[go: up one dir, main page]

JP7126097B2 - Steel plate butt welding method - Google Patents

Steel plate butt welding method Download PDF

Info

Publication number
JP7126097B2
JP7126097B2 JP2020001244A JP2020001244A JP7126097B2 JP 7126097 B2 JP7126097 B2 JP 7126097B2 JP 2020001244 A JP2020001244 A JP 2020001244A JP 2020001244 A JP2020001244 A JP 2020001244A JP 7126097 B2 JP7126097 B2 JP 7126097B2
Authority
JP
Japan
Prior art keywords
steel plate
post
less
heating
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020001244A
Other languages
Japanese (ja)
Other versions
JP2020196044A (en
Inventor
峻秀 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020196044A publication Critical patent/JP2020196044A/en
Application granted granted Critical
Publication of JP7126097B2 publication Critical patent/JP7126097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、板厚変動を考慮した鋼板の突合わせ溶接方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for butt welding steel sheets in consideration of thickness variations.

鋼帯の生産性向上を目的に、冷間圧延工程では、連続圧延ライン上で先行する被圧延材の後端と、それに後行する被圧延材の先端との接合を行う。連続圧延ラインに適用される溶接方法は、一般的にはフラッシュバット溶接(Flash butt welding)とレーザー溶接(Laser Beam welding)がある。
レーザー溶接は、エネルギー密度が高く入熱量が少ないため、フラッシュバット溶接に比べて優れた品質特性が得られる。しかし、高炭素鋼などの溶接では、溶接後の急冷により、溶接部に硬化した低温変態組織(マルテンサイト、ベイナイトが含まれた組織)が発生し、溶接部に亀裂が発生し、溶接部の破断トラブルの原因となってしまう。この溶接部の硬化に対しては、溶接後に再加熱する後加熱処理を行うことで、硬化した溶接部を焼き戻し、軟化させ溶接部の破断トラブル発生を防止している。
後加熱処理をする後加熱処理装置として、高効率で後加熱するためにレーザー溶接装置と一体となった装置が開発されており、後加熱処理は、一般的には高周波誘導コイルを使用した誘導加熱を行う方法が知られている。
For the purpose of improving the productivity of the steel strip, in the cold rolling process, the trailing end of the preceding material to be rolled and the leading end of the following material to be rolled are joined on the continuous rolling line. Welding methods applied to continuous rolling lines generally include flash butt welding and laser beam welding.
Laser welding provides superior quality characteristics compared to flash butt welding due to its high energy density and low heat input. However, when welding high-carbon steel, rapid cooling after welding causes a hardened low-temperature transformation structure (structure containing martensite and bainite) to occur in the weld, causing cracks in the weld. It can cause breakage problems. For this hardening of the welded portion, a post-heating treatment of reheating after welding is performed to temper and soften the hardened welded portion, thereby preventing the welded portion from breaking.
As a post-heating device that performs post-heating, a device integrated with a laser welding device has been developed to perform post-heating with high efficiency. Methods are known to provide heating.

特許文献1には、高炭素鋼板あるいは鋼帯の突合せ溶接において、レーザー溶接を適用し、かつ溶接完了後1分以内に400℃以上、Acl点以下の温度範囲で後加熱処理を行うことを特徴とする高炭素鋼板あるいは鋼帯の溶接方法が開示されている。 In Patent Document 1, laser welding is applied in butt welding of high-carbon steel plates or steel strips, and post-heating is performed in a temperature range of 400 ° C. or higher and Acl point or lower within 1 minute after the completion of welding. Disclosed is a method of welding high carbon steel plates or strips characterized.

特許文献2には、圧延材を連続製造工程のためにレーザー溶接する方法において、低温変態組織が発生する圧延材を相互に接触させる段階と、圧延材の接触部分に対してレーザー溶接して接触部を形成する段階と、圧延材の溶接部に対して加圧機で強制圧下する段階を含む連続製造工程のためのレーザー溶接方法が開示されている。 In Patent Document 2, in a method of laser welding rolled materials for a continuous manufacturing process, a step of contacting rolled materials in which a low temperature transformation structure occurs and laser welding the contact portion of the rolled materials to contact. A laser welding method is disclosed for a continuous manufacturing process that includes the steps of forming a part and applying a pressure press against the welded part of the rolled stock.

特開平5-132719号公報JP-A-5-132719 特開2007-175775号公報JP 2007-175775 A

特許文献1の後加熱処理においては、高周波、火炎、高温ガスなどにより、後加熱処理の温度範囲を限定することにより、高炭素鋼の溶接を短時間かつ簡便に行うことができる。同様に、特許文献2の後加熱処理においても後加熱処理の温度範囲が開示されている。しかしながら、これら従来技術では、板厚変動を考慮した最適な後加熱処理条件を適用して鋼板を溶接する発明ではない。 In the post-heating treatment of Patent Document 1, high-carbon steel can be welded in a short time and simply by limiting the temperature range of the post-heating treatment by high frequency, flame, high-temperature gas, or the like. Similarly, in the post-heating treatment of Patent Document 2, the temperature range of the post-heating treatment is also disclosed. However, these prior arts are not inventions for welding steel sheets by applying optimum post-heat treatment conditions in consideration of plate thickness variations.

本発明は上記課題に鑑みてなされたものであって、鋼板を圧延した際に溶接部の破断トラブル発生を回避でき、コイルの生産性を向上させることを目標とする。 The present invention has been made in view of the above problems, and an object of the present invention is to improve the productivity of coils by avoiding the occurrence of fracture troubles in welded portions when steel sheets are rolled.

図1は、熱間圧延後の鋼帯板厚チャートを表す図である。図1に記載のTOP、ENDは、先行する被圧延材の後端とそれに後行する被圧延材の先端を溶接した箇所を示す。これらの場所では、板厚がその他の場所よりも大きく変動していることがわかる。この箇所で溶接を行った場合、予め設定された設定板厚よりも測定された板厚が大きい場合は後加熱不足、予め設定された設定板厚よりも測定された板厚が小さい場合は後加熱過多となり、最適な熱量の範囲(後加熱の合格範囲)を外れてしまうことがある。これに気付かずに圧延した場合、安定的に最適な条件で後加熱を行うことができず、鋼板を圧延した際に溶接部の破断トラブル発生を回避できずコイルの生産性が低下する。
このように、板厚を考慮して後加熱処理時にその電流値を溶接部ごとに変更して、最適な後加熱処理条件を適用して鋼板を溶接する発明する技術はまだ確立されていなかった。
FIG. 1 is a diagram showing a steel strip thickness chart after hot rolling. TOP and END shown in FIG. 1 indicate locations where the rear end of the preceding material to be rolled and the leading end of the following material to be rolled are welded. It can be seen that the plate thickness fluctuates more at these locations than at other locations. When welding is performed at this point, post-heating is insufficient if the measured plate thickness is greater than the preset setting plate thickness, and post-heating is insufficient if the measured plate thickness is smaller than the preset setting plate thickness. Excessive heating may occur, resulting in deviation from the optimum heat quantity range (passable range for post-heating). If the rolling is performed without noticing this, the post-heating cannot be stably performed under the optimum conditions, and the occurrence of troubles such as breakage of the weld zone cannot be avoided when the steel sheet is rolled, resulting in a decrease in the productivity of the coil.
In this way, there has not yet been established a technique for welding steel sheets by changing the current value for each weld zone during post-heating treatment in consideration of the plate thickness and applying the optimum post-heating conditions. .

本発明は上記知見に基づいたものであり、以下[1]~[8]を提供する。
[1] 先行鋼板と後行鋼板とを突合せ溶接する方法であって、前記先行鋼板と前記後行鋼板のそれぞれの溶接部となる部分の板厚を測定する板厚測定工程と、前記先行鋼板と前記後行鋼板とを突合せ溶接する溶接工程と、前記板厚測定工程で測定された前記板厚に基づいて前記突合せ溶接後に前記溶接部を加熱するための後加熱電流値を決定する後加熱決定工程と、前記後加熱決定工程で決定した前記後加熱電流値に基づいて前記それぞれの溶接部を加熱する工程と、を含む、鋼板の突合せ溶接方法。
[2] 前記後加熱決定工程において、前記板厚測定工程で測定された前記先行鋼板の溶接部となる部分の板厚と、前記後行鋼板の溶接部となる部分の板厚との平均測定板厚に基づいて前記後加熱電流値を決定する、[1]に記載の鋼板の突合せ溶接方法。
[3] 前記後加熱決定工程において、予め設定された後加熱電流値と、前記先行鋼板と前記後行鋼板の平均設定板厚と、平均測定板厚とに基づいて下記式(1)を満足するように後加熱電流値を決定する、[1]または[2]に記載の鋼板の突合せ溶接方法。
The present invention is based on the above findings, and provides [1] to [8] below.
[1] A method of butt-welding a preceding steel plate and a succeeding steel plate, comprising a plate thickness measuring step of measuring the plate thickness of each welded portion of the preceding steel plate and the succeeding steel plate, and the preceding steel plate. A welding step of butt-welding the following steel plate and a post-heating current value for heating the welded portion after the butt welding based on the plate thickness measured in the plate thickness measuring step. Post-heating A steel plate butt welding method, comprising: a determining step; and heating the respective welded portions based on the post-heating current values determined in the post-heating determining step.
[2] In the post-heating determination step, the average measurement of the plate thickness of the portion to be the weld of the preceding steel plate measured in the plate thickness measurement step and the plate thickness of the portion to be the weld of the succeeding steel plate The steel plate butt welding method according to [1], wherein the post-heating current value is determined based on the plate thickness.
[3] In the post-heating determination step, the following formula (1) is satisfied based on the preset post-heating current value, the average set thickness of the preceding steel sheet and the succeeding steel sheet, and the average measured thickness. The steel plate butt welding method according to [1] or [2], wherein the post-heating current value is determined so as to

Figure 0007126097000001
設定は予め設定された後加熱電流、l設定は平均設定板厚、I補正後は後加熱電流値、l測定は平均測定板厚を示す。
Figure 0007126097000001
I setting indicates a preset post-heating current, l setting indicates an average set plate thickness, post-heating current value after I correction , and l measurement indicates an average measured plate thickness.

[4] 前記先行鋼板と前記後行鋼板の硬度は、ビッカース硬さが100HV以上1000HV以下である、[1]~[3]のいずれかに記載の鋼板の突合せ溶接方法。
[5] 前記先行鋼板と前記後行鋼板との突合せ溶接により形成された溶接部の硬度は、ビッカース硬さが100HV以上1000HV以下である、[1]~[4]のいずれかに記載の鋼板の突合せ溶接方法。
[6] 先行鋼板および後行鋼板は、質量%で、C:0.5%以上、
Si:0.1%以上0.5%以下、
Mn:0.3%以上0.6%以下、
P:0.05%以下、
S:0.05%以下、
Cu:0.5%以下、
Ni:3%以下、
Cr:0.05%以上0.5%以下、
Al:0.05%以下、
残部Feおよび不可避的不純物からなる成分組成を有する、[1]~[5]のいずれかに記載の鋼板の突合せ溶接方法。
[7] 先行鋼板および後行鋼板は、質量%で、C:0.5%以上2.2%以下、
Si:0.1%以上0.5%以下、
Mn:0.3%以上0.6%以下、
P:0.05%以下、
S:0.05%以下、
Cu:0.5%以下、
Ni:3%以下、
Cr:0.05%以上0.5%以下、
Al:0.05%以下、
残部Feおよび不可避的不純物からなる成分組成を有する、[6]に記載の鋼板の突合せ溶接方法。
[8] 前記突合せ溶接は、レーザー溶接方法である、[1]~[7]のいずれかに記載の鋼板の突合せ溶接方法。
[4] The steel plate butt welding method according to any one of [1] to [3], wherein Vickers hardness of the preceding steel plate and the following steel plate is 100 HV or more and 1000 HV or less.
[5] The steel plate according to any one of [1] to [4], wherein the hardness of the weld formed by butt welding the preceding steel plate and the following steel plate has a Vickers hardness of 100 HV or more and 1000 HV or less. butt welding method.
[6] The preceding steel sheet and the succeeding steel sheet, in mass%, C: 0.5% or more,
Si: 0.1% or more and 0.5% or less,
Mn: 0.3% or more and 0.6% or less,
P: 0.05% or less,
S: 0.05% or less,
Cu: 0.5% or less,
Ni: 3% or less,
Cr: 0.05% or more and 0.5% or less,
Al: 0.05% or less,
The method for butt welding steel sheets according to any one of [1] to [5], wherein the steel plate has a chemical composition consisting of the balance Fe and unavoidable impurities.
[7] The preceding steel sheet and the succeeding steel sheet, in mass%, C: 0.5% or more and 2.2% or less,
Si: 0.1% or more and 0.5% or less,
Mn: 0.3% or more and 0.6% or less,
P: 0.05% or less,
S: 0.05% or less,
Cu: 0.5% or less,
Ni: 3% or less,
Cr: 0.05% or more and 0.5% or less,
Al: 0.05% or less,
The steel plate butt welding method according to [6], wherein the steel plate has a chemical composition consisting of the balance Fe and unavoidable impurities.
[8] The butt welding method for steel plates according to any one of [1] to [7], wherein the butt welding is a laser welding method.

本発明によれば、後加熱処理条件のうち後加熱電流値を変化させることで、板厚変動を考慮して後加熱不足や後加熱過多を防ぎ、安定的に溶接部の後加熱処理を行うことができるため、鋼板を圧延した際に溶接部の破断トラブル発生を回避し、コイルの生産性を向上させることができる。 According to the present invention, by changing the post-heating current value among the post-heating conditions, insufficient post-heating or excessive post-heating is prevented in consideration of plate thickness variations, and the post-heating of the weld is performed stably. Therefore, when the steel plate is rolled, it is possible to avoid the trouble of breaking the welded portion and improve the productivity of the coil.

熱間圧延後の鋼帯板厚チャートを表す図である。It is a figure showing the steel strip board thickness chart after hot rolling. 本発明の突合せ溶接方法のフローを表す図である。It is a figure showing the flow of the butt welding method of the present invention. (a)は、後加熱処理装置がレーザー溶接装置と一体となった溶接機の概念図である。(b)は、後加熱処理装置がレーザー溶接装置と一体となった溶接機の概念断面図である。(a) is a conceptual diagram of a welding machine in which a post-heat treatment device is integrated with a laser welding device. (b) is a conceptual cross-sectional view of a welder in which a post-heat treatment device is integrated with a laser welding device. 高炭素当量材のエリクセン試験後の試験片の溶接部の割れ方が合格範囲内となる、最適な平均設定板厚と電流値の相関関係を示す図である。FIG. 10 is a diagram showing the correlation between the optimal average set plate thickness and the current value that allows cracking of the welded portion of the test piece after the Erichsen test of the high carbon equivalent material is within the acceptable range. 本発明における鋼板溶接前の鋼板板厚測定方法を表す図である。It is a figure showing the steel plate plate|board thickness measuring method before steel plate welding in this invention.

本発明の好ましい実施形態を以下に述べる。
本発明の鋼板の突合せ溶接方法は、鋼帯の端部である先行鋼板と別の鋼帯の端部である後行鋼板とを突合せ溶接する方法であって、先行鋼板と後行鋼板のそれぞれの溶接部となる部分の板厚を測定する板厚測定工程と、先行鋼板と後行鋼板とを突合せ溶接する溶接工程と、板厚測定工程で測定された上記板厚に基づいて突合せ溶接後に上記溶接部を加熱するための後加熱電流値を決定する後加熱決定工程と、後加熱決定工程で決定した後加熱電流値に基づいて上記溶接部を加熱する工程(後加熱工程ともいう)とを含む。
図2は、本発明の突合せ溶接方法のフローを表す図である。本発明の鋼板の突合せ溶接方法は、図2に示すような順番にて実施されることが好ましいが、溶接工程と後加熱決定工程の順番が入れ替わっていてもよい。または、溶接工程、板厚測定工程、後加熱決定工程、後加熱工程の順に行うことも可能である。
Preferred embodiments of the invention are described below.
The steel plate butt welding method of the present invention is a method of butt welding a preceding steel plate that is an end of a steel strip and a following steel plate that is an end of another steel strip, wherein the preceding steel plate and the following steel plate are respectively After butt welding based on the plate thickness measured in the plate thickness measurement process of measuring the plate thickness of the part that will be the welded part, the welding process of butt welding the preceding steel plate and the following steel plate, and the plate thickness measured in the plate thickness measurement process a post-heating determination step of determining a post-heating current value for heating the weld; and a step of heating the weld based on the post-heating current value determined in the post-heating determination step (also referred to as a post-heating step). including.
FIG. 2 is a diagram showing the flow of the butt welding method of the present invention. The steel plate butt welding method of the present invention is preferably performed in the order shown in FIG. 2, but the order of the welding process and the post-heating determination process may be changed. Alternatively, the welding process, plate thickness measurement process, post-heating determination process, and post-heating process may be performed in this order.

本発明において、熱間圧延工程において製造された鋼帯を用いて、冷間圧延工程における鋼帯の先行鋼板と別の鋼帯の後行鋼板を接合する際の、最適な後加熱決定条件を見出すことに特徴を有する。
本発明において、先行鋼板とは、溶接工程において製造ラインを先行する鋼帯を指し、後行鋼板とは先行鋼板の直後に配置される別の鋼帯を指す。
本発明において、図3(a)及び(b)に示すように、後加熱処理装置がレーザー溶接装置と一体となった装置を用いてもよい。後加熱処理装置30が一体となったレーザー溶接装置20では、アジャスティングロール、加工ヘッド、バックロール、スエージングロール(図示なし)と、後加熱処理装置30が一体で動作する。例えば図3(a)および(b)に示すように、レーザー溶接装置20と後加熱処理装置30は冷間圧延工程における鋼帯の先行鋼板10と別の鋼帯の後行鋼板11の溶接部50になる端部に対して、上下に配置される。レーザー溶接装置20が図3(a)中の矢印の方向に進むことにより、先行鋼板10と後行鋼板11が突合せ溶接されるとともに、後加熱処理装置30によって溶接部50が後加熱処理される。
なお、ここで用いる先行鋼板と後行鋼板の溶接部にあたる鋼板の端部は、図1からわかるように、板厚が端部で大きく変動していることがわかる。この箇所で溶接を行った場合、予め設定された板厚よりも端部の板厚が大きい場合は後加熱不足になり、予め設定された板厚よりも端部の板厚が小さい場合は後加熱過多となり、最適な後加熱の熱量の範囲(合格範囲)を外れてしまうことがある。そこで本発明者は、平均設定板厚(一組の先行鋼板と後行鋼板の予め設定されている板厚を平均化した値。後述の平均設定板厚の算出方法を参照。)2.0mm~2.5mmにおいて、電流値(A)50A~130Aの範囲で10Aずつ電流値を変えて、エリクセン試験後の試験片の溶接部の割れ方が合格範囲内となる最適な平均設定板厚と電流値の相関関係を調べた。結果を図4に示す。
図4は、X軸を平均設定板厚(mm)、Y軸を後加熱の電流値(A)として、高炭素当量材のエリクセン試験後の試験片の溶接部の割れ方が合格範囲内となる、最適な平均設定板厚と電流値の相関関係を示す図である。図4に示すように、平均設定板厚2.0mmでは、電流値90Aが最適(図中〇で示される)であり、平均設定板厚が2.25mmでは、電流値90~100Aが最適(図中〇で示される)であり、平均設定板厚が2.5mmでは、電流値90~100Aが最適(図中〇で示される)な電流値であった。図4より、それぞれの平均板厚に対する後加熱電流値が合格範囲内(図中の〇で示される箇所)であれば割れ方に問題がなく、鋼帯を圧延した場合に生じ得る溶接部の破断トラブルの発生を防ぐことが出来る。一方、合格範囲外(図中の×で示される箇所)であると、割れ方に問題があり、鋼帯を圧延した場合、溶接部の破断トラブルの発生の原因となる。
In the present invention, using a steel strip manufactured in a hot rolling process, the optimal post-heating determination conditions when joining a preceding steel strip of a steel strip in a cold rolling process and a succeeding steel strip of another steel strip are determined. It has the characteristic of finding out.
In the present invention, the preceding steel plate refers to a steel strip that precedes the production line in the welding process, and the following steel plate refers to another steel strip that is arranged immediately after the preceding steel plate.
In the present invention, as shown in FIGS. 3(a) and 3(b), a device in which the post-heat treatment device is integrated with the laser welding device may be used. In the laser welding device 20 in which the post-heating device 30 is integrated, the adjusting roll, processing head, back roll, swaging roll (not shown) and the post-heating device 30 operate integrally. For example, as shown in FIGS. 3(a) and 3(b), the laser welding device 20 and the post-heat treatment device 30 are welded between the preceding steel strip 10 and the succeeding steel strip 11 of another steel strip in the cold rolling process. It is arranged above and below with respect to the end which becomes 50 . As the laser welding device 20 advances in the direction of the arrow in FIG. 3A, the leading steel plate 10 and the trailing steel plate 11 are butt-welded, and the welded portion 50 is post-heated by the post-heating device 30. .
As can be seen from FIG. 1, it can be seen that the thickness of the end portion of the steel plate corresponding to the welded portion between the leading steel plate and the trailing steel plate used here varies greatly at the end portion. If welding is performed at this point, post-heating will be insufficient if the edge thickness is greater than the preset thickness, and if the edge thickness is smaller than the preset thickness, the post-heating will be insufficient. Excessive heating may occur, and the amount of heat for post-heating may fall outside the optimum range (acceptable range). Therefore, the present inventors determined that the average set plate thickness (a value obtained by averaging the preset plate thicknesses of a pair of preceding steel plates and subsequent steel plates. See the method for calculating the average set plate thickness described below.) 2.0 mm ~ 2.5 mm, the current value (A) is changed by 10 A in the range of 50 A to 130 A, and the cracking of the welded part of the test piece after the Erichsen test is within the acceptable range. Correlations of current values were investigated. The results are shown in FIG.
In FIG. 4, the X-axis is the average set plate thickness (mm), and the Y-axis is the current value of post-heating (A). It is a diagram showing the correlation between the optimum average set plate thickness and the current value. As shown in FIG. 4, when the average set plate thickness is 2.0 mm, the optimum current value is 90 A (indicated by ○ in the figure), and when the average set plate thickness is 2.25 mm, the optimum current value is 90 to 100 A ( ), and when the average set plate thickness was 2.5 mm, the optimum current value was 90 to 100 A (indicated by ◯ in the figure). From Fig. 4, if the post-heating current value for each average plate thickness is within the acceptable range (points indicated by ○ in the figure), there is no problem with cracking, and welds that can occur when the steel strip is rolled. It is possible to prevent the occurrence of breakage troubles. On the other hand, if it is out of the acceptable range (the location indicated by x in the figure), there is a problem with cracking, and when the steel strip is rolled, it causes the occurrence of fracture troubles at the welded portion.

板厚測定工程とは、溶接前に、先行鋼板及び後行鋼板の溶接部となる部分の板厚を測定することである。なお、板厚測定工程は、先行鋼板及び後行鋼板それぞれの幅中央1点を測定する方法や(図5参照)、溶接機に付随した板厚計で溶接部の全幅を測定する方法がある。例えば、先行鋼板及び後行鋼板それぞれの幅中央1点を測定する方法の場合、図5に示すような、鋼帯の上下を挟み込むレーザー変位計である板厚計40を用いて、先行鋼板10および後行鋼板11それぞれの幅中央1点の板厚を測定すればよい。また、溶接機に付随した板厚計で溶接部の全幅の板厚を測定する方法の場合、測定された全幅の板厚のうち、任意の複数の位置における板厚を、後加熱電流値を決定するための板厚として用いればよい。例えば、幅方向3点の板厚を用いて後加熱電流値を決定する方法が例示される。
板厚測定工程で測定された先行鋼板の溶接部となる部分の板厚と、後行鋼板の溶接部となる部分の板厚との平均測定板厚に基づいて後加熱電流値を決定することにより、最適な熱量で溶接部の後加熱処理を行うことができ、鋼帯を圧延した場合に生じうる溶接部の破断トラブルの発生を防ぐことが出来る。なお、先行鋼板および後行鋼板の溶接部となる部分の板厚とは、図5に示すように、先行鋼板および後行鋼板の端部の板厚(図5の50-1、50-2)のことをいう。
The plate thickness measurement step is to measure the plate thickness of the portions to be welded between the preceding steel plate and the succeeding steel plate before welding. In the plate thickness measurement process, there is a method of measuring one point at the center of the width of each of the preceding steel plate and the following steel plate (see Fig. 5), and a method of measuring the full width of the welded part with a plate thickness gauge attached to the welding machine. . For example, in the case of the method of measuring one width center point of each of the leading steel plate and the trailing steel plate, the leading steel plate 10 is and the following steel plate 11 may be measured at one point in the center of the width thereof. In addition, in the case of the method of measuring the plate thickness of the entire width of the welded part with a plate thickness gauge attached to the welding machine, the plate thickness at arbitrary multiple positions among the measured plate thickness of the full width is measured, and the post-heating current value is It may be used as the plate thickness for determination. For example, a method of determining the post-heating current value using the plate thickness at three points in the width direction is exemplified.
Determining the post-heating current value based on the average measured plate thickness of the plate thickness of the portion to be the weld of the preceding steel plate and the plate thickness of the portion to be the weld of the subsequent steel plate measured in the plate thickness measurement process. As a result, it is possible to perform the post-heating treatment of the weld zone with an optimum amount of heat, and to prevent the trouble of breaking the weld zone, which may occur when the steel strip is rolled. As shown in FIG. 5, the plate thicknesses of the welded portions of the preceding steel plate and the succeeding steel plate refer to the plate thicknesses of the ends of the preceding steel plate and the succeeding steel plate (50-1 and 50-2 in FIG. 5). ).

本発明の溶接工程は、先行鋼板と後行鋼板とを突合せ溶接する工程である。本発明の連続圧延ラインに適用される溶接方法は、レーザー溶接を用いることが好ましい。
本発明におけるレーザー溶接は、鋼板を突合せ、鋼板間を0.2mm未満とし、鋼板間にワイヤーを送りながら、レーザーで鋼板及びワイヤーを溶かし込みながら溶接する。
レーザー溶接は、エネルギー密度が高く入熱量が少ないため、フラッシュバット溶接に比べて優れた品質特性が得られる。しかしながら、高炭素当量材などを用いる溶接では、溶接後の急冷により、溶接部に硬化した低温変態組織(マルテンサイト、ベイナイトが含まれた組織)が発生するため溶接部に亀裂が発生し、溶接部の破断トラブルの原因となってしまう。この溶接部の硬化に対しては、溶接後に加熱する後加熱を行うことで、硬化した溶接部を焼戻し、軟化させて溶接部の破断トラブル発生を防止することが知られている。
The welding process of the present invention is a process of butt-welding a preceding steel plate and a succeeding steel plate. Laser welding is preferably used as the welding method applied to the continuous rolling line of the present invention.
In the laser welding of the present invention, the steel sheets are butted against each other, the distance between the steel sheets is set to less than 0.2 mm, and the steel sheets and the wire are melted by a laser while feeding a wire between the steel sheets.
Laser welding provides superior quality characteristics compared to flash butt welding due to its high energy density and low heat input. However, in welding using high carbon equivalent materials, etc., rapid cooling after welding produces a hardened low-temperature transformation structure (structure containing martensite and bainite) in the weld, which causes cracks in the weld. It will cause the breakage trouble of the part. As for the hardening of the welded portion, it is known that post-heating is performed after welding to temper and soften the hardened welded portion, thereby preventing the welded portion from breaking.

本発明において、先行鋼板および後行鋼板は、質量%で、C:0.5%以上、Si:0.1%以上0.5%以下、Mn:0.3%以上0.6%以下、P:0.05%以下、S:0.05%以下、Cu:0.5%以下、Ni:3%以下、Cr:0.05%以上0.5%以下、Al:0.05%以下、残部Feおよび不可避的不純物からなる成分組成を有することが好ましく、このような成分組成を有する先行鋼板と後行鋼板を溶接することで、発生する低温変態組織起因の溶接部の破断トラブルを防止するためのものである。なお、C量については、2.2%以下であることがより好ましい。また、不可避的不純物としては、例えば、N、Ti、Nb、V、W、B、Mo、Zr、Sn、Sb、Ta、Ca、Mg、Ce、La、REM等が挙げられ、これらの含有量は、合計で0.5質量%以下であれば許容できる。 In the present invention, the preceding steel sheet and the succeeding steel sheet are, in mass%, C: 0.5% or more, Si: 0.1% or more and 0.5% or less, Mn: 0.3% or more and 0.6% or less, P: 0.05% or less, S: 0.05% or less, Cu: 0.5% or less, Ni: 3% or less, Cr: 0.05% or more and 0.5% or less, Al: 0.05% or less , the balance being Fe and unavoidable impurities. By welding a preceding steel sheet and a subsequent steel sheet having such a composition, it is possible to prevent fracture troubles in the weld zone caused by the low-temperature transformation structure that occurs. It is for In addition, it is more preferable that the amount of C is 2.2% or less. In addition, the unavoidable impurities include, for example, N, Ti, Nb, V, W, B, Mo, Zr, Sn, Sb, Ta, Ca, Mg, Ce, La, REM, etc., and the content of these is allowable if it is 0.5% by mass or less in total.

なお、先行鋼板と後行鋼板の硬度は、ビッカース硬さが100HV以上1000HV以下であると好ましく、100HV以上400HV以下であるとより好ましく、100HV以上200HV以下であると更に好ましい。上記範囲内であると、溶接部の破断トラブルが発生しにくい。
また、先行鋼板と後行鋼板との突合せ溶接により形成された溶接部の硬度は、ビッカース硬さが100HV以上1000HV以下であると好ましく、100HV以上400HV以下であるとより好ましく、100HV以上200HV以下であると更に好ましい。上記範囲内であると、先行鋼板および後行鋼板と溶接部の硬度差が小さいため、溶接部の破断トラブルが発生しにくい。
なお、上述のビッカース硬さは、JIS Z2244:2009に基づいて測定すればよい。
The Vickers hardness of the preceding steel sheet and the succeeding steel sheet is preferably 100 HV or more and 1000 HV or less, more preferably 100 HV or more and 400 HV or less, and even more preferably 100 HV or more and 200 HV or less. If it is within the above range, troubles of breakage of the welded portion are less likely to occur.
In addition, the hardness of the welded portion formed by butt welding the preceding steel plate and the following steel plate has a Vickers hardness of preferably 100 HV or more and 1000 HV or less, more preferably 100 HV or more and 400 HV or less, and 100 HV or more and 200 HV or less. It is even more preferable to have Within the above range, the difference in hardness between the preceding steel plate and the subsequent steel plate and the welded portion is small, so that the fracture trouble of the welded portion is less likely to occur.
The above Vickers hardness may be measured based on JIS Z2244:2009.

鋼板の材料となる高炭素当量材は、炭素当量の多い鋼種ほどマルテンサイト化されるため、溶接部のみ硬化してその他の鋼板の箇所との硬度差が生じる。よって、溶接部を後加熱処理することで、焼戻しマルテンサイトとして軟化させ、溶接部と鋼板の硬度差を低下させることが好ましい。したがって、本発明では、先行鋼板と後行鋼板との突合せ溶接により形成された溶接部の硬度は、ビッカース硬さが100HV以上1000HV以下であることが好ましい。 A high carbon equivalent material that is used as a material for a steel plate is martensitic as the steel type has a higher carbon equivalent. Therefore, it is preferable to subject the weld zone to a post-heat treatment to soften it as tempered martensite and reduce the difference in hardness between the weld zone and the steel plate. Therefore, in the present invention, the hardness of the welded portion formed by butt welding the preceding steel plate and the succeeding steel plate preferably has a Vickers hardness of 100 HV or more and 1000 HV or less.

後加熱処理において、溶接部の板厚変動を考慮せずに均一な熱量で溶接部に後加熱処理を適用させると、予め設定された板厚よりも厚い場合の後加熱不足や、予め設定された板厚よりも薄い場合の後加熱過多を防ぐことが難しい。このような場合、最適な後加熱の熱量の範囲(合格範囲ともいう)を外れてしまい、安定的に後加熱処理を行うことや、板を圧延した際に溶接部の破断トラブル発生を回避できず、コイルの生産性が低下する。 In the post-heating process, if the post-heating process is applied to the welded part with a uniform amount of heat without considering the plate thickness variation of the welded part, there may be insufficient post-heating when the plate thickness is greater than the preset value, or the pre-set value. It is difficult to prevent excessive post-heating when the plate thickness is thinner than the plate thickness. In such a case, the optimum post-heating heat quantity range (also called the acceptable range) is exceeded, and it is difficult to perform post-heating treatment stably and to avoid problems such as breakage of the weld zone when the plate is rolled. However, the productivity of the coil decreases.

そこで、本発明は後加熱処理において、均一な熱量で溶接部に後加熱処理をするのではなく、板厚測定工程で測定された板厚に基づいて、突合せ溶接後に溶接部を加熱するための後加熱電流値を決定し、溶接部を加熱する。
本発明の後加熱決定工程において、板厚測定工程で測定された先行鋼板の溶接部となる部分の板厚と、後行鋼板の溶接部となる部分の板厚との平均測定板厚に基づいて後加熱電流値を決定する工程である。
Therefore, in the post-heating treatment, the welded part is heated after butt welding based on the plate thickness measured in the plate thickness measurement process, instead of post-heating the welded part with a uniform amount of heat. Determine the post-heating current value and heat the weld.
In the post-heating determination step of the present invention, based on the average measured plate thickness of the plate thickness of the portion to be the weld of the preceding steel plate measured in the plate thickness measurement step and the plate thickness of the portion to be the weld of the subsequent steel plate is a step of determining the post-heating current value.

はじめに、一組の先行鋼板と後行鋼板の予め設定されている板厚を平均化して平均板厚を算出する(平均設定板厚)。そして、その平均設定板厚を後加熱する場合の電流値も割り出す(平均設定電流、すなわち予め設定された後加熱電流値)。
次に、上記の先行鋼板と上記の後行鋼板の測定板厚を平均化して平均測定板厚を算出する。
ここでの平均化とは、先行鋼板と後行鋼板の板厚を足して2で割ることを云う。
最後に、下記式(3)に表される後加熱温度算出式の中の板厚(l)、後加熱電流値(I)を基に下記式(2)を導きだす。次に、下記式(2)を基にして下記式(1)に平均設定板厚、平均設定電流、平均測定板厚を代入して、後加熱電流値を算出する。後加熱電流値とは、前述の通り導かれた電流値であり、後加熱処理に用いられる電流値である。
上記手順により算出された後加熱電流値を後加熱処理条件とし、各溶接部の後加熱処理を行う。
First, the pre-set plate thicknesses of a pair of leading steel plates and trailing steel plates are averaged to calculate an average plate thickness (average set plate thickness). Then, a current value for post-heating the average set plate thickness is also determined (average set current, that is, a preset post-heating current value).
Next, the average measured plate thickness is calculated by averaging the measured plate thicknesses of the preceding steel plate and the following steel plate.
Averaging here means adding the plate thicknesses of the preceding steel plate and the succeeding steel plate and dividing by two.
Finally, the following formula (2) is derived based on the plate thickness (l) and the post-heating current value (I) in the post-heating temperature calculation formula represented by the following formula (3). Next, the post-heating current value is calculated by substituting the average set plate thickness, the average set current, and the average measured plate thickness into the following formula (1) based on the following formula (2). The post-heating current value is the current value derived as described above, and is the current value used for the post-heating treatment.
The post-heating current value calculated by the above procedure is used as the post-heating treatment condition, and the post-heating treatment is performed on each welded portion.

Figure 0007126097000002
ここで、Tは後加熱温度、Rは抵抗、Iは後加熱電流値、ρは密度、cは比熱、wは後加熱幅、vは溶接速度、lは板厚、Tは後加熱前温度を示している。
Figure 0007126097000002
Here, T is post-heating temperature, R is resistance, I is post-heating current value, ρ is density, c is specific heat, w is post-heating width, v is welding speed, l is plate thickness, T 0 is before post-heating showing the temperature.

Figure 0007126097000003
Figure 0007126097000003

Figure 0007126097000004
設定は、予め設定された後加熱電流、l設定は、平均設定板厚、I補正後は、後加熱電流値、l測定は、平均測定板厚を示している。
Figure 0007126097000004
I setting indicates a preset post-heating current, l setting indicates an average set plate thickness, post-heating current value after I correction , and l measurement indicates an average measured plate thickness.

上記の通り算出された後加熱電流値を後加熱処理条件とし、溶接部を加熱する工程を行う。先行鋼板、後行鋼板それぞれの幅中央1点のみ測定した場合は、後加熱電流値の算出及び設定は一度行えば後加熱処理条件を得ることが出来るが、溶接機に板厚計を付随させた場合は、複数回算出及び設定を行う必要がある。なお、本発明において、式(1)により算出される後加熱電流値の±10%以内を後加熱熱処理条件とすることが好ましく、±5%以内がより好ましい
本発明の後加熱処理は、誘導加熱による後加熱処理装置にて行われることが好ましい。
本発明に用いられたレーザー溶接装置の仕様は、発振器出力12kW、発振器モード:低次マルチモード(TEM01)、シールドガス:COガスであるが、この仕様に限定されない。
また、本発明に用いられた後加熱処理装置の仕様は、高周波誘電コイルを使用した装置で、加熱面積が72mm×380mm、定格出力40kW、周波数30kHz、加熱方法は移動式であるが、この仕様に限定されない。
The post-heating current value calculated as described above is used as the post-heating treatment condition, and the step of heating the welded portion is performed. If only one point in the center of the width of each of the preceding steel plate and the following steel plate is measured, the post-heating conditions can be obtained by calculating and setting the post-heating current value once. If so, it is necessary to perform calculation and setting multiple times. In the present invention, the post-heating heat treatment condition is preferably within ±10% of the post-heating current value calculated by formula (1), more preferably within ±5%. It is preferably carried out in a post-heat treatment apparatus by heating.
The specifications of the laser welding apparatus used in the present invention are an oscillator output of 12 kW, oscillator mode: low-order multimode (TEM01), and shield gas: CO2 gas, but are not limited to these specifications.
In addition, the specifications of the post-heating apparatus used in the present invention are that it uses a high-frequency induction coil, has a heating area of 72 mm x 380 mm, a rated output of 40 kW, a frequency of 30 kHz, and a mobile heating method. is not limited to

誘導加熱にて後加熱を行う場合、後加熱処理条件として、後加熱時の温度ではなく上記の後加熱決定工程に基づいて算出された後加熱時の電流値(熱量)を適用して後加熱を行う。そのため、最適な後加熱温度が同じである鋼板であっても、最適な電流値は鋼板の厚さによってそれぞれ異なるため、溶接部ごとに電流値を設定している。 When post-heating is performed by induction heating, the current value (calorie) during post-heating calculated based on the above post-heating determination step is applied as the post-heating treatment condition instead of the temperature during post-heating. I do. Therefore, even for steel sheets having the same optimum post-heating temperature, the optimum current value differs depending on the thickness of the steel sheet, so the current value is set for each weld zone.

本発明による好ましい実施例について説明するが、下記に限定されたものではない。 Preferred embodiments in accordance with the present invention are described below, but are not limited thereto.

成分組成として、質量%で、C:0.95%、Si:0.2%、Mn:0.45%、P:0.01%、S:0.01%、Cu:0.08%、Ni:0.08%、Cr:0.2%、Al:0.01%、残部Feおよび不可避的不純物を含有する鋼板を、先行鋼板および後行鋼板として用いた。
先行鋼板10と後行鋼板11の予め設定した板厚を平均化した平均設定板厚と、先行鋼板と後行鋼板の端部の幅中央を板厚計40を用いて測定し、これらを平均化した平均測定板厚の結果を、下記表1に示す。
板厚計40では、鋼板と垂直になるように上下からレーザーを照射して、レーザー照射口から鋼板の表面までの距離から板厚を測定する。
また、予め設定された後加熱電流は、100Aと設定した。
As a component composition, in mass %, C: 0.95%, Si: 0.2%, Mn: 0.45%, P: 0.01%, S: 0.01%, Cu: 0.08%, Steel sheets containing Ni: 0.08%, Cr: 0.2%, Al: 0.01%, the balance Fe and unavoidable impurities were used as the preceding and following steel sheets.
The average set plate thickness obtained by averaging the preset plate thicknesses of the preceding steel plate 10 and the succeeding steel plate 11, and the width center of the end portion of the preceding steel plate and the succeeding steel plate are measured using a plate thickness meter 40, and these are averaged. Table 1 below shows the results of the converted average measured plate thickness.
The plate thickness meter 40 irradiates the steel plate with laser from above and below so as to be perpendicular to the steel plate, and measures the plate thickness from the distance from the laser irradiation port to the surface of the steel plate.
In addition, the preset post-heating current was set to 100A.

Figure 0007126097000005
Figure 0007126097000005

先行鋼板10と後行鋼板11の平均設定板厚、及び、先行鋼板10と後行鋼板11の平均測定板厚と、予め設定された後加熱電流値100Aを、上記で説明した式(1)に代入し、後加熱電流値を算出したところ、110Aと算出された。 The average set plate thickness of the preceding steel plate 10 and the following steel plate 11, the average measured plate thickness of the preceding steel plate 10 and the following steel plate 11, and the preset post-heating current value 100 A are calculated using the above-described formula (1). and calculated the post-heating current value, it was calculated to be 110A.

得られた後加熱電流値(110A)を後加熱処理装置30の後加熱処理条件とし、先行鋼板10と後行鋼板11を、図3に示すようなレーザー溶接装置20と後加熱処理装置30とが一体化された一体型レーザー溶接機にて溶接した後、後加熱処理装置30で110Aの誘導加熱を当てながら鋼帯1の溶接部50を後加熱処理した。 The obtained post-heating current value (110 A) is used as the post-heating condition of the post-heating device 30, and the leading steel plate 10 and the trailing steel plate 11 are welded together with the laser welding device 20 and the post-heating device 30 as shown in FIG. After welding with an integrated laser welding machine, the welded portion 50 of the steel strip 1 was subjected to a post-heating treatment while applying induction heating of 110 A in the post-heating device 30 .

後加熱処理後の試験片について、溶接部の成形性を判断した。溶接部の成形性を判定するには、主にエリクセン試験で確認した。
エリクセン試験では、先行鋼板と後行鋼板の溶接部を含む試験片を、エリクセン試験機のダイス上に置き、その中央に半球状のポンチを押し込んでダイスで絞りだし、試験片に少なくとも1か所の亀裂が生じるまでポンチを進入させて、溶接部の割れ方を目視にて判定した。
試験結果は、以下に示す判定にて評価した。表2にエリクセン試験の判定基準を示す。
○: 溶接に対して垂直割れ
△: 一部溶接割れ
×: 溶接割れ
The formability of the weld zone was determined for the test piece after the post-heat treatment. The Erichsen test was mainly used to determine the formability of the weld zone.
In the Erichsen test, the test piece including the welded part of the leading steel plate and the trailing steel plate is placed on the die of the Erichsen test machine, a hemispherical punch is pushed into the center and squeezed out with the die, and at least one place on the test piece The punch was inserted until a crack was generated, and the cracking of the weld was visually determined.
The test results were evaluated by the following judgments. Table 2 shows the judgment criteria of the Erichsen test.
○: Cracks perpendicular to the weld △: Partial weld cracks ×: Weld cracks

Figure 0007126097000006
Figure 0007126097000006

得られた後加熱電流値(110A)で後加熱を行ったところ、溶接部の割れ方は〇であり、本発明を満足した。
また、平均設定板厚の異なる試験片を用意し、後加熱電流値を後加熱処理装置30の条件とし、先行鋼板10と後行鋼板11を溶接後、後加熱処理装置30の誘導加熱により溶接部を後加熱処理した。後加熱電流値を後加熱処理装置30の後加熱処理条件と設定して溶接した試験片は、溶接部に対して垂直割れをおこし(判定「○」)、溶接部が強固に溶接されていることが判明した。
一方、後加熱電流値を後加熱処理装置30の後加熱処理条件と設定しなかったものは、溶接部に対して垂直割れしたサンプルに混じって、溶接部に沿って割れた試験片や(判定「×」)、一部溶接割れした試験片(判定「△」)が混在してしまい、溶接部の成形性が安定しなかった。
When post-heating was performed at the obtained post-heating current value (110 A), the degree of cracking of the welded portion was ◯, which satisfied the present invention.
In addition, test pieces with different average set plate thickness are prepared, the post-heating current value is set as the condition of the post-heating device 30, and after welding the preceding steel plate 10 and the succeeding steel plate 11, welding is performed by induction heating of the post-heating device 30. Part was post-cooked. The test piece welded by setting the post-heating current value as the post-heating treatment condition of the post-heating device 30 causes a vertical crack in the welded portion (judgment “○”), and the welded portion is firmly welded. It has been found.
On the other hand, in the case where the post-heating current value was not set as the post-heating condition of the post-heating device 30, the test piece cracked along the welded portion and (judgment "X") and partially weld cracked test pieces (judgment "△") were mixed, and the formability of the weld zone was not stable.

1 鋼帯
10 先行鋼板
11 後行鋼板
20 レーザー溶接装置
30 後加熱処理装置
40 板厚計
50 溶接部
50-1 先行鋼板の溶接部となる部分の板厚(先行鋼板の端部の板厚)
50-2 後行鋼板の溶接部となる部分の板厚(後行鋼板の端部の板厚)
1 Steel strip 10 Leading steel plate 11 Trailing steel plate 20 Laser welding device 30 Post-heat treatment device 40 Plate thickness gauge 50 Welded portion 50-1 Plate thickness of the portion to be the welded portion of the leading steel plate (plate thickness at the end of the leading steel plate)
50-2 Plate thickness of the welded part of the trailing steel plate (plate thickness of the edge of the trailing steel plate)

Claims (8)

先行鋼板と後行鋼板とを突合せ溶接する方法であって、
前記先行鋼板と前記後行鋼板のそれぞれの溶接部となる部分の板厚を測定する板厚測定工程と、
前記先行鋼板と前記後行鋼板とを突合せ溶接する溶接工程と、
前記板厚測定工程で測定された前記板厚に基づいて前記突合せ溶接後に前記溶接部を加熱するための後加熱電流値を決定する後加熱決定工程と、
前記後加熱決定工程で決定した前記後加熱電流値に基づいて前記それぞれの溶接部を加熱する工程と、を含む、鋼板の突合せ溶接方法。
A method for butt welding a preceding steel plate and a following steel plate,
A plate thickness measuring step of measuring the plate thickness of each welded portion of the preceding steel plate and the succeeding steel plate;
a welding step of butt-welding the preceding steel plate and the following steel plate;
a post-heating determining step of determining a post-heating current value for heating the welded portion after the butt welding based on the plate thickness measured in the plate thickness measuring step;
and heating each of the welded portions based on the post-heating current value determined in the post-heating determination step.
前記後加熱決定工程において、前記板厚測定工程で測定された前記先行鋼板の溶接部となる部分の板厚と、前記後行鋼板の溶接部となる部分の板厚との平均測定板厚に基づいて前記後加熱電流値を決定する、請求項1に記載の鋼板の突合せ溶接方法。 In the post-heating determination step, the average measured plate thickness of the plate thickness of the portion to be the welded portion of the preceding steel plate measured in the plate thickness measurement step and the plate thickness of the portion to be the welded portion of the subsequent steel plate The steel plate butt welding method according to claim 1, wherein the post-heating current value is determined based on 前記後加熱決定工程において、一組の先行鋼板と後行鋼板の予め設定されている板厚を平均化して算出した平均設定板厚に基づいて設定された、予め設定された後加熱電流値と、前記先行鋼板と前記後行鋼板の平均設定板厚と、前記板厚測定工程で測定された前記先行鋼板の溶接部となる部分の板厚と、前記後行鋼板の溶接部となる部分の板厚との平均測定板厚とに基づいて下記式(1)を満足するように後加熱電流値を決定する、請求項1または2に記載の鋼板の突合せ溶接方法。
Figure 0007126097000007
設定は予め設定された後加熱電流、l設定は平均設定板厚、I補正後は後加熱電流値、l測定は平均測定板厚を示す。
In the post-heating determination step, a preset post-heating current value set based on an average set plate thickness calculated by averaging preset plate thicknesses of a pair of preceding steel sheets and succeeding steel sheets; , the average set thickness of the preceding steel plate and the following steel plate, the plate thickness of the portion to be the weld of the preceding steel plate measured in the plate thickness measurement step, and the thickness of the portion to be the weld of the following steel plate 3. The steel plate butt welding method according to claim 1, wherein the post-heating current value is determined so as to satisfy the following formula (1) based on the plate thickness and the average measured plate thickness.
Figure 0007126097000007
I setting indicates a preset post-heating current, l setting indicates an average set plate thickness, post-heating current value after I correction , and l measurement indicates an average measured plate thickness.
前記先行鋼板と前記後行鋼板の硬度は、ビッカース硬さが100HV以上1000HV以下である、請求項1~3のいずれか一項に記載の鋼板の突合せ溶接方法。 The steel plate butt welding method according to any one of claims 1 to 3, wherein Vickers hardness of said preceding steel plate and said succeeding steel plate is 100 HV or more and 1000 HV or less. 前記先行鋼板と前記後行鋼板との突合せ溶接により形成された溶接部の硬度は、ビッカース硬さが100HV以上1000HV以下である、請求項1~4のいずれか一項に記載の鋼板の突合せ溶接方法。 Butt welding of steel plates according to any one of claims 1 to 4, wherein the hardness of the weld formed by butt welding the preceding steel plate and the following steel plate has a Vickers hardness of 100 HV or more and 1000 HV or less. Method. 先行鋼板および後行鋼板は、質量%で、C:0.5%以上、
Si:0.1%以上0.5%以下、
Mn:0.3%以上0.6%以下、
P:0.05%以下、
S:0.05%以下、
Cu:0.5%以下、
Ni:3%以下、
Cr:0.05%以上0.5%以下、
Al:0.05%以下、
残部Feおよび不可避的不純物からなる成分組成を有する、請求項1~5のいずれか一項に記載の鋼板の突合せ溶接方法。
The leading steel plate and the trailing steel plate, in mass%, C: 0.5% or more,
Si: 0.1% or more and 0.5% or less,
Mn: 0.3% or more and 0.6% or less,
P: 0.05% or less,
S: 0.05% or less,
Cu: 0.5% or less,
Ni: 3% or less,
Cr: 0.05% or more and 0.5% or less,
Al: 0.05% or less,
The steel plate butt welding method according to any one of claims 1 to 5, wherein the steel plate has a chemical composition consisting of the balance Fe and unavoidable impurities.
先行鋼板および後行鋼板は、質量%で、C:0.5%以上2.2%以下、
Si:0.1%以上0.5%以下、
Mn:0.3%以上0.6%以下、
P:0.05%以下、
S:0.05%以下、
Cu:0.5%以下、
Ni:3%以下、
Cr:0.05%以上0.5%以下、
Al:0.05%以下、
残部Feおよび不可避的不純物からなる成分組成を有する、請求項6に記載の鋼板の突合せ溶接方法。
The preceding steel sheet and the succeeding steel sheet, in mass%, C: 0.5% or more and 2.2% or less,
Si: 0.1% or more and 0.5% or less,
Mn: 0.3% or more and 0.6% or less,
P: 0.05% or less,
S: 0.05% or less,
Cu: 0.5% or less,
Ni: 3% or less,
Cr: 0.05% or more and 0.5% or less,
Al: 0.05% or less,
The method for butt-welding steel plates according to claim 6, wherein the steel plate has a chemical composition consisting of the balance Fe and unavoidable impurities.
前記突合せ溶接は、レーザー溶接方法である、請求項1~7のいずれか一項に記載の鋼板の突合せ溶接方法。 The butt welding method for steel plates according to any one of claims 1 to 7, wherein the butt welding is a laser welding method.
JP2020001244A 2019-05-31 2020-01-08 Steel plate butt welding method Active JP7126097B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019102719 2019-05-31
JP2019102719 2019-05-31

Publications (2)

Publication Number Publication Date
JP2020196044A JP2020196044A (en) 2020-12-10
JP7126097B2 true JP7126097B2 (en) 2022-08-26

Family

ID=73648298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020001244A Active JP7126097B2 (en) 2019-05-31 2020-01-08 Steel plate butt welding method

Country Status (1)

Country Link
JP (1) JP7126097B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136934A (en) 2004-11-15 2006-06-01 Jfe Steel Kk Flash butt welding method in electric resistance welded tube manufacturing equipment
JP2007175775A (en) 2005-12-27 2007-07-12 Posco Laser welding method for continuous hot rolling, apparatus therefor, and rolled stock for laser welding
CN102717178A (en) 2012-05-29 2012-10-10 武汉钢铁(集团)公司 Resistance spot welding method used for high-aluminum automobile sheet with 800MPa-level tensile strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136934A (en) 2004-11-15 2006-06-01 Jfe Steel Kk Flash butt welding method in electric resistance welded tube manufacturing equipment
JP2007175775A (en) 2005-12-27 2007-07-12 Posco Laser welding method for continuous hot rolling, apparatus therefor, and rolled stock for laser welding
CN102717178A (en) 2012-05-29 2012-10-10 武汉钢铁(集团)公司 Resistance spot welding method used for high-aluminum automobile sheet with 800MPa-level tensile strength

Also Published As

Publication number Publication date
JP2020196044A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US9677692B2 (en) Welded steel pipe joined with high-energy-density beam and method for producing the same
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
CN100592956C (en) Laser welding method for hot rolling and the apparatus therefor
JP6104008B2 (en) Stainless steel sheet molded product joined by resistance heat
JP2011140026A (en) Weld zone of sheet and method of performing laser welding of sheet
JP4676421B2 (en) Laser welding method for continuous manufacturing process
JP7126097B2 (en) Steel plate butt welding method
JP3896031B2 (en) Manufacturing method of high strength UOE steel pipe
JP6105993B2 (en) Molded product made of stainless steel foil joined by resistance heat
JP5362825B2 (en) Ferritic stainless steel excellent in workability of welded portion, welded steel pipe using the same, and manufacturing method thereof
Ichiyama et al. Factors affecting flash weldability in high strength steel–a study on toughness improvement of flash welded joints in high strength steel
JP4619635B2 (en) Welding method for high carbon steel
JP3797105B2 (en) Method for producing martensitic stainless welded steel pipe
JP7006632B2 (en) Steel strip joining method and steel strip joining device
KR101242688B1 (en) Laser welding method of silicon steel
CN102419290A (en) Method for judging laser welding strength of heat-treatment-improved martensitic aged steel belt
JP5233902B2 (en) Fracture suppression method for steel strip weld seam in the manufacture of ERW welded steel pipe
JP2007000874A (en) Manufacturing method of ERW steel pipe for high-strength thick-walled pipe with excellent weld toughness
JP7435909B1 (en) ERW pipe and its manufacturing method
JP7541648B2 (en) Steel strip joining method and steel strip joining device
JP2007098462A (en) Flash butt welding method
TWI844096B (en) Laser welding method for silicon-containing steel plates
JP3587067B2 (en) Manufacturing method of low carbon martensitic stainless welded steel pipe
JPH08155642A (en) Overlay welding repair method for hot die
JP2024117570A (en) Resistance spot welded joint, resistance spot welding method, and method for inspecting resistance spot welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7126097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150