[go: up one dir, main page]

JP7197909B2 - Method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic/inorganic substances - Google Patents

Method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic/inorganic substances Download PDF

Info

Publication number
JP7197909B2
JP7197909B2 JP2019095527A JP2019095527A JP7197909B2 JP 7197909 B2 JP7197909 B2 JP 7197909B2 JP 2019095527 A JP2019095527 A JP 2019095527A JP 2019095527 A JP2019095527 A JP 2019095527A JP 7197909 B2 JP7197909 B2 JP 7197909B2
Authority
JP
Japan
Prior art keywords
waste
processing container
holes
organic
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019095527A
Other languages
Japanese (ja)
Other versions
JP2020189267A (en
Inventor
仁 水口
宏雄 高橋
正彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jintec Corp
Original Assignee
Jintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jintec Corp filed Critical Jintec Corp
Priority to JP2019095527A priority Critical patent/JP7197909B2/en
Publication of JP2020189267A publication Critical patent/JP2020189267A/en
Application granted granted Critical
Publication of JP7197909B2 publication Critical patent/JP7197909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は種々の廃ポリマー、廃金属、および廃有機・無機物を含む混合物の処理方法と処理装置に関する。 The present invention relates to a method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic and inorganic substances.

電化製品等の廃棄処理は近年大きな社会問題となっている。電子部品のリサイクル化が進み、環境分野では歓迎されている。しかし、リサイクル処理の最終段階で残存する産業混合廃棄物の処理は容易ではない。
以前は、手作業で、電化製品等を分解し、回路基板、金属部品等を丁寧に取り出し、また、種々のポリマー複合化合物も混じり合わないように注意深く分別して、リサイクルに回していた。従って、最終的に残存した混合ゴミは小さなものが多く、その量もそれ程多くはなかった。この混合ゴミは輸出と称して、東南アジアの国々に処理を依頼していた。しかし、手作業の分別作業は手間も時間もかかり、人件費の高騰もあってコスト全般の見直しが行われた。
昨今では、リサイクル・コストを削減する為に、電化製品全般を分解・分別することなく、大型のハンマーやギロチン法に依る切断等で細かく裁断する手法を採用している。裁断物の中から、まず鉄などの金属類は磁石で取り出す方法をとり、磁石につかないAl等の金属に関しては電磁誘導により、磁性を誘起させて磁石に引き付け、その後、風で吹き飛ばし回収している。さらに、比較的な大きなポリマー複合化合物は、摘まみ上げて分別を行っている。しかし、コスト削減の代償として、各種のポリマー複合化合物、ならびに各種のポリマー(熱可塑性および熱硬化性ポリマー、塩化ビニル製品、タイヤ等の含硫黄ポリマー等)も分別されることなく、一括処理されている。さらに、各種電線の切れ端(被覆材:ポリ塩化ビニル、ポリエチレン等)や金属片、ゴム類等もが混ざった状態である。このような、残存物は比較的大きなゴミであり、ゴミの量も倍加した。以上の経過から、昨今の電化製品等のリサイクルは、コスト安になったものの、各種複合材料、ポリマー、金属等の混合物で構成され、嵩高いと言った特徴がある。これらの“混ざり合った処理不能のゴミ”は、中国、タイ、フィリピン、ベトナム等に“輸出”と称して処理を依頼していた。しかし、焼却処理では酷い悪臭や有害ガス等が発生する為、これらの諸国から受け入れ拒否を通告され、日本の廃棄物業者には“廃プラ/廃電線等”ゴミが山積みになっている。注射器、カテーテル等の医療廃棄物もほぼ同様な状況といえる。
Disposal of electric appliances and the like has become a big social problem in recent years. Recycling of electronic parts is progressing, and it is welcomed in the environmental field. However, the disposal of industrial mixed waste remaining at the final stage of the recycling process is not easy.
In the past, electrical appliances were disassembled by hand, circuit boards and metal parts were carefully removed, and various polymer composite compounds were carefully sorted to avoid mixing and recycled. Therefore, most of the mixed waste finally remaining was small, and the amount thereof was not so large. This mixed waste was called export and was requested to be processed in Southeast Asian countries. However, the manual sorting work is labor-intensive and time-consuming, and labor costs have skyrocketed.
In recent years, in order to reduce recycling costs, instead of disassembling and sorting electrical appliances in general, methods such as cutting by a large hammer or guillotine method have been adopted. Metals such as iron are first removed from the cut material using magnets, and metals such as Al that do not stick to magnets are attracted to magnets by inducing magnetism through electromagnetic induction, after which they are blown away by wind and collected. there is In addition, relatively large polymer complex compounds are picked up and sorted. However, in exchange for cost reduction, various polymer complex compounds and various polymers (thermoplastic and thermosetting polymers, vinyl chloride products, sulfur-containing polymers such as tires, etc.) are not separated and are collectively processed. there is Furthermore, it is in a state in which various pieces of electric wire (coating material: polyvinyl chloride, polyethylene, etc.), metal pieces, rubbers, etc. are mixed. Such remnants are relatively large pieces of garbage, doubling the amount of garbage. From the above progress, the recent recycling of electrical appliances, etc., is characterized by being composed of mixtures of various composite materials, polymers, metals, etc., and bulky, although the cost has been reduced. These "mixed garbage that cannot be processed" were requested to be processed by China, Thailand, the Philippines, Vietnam, etc. under the guise of "export". However, since the incineration produces terrible odors and harmful gases, these countries have been notified of refusal to accept the waste, and Japanese waste disposal companies are piled up with "waste plastics/waste electric wires". Medical waste such as syringes and catheters is in a similar situation.

これらの複合材料のゴミを従来の焼却法で処理すると、大変な不快の臭気ばかりでなく、人間の健康状態を害する懸念もある。臭気の中には、塩素や硫黄分を含むガスも含まれ、想像を絶する臭気である。有害なガスを発生することなく分解、処理することが可能でかつ処理後の残留物から有価物を回収することの出来る処理方法及び処理装置が切望されている。 Disposal of these composite wastes by conventional incineration methods not only causes very unpleasant odors, but also poses a threat to human health. The odor includes gases containing chlorine and sulfur, and is an unimaginable odor. There is a strong demand for a processing method and a processing apparatus capable of decomposing and processing without generating harmful gases and recovering valuables from the residue after processing.

本発明者の一人はポリマー、ガス体等の有機物からなる被処理物を分解する方法として、半導体を真性電気伝導領域となる温度に加熱して電子・正孔キャリアーを大量に発生させ、被処理物を加熱処理により発現した強力な酸化力を持つ正孔に接触させ、酸素の存在下において被処理物を完全分解する「半導体の熱活性」(Thermal Activation of Semi-Conductors:以下TASCと略称)による処理方法について提案した(特許文献1、非特許文献1)。この現象は、半導体を350-500℃に加熱すると強い酸化作用(結合電子を引き抜く力が強い)を発現する効果で、ポリマーから結合電子を引き抜くと、不安定なラジカルがポリマー内に生成し、これがポリマー内を伝播してさらに増殖し、ポリマー全体を不安定化する。不安定化したポリマーは安定性を維持できずに、自滅するような形で裁断化が誘起され、プロパン等の小分子に裁断化される。続いて、裁断化された小分子は空気中の酸素と反応して、炭酸ガスと水に完全分解される。つまり、あらゆるポリマー(熱可塑性ポリマー、熱硬化性ポリマー)はTASC触媒により、酸素の存在下で、一瞬にして炭酸ガスと水に分解される。以上のように、TASC分解過程は、(1)酸化力によるラジカルの生成する過程、(2)ラジカルの伝播により、巨大分子が不安定化され小分子に分解される過程、(3)小分子化された分子が空気中の酸素と完全燃焼する過程の3つの素過程から構成されている。
TASC法で使用できる半導体は高温、酸素雰囲気で安定な半導体であれば良い。従って、酸化物半導体が好んで用いられる。酸化物半導体の例として、BeO、CaO、CuO、CuO、SrO、BaO、MgO、NiO、CeO、MnO、GeO、PbO、TiO、VO、ZnO、FeO、PdO、AgO、TiO、MoO、PbO、IrO、RuO、Ti、ZrO、Y、Cr、ZrO、WO、MoO、WO、SnO、Co、Sb、Mn、Ta、V、Nb、MnO、Fe、YS、MgFe、NiFe、ZnFe、ZnCo、MgCr、FeCrO、CoCrO、CoCrO、ZnCr、CoAl、NiAl等がある。この中で、酸化クロム(Cr)は高温安定性(融点:約2200℃)に優れ、さらに飲料用のガラス瓶の染色にも使われる安全な材料である。また、酸化鉄(α-Fe:ヘマタイト)は、安定性はCrには及ばないが、安全で廉価な材料であるので実用性が高い。
One of the inventors of the present invention has proposed a method for decomposing an object to be treated consisting of an organic substance such as a polymer or a gas by heating a semiconductor to a temperature at which it becomes an intrinsic electrical conduction region to generate a large amount of electron/hole carriers, "Thermal Activation of Semi-Conductors" (hereinafter abbreviated as TASC) that completely decomposes the object to be treated in the presence of oxygen by bringing the object into contact with holes that have a strong oxidizing power generated by heat treatment. (Patent Document 1, Non-Patent Document 1). This phenomenon is due to the strong oxidizing effect (strong ability to extract bond electrons) when the semiconductor is heated to 350-500°C. This propagates within the polymer and proliferates further, destabilizing the entire polymer. A destabilized polymer cannot maintain its stability and is induced to fragment in a self-defeating manner to fragment into small molecules such as propane. Subsequently, the shredded small molecules react with oxygen in the air and are completely decomposed into carbon dioxide and water. In other words, all polymers (thermoplastic polymers and thermosetting polymers) are instantaneously decomposed into carbon dioxide gas and water by the TASC catalyst in the presence of oxygen. As described above, the TASC decomposition process includes (1) the process of generating radicals due to oxidative power, (2) the process of destabilizing macromolecules and decomposing them into small molecules due to the propagation of radicals, and (3) the process of small molecules. It is composed of three elementary processes of complete combustion of oxygen in the air and complete combustion of the atomized molecules.
A semiconductor that can be used in the TASC method may be a semiconductor that is stable at a high temperature in an oxygen atmosphere. Therefore, an oxide semiconductor is preferably used. Examples of oxide semiconductors include BeO, CaO, CuO, Cu2O, SrO2 , BaO, MgO, NiO, CeO2 , MnO, GeO, PbO, TiO, VO, ZnO, FeO, PdO , Ag2O , TiO 2 , MoO2 , PbO2 , IrO2, RuO2 , Ti2O3 , ZrO2, Y2O3 , Cr2O3 , ZrO2 , WO3 , MoO3 , WO2 , SnO2 , Co3O 4 , Sb2O3 , Mn3O4 , Ta2O5 , V2O5 , Nb2O5 , MnO3 , Fe2O3 , Y2O2S , MgFe2O4 , NiFe2O4 , ZnFe 2 O 4 , ZnCo 2 O 4 , MgCr 2 O 4 , FeCrO 4 , CoCrO 4 , CoCrO 4 , ZnCr 2 O 4 , CoAl 2 O 4 , NiAl 2 O 4 and the like. Among them, chromium oxide (Cr 2 O 3 ) is excellent in high temperature stability (melting point: about 2200° C.) and is a safe material used for dyeing glass bottles for beverages. In addition, iron oxide (α-Fe 2 O 3 : hematite) is not as stable as Cr 2 O 3 , but it is a safe and inexpensive material, so it is highly practical.

また、繊維強化プラスチックに同じTASC法を用いて、プラスチックを完全分解し、カーボン・ファイバーやグラス・ファイバー等の強化繊維をほぼ無傷で完全回収する方法を提案した(特許文献2、非特許文献2)。この方法は特にコストの高いカーボン・ファイバー等の繊維を切断するなどのダメージを与えることなく強化繊維を回収して再使用することができるので、非常に有用であり、強化繊維に限らず、無機物とポリマーを混合した複合材料から無機物だけを回収できる普遍性のある方法である。
さらに、加熱処理室にVOC(Volatile Organic Compounds、揮発性有機化合物)浄化装置を連結し、太陽光パネルや合わせガラスなどのプラスチックまたはプラスチック複合材料をTASC法により分解し、無害のガスに浄化する処理装置についても提案した(特許文献3、4)。
TASC法で用いる酸化物半導体をTASC触媒と呼ぶが、この触媒は「何回でも使うことが出来る」と言う意味で「触媒」に分類される。しかし、通常の化学触媒とは全く異なる機能を有する。化学触媒は、触媒物質と反応物質が活性錯合体を形成し、活性化エネルギーを下げて反応をより低温で進行させるものである。これに対し、TASC触媒は、上述のメカニズムにより、ポリマー等の被分分解物を不安定化し、さらに小分子化して十分な酸素下で完全燃焼させるものである。
In addition, using the same TASC method for fiber-reinforced plastics, we have proposed a method for completely decomposing plastics and completely recovering reinforcing fibers such as carbon fibers and glass fibers without damaging them (Patent Document 2, Non-Patent Document 2). ). This method is very useful because it is possible to recover and reuse reinforcing fibers without damaging fibers such as carbon fibers, which are particularly expensive, by cutting them. It is a universal method that can recover only inorganic substances from composite materials mixed with polymers.
In addition, a VOC (Volatile Organic Compounds) purifying device is connected to the heat treatment chamber, and plastic or plastic composite materials such as solar panels and laminated glass are decomposed by the TASC method and purified into harmless gases. A device was also proposed (Patent Documents 3 and 4).
The oxide semiconductor used in the TASC method is called a TASC catalyst, which is classified as a "catalyst" in the sense that it can be used any number of times. However, it has a completely different function from ordinary chemical catalysts. A chemical catalyst forms an active complex between a catalyst substance and a reactant, lowers the activation energy, and allows the reaction to proceed at a lower temperature. On the other hand, the TASC catalyst destabilizes the decomposable substances such as polymers by the mechanism described above, further reduces the molecular weight of the substances, and completely burns them in the presence of sufficient oxygen.

このように、TASC効果を利用した有機物の気体(VOC、排煙、悪臭など)あるいはミスト状のタール、PM等の完全分解を実現してきた。さらに、固体では、ポリマー複合化合物のポリマーのみを分解し、中から有価物を回収することに利用してきた。その例として、FRP(Fiber Reinforced Plastics:繊維強化プラスチック)から炭素繊維、太陽電池パネルから、ガラス、シリコン・ウェーファー、電極、さらにボンド磁石からレアアース粉体、合わせガラスからガラスの回収に及んでいる。
塩素化合物は、塩化ビニルを代表とするポリマー材料として、広く産業界(各種配管、電線の被覆材など)で使われている。特に“塩ビ”と呼ばれる材料には、塩化ビニルの中に多くの可塑剤や難燃剤が含まれている。これらの焼却の際には、塩酸や、特に180-400℃においてダイオキシンが生成しやすいので、これが外部に飛散する可能性があるので注意が必要である。また、硫黄に関しては、含硫黄ポリマー(例えば、ポリフェニルレンサルファイド)や、ゴム類の架橋剤としての硫黄化合物が存在する。硫黄は、HS, HSO等となり、飛散することが多い。
硫黄、ハロゲン、ケイ素を成分として含む有機廃棄物をTASC法により分解し、有害ガスを発生することなく金属硫化物、金属ハロゲン化物、ケイ素酸化物として残差中に捕獲する処理方法も提案した(特許文献5)。
例えば、ヘマタイトの熱活性化で、ハロゲンや硫黄系のポリマーを分解する。分解と同時に遊離してくるハロゲンや硫黄成分は直ちにヘマタイトのFeと反応して、それぞれ、FeCl(緑黄色)、FeCl(黒褐色)、FeS(黒色)、FeS、Fe、Fe等として固定化される。従って、外気に飛散することはない。
本発明の処理対象である複合材料の特徴を列挙する。現行の粉砕・切断ゴミの特徴は、(塩素、硫黄成分を含まない)各種のポリマー複合材料(i)、塩素・硫黄系のプラスチック複合材料(ii)、塩ビ電線、タイヤ等が主体であり、これに金属端材が少量混ざっている。さらに特徴的なことは、これらのゴミは極めて嵩高いことである。複合材料のゴミは一般に厚みが1-2mm程度であるが、幅と長さは50-150mmのものが大半である。また、電線等は直径1-3mm,長さが50-100mm程度である。また、金属ゴミは、粉砕・切断工程で、叩かれ、切断されるので、不規則に幾重にも重なり合った金属ゴミとなり、厚みは1-3mm、幅と長さは20-50mm程度である。
このように嵩高く、大きさもある種々の廃ポリマー、廃金属、および廃有機・無機物を含み、かつ硫黄、塩素、シリコンなどの有害ガスを発生する成分が含まれる混合物の処理にTASC法を適用すれば従来の問題点を総てクリヤーできる可能性があるが、処理後の残留物から残渣を分離、除去し金属等の有価物だけを回収する効率的な方法については未解決であった。
In this way, the TASC effect has been utilized to completely decompose organic gases (VOC, exhaust gas, offensive odors, etc.) or mist-like tar, PM, and the like. Furthermore, in solids, it has been used to decompose only the polymer of polymer composite compounds and recover valuable substances from inside. Examples include the recovery of carbon fiber from FRP (Fiber Reinforced Plastic), glass, silicon wafers and electrodes from solar panels, rare earth powder from bonded magnets, and glass from laminated glass. .
Chlorine compounds are widely used in the industrial world (various pipes, wire coatings, etc.) as polymer materials represented by vinyl chloride. In particular, the material called "vinyl chloride" contains many plasticizers and flame retardants in vinyl chloride. When these materials are incinerated, hydrochloric acid and dioxins are likely to be generated at 180-400°C, and caution is required as these may scatter outside. As for sulfur, there are sulfur-containing polymers (for example, polyphenylene sulfide) and sulfur compounds as cross-linking agents for rubbers. Sulfur becomes H 2 S, H 2 SO 4 and the like, and often scatters.
We also proposed a treatment method that decomposes organic wastes containing sulfur, halogens, and silicon as components by the TASC method and captures them in the residue as metal sulfides, metal halides, and silicon oxides without generating harmful gases ( Patent document 5).
For example, thermal activation of hematite decomposes halogen and sulfur-based polymers. The halogen and sulfur components liberated at the same time as the decomposition immediately react with Fe in hematite to form FeCl 2 (greenish yellow), FeCl 3 (dark brown), FeS (black), FeS 2 , Fe 2 S 3 and Fe 2 , respectively. It is immobilized as S4 and the like. Therefore, it does not scatter to the outside air.
The characteristics of the composite material to be processed by the present invention are enumerated. The characteristics of the current pulverized and cut waste are mainly various polymer composite materials (i) (containing no chlorine or sulfur components), chlorine-sulfur plastic composite materials (ii), PVC electric wires, tires, etc. A small amount of metal scraps are mixed in this. Another characteristic is that these wastes are extremely bulky. Composite debris is generally about 1-2 mm thick, but most are 50-150 mm wide and long. Also, the electric wire or the like has a diameter of 1 to 3 mm and a length of about 50 to 100 mm. In addition, the metal dust is beaten and cut in the pulverization and cutting process, so that the metal dust is irregularly piled up and has a thickness of 1 to 3 mm and a width and length of about 20 to 50 mm.
The TASC method is applied to the treatment of mixtures containing various bulky and large-sized waste polymers, waste metals, waste organic and inorganic substances, and components that generate harmful gases such as sulfur, chlorine, and silicon. However, an efficient method for separating and removing residues from the residues after treatment and recovering only valuables such as metals has not been solved.

特許第4517146号Patent No. 4517146 特許第5904487号Patent No. 5904487 特開2016-93804号公報JP 2016-93804 A 特開2016-172246号公報JP 2016-172246 A 特許第 6429177号Patent No. 6429177

T. Shinbara, T. Makino, K. Matsumoto, and J. Mizuguchi: Complete decomposition of polymers by means of thermally generated holes at high temperatures in titanium dioxide and its decomposition mechanism, J. Appl. Phys. 98, 044909 1-5 (2005)T. Shinbara, T.; Makino, K.; Matsumoto, andJ. Mizuguchi: Complete decomposition of polymers by means of thermally generated holes at high temperatures in titanium dioxide and its decomposition mechanism, J. Am. Appl. Phys. 98, 044909 1-5 (2005) 水口 仁:半導体の熱活性によるFRPの完全分解とリサイクル技術、加工技術 47巻, 37-47 (2012)Hitoshi Mizuguchi: Complete Decomposition and Recycling Technology of FRP by Thermal Activation of Semiconductor, Processing Technology Vol.47, 37-47 (2012)

本発明は、硫黄、ハロゲン、ケイ素の少なくともひとつを成分としたポリマーあるいはポリマー複合化合物、ならびに金属片等からなる無機・有機物の混合廃棄物から、有害ガスを発生することなく無害化し、さらに廃金属等の有価物を分別回収することのできる処理方法および処理装置を提供することを目的とする。 The present invention detoxifies inorganic/organic mixed waste, which consists of polymers or polymer composite compounds containing at least one of sulfur, halogen, and silicon, as well as metal pieces, etc., without generating harmful gases, and further waste metals. It is an object of the present invention to provide a processing method and a processing apparatus capable of sorting and collecting valuables such as waste.

本発明に係る硫黄、ハロゲン、ケイ素の少なくともひとつを成分としたポリマーあるいはポリマー複合化合物、ならびに金属片等からなる無機・有機物の混合廃棄物の処理方法は、前記廃棄物の表面に酸化物半導体を被覆する工程と、前記酸化物を被覆した前記廃棄物を穴径が1mm以上でかつ30mm以下である穴を底面に多数有する処理容器に収納して加熱処理室に配置する工程と、酸素の存在下、前記酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度で、前記正孔の酸化力を利用して前記廃棄物中の前記有機物を水と二酸化炭素に分解するとともに、前記廃棄物に含まれていた硫黄成分は金属硫化物とし、ハロゲン成分は金属ハロゲン化物とし、ケイ素成分はケイ素酸化物として残渣中に捕獲する工程と、前記処理容器に振動を与えて前記処理容器底面の穴を通して前記残渣を落下させることにより前記処理容器から分離する工程と、前記処理容器内に残存する固定無機物から有価金属を回収する工程を含むことを特徴とする。 According to the present invention, there is provided a method for treating a mixed inorganic-organic waste composed of a polymer or a polymer composite compound containing at least one of sulfur, halogen, and silicon, and metal pieces, etc., and an oxide semiconductor is formed on the surface of the waste. a step of coating, a step of storing the waste coated with the oxide in a processing container having a large number of holes having a hole diameter of 1 mm or more and 30 mm or less on the bottom surface and placing the waste in a heat treatment chamber; Second, at a temperature at which a large amount of holes and electrons are generated by the interband transition of the oxide semiconductor, the oxidizing power of the holes is used to decompose the organic matter in the waste into water and carbon dioxide. a step of converting the sulfur component contained in the waste into a metal sulfide, converting the halogen component into a metal halide, and capturing the silicon component into the residue as a silicon oxide; The method is characterized by including a step of separating the residue from the processing container by dropping the residue through a hole in the bottom surface of the container, and a step of recovering the valuable metal from the fixed inorganic matter remaining in the processing container.

本発明に係る硫黄、ハロゲン、ケイ素の少なくともひとつを成分としたポリマーあるいはポリマー複合化合物、ならびに金属片等からなる無機・有機物の混合廃棄物の処理方法は、前記廃棄物の表面に酸化物半導体を被覆する工程と、前記酸化物を被覆した前記廃棄物を加熱処理室に配置する工程と、酸素の存在下、前記酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度で、前記正孔の酸化力を利用して前記廃棄物中の前記有機物を水と二酸化炭素に分解するとともに、前記廃棄物に含まれていた硫黄成分は金属硫化物とし、ハロゲン成分は金属ハロゲン化物とし、ケイ素成分はケイ素酸化物として残渣中に捕獲する工程と、前記加熱処理室の外部に設置され穴径が1mm以上でかつ30mm以下である穴を多数有する板状部に振動を与えて前記板状部の穴を通して前記残渣を落下させることにより分離する工程と、前記板状部上に残存する固定無機物から有価金属を回収する工程を含むことを特徴とする。 According to the present invention, there is provided a method for treating a mixed inorganic-organic waste composed of a polymer or a polymer composite compound containing at least one of sulfur, halogen, and silicon, and metal pieces, etc., and an oxide semiconductor is formed on the surface of the waste. and placing the waste coated with the oxide in a heat treatment chamber, in the presence of oxygen at a temperature at which a large number of holes and electrons are generated by interband transitions of the oxide semiconductor. and decomposing the organic matter in the waste into water and carbon dioxide by utilizing the oxidizing power of the holes, converting the sulfur component contained in the waste into a metal sulfide, and replacing the halogen component with a metal halide. and a step of capturing the silicon component in the residue as silicon oxide; It is characterized by including a step of separating the residue by dropping it through a hole in the plate-like portion, and a step of recovering the valuable metal from the fixed inorganic matter remaining on the plate-like portion.

本発明に係る硫黄、ハロゲン、ケイ素の少なくともひとつを成分としたポリマーあるいはポリマー複合化合物、ならびに金属片等からなる無機・有機物の混合廃棄物の処理装置は、前記廃棄物の表面に酸化物半導体を被覆し、前記酸化物を被覆した前記廃棄物を収納する穴径が1mm以上でかつ30mm以下である穴を底面に多数有する処理容器と、エアを供給するエア供給機構を有する加熱処理室を備え、前記加熱処理室内に設置された前記処理容器が前記酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度以上に加熱されることにより、酸素の存在下で前記正孔の酸化力を利用して前記廃棄物中の前記有機物が水と二酸化炭素に分解されるとともに、前記廃棄物に含まれていた硫黄成分は金属硫化物とし、ハロゲン成分は金属ハロゲン化物とし、ケイ素成分はケイ素酸化物として残渣中に捕獲され、前記処理容器に振動を与えて前記処理容器底面の穴を通して前記残渣が落下することにより前記処理容器から分離され、前記処理容器内に残存する固定無機物から有価金属が回収されることを特徴とする。 According to the present invention, there is provided an apparatus for treating inorganic/organic mixed waste composed of a polymer or a polymer composite compound containing at least one of sulfur, halogen, and silicon, and metal pieces, etc., and an oxide semiconductor is formed on the surface of the waste. A processing container having a bottom surface with a large number of holes having a hole diameter of 1 mm or more and 30 mm or less for storing the waste coated with the oxide, and a heat processing chamber having an air supply mechanism for supplying air. , the processing container installed in the heat processing chamber is heated to a temperature equal to or higher than a temperature at which a large amount of holes and electrons are generated by interband transition of the oxide semiconductor, thereby reducing the number of holes in the presence of oxygen. The organic matter in the waste is decomposed into water and carbon dioxide using oxidizing power, and the sulfur component contained in the waste is changed to metal sulfide, the halogen component is changed to metal halide, and the silicon component is captured in the residue as a silicon oxide, is separated from the processing container by vibrating the processing container, and the residue falls through the hole in the bottom of the processing container, and is separated from the fixed inorganic matter remaining in the processing container. It is characterized in that valuable metals are recovered.

本発明に係る硫黄、ハロゲン、ケイ素の少なくともひとつを成分としたポリマーあるいはポリマー複合化合物、ならびに金属片等からなる無機・有機物の混合廃棄物の処理装置は、前記廃棄物の表面に酸化物半導体を被覆し、前記酸化物を被覆した前記廃棄物を設置する加熱処理室を備え、前記加熱処理室はエアを供給するエア供給機構を有し、前記加熱処理室内に設置された前記廃棄物が前記酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度以上に加熱されることにより、酸素の存在下で前記正孔の酸化力を利用して前記廃棄物中の前記有機物が水と二酸化炭素に分解されるとともに、前記廃棄物に含まれていた硫黄成分は金属硫化物とし、ハロゲン成分は金属ハロゲン化物とし、ケイ素成分はケイ素酸化物として残渣中に捕獲され、穴径が1mm以上でかつ30mm以下である穴を多数有する板状部を前記加熱処理室の外部に別途備え、前記板状部に振動を与えて前記板状部の穴を通して前記残渣が落下することにより分離され、前記板状部上に残存する固定無機物から有価金属が回収されることを特徴とする。 According to the present invention, there is provided an apparatus for treating inorganic/organic mixed waste composed of a polymer or a polymer composite compound containing at least one of sulfur, halogen, and silicon, and metal pieces, etc., and an oxide semiconductor is formed on the surface of the waste. A heat treatment chamber is provided in which the waste coated with the oxide is placed, the heat treatment chamber has an air supply mechanism for supplying air, and the waste placed in the heat treatment chamber is the By heating above the temperature at which a large amount of holes and electrons are generated by the interband transition of the oxide semiconductor, the organic matter in the waste is decomposed using the oxidizing power of the holes in the presence of oxygen. While being decomposed into water and carbon dioxide, the sulfur component contained in the waste is converted to metal sulfide, the halogen component is converted to metal halide, and the silicon component is captured as silicon oxide in the residue, and the hole diameter is reduced. A plate-shaped portion having a large number of holes of 1 mm or more and 30 mm or less is separately provided outside the heat treatment chamber, and the residue is separated by vibrating the plate-shaped portion and dropping the residue through the holes of the plate-shaped portion. and the valuable metal is recovered from the fixed inorganic matter remaining on the plate-like portion.

本発明の処理対象は硫黄、ハロゲン、ケイ素の少なくともひとつを成分としたポリマーあるいはポリマー複合化合物、ならびに金属片等からなる無機・有機物の混合廃棄物である。廃棄物の表面に酸化物半導体を被覆して加熱処理室に配置し、酸素の存在下、酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度以上に加熱されると、正孔の酸化力を利用して廃棄物中の有機物は水と二酸化炭素に分解されるとともに、廃棄物に含まれていた硫黄成分は金属硫化物とし、ハロゲン成分は金属ハロゲン化物とし、ケイ素成分はケイ素酸化物として残渣中に捕獲される。
穴径が1mm以上でかつ30mm以下である穴を底面に多数有する処理容器に酸化物半導体を被覆した廃棄物を収納して加熱処理室に配置して加熱処理を行い、処理後に処理容器に振動を与えて前記処理容器底面の穴を通して前記残渣を落下させることにより前記処理容器から分離してから処理容器を加熱処理室から取り出すようにする。取り出された処理容器から有価金属が回収される。
処理容器は代表的には篩として作用するステンレス籠であるが、底面の穴径を1mm以上30mm以下としておくと、処理後の金属硫化物、金属ハロゲン化物、ケイ素酸化物は粉体化しているが軽く焼結していることもあるので、通常は軽い振動を与えることで小穴を通過して落下し、かさばる金属や無機物の残留物は穴を通り抜けることはほとんどなくステンレス籠内に留まる。振動を与えるのは手動によっても良いが、機械式の自動振動装置によっても良い。穴径を5mm以上15mm以下とすれば金属や無機物の残留物である固定無機物が穴を通過することをより完全に防止し、かつ残渣の穴を通しての落下をより容易にするので最適である。
The objects to be treated in the present invention are polymers or polymer composite compounds containing at least one of sulfur, halogen, and silicon, as well as inorganic/organic mixed wastes such as metal fragments. When the surface of the waste is coated with an oxide semiconductor, placed in a heat treatment chamber, and heated in the presence of oxygen to a temperature higher than the temperature at which a large amount of holes and electrons are generated by interband transition of the oxide semiconductor, Using the oxidizing power of holes, the organic matter in the waste is decomposed into water and carbon dioxide, and the sulfur component contained in the waste is changed to metal sulfide, the halogen component is changed to metal halide, and the silicon component is captured in the residue as silicon oxide.
Waste coated with an oxide semiconductor is stored in a processing container having a large number of holes with a hole diameter of 1 mm or more and 30 mm or less on the bottom surface, placed in a heat treatment chamber, and subjected to heat treatment. After treatment, the treatment container is vibrated. is applied to cause the residue to drop through the hole in the bottom surface of the processing container, thereby separating the residue from the processing container and then removing the processing container from the heat treatment chamber. Valuable metals are recovered from the removed processing container.
The processing container is typically a stainless steel basket that acts as a sieve, but if the hole diameter of the bottom is set to 1 mm or more and 30 mm or less, the metal sulfide, metal halide, and silicon oxide after processing are powdered. Since it is sometimes lightly sintered, it usually falls through the small holes by applying a light vibration, and bulky metal and inorganic residues hardly pass through the holes and stay in the stainless steel cage. Vibration may be applied manually or by a mechanical automatic vibration device. A hole diameter of 5 mm or more and 15 mm or less is optimal because it more completely prevents fixed inorganic substances, which are residues of metals and inorganic substances, from passing through the holes, and makes it easier for the residues to fall through the holes.

処理容器を加熱処理前には加熱処理室には設置せず、加熱処理後に加熱処理室の外で振動を与えて金属硫化物、金属ハロゲン化物、ケイ素酸化物を分離、除去し残存物から有価金属を回収するようにしても良い。この方法は加熱処理炉を移動させることができる半自動化装置でバッチ方式の連続装置に適している。このような半自動化装置においては加熱処理時は開放系では火災の原因になるので、安全のため密閉系(closed system)での処理を行う必要がある。
廃棄物の表面を被覆するために、前述したような種々の酸化物半導体が利用可能であるが、本発明においては最も安価な酸化鉄(α-Fe:ヘマタイト)を用いるのが良い。酸化鉄にはα-Fe,γ-Fe,Feがあるが、α-Feはヘマタイト、ないしは弁柄(弁柄)と呼ばれる赤色無機顔料として広く知られている。
The treatment container is not installed in the heat treatment chamber before heat treatment, and after heat treatment, vibration is applied outside the heat treatment chamber to separate and remove metal sulfides, metal halides, and silicon oxides, and to remove valuables from the residue. The metal may be recovered. This method is a semi-automated apparatus capable of moving the heat treatment furnace, and is suitable for a batch-type continuous apparatus. In such a semi-automated apparatus, since an open system may cause a fire during heat treatment, it is necessary to perform the treatment in a closed system for safety.
Various oxide semiconductors as described above can be used to coat the surface of the waste, but in the present invention, it is preferable to use the cheapest iron oxide (α-Fe 2 O 3 : hematite). . Iron oxides include α-Fe 2 O 3 , γ-Fe 2 O 3 and Fe 3 O 4 , and α-Fe 2 O 3 is widely known as a red inorganic pigment called hematite or red iron oxide. It is

本発明によれば、混合物である廃棄物中の有機物は水と炭酸ガスに完全分解されるばかりでなく、有価金属を効率的に安価な方法で回収できる。また、硫黄、ハロゲン、ケイ素を成分として含んでいても有害なガスを発生することなく残渣中に捕獲されるので、環境を汚染することなく安全な回収方法及び回収装置を提供できる。 According to the present invention, not only is the organic matter in the waste mixture completely decomposed into water and carbon dioxide gas, but valuable metals can be recovered efficiently and inexpensively. In addition, even if sulfur, halogen, and silicon are contained as components, they are captured in the residue without generating harmful gases, so a safe recovery method and recovery apparatus can be provided without polluting the environment.

廃棄物を処理する装置を示す図である。1 shows a device for treating waste; FIG. ヘマタイト被着前の「廃プラ/金属屑」混合ゴミである。This is mixed waste of "waste plastic/metal scrap" before hematite coating. ヘマタイト被着後の「廃プラ/金属屑」混合ゴミである。This is mixed waste of "waste plastic/metal scrap" after hematite coating. 加熱処理後に分離された粉黛状の残渣(上部)とステンレス籠に残存した金属等の残留物(下部)を並べて示す。The powdery residue (upper part) separated after the heat treatment and the metal residue (lower part) remaining in the stainless steel cage are shown side by side. 別のサンプルの加熱処理後に分離された粉黛状の残渣(上部)とステンレス籠に残存した数枚のガラス・ファイバー織布の残留物(下部)を並べて示す。The powdery residue (top) separated after heat treatment of another sample and the residue (bottom) of several glass fiber woven fabrics remaining in the stainless steel basket are shown side by side.

図1は本発明による有価金属と有機物を混合物として含む廃棄物の処理方法及び処理装置を示す図である。まず被処理物である廃棄物1の表面に酸化物半導体2を被覆させる。廃棄物1の表面に酸化物半導体2を被覆させる方法としては、酸化物半導体2の懸濁液に被処理物をディップ・コーティングする方法が最も適している。酸化物半導体2としては、1回限りの使用であるので、最も安価なヘマタイト(酸化鉄、α―Fe)を使用するのが良い。
酸化物半導体2を被覆した廃棄物1を穴径が1mm以上でかつ30mm以下である穴を底面に多数有する処理容器3に収納して、加熱処理室4内に設置する。処理容器3は材質がステンレス製の籠であることが好ましい。加熱処理室4がバッチ式炉の場合には処理後の廃棄物1の取り出しの便宜上から廃棄物1を籠3に入れて加熱処理室4に設置するのが良い。しかし、処理物質が加熱処理室4内を通過するトンネル炉である場合などは、一定の処理量毎に、トンネル炉の前後を遮蔽扉で密閉し、閉じられた前期加熱処理装置の中で作業を行う。この場合、籠は加熱処理室4内では使用せず、処理後の廃棄物を加熱処理室4から取り出した後に篩などにかけて後述の分離を行うのでも良い。空気導入口5から空気を導入しつつ、約500℃程度に加熱処理室4内の温度を上げると、廃棄物1中の有機物は半導体の熱活性(TASC)効果により分解され、低分子のガス状態となって排出口6へ向かう。加熱処理室4において廃棄物は酸化物半導体を坦持した通気性を有する構造体7に包囲されており、酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度以上に加熱されると、TASC効果によりガスの流れ8に沿って排出口6へ向かうガスが浄化され、臭気はほぼ完全に除去される。さらに加熱処理室4の排出口6には、酸化物半導体を坦持した通気性を有する構造体9を備えたVOC浄化装置10が連結されており、TASC効果により、加熱処理室4から排出されVOC浄化装置10を通過するガスは水と二酸化炭素に分解され、臭気は完全に除去されて大気には無害のガスだけが放出される。通気性を有する構造体7および9に担持される酸化物半導体としては最も安定なCr(融点:2200℃)を用いるのが良い。
FIG. 1 is a diagram showing a method and apparatus for treating waste containing a mixture of valuable metals and organic matter according to the present invention. First, an oxide semiconductor 2 is coated on the surface of a waste 1 which is an object to be treated. As a method for coating the surface of the waste 1 with the oxide semiconductor 2, a method of dip-coating the object to be processed in a suspension of the oxide semiconductor 2 is most suitable. As the oxide semiconductor 2, it is preferable to use the cheapest hematite (iron oxide, α-Fe 2 O 3 ) because it is used only once.
A waste material 1 coated with an oxide semiconductor 2 is placed in a processing container 3 having a large number of holes with a hole diameter of 1 mm or more and 30 mm or less on the bottom surface, and placed in a heat treatment chamber 4 . The processing container 3 is preferably a basket made of stainless steel. When the heat treatment chamber 4 is a batch type furnace, it is preferable to put the waste 1 in the basket 3 and install it in the heat treatment chamber 4 for the convenience of taking out the waste 1 after treatment. However, when the material to be treated is a tunnel furnace that passes through the heat treatment chamber 4, the front and rear of the tunnel furnace are sealed with shield doors for each fixed amount of treatment, and work is performed in the closed preheat treatment apparatus. I do. In this case, the basket may not be used in the heat treatment chamber 4, and after the treated waste is taken out from the heat treatment chamber 4, it may be sieved or the like for separation, which will be described later. When the temperature in the heat treatment chamber 4 is raised to about 500° C. while air is introduced from the air inlet 5, the organic substances in the waste 1 are decomposed by the thermal activation (TASC) effect of semiconductors, and low-molecular gases are generated. state and head to the discharge port 6. In the heat treatment chamber 4, the waste is surrounded by an air-permeable structure 7 supporting an oxide semiconductor, and is heated to a temperature higher than the temperature at which a large amount of holes and electrons are generated by interband transition of the oxide semiconductor. Then, the TASC effect purifies the gas along the gas flow 8 towards the outlet 6, and the odor is almost completely removed. Furthermore, a VOC purifying device 10 having a structure 9 supporting an oxide semiconductor and having air permeability is connected to an exhaust port 6 of the heat treatment chamber 4. The gas passing through the VOC purifier 10 is decomposed into water and carbon dioxide, the odor is completely removed and only harmless gas is released into the atmosphere. The most stable Cr 2 O 3 (melting point: 2200° C.) is preferably used as the oxide semiconductor supported by the structures 7 and 9 having air permeability.

ここで、上述の処理の流れの中で起こっている現象を代表的な廃棄物材について説明する。まず酸化鉄(α-Fe:ヘマタイト)を使った「半導体の熱活性」技術(TASC技術)による(塩素、硫黄成分を含まない)“各種のポリマー複合材料”(i)を考えると、ポリマーはTASC法により、小分子化され、燃焼して水と炭酸ガスとなり、複合材料内に含まれていた無機物の充填物は粉黛状の残渣となる。また、塩素・硫黄を成分として含むプラスチック複合材料(ii)はα-Feは塩素系、ないしは硫黄系のポリマーをTASC分解する。分解と同時に、塩素や硫黄が遊離してくるが直ちにα-Feと反応して、FeCl, FeCl、あるいはFeS、FeS等となり、固体粉末として固定化されて飛散することはない。また、塩ビ電線やゴムタイヤも同様である。ポリマーの中に強化材として入っていることがあるガラス・ファイバーの織布や金属はそのまま残存する。また、Si成分は白色のSiOとなり、残渣となる。
廃棄物には硫黄、ハロゲン、ケイ素の少なくともひとつが成分として含まれていることが多い。例えば廃棄物となった電線には、被覆材のポリエチレンとして塩化ビニルが用いられ、かなりの量の難燃剤(ハロゲン系)もふくまれる。また、硫黄を含んだPPS(poly phenylene sulfide)ポリマーの複合化合物もある。ヘマタイトは500℃で活性化され、まず、複合化合物を分解するが、この時点で、塩素や硫黄が噴き出すとヘマタイトは分解され、それぞれ、塩化鉄(FeCl, FeCl)や硫化鉄(FeS, FeS)の形で捕獲され、固体物として黒色の残渣となる。つまり、塩素、硫黄は外には飛散しないので、環境問題を引き起こすことはない
次は分別工程である。上記の残留物を考えると、粉黛化した残渣と形態をあまり変えていない嵩高い電線、織布や金属の2種類となる。従って、加熱処理後は、ステンレス籠を目の粗い篩(例えば穴径が5-15mm)のように使い、籠を振動させて網の隙間から粉黛化した残渣を落とすと、籠の中には有機物、硫黄、ハロゲン、ケイ素は残留しておらず、電線、金属片、織布等の固定化された無機物を篩内に残す方法で容易に分別できて、有価金属を容易に回収することができる。これが本出願の骨子である。TASC処理法は、ポリマーを完全分解できて、黒焦げのポリマーが残存することはないので、篩の中に残存することはない。しかし、ポリマーの複合化合物をTASC処理する場合には、ポリマーのみが除去され、残渣である無機物の充填物が直ちに粉体せずに、そのままの形状で(非常に脆い状態ではあるが)籠内に残存することが多々ある。その場合には、例えば、木製の乳棒(すりこぎ:擂粉木)で軽く潰すと容易に崩れ、直ちに粉体化して解砕され、籠の穴から落下する。このように処理容器である籠内に残留する固定化された無機物である固定無機物に籠の穴径よりも大きな無機物の充填物が含まれている場合には、すりこぎなどによる解砕を併用することが望ましい。解砕を行うのは振動を与える前、振動中、振動を与えた後のいずれの時点であっても良い。
上記のように、本手法は、嵩高い、大量のゴミを生み出す現行の処理方法を逆手にとった課題の処理方法である。
また、上述のステンレス籠、あるいは篩の目の粗さすなわち穴径は、主として、電線ゴミの長さや幾重にも叩かれた金属ゴミの大きさに左右される。目の直径、あるいは目の一辺の長さは、1mmから30mmの範囲とするのが良い。穴径が1mm以上あれば残渣を籠の穴から落下させて分離することが可能であるが、より容易に分離するには穴径が5mm以上であることが好ましい。穴径を30mm以下とすればほとんどの固定無機物は籠内に残留するが、より完全に固定無機物の落下を防ぐには穴径は15mm以下が望ましい。さらに、網目が大きくなると、(籠の板厚にもよるが)籠が歪みやすくなるのでこの点からは穴径は5mmから10mmがより適当である。しかし、ゴミにより形状・大きさも様々であるので、穴径は上述の範囲内で適宜選択すればよい。
Here, the phenomenon occurring in the process flow described above will be described for a representative waste material. First, considering "various polymer composite materials" (not including chlorine and sulfur components) based on "semiconductor thermal activation" technology (TASC technology) using iron oxide (α-Fe 2 O 3 : hematite) (i) , the polymer is reduced to small molecules by the TASC method, combusted into water and carbon dioxide gas, and the inorganic filler contained in the composite material becomes a powdery residue. In the plastic composite material (ii) containing chlorine and sulfur as components, α-Fe 2 O 3 causes TASC decomposition of chlorine-based or sulfur-based polymers. Simultaneously with the decomposition, chlorine and sulfur are liberated, but they immediately react with α-Fe 2 O 3 to form FeCl 2 , FeCl 3 , FeS, FeS 2 , etc., and are fixed as solid powder and scattered. No. The same applies to PVC electric wires and rubber tires. Any woven glass fibers or metals that may have been incorporated into the polymer as reinforcement remain intact. In addition, the Si component becomes white SiO 2 and becomes a residue.
Waste often contains at least one of sulfur, halogen, and silicon as a component. For example, waste electric wires use polyvinyl chloride as the polyethylene coating material and contain a considerable amount of flame retardant (halogen-based). There are also composite compounds of PPS (polyphenylene sulfide) polymers containing sulfur. Hematite is activated at 500° C., and first decomposes a complex compound. At this point, when chlorine and sulfur spout out, hematite is decomposed to form iron chloride (FeCl 2 , FeCl 3 ) and iron sulfide (FeS, FeS 2 ), leaving a black residue as a solid. In other words, since chlorine and sulfur do not scatter outside, they do not cause environmental problems. Next is the separation process. Considering the above residues, there are two types: powdered residues and bulky electric wires, woven fabrics and metals that do not change their shape much. Therefore, after the heat treatment, if the stainless steel basket is used like a coarse sieve (for example, a hole diameter of 5-15 mm) and the basket is vibrated to drop the powdered residue from the gaps in the mesh, Organic substances, sulfur, halogens, and silicon do not remain, and it is possible to easily separate fixed inorganic substances such as electric wires, metal pieces, and woven fabrics in the sieve, and to easily recover valuable metals. can. This is the gist of this application. The TASC process is capable of completely decomposing the polymer, leaving no charred polymer left in the sieve. However, when a polymer composite compound is subjected to TASC treatment, only the polymer is removed, and the remaining inorganic filling is not immediately powdered, but remains in the cage (although it is very brittle). often remain in In that case, for example, when lightly crushed with a wooden pestle (pestle), it crumbles easily, is immediately pulverized and crushed, and falls through a hole in the basket. In this way, when the fixed inorganic matter, which is the fixed inorganic matter remaining in the basket, which is a processing container, contains an inorganic filler that is larger than the hole diameter of the basket, crushing with a pestle or the like is also used. It is desirable to Crushing may be performed at any time before, during, or after applying vibration.
As described above, this method is a problem disposal method that takes advantage of the current disposal method that produces a large amount of bulky waste.
Further, the coarseness of the mesh of the above-mentioned stainless steel cage or sieve, ie, the hole diameter, mainly depends on the length of the electric wire waste and the size of the repeatedly beaten metal waste. The diameter of the eye or the length of one side of the eye is preferably in the range of 1 mm to 30 mm. If the hole diameter is 1 mm or more, it is possible to separate the residue by dropping it through the hole of the basket, but for easier separation, the hole diameter is preferably 5 mm or more. If the hole diameter is 30 mm or less, most of the fixed inorganic substance remains in the cage, but the hole diameter is preferably 15 mm or less to prevent the fixed inorganic substance from dropping more completely. Furthermore, as the mesh becomes larger, the basket is more likely to be distorted (although it depends on the plate thickness of the basket). However, since the shape and size vary depending on the dust, the diameter of the hole may be appropriately selected within the above range.

図2は、廃棄物1である5×10×2mm程度の大きさの「廃プラ/金属屑」混合ゴミで、重量は約100gである。中央には、透明、あるいは白色を帯びたプラスチックが存在し、右下には、金属片が見える。このゴミに酸化物半導体2であるヘマタイトの被覆を行ったサンプルの写真が図3である。ヘマタイト被覆は、ポリマーをバインダーとするヘマタイト分散液にゴミを1-2秒間浸漬し、その後、80℃で30分、空気中で乾燥させた。ヘマタイト2を被覆したゴミ1を穴径1mmの網目を持つステンレスの籠3の中に入れ、空気中で、500℃30分間、(電気炉の内壁に触媒担持ハニカム7で内張した)電気炉4内で熱処理した。処理後に、ステンレス籠3を揺らして振動させた後に、木製の乳棒[(すりこぎ:擂粉木)]で、籠3内に残留する白い固形状の残留物(CaCO)を軽く潰すと直ちに解砕されて粉黛となり、粉黛は穴から落下した。図4は、処理後に回収した落下物(無機残渣:上部)と籠3内に残留した固定無機物から回収した有価金属(下部)を並べて示す。図4に示した残渣が総残渣である。ゴミの重量減少は85%程度であった。
分解処理に使用した電気炉4と外付けのVOC浄化装置10は図1に示す通りである。電気炉である加熱処理室4の内壁には、通気性を有する構造体7である触媒担持ハニカムを張り、ハニカム・ボックスのような形態である。炉床では触媒であるヘマタイト2を被覆した「廃プラスチック/金属屑」ゴミ1が入ったステンレス・スチールの籠3の中に入れ、これを400-500℃空気下で加熱する。有機物のみがTASC分解され、金属屑物等の固定無機物と残渣のみが残存する。「廃プラスチック/金属屑」ゴミの分解に伴い、臭気はまず、被覆材料であるヘマタイトで、分解され、ある程度の小分子化が進行する。同時に分解物から塩素や硫黄が遊離すると、これがヘマタイトと反応して、それぞれFeCl/FeCl、FeS/FeS等となり、炉床に残る。臭気等の気体はハニカム壁7のCr触媒で小分子に裁断化され、炭酸ガスと水に分解される。さらに、電気炉を出た段階で、分子量が大きなガスはCrを担持した通気性を有する構造体9を備えたTASC型のVOC浄化装置10(設定温度:500℃)で無害化される。
FIG. 2 shows the waste 1, which is a "waste plastic/metal scrap" mixture of about 5×10×2 mm in size and weighs about 100 g. Clear or white plastic is present in the center, and a piece of metal can be seen in the lower right. FIG. 3 is a photograph of a sample in which the dust is coated with hematite, which is the oxide semiconductor 2 . The hematite coating was prepared by immersing the dirt in a polymer-binder hematite dispersion for 1-2 seconds and then drying in air at 80° C. for 30 minutes. Dust 1 coated with hematite 2 is placed in a stainless steel basket 3 having mesh holes with a hole diameter of 1 mm, and an electric furnace (the inner wall of the electric furnace is lined with a catalyst-supporting honeycomb 7) in air for 30 minutes at 500°C. 4 heat treated. After the treatment, the stainless steel basket 3 is shaken to vibrate, and then the white solid residue (CaCO 3 ) remaining in the basket 3 is lightly crushed with a wooden pestle [(pestle: mortar)] and immediately pulverized. It turned into dust, and the dust fell from the hole. FIG. 4 shows the fallen matter (inorganic residue: upper part) recovered after treatment and the valuable metal (lower part) recovered from the fixed inorganic matter remaining in the basket 3 side by side. The residue shown in FIG. 4 is the total residue. The weight reduction of garbage was about 85%.
The electric furnace 4 and the external VOC purification device 10 used for the decomposition treatment are as shown in FIG. The inner wall of the heat treatment chamber 4, which is an electric furnace, is covered with a catalyst-carrying honeycomb, which is a structure 7 having air permeability, and is shaped like a honeycomb box. In the hearth, the "waste plastic/metal" waste 1 coated with hematite 2 as a catalyst is placed in a stainless steel basket 3 which is heated to 400-500° C. under air. Only organic substances are decomposed by TASC, leaving only fixed inorganic substances such as metal scraps and residues. As the "waste plastic/metal waste" garbage is decomposed, the odor is first decomposed by the hematite coating material, and the odor progresses to a certain degree of small molecularization. At the same time, when chlorine and sulfur are liberated from the decomposition product, they react with hematite to form FeCl 2 /FeCl 3 , FeS/FeS 2 and the like, respectively, and remain in the hearth. Gases such as odors are chopped into small molecules by the Cr 2 O 3 catalyst of the honeycomb wall 7 and decomposed into carbon dioxide gas and water. Furthermore, at the stage of leaving the electric furnace, the gas with a large molecular weight is detoxified by a TASC type VOC purifier 10 (set temperature: 500° C.) equipped with a breathable structure 9 supporting Cr 2 O 3 . be.

15mm四方の網目を持つステンレス網で直方体の籠3を作り、実施例1と同様のTASC処理を行い、処理後に籠3を振動させながら木製の乳棒(すりこぎ:擂粉木)で、籠3内に残留する固定状の残留物を軽く潰すと直ちに粉黛となり、穴から落下した。電線、金属片、織布等の落下は全く認められなかった。図5に処理後に落下した残渣粉黛(上部)と籠内に残った残留物(下部)を回収し、並べて示す。これらが総残渣である。ステンレス籠内の残留物として、ガラス・ファイバ‐強化繊維(Glass-fiber Reinforced Plastic: GFRP)に内在していたガラス・ファイバーのシートが認められている。ゴミの減少率は93%であった。 A rectangular parallelepiped basket 3 was made from a stainless steel mesh having a mesh of 15 mm square, and the same TASC treatment as in Example 1 was performed. When the remaining solid residue was lightly crushed, it immediately crumbled and fell out of the hole. No electric wires, metal pieces, woven fabrics, etc. were observed to fall. FIG. 5 shows the collected residue powder (upper part) and the residue left in the basket (lower part) side by side. These are total residues. Sheets of glass fibers that were embedded in the Glass-fiber Reinforced Plastic (GFRP) are observed as residue in the stainless steel cage. The waste reduction rate was 93%.

上記実施例1と同様の条件で、100gのゴミ1の集団の処理を行い、良好な分別処理が達成された。総重量のうち、93%の減少が認められた。落下した粉黛はやや黒みを帯びたものが多く、塩素や硫黄からなる鉄化合物であった。また、籠内の残留物の多くは電線であった。 A group of 100 g of garbage 1 was treated under the same conditions as in Example 1 above, and a good sorting treatment was achieved. A 93% reduction in total weight was observed. Many of the fallen powders were slightly blackish, and they were iron compounds composed of chlorine and sulfur. Also, most of the residue in the cage was electric wires.

直径25mmの穴径のパンチング・メタル(ステンレス製)を底にステンレス箱3の中に、120gのゴミ1を入れ、実施例1と同様の条件でTASC処理を行った。落下した粉黛状の残渣と箱内のメタル等の残留物の分離は良好であった。しかし、箱3を振動させると、残留電線は落下することはなかったが、20mm程度の金属片が落下するのが認められた。 120 g of dust 1 was placed in a stainless steel box 3 with a punching metal (made of stainless steel) having a hole diameter of 25 mm at the bottom, and TASC treatment was performed under the same conditions as in Example 1. The powdery residue that fell and the residue such as metal in the box were well separated. However, when the box 3 was vibrated, the remaining electric wire did not drop, but a metal piece of about 20 mm was found to drop.

本発明によれば、混合物である廃棄物中から有価金属を効率的に安価な方法で回収でき、また、硫黄、ハロゲン、ケイ素を成分として含んでいても有害なガスを発生することなく残渣中に捕獲されるので、環境を汚染することなく安全な回収方法及び回収装置を提供でき、産業上の利用可能性は大きい。 According to the present invention, valuable metals can be recovered efficiently and inexpensively from the waste, which is a mixture. Therefore, a safe recovery method and recovery apparatus can be provided without polluting the environment, and the industrial applicability is great.

1 廃棄物
2 酸化物半導体
3 処理容器
4 加熱処理室
5 空気導入口
6 排出口
7 通気性を有する構造体
8 ガスの流れ
9 通気性を有する構造体
10 VOC浄化装置
1 Waste 2 Oxide Semiconductor 3 Processing Container 4 Heat Treatment Chamber 5 Air Inlet 6 Outlet 7 Breathable Structure 8 Gas Flow 9 Breathable Structure 10 VOC Cleaner

Claims (10)

硫黄、ハロゲン、ケイ素の少なくともひとつを成分としたポリマーあるいはポリマー複合化合物、ならびに金属片等からなる無機・有機物の混合廃棄物の処理方法であって、前記廃棄物の表面に酸化物半導体を被覆する工程と、前記酸化物を被覆した前記廃棄物を穴径が1mm以上でかつ30mm以下である穴を底面に多数有する処理容器に収納して加熱処理室に配置する工程と、酸素の存在下、前記酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度で、前記正孔の酸化力を利用して前記廃棄物中の前記有機物を水と二酸化炭素に分解するとともに、前記廃棄物に含まれていた硫黄成分は金属硫化物とし、ハロゲン成分は金属ハロゲン化物とし、ケイ素成分はケイ素酸化物として残渣中に捕獲する工程と、前記処理容器に振動を与えて前記処理容器底面の穴を通して前記残渣を落下させることにより前記処理容器から分離する工程と、前記処理容器内に残存する固定無機物から有価金属を回収する工程を含むことを特徴とする無機・有機物の混合廃棄物の処理方法。 A method for treating inorganic/organic mixed waste comprising a polymer or polymer composite compound containing at least one of sulfur, halogen, and silicon as a component, and metal pieces, etc., wherein the surface of the waste is coated with an oxide semiconductor. a step of storing the waste coated with the oxide in a processing container having a large number of holes having a hole diameter of 1 mm or more and 30 mm or less on the bottom surface and placing the waste in a heat treatment chamber; At a temperature at which a large amount of holes and electrons are generated by interband transition of the oxide semiconductor, the oxidizing power of the holes is used to decompose the organic matter in the waste into water and carbon dioxide, and A step of capturing the sulfur component contained in the waste as a metal sulfide, the halogen component as a metal halide, and the silicon component as a silicon oxide in the residue; a step of separating the residue from the processing container by dropping the residue through a hole in the processing container; and a step of recovering valuable metals from fixed inorganic substances remaining in the processing container. Processing method. 前記分離する工程は、前記処理容器に前記振動を与える前、振動中、振動を与えた後のいずれかの時点にて、前記処理容器内に残存する固定無機物を解砕する工程を含むことを特徴とする請求項に記載の無機・有機物の混合廃棄物の処理方法。 The separating step includes a step of crushing fixed inorganic substances remaining in the processing container before, during, or after applying the vibration to the processing container. The method for treating mixed inorganic-organic waste according to claim 1 . 前記酸化物半導体は酸化鉄(α-Fe)であることを特徴とする請求項1または2に記載の無機・有機物の混合廃棄物の処理方法。 3. The method for treating mixed inorganic-organic waste according to claim 1 , wherein the oxide semiconductor is iron oxide (α-Fe 2 O 3 ). 前記穴径は5mm以上で15mm以下であることを特徴とする請求項1ないし3いずれか1項に記載の無機・有機物の混合廃棄物の処理方法。 4. The method for treating mixed inorganic-organic waste according to any one of claims 1 to 3 , wherein the hole diameter is 5 mm or more and 15 mm or less. 硫黄、ハロゲン、ケイ素の少なくともひとつを成分としたポリマーあるいはポリマー複合化合物、ならびに金属片等からなる無機・有機物の混合廃棄物の処理装置であって、前記廃棄物の表面に酸化物半導体を被覆し、前記酸化物を被覆した前記廃棄物を収納する穴径が1mm以上でかつ30mm以下である穴を底面に多数有する処理容器と、エアを供給するエア供給機構を有する加熱処理室を備え、前記加熱処理室内に設置された前記処理容器が前記酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度以上に加熱されることにより、酸素の存在下で前記正孔の酸化力を利用して前記廃棄物中の前記有機物が水と二酸化炭素に分解されるとともに、前記廃棄物に含まれていた硫黄成分は金属硫化物とし、ハロゲン成分は金属ハロゲン化物とし、ケイ素成分はケイ素酸化物として残渣中に捕獲され、前記処理容器に振動を与えて前記処理容器底面の穴を通して前記残渣が落下することにより前記処理容器から分離され、前記処理容器内に残存する固定無機物から有価金属が回収されることを特徴とする無機・有機物の混合廃棄物の処理装置。 A treatment apparatus for mixed inorganic/organic wastes comprising polymers or polymer composite compounds containing at least one of sulfur, halogen, and silicon, and metal pieces, etc., wherein the surface of the wastes is coated with an oxide semiconductor. a processing container having a bottom surface with a large number of holes having a diameter of 1 mm or more and 30 mm or less for storing the waste coated with the oxide; and a heat processing chamber having an air supply mechanism for supplying air, By heating the processing container installed in the heat processing chamber to a temperature higher than a temperature at which a large amount of holes and electrons are generated by interband transition of the oxide semiconductor, the oxidizing power of the holes is increased in the presence of oxygen. is used to decompose the organic matter in the waste into water and carbon dioxide, the sulfur component contained in the waste is changed to metal sulfide, the halogen component is changed to metal halide, and the silicon component is changed to silicon Valuable metals are separated from the processing container by being trapped in the residue as oxides, vibrating the processing container and causing the residue to fall through a hole in the bottom of the processing container, and remaining in the processing container from fixed inorganic substances. A treatment apparatus for mixed waste of inorganic and organic substances, characterized in that is recovered. 前記処理容器に前記振動を与える前、振動中、振動を与えた後のいずれかの時点にて、前記処理容器内に残存する固定無機物を解砕することを特徴とする請求項に記載の無機・有機物の混合廃棄物の処理装置。 6. The method according to claim 5 , wherein the fixed inorganic matter remaining in the processing container is pulverized before, during, or after the vibration is applied to the processing container. Equipment for processing mixed inorganic and organic waste. 前記酸化物半導体は酸化鉄(α-Fe)であることを特徴とする請求項5または6に記載の無機・有機物の混合廃棄物の処理装置。 7. The apparatus for treating mixed inorganic-organic waste according to claim 5 , wherein the oxide semiconductor is iron oxide (α-Fe 2 O 3 ). 前記穴径は5mm以上で15mm以下であることを特徴とする請求項ないし7いずれか1項に記載の無機・有機物の混合廃棄物の処理装置。 8. The apparatus for treating mixed inorganic-organic waste according to any one of claims 5 to 7, wherein the hole diameter is 5 mm or more and 15 mm or less. 前記加熱処理室は排気口を備え、前記排気口には酸化物半導体を担持した通気性を有する構造体を備えたVOC浄化装置が連結され、前記構造体が、前記酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度以上に加熱されることにより、酸素の存在下、前記正孔の酸化力を利用して前記加熱処理室から排出され前記VOC浄化装置を通過するガスが無害のガスに浄化されることを特徴とする請求項ないし8いずれか1項に記載の無機・有機物の混合廃棄物の処理装置。 The heat treatment chamber has an exhaust port, and a VOC purifier having an air-permeable structure supporting an oxide semiconductor is connected to the exhaust port, and the structure is an interband transition of the oxide semiconductor. By being heated to a temperature higher than the temperature at which a large amount of holes and electrons are generated, the gas is exhausted from the heat treatment chamber and passes through the VOC purifier using the oxidizing power of the holes in the presence of oxygen. 9. An apparatus for treating mixed inorganic-organic waste according to any one of claims 5 to 8, wherein the waste is purified into a harmless gas. 前記加熱処理室内に配置された前記廃棄物は酸化物半導体を坦持した通気性を有する構造体に包囲され、前記構造体は前記加熱処理室内において、前記酸化物半導体のバンド間遷移により大量の正孔と電子とが生成する温度以上に加熱されることにより、酸素の存在下、前記正孔の酸化力を利用して前記廃棄物から排出されるガスを浄化することを特徴とする請求項ないし9いずれか1項に記載の無機・有機物の混合廃棄物の処理装置。

The waste placed in the heat treatment chamber is surrounded by an air-permeable structure that supports an oxide semiconductor. 4. Purifying the gas discharged from the waste using the oxidizing power of the holes in the presence of oxygen by heating to a temperature higher than the temperature at which holes and electrons are generated. 10. The apparatus for treating mixed inorganic/organic waste according to any one of 5 to 9.

JP2019095527A 2019-05-21 2019-05-21 Method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic/inorganic substances Active JP7197909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019095527A JP7197909B2 (en) 2019-05-21 2019-05-21 Method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic/inorganic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095527A JP7197909B2 (en) 2019-05-21 2019-05-21 Method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic/inorganic substances

Publications (2)

Publication Number Publication Date
JP2020189267A JP2020189267A (en) 2020-11-26
JP7197909B2 true JP7197909B2 (en) 2022-12-28

Family

ID=73454265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095527A Active JP7197909B2 (en) 2019-05-21 2019-05-21 Method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic/inorganic substances

Country Status (1)

Country Link
JP (1) JP7197909B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023072515A (en) * 2021-11-12 2023-05-24 株式会社トクヤマ How to dispose of waste solar cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146649A (en) 2012-01-17 2013-08-01 Shinshu Univ Treatment method and treatment apparatus for plastic or plastic composite material
JP2014069137A (en) 2012-09-28 2014-04-21 Astec Irie Co Ltd Method of processing resin covered cable
JP2014177523A (en) 2013-03-14 2014-09-25 Shinshu Univ Method and device for treating plastic composite material
JP2015048427A (en) 2013-09-03 2015-03-16 国立大学法人信州大学 Method of decomposing article
JP2016093804A (en) 2014-11-10 2016-05-26 国立大学法人信州大学 Method of recovering valuable material from solar cell module and processing device for recovery
JP2016190177A (en) 2015-03-31 2016-11-10 国立大学法人信州大学 Method for recovering valuable material from solar battery panel and processing device for recovering the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146649A (en) 2012-01-17 2013-08-01 Shinshu Univ Treatment method and treatment apparatus for plastic or plastic composite material
JP2014069137A (en) 2012-09-28 2014-04-21 Astec Irie Co Ltd Method of processing resin covered cable
JP2014177523A (en) 2013-03-14 2014-09-25 Shinshu Univ Method and device for treating plastic composite material
JP2015048427A (en) 2013-09-03 2015-03-16 国立大学法人信州大学 Method of decomposing article
JP2016093804A (en) 2014-11-10 2016-05-26 国立大学法人信州大学 Method of recovering valuable material from solar cell module and processing device for recovery
JP2016190177A (en) 2015-03-31 2016-11-10 国立大学法人信州大学 Method for recovering valuable material from solar battery panel and processing device for recovering the same

Also Published As

Publication number Publication date
JP2020189267A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
CN1748881A (en) Waste recycling method and device
JP7197909B2 (en) Method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic/inorganic substances
CN114247726A (en) Comprehensive treatment method and system for household garbage
US12183478B2 (en) Treatment method of coated wire
JP2000288527A (en) Waste treatment method
US20070280871A1 (en) Process For Recovery Of The Silica Present In The Separators Between The Elements Of Lead-Acid Batteries
US20130199091A1 (en) Process and system for converting waste material to fuel or synthetic gas feedstock
CN113710959A (en) Method and system for ash treatment
JP2016147437A (en) Method for treating resin waste, and system for treating resin waste
JP2003247710A (en) Integrated treatment method for waste and its device
CN102615087B (en) Method and equipment for obtaining high-quality solid fuel from solid wastes
JP6308325B2 (en) Resin waste processing method and resin waste processing system
JP6860211B2 (en) Resin waste treatment method and resin waste treatment system
JPH09122617A (en) Treatment method for shredder dust of large-sized industrial waste
Boulos et al. Plasma In The Waste Treatment Industry
JP7120296B2 (en) Resin waste treatment method and resin waste treatment system
KR102540977B1 (en) Method for treating e-waste
CN2768912Y (en) waste disposal machine
JPH11197629A (en) Treating method for incinerated fly ash
USH2198H1 (en) Multi-stage pyrolysis systems for treating chlorine contaminated wastes
CA2110400A1 (en) Process for recycling solids, powders and sludges contaminated with mercury
WO2005096745A2 (en) Recycling lead based paint waste
JP2000140790A (en) Compound waste treatment apparatus and treatment method
JP5191752B2 (en) Method for reducing chlorine in waste car shredder dust and method for using waste car shredder dust
Jian-jun et al. A new waste disposal technology-plasma arc pyrolysis system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221209

R150 Certificate of patent or registration of utility model

Ref document number: 7197909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150