JP4455507B2 - Valve for drinking water - Google Patents
Valve for drinking water Download PDFInfo
- Publication number
- JP4455507B2 JP4455507B2 JP2006014360A JP2006014360A JP4455507B2 JP 4455507 B2 JP4455507 B2 JP 4455507B2 JP 2006014360 A JP2006014360 A JP 2006014360A JP 2006014360 A JP2006014360 A JP 2006014360A JP 4455507 B2 JP4455507 B2 JP 4455507B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- casting
- content
- solid solution
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Domestic Plumbing Installations (AREA)
Description
本発明は、所定の切削性を確保しつつ、引張り強さ等の機械的性質を向上させ、更には、鋳造性をも向上させた青銅合金を用いた飲料水用のバルブに関し、特にPbの代替成分である希少元素を含有した、量産バルブに適用し、引張り強さの点で改善した青銅合金を用いる飲料水用のバルブに関する。 The present invention relates to a valve for drinking water using a bronze alloy that improves mechanical properties such as tensile strength while ensuring a predetermined machinability, and further improves castability, and in particular, Pb. The present invention relates to a valve for drinking water which uses a bronze alloy which is applied to a mass production valve containing a rare element as an alternative component and which is improved in terms of tensile strength.
合金のうち、特に、青銅鋳物(CAC406)は、鋳造性、耐食性、被削性、耐圧性に優れ、溶融時の湯流れが良好であり、ある程度複雑な形状の鋳物部品に適しているため、従来より、バルブ、コック、継手等の一般配管器材などにも多く用いられている。 Among the alloys, in particular, the bronze casting (CAC406) is excellent in castability, corrosion resistance, machinability, and pressure resistance, has a good hot water flow at the time of melting, and is suitable for casting parts having a somewhat complicated shape. Conventionally, it has been widely used for general piping equipment such as valves, cocks and joints.
このCAC406は、健全な鋳物が得られやすく、質量比で5%程度のPbを含有しているので、被削性が特に良好であるため、この種の配管器材用の接水金具に多く使用されている。 Since this CAC406 is easy to obtain a sound casting and contains about 5% Pb in mass ratio, it is particularly good in machinability, so it is often used for water fittings for this type of piping equipment. Has been.
この青銅合金をバルブ等の接水金具の材料に使用する場合、青銅鋳物にほとんど固溶されることなく含有されている鉛が、水中に溶出して水質を悪化させる結果となる。この現象は、特に前記接水金具内に水が滞留した場合、顕著となる。そこで、現在、盛んにいわゆる鉛レス銅合金の開発が行われ、いくつかの新合金が提案されている。その代表例を以下に説明する。 When this bronze alloy is used as a material for water-contact fittings such as valves, lead contained in the bronze casting is hardly dissolved, resulting in deterioration of water quality. This phenomenon becomes prominent particularly when water stays in the water-contact fitting. Therefore, at present, so-called lead-less copper alloys are actively developed, and several new alloys have been proposed. A typical example will be described below.
例えば、青銅合金中の鉛に代えてBiを添加し、切削性を上げ、脱亜鉛を防止した鉛レス銅合金が提案されている(例えば、特許文献1参照。)。また、BC6(CAC406)等にCaを添加して、主にPとの化合物(CaP、Ca3P2)を形成させ、切削くずを細かくする作用を得ることにより、切削性を向上した無鉛青銅が提案されている(例えば、特許文献2参照。)。CaPの金属間化合物を析出させることを特徴としているが、銅合金中へのCa添加はCaが活性金属である為、酸化が激しく歩留まりが著しく低いため実用上使用が困難である。また、切削性向上のためのBi添加による鋳造時のポロシティ発生を、Sbの添加により抑制し、機械的強度を上げた無鉛青銅が提案されている(例えば、特許文献3参照。)。また、Niの添加については、マトリックスの強化と偏析の防止を狙って添加したものである。Tiを添加し、置換型金属間化合物として結晶を微細化すると共に、Bを添加し、侵入型金属間化合物として結晶粒界強度を補強した青銅鋳物材料が提案されている(例えば、特許文献4参照。)。また、Biを添加して切削性、耐焼付性を改善すると共に、Sn、Ni、Pを添加して、耐脱亜鉛性と機械的性質を確保した無鉛快削青銅合金が提案されている(例えば、特許文献5参照。)。さらに、SeとBiの添加により、特にSe−Zn化合物を析出させ、機械的性質及び切削性をCAC406と同等とした青銅合金が提案されている(例えば、特許文献6参照。)。
その他、鉛レス銅合金鋳物について、調査研究した結果を報告書として提出したものがある(非特許文献7参照)。
In addition, there is a report submitted as a report on the results of research on lead-free copper alloy castings (see Non-Patent Document 7).
上記のように、提案されている鉛レス青銅合金材料は、何れも、JIS H5120の青銅合金(CAC406)規定値(引張り強さ195N/mm2以上、伸び15%以上)を確保してはいるが、市場に流通しているCAC406材の上記各特性は、引張り強さが240N/mm2前後、伸びが33%前後と、JISの規格値を大幅に上回るものであり、この市場流通材と同等の機械的特性、及び切削性を確保できる合金が開発されていないのが現状であった。また、上記鉛レス青銅合金は、Pbの代替成分としてSe、Bi等を添加しているが、これらの元素は高価な希少元素であることから、希少元素の添加量を低減しつつ、市場流通材のCAC406と同等の上記各特性を確保した合金の開発が求められていた。さらに、上記鉛レス青銅合金は、機械的特性や切削性の向上に注目して提案されているものであるが、Pbは鋳物の健全性にも寄与している成分であり、鉛レス青銅合金において鋳物の健全性をどのように確保するかという点については、未解明であった。 As described above, all the lead-free bronze alloy materials that have been proposed ensure the specified values of JIS H5120 bronze alloy (CAC406) (tensile strength of 195 N / mm 2 or more, elongation of 15% or more). However, the above-mentioned characteristics of the CAC406 material distributed in the market have a tensile strength of around 240 N / mm 2 and an elongation of around 33%, which are significantly higher than the JIS standard values. At present, no alloy has been developed that can ensure equivalent mechanical properties and machinability. The lead-less bronze alloy contains Se, Bi, etc. as an alternative component of Pb, but these elements are expensive rare elements. There has been a demand for the development of an alloy that secures the above-mentioned characteristics equivalent to the material CAC406. Furthermore, the leadless bronze alloy has been proposed with an eye to improving mechanical properties and machinability, but Pb is a component that contributes to the soundness of castings. However, how to ensure the soundness of castings was not clarified.
殊に、非特許文献7は、鉛レス銅合金の調査研究の結果を報告したものに留まり、Se、Bi等の希少元素の添加量を低減しつつ、CAC406と同等の各特性を確保した合金の開発には全く至っていないのが実情であった In particular, Non-Patent Document 7 only reports the results of research on lead-free copper alloys, and alloys that have the same characteristics as CAC406 while reducing the amount of rare elements such as Se and Bi. The fact is that the development of
本発明は、鋭意研究の結果開発に至ったものであって、その目的とするところは、Pbの代替成分である希少元素(Bi、又はBiとSe)等の真の特性を正確に捉えることにより、合金中の希少元素(Bi、又はBiとSe)の含有量を低減しても、従来から一般に用いられてきた青銅合金(CAC406)と同等の切削性を確保しつつ、CAC406と同等以上の引張り特性などの機械的性質を有すると共に、未解明であったPbの代替成分(Bi、又はBiとSe)の減少が鋳物の健全性に与える影響を解明することで、鋳造欠陥の発生を抑制することを可能にし、更には、希少元素の低減により、安価に製造可能とした青銅合金を用いて加工成形された飲料水用のバルブを提供することにある。 The present invention has been developed as a result of earnest research, and its purpose is to accurately capture the true characteristics of rare elements (Bi or Bi and Se) that are alternative components of Pb. By this, even if the content of rare elements (Bi or Bi and Se) in the alloy is reduced, while maintaining the same machinability as the bronze alloy (CAC406) that has been conventionally used in general, it is equivalent to or better than CAC406. It is possible to reduce the occurrence of casting defects by elucidating the influence of the decrease in Pb substitute components (Bi, or Bi and Se) on the soundness of castings, as well as mechanical properties such as tensile properties. It is another object of the present invention to provide a drinking water valve processed and formed using a bronze alloy which can be suppressed and can be manufactured at low cost by reducing rare elements.
上記の目的を達成するため、請求項1に係る発明は、Zn5.54〜10.0(質量%)、Sn2.8〜5.0(質量%)、Bi0.4〜3.0(質量%)、0≦Se≦0.35(質量%)と、残部Cuと不可避不純物からなる青銅合金であって、0.93Bi(質量%)+2.86Se(質量%)で算出される非固溶物量を1.20(Vol%)〜4.90(Vol%)の範囲にして、引張り強さが215N/mm2を下回らないようにした青銅合金であり、この引張り特性に優れた青銅合金を用いて飲料水用のバルブを加工成形するようにした飲料水用のバルブである。
In order to achieve the above object, the invention according to
本発明によると、Pbの代替成分である希少元素(Bi、又はBiとSe)等の真の特性を正確に捉えることにより、合金中の希少元素(Bi、又はBiとSe)の含有量を低減しても、従来から一般に用いられてきた青銅合金(CAC406)と同等の切削性を確保しつつ、CAC406と同等以上の機械的性質を有する飲料水用のバルブを得ることが可能となり、特に、引張り強さの点において著しく改善した飲料水に用いるバルブを提供することができる。 According to the present invention, the content of rare elements (Bi, or Bi and Se) in the alloy can be reduced by accurately capturing the true characteristics of rare elements (Bi, or Bi and Se) that are substitute components of Pb. Even if it is reduced, it becomes possible to obtain a valve for drinking water having mechanical properties equivalent to or better than those of CAC406, while ensuring the same machinability as bronze alloy (CAC406) that has been conventionally used. In addition, it is possible to provide a valve used for drinking water, which is remarkably improved in terms of tensile strength.
本発明は、希少元素(Bi、又はBiとSe)の低減により、低コストで希少元素(Bi、又はBiとSe)を含有する青銅合金を用いた飲料水用のバルブを製造することが可能となった。 The present invention can produce a valve for drinking water using a bronze alloy containing rare elements (Bi, or Bi and Se) at a low cost by reducing rare elements (Bi or Bi and Se). It became.
本発明の青銅合金は、Pbの代替成分である希少元素(Bi、又はBiとSe)等、各元素の真の特性を正確に捉え、各元素の真の特性に基づいて本発明における青銅合金の組成範囲として開発された青銅合金であり、所定の切削性、及び鋳物の健全性を確保しつつ、機械的性質を向上させるための最も好適な組成範囲により構成されており、以下に、本発明における青銅合金を用いた飲料水用のバルブの一実施形態を説明する。本発明における青銅合金は、Zn5.0〜10.0質量%、Sn:2.8〜5.0質量%、Bi:0.4〜3.0質量%、0≦Se≦0.35質量、及び残部Cuと不可避不純物からなる形態を採用している。本発明における青銅合金の好ましい一形態は、Sn:2.8〜5.0質量%、Bi:0.4〜3.0質量%、0≦Se≦0.35質量、Zn:5.0〜10.0質量%、Ni:3.0質量%以下、0<P<0.5質量%、Pb:0.2質量%未満、及び残部Cuからなる青銅合金である。なお、上記Seの含有量は、0.2質量%以下が好ましく、上記Snの含有量は、3.5〜4.5質量%が好ましい。 The bronze alloy of the present invention accurately captures the true characteristics of each element such as rare elements (Bi or Bi and Se) which are substitute components of Pb, and based on the true characteristics of each element, the bronze alloy of the present invention This bronze alloy was developed as a composition range of the following, and is composed of the most suitable composition range for improving mechanical properties while ensuring a predetermined machinability and soundness of castings. One Embodiment of the valve | bulb for drinking water using the bronze alloy in invention is described. The bronze alloy in the present invention is Zn 5.0-10.0 mass%, Sn: 2.8-5.0 mass%, Bi: 0.4-3.0 mass%, 0 ≦ Se ≦ 0.35 mass, And the form which consists of remainder Cu and an unavoidable impurity is employ | adopted. A preferable embodiment of the bronze alloy in the present invention is Sn: 2.8 to 5.0 mass%, Bi: 0.4 to 3.0 mass%, 0 ≦ Se ≦ 0.35 mass, Zn: 5.0 to A bronze alloy composed of 10.0% by mass, Ni: 3.0% by mass or less, 0 <P <0.5% by mass, Pb: less than 0.2% by mass, and the balance Cu. The Se content is preferably 0.2% by mass or less, and the Sn content is preferably 3.5 to 4.5% by mass.
本発明における青銅合金の組成範囲とその理由について説明する。
Bi:0.4〜3.0質量%
切削性を向上させるために有効である。鋳造の凝固過程で鋳造品に発生するポロシティに入り込み、引け巣等の鋳造欠陥の発生を抑制し、鋳物の健全性を確保するためには、0.2質量%以下のSeの含有と共に、Biを0.4質量%以上含有することが有効である。一方、必要とされる機械的性質を確保するためには、3.0質量%以下とすることが有効であり、とりわけ1.7質量%以下とすることが含有量を抑えつつ、機械的性質を十分確保するために有効である。実用的には、Seの含有と共にBiを0.8〜1.7質量%含有することが好ましく、Seの最適含有量も考慮すると、約1.3質量%が最適である。
The composition range of the bronze alloy in the present invention and the reason thereof will be described.
Bi: 0.4-3.0 mass%
It is effective for improving the machinability. In order to prevent the occurrence of casting defects such as shrinkage cavities by entering the porosity generated in the casting solidification process and ensure the soundness of the casting, Bi is contained in an amount of 0.2% by mass or less , and Bi. It is effective to contain 0.4% by mass or more. On the other hand, in order to ensure the required mechanical properties, it is effective to be 3.0% by mass or less, and in particular, it is 1.7% by mass or less while suppressing the content while reducing the mechanical properties. It is effective to ensure sufficient. Practically, it is preferable to contain 0.8 to 1.7% by mass of Bi together with the content of Se, and considering the optimal content of Se, about 1.3% by mass is optimal.
Se:0<Se≦0.35質量%
青銅合金中にBi−Se、Se−Zn、Cu−Seの金属間化合物として存在し、Biと同様に、切削性や鋳物の健全性の確保に寄与する成分である。従って、Seの含有は、Biの含有量を抑えつつ、機械的性質や後述する鋳物の健全性の確保に有効である。ここで、量産レベルにおける青銅合金の引張り強さ等の機械的特性値は、鋳物の成分値が略同一でも、鋳造条件により、約20%の範囲内で変動するものであることが、発明者の経験により判明している。この変動により、引張り強さが最も低い値となった場合でもJISの規格値を満たすには、Seの含有量の増加に応じて引張り強さが減少する傾向にある特性の中で、引張り強さが最高値(約250)の約97%の引張り強さを確保する必要があることから、0.35質量%を上限値とした。またSeは、微量の含有でも鋳物の健全性の確保に寄与するが、その作用を確実に得るためには、0.1質量%以上の含有が有効であり、この値を好適な下限値とした。
Se: 0 <Se ≦ 0.35 mass%
It exists as an intermetallic compound of Bi—Se, Se—Zn, and Cu—Se in the bronze alloy, and is a component that contributes to ensuring the machinability and the soundness of the casting, similarly to Bi. Therefore, the inclusion of Se is effective for ensuring the mechanical properties and the soundness of the casting described later while suppressing the Bi content. Here, the mechanical property values such as the tensile strength of the bronze alloy at the mass production level vary within a range of about 20% depending on the casting conditions even if the component values of the casting are substantially the same. It has been found by experience. In order to satisfy the JIS standard value even when the tensile strength becomes the lowest value due to this variation, the tensile strength is one of the characteristics that tend to decrease with increasing Se content. Therefore, it is necessary to secure a tensile strength of about 97% of the maximum value (about 250), so 0.35 mass% was made the upper limit. Further, Se contributes to ensuring the soundness of castings even if contained in a small amount, but in order to reliably obtain its action, inclusion of 0.1% by mass or more is effective, and this value is set as a preferred lower limit value. I did .
Sn:2.8〜5.0質量%
α相に固溶し、強度、硬さの向上、及びSnO2の保護皮膜の形成により、耐摩耗性と耐食性を向上させるために含有する。Snは、実用成分範囲において、含有量を増やすにつれて、切削性を直線的に低下させる元素である。従って、含有量を抑えつつ、さらには耐食性を低下させない範囲で、機械的性質を確保することが必要となる。より好ましい範囲として、Sn含有量の影響を受けやすい伸びの特性に注目し、最高値(Sn=4.0質量%付近)の伸びを鋳造条件等が多少変化しても確実に得られる範囲として、3.5〜4.5質量%を見出した。また、従来Snは、含有量が増えるにつれてマトリックスを強化し、機械的特性を向上させる成分として知られていたが、鋭意研究の結果、Sn含有量と引張り強さとの関係で、Sn含有量の低領域では、Snの含有量の増加に伴い、引張り強さが向上するが、4.4質量%付近でピークとなり、それ以上の含有では、引張り強さは低下する。さらに、Sn含有量と伸びとの関係も、引張り強さの特性と略同じ傾向を示すという特性を得た。
Sn: 2.8 to 5.0 mass%
It is contained in order to improve the wear resistance and corrosion resistance by solid solution in the α phase and improving the strength and hardness and forming a protective film of SnO 2 . Sn is an element that linearly decreases the machinability as the content increases in the practical component range. Therefore, it is necessary to ensure the mechanical properties within a range that does not decrease the corrosion resistance while suppressing the content. As a more preferable range, paying attention to the elongation characteristics that are easily affected by the Sn content, the elongation at the maximum value (Sn = 4.0% by mass) can be reliably obtained even if the casting conditions and the like slightly change. 3.5-4.5% by mass was found. Conventionally, Sn has been known as a component that reinforces the matrix and improves mechanical properties as the content increases, but as a result of intensive research, the relationship between Sn content and tensile strength In the low region, the tensile strength is improved as the Sn content is increased. However, the tensile strength is peaked around 4.4% by mass, and the tensile strength is lowered when the content is higher than that. In addition, the relationship between the Sn content and the elongation was obtained so as to exhibit substantially the same tendency as the tensile strength property.
Zn:5.0〜10.0質量%
切削性に影響を与えずに、硬さや機械的性質、とりわけ伸びを向上させる元素として有効である。また、Znは、溶湯中へのガス吸収によるSn酸化物の生成を抑制し、溶湯の健全性にも有効であるので、この作用を発揮させるために5.0質量%以上の含有が有効である。より実用的には、BiやSeの抑制分を補う観点から7.0質量%以上の含有が望ましい。一方、Znは、蒸気圧が高いので、作業環境の確保や、鋳造性を考慮すると、10.0質量%以下の含有が好ましい。経済性も考えると、とりわけ約8.0質量%が最適である。
Zn: 5.0-10.0 mass%
It is effective as an element that improves hardness and mechanical properties, particularly elongation, without affecting the machinability. In addition, Zn suppresses the formation of Sn oxides due to gas absorption into the molten metal and is also effective for the soundness of the molten metal. Therefore, the inclusion of 5.0% by mass or more is effective for exerting this action. is there. More practically, the content is preferably 7.0% by mass or more from the viewpoint of compensating for the suppression of Bi and Se. On the other hand, since Zn has a high vapor pressure, it is preferably contained in an amount of 10.0% by mass or less in consideration of ensuring the working environment and castability. Considering the economic efficiency, about 8.0% by mass is particularly optimal.
Ni:3.0質量%以下
Niを全く含まない場合でも、必要な引張り強さなどの機械的性質は得られるが、より効果的に合金の機械的性質を向上する場合に添加する。Niは、ある一定量まではα固溶体に固溶し、マトリックスを強化させ、機械的性質を向上させる。それ以上の含有は、Cu、Snと金属間化合物を形成し、切削性を向上させる一方、機械的性質を低下させる。機械的強度を向上させるためには、Ni0.2質量%以上の含有が有効であるが、機械的強度のピークが、約0.6質量%に存在する。よって、好適なNi含有量を0.2〜0.75質量%とした。
Ni: 3.0% by mass or less Even when Ni is not contained at all, necessary mechanical properties such as tensile strength can be obtained, but it is added when the mechanical properties of the alloy are more effectively improved. Ni dissolves in the α solid solution up to a certain amount, strengthens the matrix, and improves the mechanical properties. Inclusion of more than that forms an intermetallic compound with Cu and Sn, and improves the machinability while lowering the mechanical properties. In order to improve the mechanical strength, the content of Ni of 0.2% by mass or more is effective, but the peak of mechanical strength exists at about 0.6% by mass. Therefore, the preferable Ni content is set to 0.2 to 0.75% by mass.
P:0.5質量%未満
青銅合金溶湯の脱酸を促進し、健全な鋳物、連鋳鋳塊を製作することを目的として、0.5質量%未満を添加する。過剰の含有は固相線が低下し偏析を起こしやすく、また、P化合物を生じ脆弱化する。従って、型鋳造の場合は、200〜300ppmの含有が好ましく、連続鋳造の場合には、0.1〜0.2質量%の含有が好ましい。
P: Less than 0.5% by mass Less than 0.5% by mass is added for the purpose of promoting deoxidation of the molten bronze alloy and producing sound castings and continuous cast ingots. If the content is excessive, the solidus line is lowered and segregation is likely to occur, and a P compound is formed and weakened. Therefore, in the case of die casting, the content is preferably 200 to 300 ppm, and in the case of continuous casting, the content is preferably 0.1 to 0.2% by mass.
Pb:0.2質量%未満
Pbを積極的に含有させない不可避不純物の範囲として、0.2質量%未満とした。
Pb: Less than 0.2% by mass The range of inevitable impurities not actively containing Pb was set to less than 0.2% by mass.
上記した本発明における青銅合金を材料として接液部品に適用する。特にこの接液部品は、飲料水用のバルブに適用する。 The bronze alloy in the present invention described above is applied to a wetted part as a material. In particular, this wetted part is applied to a drinking water valve.
以下に、本発明における飲料水用のバルブを加工成形する材料である青銅合金の試験例と実施例を説明する。表1、2に示す成分は、引張り試験片、切削性試験片を実際に分析した結果であり、特に、Pb成分は不純物レベル(0.02質量%以下)であり、また、Sb成分も不純物レベル(0.2質量%未満)となっている。 Below, the test example and Example of the bronze alloy which is a material which processes and shape | molds the valve | bulb for drinking water in this invention are demonstrated. The components shown in Tables 1 and 2 are the results of actual analysis of tensile test pieces and machinability test pieces. In particular, the Pb component is at an impurity level (0.02% by mass or less), and the Sb component is also an impurity. Level (less than 0.2% by mass).
(引張り試験)
引張り試験片は、温度1130℃で鋳込み鋳造し、アムスラー試験機にて試験を行った。引張り試験の試験結果を表3に示す。
(Tensile test)
Tensile test pieces were cast and cast at a temperature of 1130 ° C. and tested with an Amsler tester. Table 3 shows the results of the tensile test.
(切削性試験)
切削性試験片は、円柱状の被削物を旋盤にて旋削加工し、バイトに掛かる切削抵抗を青銅鋳物CAC406の切削抵抗を100とした切削性指数で評価した。試験条件は、鋳込み温度1180℃(CO2鋳型)、被切削物の形状φ31×260mm、表面粗さRA3.2、切り込み深さ片肉3.0mm、旋盤回転数1800rpm、送り量0.2mm/rev、油使用無しである。切削性試験の試験結果を表3に示す。
(Machinability test)
For the machinability test piece, a cylindrical workpiece was turned with a lathe, and the cutting resistance applied to the cutting tool was evaluated by a machinability index with the cutting resistance of the bronze casting CAC406 as 100. The test conditions were as follows: casting temperature 1180 ° C. (CO 2 mold), workpiece shape φ31 × 260 mm, surface roughness R A 3.2, depth of cut 3.0 mm, lathe speed 1800 rpm, feed
次に、本発明における飲料水用のバルブを加工成形する材料である青銅合金の鋳造性について分析を行う。
青銅鋳物は、凝固温度範囲が広いため、マッシー型の凝固様式となってデンドライト間隙に微細な収縮巣を発生させる。その結果、鋳物の耐圧性能(鋳造性)を著しく劣化させる傾向がある。青銅中においてPbは、このデンドライト間隙に凝集し、微細な収縮巣を埋める役割を持つ。Pbを含有しない本発明合金では、このPbの役割をBiやSeの含有によって補っている。しかし、これらBiやSeの含有及び含有量が鋳物の耐圧性能に与える影響はあまり知られておらず、不必要にBiやSeを含有させ、材料コストを高くし、機械的性質を低下させてしまう可能性がある。そこで、Bi及びSeが鋳物の鋳造性に与える影響について調査を行い、Bi及びSeの最適配合量を決定すると同時に、Se含有の有意性を明確にする。
Next, the castability of the bronze alloy, which is a material for processing and forming the drinking water valve in the present invention, is analyzed.
Since the bronze casting has a wide solidification temperature range, it becomes a Massy-type solidification mode and generates a fine shrinkage nest in the dendrite gap. As a result, the pressure resistance performance (castability) of the casting tends to deteriorate significantly. In the bronze, Pb aggregates in the dendrite gap and has a role of filling a fine shrinkage nest. In the alloy of the present invention not containing Pb, the role of Pb is supplemented by the inclusion of Bi and Se. However, the effect of the content and content of Bi and Se on the pressure resistance performance of the casting is not well known, and Bi and Se are added unnecessarily, increasing the material cost and reducing the mechanical properties. There is a possibility. Therefore, the influence of Bi and Se on the castability of the casting is investigated, the optimum blending amount of Bi and Se is determined, and the significance of the Se content is clarified.
青銅合金は、鋳物内部に微細な収縮巣が発生しやすいことは上記の通りであるが、この傾向は徐冷される鋳物の厚肉部で特に顕著となる。これを質量効果という。質量効果の程度の評価を行うために、階段状鋳物試験片を作製し、これを切断して染色浸透探傷試験を行った。また、非固溶物(Bi相、Se−Zn相)量の体積比率の測定を併せて行った。 As described above, the bronze alloy is likely to generate fine shrinkage in the casting, but this tendency is particularly remarkable in the thick part of the casting that is gradually cooled. This is called a mass effect. In order to evaluate the degree of mass effect, a step-like casting test piece was prepared, and this was cut and subjected to a dye penetration test. Further, the volume ratio of the amount of non-solid solution (Bi phase, Se—Zn phase) was also measured.
先ず、染色浸透探傷試験の試験方法、及び試験結果を説明する。図1は、階段状鋳型の鋳造方案である。階段状鋳物の鋳造方案では、湯道にφ70×120の押湯を取り付けることが一般的であるが、図1に示すように、本試験では、あえて押湯を取り除いた。これは青銅鋳物の実生産を考慮したもので、実生産の場合、型1枠における取り付け個数、鋳物形状の複雑さ、歩留り等の問題から、効果的な押湯を取り付けることが困難なためである。 First, the test method of the dye penetration test and the test results will be described. FIG. 1 shows a casting method for a stepped mold. In the casting method of the stepped casting, it is common to attach a hot water supply of φ70 × 120 to the runway. However, as shown in FIG. 1, the hot water supply was intentionally removed in this test. This is because the actual production of bronze castings is taken into account. In actual production, it is difficult to attach an effective feeder due to problems such as the number of molds installed in one frame, the complexity of the casting shape, and the yield. is there.
階段状鋳物試験片の鋳造条件は、溶解は15Kg高周波実験炉で行い、溶解量は12Kgとし、鋳込み温度1180℃、鋳込み時間7秒、鋳型はCO2鋳型、脱酸処理はP270ppm添加とした。なお、染色浸透探傷試験は、試験片の切断面に浸透液を吹き付け、これを10分間放置した後に浸透液を拭き取り、さらに、現像液を吹き付けて切断面に浮き出る赤色表示により、鋳造欠陥の有無を判定する試験である。表4に、各供試品の化学成分値を表す。 Casting conditions for the stepped cast specimen were as follows. Melting was performed in a 15 kg high-frequency experimental furnace, the melting amount was 12 kg, the casting temperature was 1180 ° C., the casting time was 7 seconds, the mold was a CO 2 mold, and the deoxidation treatment was P270 ppm added. In the dye penetrant flaw detection test, a penetrating solution is sprayed on the cut surface of the test piece, left to stand for 10 minutes, and then the penetrating solution is wiped off. This is a test for judging. Table 4 shows the chemical component values of each specimen.
表5に、各供試品の染色浸透探傷試験の試験結果を表す。図2及び図3は、染色浸透探傷試験の試験結果を示した写真であり、黒く表示されている位置には、鋳造欠陥が存在することを示している。染色浸透探傷試験結果より、供試品No.6,7,14を合格とする。合格の定義は、従来材料であるCAC406(JIS)と同等の鋳造性を持ち、同様の鋳造方案での生産が可能である(○)とした。供試品No.5,13に関しては、引け巣が確認できるが、これもCAC406と同様の鋳造方案で対応できると考え、合格(△)とする。ただし、製品形状や鋳造条件によっては、欠陥の発生する製品もあり、鋳造条件や鋳造方案に多少の変更を加えなければならないと思われる。その他の供試品に関しては、不合格(×)とする。不合格となったものに関しても、鋳造方案の変更や鋳造によって良品の鋳造は可能ではあるが、コストと手間がかかることは否めない。 Table 5 shows the test results of the dye penetration test for each sample. 2 and 3 are photographs showing test results of the dye penetrant flaw detection test, and show that a casting defect exists at a position displayed in black. From the results of the dye penetrant flaw detection test, the specimen No. 6, 7 and 14 are accepted. The pass was defined as (◯), which has the same castability as that of the conventional material CAC406 (JIS) and can be produced by the same casting method. Specimen No. With respect to Nos. 5 and 13, shrinkage can be confirmed, but this is considered to be able to be handled by the same casting method as CAC 406, and is regarded as acceptable (Δ). However, some products have defects depending on the product shape and casting conditions, and it seems that some changes must be made to the casting conditions and the casting method. For other specimens, reject (x). Even for rejected products, it is possible to cast good products by changing the casting method or casting, but it is undeniable that it takes cost and labor.
次に、非固溶物(Bi相、Se−Zn相)量の体積比率の測定方法、及び測定結果について説明する。非固溶物とは、合金中のマトリックスに固溶せず、結晶粒界や粒内に存在する元素や化合物のことをいう。この非固溶物は、青銅鋳物特有の凝固様式によるミクロポロシティーに侵入し、これを埋める作用を有するので、引け巣等の鋳造欠陥の発生を抑制し、鋳造品の耐圧性を確保した健全な鋳物を得ることができる。非固溶物の例として、大多数が単独で存在するBi、Pbや、化合物として存在するSe(Bi−Se、Se−Znなど)等が挙げられる。なお、図4は、非固溶物(Bi相、Se−Zn相)を示した金属組織写真(倍率400倍)である。また、Bi含有量、Se含有量とは、合金中におけるBiやSeの含有量を成分値(単位:質量%)として示したものであり、Bi相析出量、Se−Zn相析出量とは、合金中におけるBiやZnとの化合物として存在するSe−Znの含有量を体積比率(単位:Vol%)として示したものである。
Next, a method for measuring the volume ratio of the amount of non-solid solution (Bi phase, Se—Zn phase) and the measurement results will be described. A non-solid solution means an element or a compound that does not form a solid solution in a matrix in an alloy but exists in a grain boundary or in a grain. This non-solid solution penetrates into the microporosity due to the solidification mode peculiar to bronze castings and has the effect of filling it. Can be obtained. Examples of the non-solid solution include Bi and Pb in which the majority exists alone, and Se (Bi-Se, Se-Zn, etc.) that exists as a compound. FIG. 4 is a metallographic photograph (magnification 400 times) showing a non-solid solution (Bi phase, Se—Zn phase). Further, the Bi content and Se content indicate the content of Bi and Se in the alloy as component values (unit: mass%), and the Bi phase precipitation amount and Se—Zn
非固溶物量は、合金中の組成から算出することができ、以下にその手順を示す。まず、X線解析により合金中に存在する非固溶物の種類を特定する。その後、EPMA(電子線マイクロアナライザー)、EDX(エネルギー分散型X線分析器)などを用いて面分析(マッピング)を行い、X線解析により特定された非固溶物毎にその存在比率を算出する。このようにして算出した各供試品の非固溶物量を表5に表す。供試品の形状は、JIS4号引張り試験片であり、この評点中央部断面を対象に分析した。Vol%(体積比率)とは、合金全体に対する非固溶物量の体積比のことをいう。また、表中の非固溶物量実測値は、非固溶物を構成するBi相、及びSe−Zn相のVol%の合計値を表している。 The amount of non-solid solution can be calculated from the composition in the alloy, and the procedure is shown below. First, the type of non-solid solution present in the alloy is specified by X-ray analysis. Then, surface analysis (mapping) is performed using EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analyzer), etc., and the abundance ratio is calculated for each non-solid solution identified by X-ray analysis To do. Table 5 shows the amount of the non-solid solution of each specimen thus calculated. The shape of the specimen was a JIS No. 4 tensile test piece, and this cross section of the central part of the score was analyzed. Vol% (volume ratio) refers to the volume ratio of the amount of non-solid solution to the whole alloy. Moreover, the actual measurement value of the non-solid solution amount in the table represents the total value of Vol% of the Bi phase and the Se—Zn phase constituting the non-solid solution.
非固溶物量の減少に伴い、引け巣が発生する傾向が確認された。具体的には非固溶物量が、合金全体に対する体積比率として1.4Vol%を下回ると引け巣が生じ、さらに、0.95Vol%を下回ると、引け巣が多数発生した。一方、非固溶物量が0.95Vol%より多くなると引け巣は減少した。従って、非固溶物量は、0.95Vol%より多い1.20Vol%以上、よりCAC406と同等の鋳造性を得るためには、1.4Vol%以上確保するのが有効である。 As the amount of non-solid solution decreased, a tendency for shrinkage to occur was confirmed. Specifically, shrinkage cavities were generated when the amount of non-solid solution was less than 1.4 Vol% as a volume ratio with respect to the entire alloy, and when the amount was less than 0.95 Vol%, many shrinkage cavities were generated. On the other hand, shrinkage nests decreased when the amount of non-solid solution exceeded 0.95 Vol%. Therefore, it is effective to secure the amount of non-solid solution of 1.4 vol% or more in order to obtain 1.20 vol% or more which is greater than 0.95 vol% and more castability equivalent to CAC406.
非固溶物量は、4.90Vol%を越えると、引張り強さがCAC406の規格値195N/mm2の+20の製造誤差を考慮した215N/mm2を下回ることが判明した。従って、Biの含有を最少に抑えてSeの含有を最大にすると共に、切削性、鋳物の健全性、及び機械的性質を確保することが可能である非固溶物量として、4.90Vol%を非固溶物量の上限値とし、1.20Vol%を下限値とするのが望ましい。 When the amount of non-solid solution exceeds 4.90 Vol%, it has been found that the tensile strength is less than 215 N / mm 2 considering the +20 manufacturing error of the standard value 195 N / mm 2 of CAC406. Therefore, the content of non-solid solution that can minimize the Bi content and maximize the Se content and ensure the machinability, the soundness of the casting, and the mechanical properties is 4.90 Vol%. It is desirable to set the upper limit of the amount of non-solid solution and 1.20 Vol% as the lower limit.
次に、BiやSeが非固溶物量の確保に、どれくらいの割合で作用しているかについて、表5の実測、及び試験結果に基づいて説明する。鉛代替成分としてBiのみを含有し、1.35Vol%以上の非固溶物量を確保するためには、1.5質量%以上のBiの含有が必要である。これに対し、鉛代替成分として、Bi及びSeを含有した場合では、Seを約0.1〜0.25質量%含有することにより、Biの含有量を0.7〜1.2質量%に抑制した状態で、略同量の非固溶物量を確保することができる。これは、非固溶物のうち、Biなどは一般に単独で組織中に存在し、Biの1質量%は、非固溶物量(Bi相)0.9Vol%程度に相当するのに対し、Seは、主にSe−Zn等の金属間化合物として存在することによって、Seの1質量%は、非固溶物量(Se−Zn相)2.9Vol%程度に相当し、合金中における非固溶物量の体積比率が多く確保されることによる。 Next, how much Bi or Se acts to secure the amount of non-solid solution will be described based on the actual measurement and test results in Table 5. In order to contain only Bi as a lead substitute component and ensure a non-solid solution amount of 1.35 Vol% or more, it is necessary to contain Bi of 1.5 mass% or more. On the other hand, in the case of containing Bi and Se as lead substitute components, the content of Bi is reduced to 0.7 to 1.2% by mass by including Se in the range of about 0.1 to 0.25% by mass. In the suppressed state, approximately the same amount of non-solid solution can be secured. This is because, among non-solid solutions, Bi and the like are generally present alone in the structure, and 1 mass% of Bi corresponds to a non-solid solution amount (Bi phase) of about 0.9 Vol%, while Se. Is mainly present as an intermetallic compound such as Se—Zn, so that 1% by mass of Se corresponds to a non-solid solution amount (Se—Zn phase) of about 2.9% by volume. This is because a large volume ratio is secured.
さらに、グラフを用いて説明する。Bi含有量(質量%)とBi相の析出量(Vol%)の関係を図5に、Se含有量(質量%)とSe−Zn相の析出量(Vol%)の関係を図6に示す。図5に示すグラフの回帰直線より、Bi相は、Biの含有量(質量%)に対し、0.93倍の体積を占めることがわかる。また、図6に示すグラフの回帰直線より、Se−Zn相は、Seの含有量(質量%)に対して2.86倍の体積を占めることがわかる。 Furthermore, it demonstrates using a graph. FIG. 5 shows the relationship between Bi content (mass%) and Bi phase precipitation (Vol%), and FIG. 6 shows the relationship between Se content (mass%) and Se—Zn phase precipitation (Vol%). . From the regression line of the graph shown in FIG. 5, it can be seen that the Bi phase occupies a volume 0.93 times the Bi content (% by mass). Moreover, it turns out that the Se-Zn phase occupies 2.86 times the volume with respect to Se content (mass%) from the regression line of the graph shown in FIG.
Seは、Se自らの比重の軽さ(Biと比較)と、Znとの金属間化合物を作ることによって、非固溶物の析出量(Se−Zn相)がBiの3倍量得られる。従って、Seを含有することにより、Biの含有量を抑えることができ、希少元素であるPb代替成分の含有総量を抑制し、材料コストを低減させると共に、効果的に非固溶物量を確保することができ、鋳造欠陥の発生を抑制し、耐圧性に優れた鉛レス銅合金を得ることができる。 Se produces a non-solid solution precipitation amount (Se-Zn phase) three times that of Bi by making Se's own specific gravity light (compared to Bi) and an intermetallic compound with Zn. Therefore, by containing Se, the Bi content can be suppressed, the total content of Pb substitute components, which are rare elements, is suppressed, the material cost is reduced, and the amount of non-solid solution is effectively secured. It is possible to obtain a lead-free copper alloy that suppresses the occurrence of casting defects and has excellent pressure resistance.
表5における非固溶物量理論値とは、図5に示すグラフで得られた直線の回帰式Y=0.93XにBi含有量(質量%)を代入し、図6に示すグラフで得られた直線の回帰式Y=2.86XにSe含有量(質量%)を代入し、それぞれ得られた値を加えることで表される理論値である。つまり、非固溶物量理論値とは下式にて表される。 The theoretical value of the non-solid solution amount in Table 5 is obtained by substituting the Bi content (% by mass) into the linear regression equation Y = 0.93X obtained in the graph shown in FIG. 5 and obtained in the graph shown in FIG. This is a theoretical value represented by substituting the Se content (mass%) into the regression equation Y = 2.86X of the straight line and adding the obtained values. That is, the non-solid solution amount theoretical value is expressed by the following equation.
非固溶物量理論値(Vol%)=0.93Bi(質量%)+2.86Se(質量%) Non-solid solution amount theoretical value (Vol%) = 0.93 Bi (mass%) + 2.86 Se (mass%)
表5に示すように、非固溶物量の実測値と理論値には、やや開きのある供試品もあるが、比較的正しく近似されていることから、上記理論式に各成分値を代入することにより、材料の量産レベルでの非固溶物量を、その都度、実験を行わずとも把握でき、鋳造欠陥の発生を抑制し、耐圧性等に優れた鉛レス銅合金を得ることができる。 As shown in Table 5, the measured values and the theoretical values of the amount of non-solid solution are somewhat open, but they are approximated relatively correctly. By doing so, the amount of non-solid solution at the mass production level of the material can be grasped without performing an experiment each time, the occurrence of casting defects can be suppressed, and a lead-free copper alloy excellent in pressure resistance can be obtained. .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006014360A JP4455507B2 (en) | 2002-09-09 | 2006-01-23 | Valve for drinking water |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002262677 | 2002-09-09 | ||
JP2006014360A JP4455507B2 (en) | 2002-09-09 | 2006-01-23 | Valve for drinking water |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005142544A Division JP3776441B2 (en) | 2002-09-09 | 2005-05-16 | Bronze alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006188766A JP2006188766A (en) | 2006-07-20 |
JP4455507B2 true JP4455507B2 (en) | 2010-04-21 |
Family
ID=36796214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006014360A Expired - Lifetime JP4455507B2 (en) | 2002-09-09 | 2006-01-23 | Valve for drinking water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4455507B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4866716B2 (en) * | 2006-12-20 | 2012-02-01 | 株式会社栗本鐵工所 | Copper alloy |
JP5259102B2 (en) * | 2007-02-27 | 2013-08-07 | 株式会社キッツ | Low lead bronze casting alloy |
-
2006
- 2006-01-23 JP JP2006014360A patent/JP4455507B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006188766A (en) | 2006-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3690746B2 (en) | Copper alloy and ingot or wetted parts using the alloy | |
US10017841B2 (en) | Copper alloy casting and method of casting the same | |
US8303737B2 (en) | Brass material | |
EP2761042B1 (en) | Leadless free-cutting copper alloy | |
US9982327B2 (en) | Brass alloy for tap water supply member | |
JP2008214760A (en) | Lead-free free-cutting brass alloy and its manufacturing method | |
US20140112821A1 (en) | Lead-free brass alloy for hot working | |
JP4455507B2 (en) | Valve for drinking water | |
US9963765B2 (en) | Copper alloy for use in a member for use in water works | |
JP2003193157A (en) | Alloy such as copper alloy, production method therefor and ingot and liquid contacting parts by using the same | |
JP3776441B2 (en) | Bronze alloy | |
JP6561116B2 (en) | Copper alloy for water supply components | |
JP3850861B2 (en) | Copper alloy valve for drinking water | |
JP3830946B2 (en) | Bronze alloy and ingot and wetted parts using the alloy | |
JP4184357B2 (en) | Lead-free free-cutting brass alloy and method for producing the same | |
JP7202235B2 (en) | Low lead copper alloy | |
JP2006083443A (en) | Brass material superior in hot workability and machinability | |
JP2006152371A (en) | Aluminum alloy for food can having excellent casting-crack resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100203 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4455507 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |