in which the Pb content was less than 0.30% by mass, chips showed a helical structure, and machinability became a significant problem. The photograph is shown in FIG. 2(c). In Example 9, in which Pb was 0.50% by mass, chips that were slightly helical but divided were obtained. The photograph is shown in FIG. 2(d).
次に、実施例3を基準としてPの含有量を変化させ、P以外の元素の含有量を出来るだけ近いものとした実施例14、15、16を調製した。いずれの実施例も良好な結果を示した。 Next, Examples 14, 15 and 16 were prepared by changing the content of P based on Example 3 and making the content of elements other than P as close as possible. All examples showed good results.
次に、追加的要素として、実施例3に近い構成要素で、さらにNiを追加した実施例17、18、19を調製した。Niが添加されると、添加されていない実施例3と比べ、引張強さおよび伸びがよりよくなる傾向を示した。 Next, Examples 17, 18, and 19 were prepared by adding Ni to the components similar to those of Example 3 as additional elements. When Ni was added, the tensile strength and elongation tended to be better compared to Example 3 where Ni was not added.
さらに、微量のZrを追加した比較例6を調製したところ、機械的性質にいずれも大きな問題を生じてしまった。 Furthermore, when Comparative Example 6 was prepared by adding a small amount of Zr, all of them had serious problems in mechanical properties.
Claims (2)
残部がCuと不可避不純物である銅合金。 Zn 13.0% by mass or more and 21.0% by mass or less, Sn 1.2% by mass or more and 5.7% by mass or less, Pb 0.50% by mass or more and 4.0% by mass or less, P 0.5% Containing % by mass or less,
A copper alloy in which the balance is Cu and unavoidable impurities.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018061912 | 2018-03-28 | ||
JP2018061912 | 2018-03-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019173174A JP2019173174A (en) | 2019-10-10 |
JP7202235B2 true JP7202235B2 (en) | 2023-01-11 |
Family
ID=68167197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019063630A Active JP7202235B2 (en) | 2018-03-28 | 2019-03-28 | Low lead copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7202235B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014240517A (en) | 2013-06-12 | 2014-12-25 | 株式会社栗本鐵工所 | Copper alloy for aqueduct member |
WO2016157413A1 (en) | 2015-03-31 | 2016-10-06 | 株式会社栗本鐵工所 | Steel alloy for use in water supply member |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0368733A (en) * | 1989-08-08 | 1991-03-25 | Nippon Mining Co Ltd | Manufacture of copper alloy and copper alloy material for radiator plate |
JP3014673B2 (en) * | 1997-05-16 | 2000-02-28 | 古河電気工業株式会社 | Lead frame for semiconductor device |
-
2019
- 2019-03-28 JP JP2019063630A patent/JP7202235B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014240517A (en) | 2013-06-12 | 2014-12-25 | 株式会社栗本鐵工所 | Copper alloy for aqueduct member |
WO2016157413A1 (en) | 2015-03-31 | 2016-10-06 | 株式会社栗本鐵工所 | Steel alloy for use in water supply member |
Also Published As
Publication number | Publication date |
---|---|
JP2019173174A (en) | 2019-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5454719B2 (en) | Lead-free free-cutting brass with excellent castability | |
JP5868510B2 (en) | Free-cutting lead-free copper alloy and manufacturing method thereof | |
RU2126848C1 (en) | Lead-free aluminum alloy | |
JPWO2010122960A1 (en) | High strength copper alloy | |
JP5546196B2 (en) | Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material | |
US20150071813A1 (en) | Brass alloy for tap water supply member | |
JP6742278B2 (en) | Lead-free free-cutting phosphor bronze rod wire and manufacturing method of lead-free free-cutting phosphor bronze rod wire | |
JP5406405B1 (en) | Copper alloy for water supply components | |
JP7202235B2 (en) | Low lead copper alloy | |
TW201627506A (en) | Abrasion-resistant copper alloy | |
JPH07197165A (en) | High wear resistant free cutting aluminum alloy and its production | |
JPH07107183B2 (en) | Wear resistant Cu alloy with high strength and toughness | |
US20170145544A1 (en) | Lead-Free Brass Alloy | |
JP2003027169A (en) | Aluminum alloy and aluminum alloy casting | |
US20130183194A1 (en) | Copper Alloy | |
JP5513230B2 (en) | Copper-base alloy for casting | |
JP6561116B2 (en) | Copper alloy for water supply components | |
JP6692317B2 (en) | High corrosion resistance leadless brass alloy | |
JP7293696B2 (en) | Aluminum alloy casting material and manufacturing method thereof | |
JP4455507B2 (en) | Valve for drinking water | |
JP6482530B2 (en) | Low lead brass alloy for water supply components | |
JPS59197543A (en) | Tough abrasion resistant copper alloy | |
JPH02107738A (en) | Aluminum alloy material for wear-resistant machining with excellent toughness | |
JP6179996B2 (en) | Cu alloy with excellent machinability, extruded pipe member and Cu alloy synchronizer ring | |
JPH07116538B2 (en) | Wear resistant Cu alloy with high strength and toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7202235 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |