[go: up one dir, main page]

JP7125588B2 - センサアッセンブリ、スタイラスペン、手書き入力システム、及び作品描画手法指導システム - Google Patents

センサアッセンブリ、スタイラスペン、手書き入力システム、及び作品描画手法指導システム Download PDF

Info

Publication number
JP7125588B2
JP7125588B2 JP2018013447A JP2018013447A JP7125588B2 JP 7125588 B2 JP7125588 B2 JP 7125588B2 JP 2018013447 A JP2018013447 A JP 2018013447A JP 2018013447 A JP2018013447 A JP 2018013447A JP 7125588 B2 JP7125588 B2 JP 7125588B2
Authority
JP
Japan
Prior art keywords
tip
beams
force
pen tip
pen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018013447A
Other languages
English (en)
Other versions
JP2019132636A (ja
Inventor
浩之 赤津
啓嗣 飯島
実 永渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2018013447A priority Critical patent/JP7125588B2/ja
Publication of JP2019132636A publication Critical patent/JP2019132636A/ja
Application granted granted Critical
Publication of JP7125588B2 publication Critical patent/JP7125588B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Surgical Instruments (AREA)

Description

本発明は、6軸フォースセンサを用いた、センサアッセンブリ、スタイラスペン、手書き入力システム、及び作品描画手法指導システムに関する。
従来より、力やモーメントを検出するための力覚センサ装置を搭載した入力装置が知られている。例えば、ペン先を入力部とするペン型の入力装置が知られており、スタイラスペン等と呼ばれている。
力覚センサ装置として、3軸検出タイプが一般的であるが、特許文献1には、個人認証の安全性を高めるために、ペンにより手書きサインを行ったときに得られる接触力の時系列データ(4次元データ)を利用する力覚センサ(6軸センサ、6軸フォースセンサともいう)が提案されている。4次元データは、タッチパネル垂直方向の圧力である筆圧のみではなく、接触点に作用する3次元成分を持った力ベクトルである。この特許文献1では、力覚センサで検出した4次元データと、予め登録した認証対象の個人の接触力の時系列データとを照合して、本人かどうかを識別する個人認証を行う手書きサイン個人認証が提案されている。
また、近年医療技術の発展に伴い、患者手術ロボットと、その患者手術ロボット有線又はネットワークを介して接続される術者操作ロボットとを備える遠隔手術システムが広まっている。しかし、患者手術ロボットのアームが把持するメスやはさみが臓器や腹壁に接触していても、術者は手ごたえとして感知する事が出来ず、アームの圧迫など、メカニカルトラブルが発生することが報告されている。
そこで、人間の把持操作を分析して、そのデータをロボットで用いることを目的に、人間の指先に装着し、操作を行っているときの、接触力データを検出する6軸力覚センサとして、特許文献2が提案されている。
特開2008-46781号公報 特許第427344号
しかし、特許文献1に示す構成では、図1(a)に示すように、ペン先92と、6軸センサ95との距離が長い。そのため、6軸センサ95への入力としてモーメントが大きくなるため、ペン先の振動などのノイズ源が増加し微小な力が検出しにくく、検出の精度が低かった。
また、図1(a)に示す特許文献1、及び図1(b)に示す特許文献2の構成では、6軸センサ(95,903)が、把持用の軸(91,901)から突き出して設けられるため、6軸センサ(95,903)が、操作者の視野を狭め、先端部(92,902+904)の操作の邪魔になってしまう。
そこで、本発明は上記事情に鑑み、視野及び操作の邪魔にならずに、対象物への接触の圧力及びセンサアッセンブリの傾きの検出の精度を向上させることができる、6軸フォースセンサを含むセンサアッセンブリを提供する。
上記課題を解決するため、本発明の一態様では、
筒状の筐体と、
前記筐体の一端から一部が突出した状態で、対象物に接触可能な先端部材と、
前記筐体内に設けられ、先端側に突出している力点入力部が設けられた、6軸フォース
センサと、
前記6軸フォースセンサの前記力点入力部に接続され、前記先端部材を取り付け可能な
先端部材取付部と、を備え、
前記6軸フォースセンサは、起歪体と、該起歪体の先端側の面に装着されたセンサチッ
プとを有し、
前記起歪体は前記先端側の面において、前記センサチップを取り囲むように、前記セン
サチップよりも前記先端側に突出している4つの力点入力部を有し、
前記先端部材取付部は、前記先端部材の後端側を取り囲む取付け起立部と、前記4つの
力点入力部の先端が接着される面状の受け部と、を有し、
前記先端部材取付部及び前記先端部材は、前記筐体の内周面との間に空間ギャップが存
在するように、前記筐体の内周側に設けられ
前記起歪体は、
後端側の面である土台と、
前記土台の四隅から先端側に伸びる4本の第1の柱と、
隣接する柱同士を先端側で連結し、中央する4本の第1の梁と、
前記4本の第1の梁の中央側の面から突出する4本の第2の梁と、
前記4本の第2の梁の先端側の面から先端側に突出し、先端が前記4つの力点入力部よりも後端側に位置する4つの突起部と、を有しており、
前記4つの力点入力部は、前記4本の第1の梁の先端側の面の中央から先端側にそれぞれ突出しており、
前記4つの突起部に、前記センサチップが接合されており、
前記4つの力点入力部に力が印加されると、前記4本の第1の梁と、前記4本の第1の柱と、前記4本の第2の梁と、前記4つの突起部が変形して、前記センサチップに力を伝達する
ことを特徴とするセンサアッセンブリ、を提供する。
一態様によれば、6軸フォースセンサを含むセンサアッセンブリにおいて、視野及び操作の邪魔にならずに、対象物への接触の圧力及びセンサアッセンブリの傾きの検出の精度を向上させることができる。
従来例の力覚センサを含むセンサアッセンブリの構成例である。 本発明の実施形態に係るセンサアッセンブリの構成例である。 センサアッセンブリに設けられる6軸センサを例示する斜視図である。 6軸センサ内のセンサチップを説明図であって、(a)はZ軸方向上側から視た図、(b)はZ軸方向上側から視た図である。 6軸センサのセンサチップにおいて、各軸にかかる力及びモーメントを示す符号を説明する図である。 センサチップ10のピエゾ抵抗素子の配置を例示する図である。 起歪体20を例示する斜視図である。 起歪体に力及びモーメントを印加した際の変形(歪)についてのシミュレーション結果(その1)である。 起歪体に力及びモーメントを印加した際の変形(歪)についてのシミュレーション結果(その2)である。 図8及び図9の力及びモーメントを印加した際にセンサチップ10に発生する応力についてのシミュレーション結果(その1)である。 図8及び図9の力及びモーメントを印加した際にセンサチップ10に発生する応力についてのシミュレーション結果(その2)である。 図8及び図9の力及びモーメントを印加した際にセンサチップ10に発生する応力についてのシミュレーション結果(その3)である。 センサアッセンブリにおけるアタッチメントと先端部材との他の接続の例である。 6軸センサの他の構成例である。 センサアッセンブリをスタイラスペンに搭載する場合の構成例である。 図15のスタイラスペンのペン先がタッチパネルに接触した状態を示す図である。 本実施形態のスタイラスペンで、タッチパネルに入力している様子を示す図である。 スタイラスペンのペン先の種類を、共振周波数を用いて特定する例である。 スタイラスペンのペン先の種類を、インピーダンスとマイコンを用いて特定する例である。 本実施形態のスタイラスペンで、文字を書いている最中にスタイラスペンの筆圧や向きについて指導を受ける例である。 図20を実現する作品描画手法指導システムのブロック図である。 センサアッセンブリを歯科技工器具に搭載する場合の構成例である。 図21の歯科技工器具を使用した歯科技工手法表示システムの例である。 図21の歯科技工手法表示システムのブロック図である。 センサアッセンブリを医療用メスに搭載する場合の構成例である。 図24の医療用メス及び/又は医療用触手を使用した遠隔手術システムの例である。 図26の遠隔手術システムのブロック図である。 図25の医療用メス及び/又は医療用触手を使用した手術手法表示システムの例である。 図28の手術手法表示システムのブロック図である。 センサアッセンブリを靴底に搭載する場合の構成例である。
以下、図面を参照して本発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
<共通構成例>
まず、下記、複数の実施形態に共通するセンサアッセンブリの構成例について、図2を用いて説明する。図2に、本発明の実施形態に係るセンサアッセンブリの構成例を示す。
図2に示す、アッセンブリ100は、6軸フォースセンサ1と、アタッチメント(先端部材取付部)3と、筐体4と、先端部材5と、を備える。
先端部材5は、対象物との接触部51を含む接触部材である。先端部材5の接触部51ではない、筐体4の内側に挿入される嵌合部52には、雄ネジ53が形成されている。
先端部材5は、例えば、ペン先、筆ペン状導電性繊維、歯科技工器具(ドリル等)、医療用刃(メス)、医療用触手、靴底センサ等である。
筐体4は円筒状の筐体であって、ユーザー、技工者やロボット等が把持する部分である。先端部材5はノックにより、筐体4に収まってもよいが、使用の際は、先端部材5は、筐体4の一端から少なくとも一部が突出した状態で、対象物に接触する。
アタッチメント3は、6軸フォースセンサ1の力点入力部24に接続され、上記の先端部材5を取付可能である。
アタッチメント3は、受け部31と、内壁に雌ネジ33が形成された取付け起立部32を有する。
図2の例では、先端部材5の雄ネジ53には、アタッチメント3の取付け起立部32の内壁に形成された雌ネジ33と係合する。
ここで、アタッチメント3及び先端部材5は、筐体4の内周面4iとの間に空間ギャップGが存在するように、筐体4の内周側(内周面側)に設けられる。したがって、先端部材5に加えられる3軸力及びその軸回りのモーメントが効果的に6軸センサへ伝達される。
6軸センサ1は、先端側に突出している4本の力点入力部24が設けられ、その力点入力部24が、アタッチメント3の受け部31に接着している構成である。
<6軸センサ>
ここで6軸センサについて説明する。
図3は、本発明の複数の実施形態のセンサアッセンブリに内包される6軸フォースセンサ(力覚センサ)を例示する斜視図である。図3を参照すると、6軸フォースセンサ1は、センサチップ10と、起歪体20と、を有している。
センサチップ10は、起歪体20の上面側に、起歪体20から突出しないように接着されている。起歪体20には、センサチップ10を取り囲むように、先端側に突出している4本の力点入力部24が設けられている。
なお、本実施の形態では、便宜上、力覚センサ1において、起歪体20のアタッチメントが取り付けられる側を上側又は一方の側、その反対側を下側又は他方の側とする。又、各部位の起歪体20のアタッチメント3が設けられた側の面を一方の面又は上面、その反対側の面を他方の面又は下面とする。但し、6軸フォースセンサ1(力覚センサ装置)は天地逆の状態で用いることができ、又は任意の角度で配置することができる。又、平面視とは対象物をセンサチップ10の上面の法線方向(Z軸方向)から視ることを指し、平面形状とは対象物をセンサチップ10の上面の法線方向(Z軸方向)から視た形状を指すものとする。
(センサチップ10)
図4は、センサチップ10の説明図であって、(a)は、センサチップ10をZ軸方向上側から視た上面斜視図であり、(b)は、センサチップ10をZ軸方向下側から視た下面斜視図である。
なお、センサチップ10の上面の一辺に平行な方向をX軸方向、垂直な方向をY軸方向、センサチップ10の厚さ方向(センサチップ10の上面の法線方向)をZ軸方向としている。X軸方向、Y軸方向、及びZ軸方向は、互いに直交している。
図3及び図4に示すセンサチップ10は、1チップで最大6軸を検知できるMEMS(Micro Electro Mechanical Systems)センサチップであり、SOI(Silicon On Insulator)基板等の半導体基板から形成されている。センサチップ10の平面形状は、例えば、3mm角程度の正方形とすることができる。
センサチップ10は、柱状の5つの支持部11a~11eを備えている。支持部11a~11eの平面形状は、例えば、500μm角程度の正方形とすることができる。第1の支持部である支持部11a~11dは、センサチップ10の四隅に配置されている。第2の支持部である支持部11eは、支持部11a~11dの中央に配置されている。
支持部11a~11eは、例えば、SOI基板の活性層、BOX層、及び支持層から形成することができ、それぞれの厚さは、例えば、500μm程度とすることができる。
支持部11aと支持部11bとの間には、支持部11aと支持部11bとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁12aが設けられている。支持部11bと支持部11cとの間には、支持部11bと支持部11cとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁12bが設けられている。
支持部11cと支持部11dとの間には、支持部11cと支持部11dとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁12cが設けられている。支持部11dと支持部11aとの間には、支持部11dと支持部11aとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁12dが設けられている。
言い換えれば、第1の補強用梁である4つの補強用梁12a、12b、12c、及び12dが枠状に形成され、各補強用梁の交点をなす角部が、支持部11b、11c、11d、11aとなる。
支持部11aの内側の角部と、それに対向する支持部11eの角部とは、構造を補強するための補強用梁12eにより連結されている。支持部11bの内側の角部と、それに対向する支持部11eの角部とは、構造を補強するための補強用梁12fにより連結されている。
支持部11cの内側の角部と、それに対向する支持部11eの角部とは、構造を補強するための補強用梁12gにより連結されている。支持部11dの内側の角部と、それに対向する支持部11eの角部とは、構造を補強するための補強用梁12hにより連結されている。第2の補強用梁である補強用梁12e~12hは、X軸方向(Y軸方向)に対して斜めに配置されている。つまり、補強用梁12e~12hは、補強用梁12a、12b、12c、及び12dと非平行に配置されている。
補強用梁12a~12hは、例えば、SOI基板の活性層、BOX層、及び支持層から形成することができる。補強用梁12a~12hの太さ(短手方向の幅)は、例えば、140μm程度とすることができる。補強用梁12a~12hのそれぞれの上面は、支持部11a~11eの上面と略面一である。
これに対して、補強用梁12a~12hのそれぞれの下面は、支持部11a~11eの下面及び力点14a~14dの下面よりも数10μm程度上面側に窪んでいる。これは、センサチップ10を起歪体20に接着したときに、補強用梁12a~12hの下面が起歪体20の対向する面と接しないようにするためである。
このように、歪を検知するための検知用梁とは別に、検知用梁よりも厚く形成した剛性の強い補強用梁を配置することで、センサチップ10全体の剛性を高めることができる。これにより、入力に対して検知用梁以外が変形しづらくなるため、良好なセンサ特性を得ることができる。
支持部11aと支持部11bとの間の補強用梁12aの内側には、補強用梁12aと所定間隔を空けて平行に、支持部11aと支持部11bとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁13aが設けられている。
検知用梁13aと支持部11eとの間には、検知用梁13a及び支持部11eと所定間隔を空けて検知用梁13aと平行に、検知用梁13bが設けられている。検知用梁13bは、補強用梁12eの支持部11e側の端部と補強用梁12fの支持部11e側の端部とを連結している。
検知用梁13aの長手方向の略中央部と、それに対向する検知用梁13bの長手方向の略中央部とは、検知用梁13a及び検知用梁13bと直交するように配置された、歪を検知するための検知用梁13cにより連結されている。
支持部11bと支持部11cとの間の補強用梁12bの内側には、補強用梁12bと所定間隔を空けて平行に、支持部11bと支持部11cとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁13dが設けられている。
検知用梁13dと支持部11eとの間には、検知用梁13d及び支持部11eと所定間隔を空けて検知用梁13dと平行に、検知用梁13eが設けられている。検知用梁13eは、補強用梁12fの支持部11e側の端部と補強用梁12gの支持部11e側の端部とを連結している。
検知用梁13dの長手方向の略中央部と、それに対向する検知用梁13eの長手方向の略中央部とは、検知用梁13d及び検知用梁13eと直交するように配置された、歪を検知するための検知用梁13fにより連結されている。
支持部11cと支持部11dとの間の補強用梁12cの内側には、補強用梁12cと所定間隔を空けて平行に、支持部11cと支持部11dとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁13gが設けられている。
検知用梁13gと支持部11eとの間には、検知用梁13g及び支持部11eと所定間隔を空けて検知用梁13gと平行に、検知用梁13hが設けられている。検知用梁13hは、補強用梁12gの支持部11e側の端部と補強用梁12hの支持部11e側の端部とを連結している。
検知用梁13gの長手方向の略中央部と、それに対向する検知用梁13hの長手方向の略中央部とは、検知用梁13g及び検知用梁13hと直交するように配置された、歪を検知するための検知用梁13iにより連結されている。
支持部11dと支持部11aとの間の補強用梁12dの内側には、補強用梁12dと所定間隔を空けて平行に、支持部11dと支持部11aとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁13jが設けられている。
検知用梁13jと支持部11eとの間には、検知用梁13j及び支持部11eと所定間隔を空けて検知用梁13jと平行に、検知用梁13kが設けられている。検知用梁13kは、補強用梁12hの支持部11e側の端部と補強用梁12eの支持部11e側の端部とを連結している。
検知用梁13jの長手方向の略中央部と、それに対向する検知用梁13kの長手方向の略中央部とは、検知用梁13j及び検知用梁13kと直交するように配置された、歪を検知するための検知用梁13lにより連結されている。
検知用梁13a~13lは、支持部11a~11eの厚さ方向の上端側に設けられ、例えば、SOI基板の活性層から形成することができる。検知用梁13a~13lの太さ(短手方向の幅)は、例えば、75μm程度とすることができる。検知用梁13a~13lのそれぞれの上面は、支持部11a~11eの上面と略面一である。検知用梁13a~13lのそれぞれの厚さは、例えば、0.5μm程度とすることができる。
検知用梁13aの長手方向の中央部の下面側(検知用梁13aと検知用梁13cとの交点)には、力点14aが設けられている。検知用梁13a、13b、及び13cと力点14aとにより、1組の検知ブロックをなしている。
検知用梁13dの長手方向の中央部の下面側(検知用梁13dと検知用梁13fとの交点)には、力点14bが設けられている。検知用梁13d、13e、及び13fと力点14bとにより、1組の検知ブロックをなしている。
検知用梁13gの長手方向の中央部の下面側(検知用梁13gと検知用梁13iとの交点)には、力点14cが設けられている。検知用梁13g、13h、及び13iと力点14cとにより、1組の検知ブロックをなしている。
検知用梁13jの長手方向の中央部の下面側(検知用梁13jと検知用梁13lとの交点)には、力点14dが設けられている。検知用梁13j、13k、及び13lと力点14dとにより、1組の検知ブロックをなしている。
力点14a~14dは、外力が印加される箇所であり、例えば、SOI基板のBOX層及び支持層から形成することができる。力点14a~14dのそれぞれの下面は、支持部11a~11eの下面と略面一である。
このように、力または変位を4つの力点14a~14dから取り入れることで、力の種類毎に異なる梁の変形が得られるため、6軸の分離性が良いセンサを実現することができる。
なお、センサチップ10において、応力集中を抑制する観点から、内角を形成する部分はR状とすることが好ましい。
図5は、各軸にかかる力及びモーメントを示す符号を説明する図である。図5に示すように、X軸方向の力をFx、Y軸方向の力をFy、Z軸方向の力をFzとする。又、X軸を軸として回転させるモーメントをMx、Y軸を軸として回転させるモーメントをMy、Z軸を軸として回転させるモーメントをMzとする。
図6は、センサチップ10のピエゾ抵抗素子の配置を例示する図である。4つ力点14a~14dに対応する各検知ブロックの所定位置には、ピエゾ抵抗素子が配置されている。
具体的には、図5及び図6を参照すると、力点14aに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR3及びMxR4は、検知用梁13aを長手方向に二等分する線上であって、かつ、検知用梁13cを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FyR3及びFyR4は、検知用梁13bを長手方向に二等分する線よりも検知用梁13a側であって、かつ、検知用梁13cを長手方向に二等分する線に対して対称な位置に配置されている。
又、力点14bに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR3及びMyR4は、検知用梁13dを長手方向に二等分する線上であって、かつ、検知用梁13fを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FxR3及びFxR4は、検知用梁13eを長手方向に二等分する線よりも検知用梁13d側であって、かつ、検知用梁13fを長手方向に二等分する線に対して対称な位置に配置されている。
又、MzR3及びMzR4は、検知用梁13fを短手方向に二等分する線よりも検知用梁13e側であって、かつ、検知用梁13fを長手方向に二等分する線に対して対称な位置に配置されている。又、FzR3及びFzR4は、検知用梁13fを長手方向に二等分する線上であって、かつ、検知用梁13fを短手方向に二等分する線に対して対称な位置に配置されている。
又、力点14cに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR1及びMxR2は、検知用梁13gを長手方向に二等分する線上であって、かつ、検知用梁13iを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FyR1及びFyR2は、検知用梁13hを長手方向に二等分する線よりも検知用梁13g側であって、かつ、検知用梁13iを長手方向に二等分する線に対して対称な位置に配置されている。
又、力点14dに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR1及びMyR2は、検知用梁13jを長手方向に二等分する線上であって、かつ、検知用梁13lを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FxR1及びFxR2は、検知用梁13kを長手方向に二等分する線よりも検知用梁13j側であって、かつ、検知用梁13lを長手方向に二等分する線に対して対称な位置に配置されている。
又、MzR1及びMzR2は、検知用梁13lを短手方向に二等分する線よりも検知用梁13k側であって、かつ、検知用梁13lを長手方向に二等分する線に対して対称な位置に配置されている。又、FzR1及びFzR2は、検知用梁13lを長手方向に二等分する線上であって、かつ、検知用梁13lを短手方向に二等分する線に対して対称な位置に配置されている。
ここで、ピエゾ抵抗素子FxR1~FxR4は力Fxを検出し、ピエゾ抵抗素子FyR1~FyR4は力Fyを検出し、ピエゾ抵抗素子FzR1~FzR4は力Fzを検出する。又、ピエゾ抵抗素子MxR1~MxR4はモーメントMxを検出し、ピエゾ抵抗素子MyR1~MyR4はモーメントMyを検出し、ピエゾ抵抗素子MzR1~MzR4はモーメントMzを検出する。
このように、センサチップ10では、各検知ブロックに複数のピエゾ抵抗素子を分けて配置している。これにより、力点14a~14dに印加(伝達)された力または変位の向き(軸方向)に応じた、所定の梁に配置された複数のピエゾ抵抗素子の出力の変化に基づいて、所定の軸方向の変位を最大で6軸検知することができる。
具体的には、センサチップ10において、Z軸方向の変位(Mx、My、Fz)は、所定の検知用梁の変形に基づいて検知することができる。すなわち、X軸方向及びY軸方向のモーメント(Mx、My)は、第1の検知用梁である検知用梁13a、13d、13g、及び13jの変形に基づいて検知することができる。又、Z軸方向の力(Fz)は、第3の検知用梁である検知用梁13f及び13lの変形に基づいて検知することができる。
又、センサチップ10において、X軸方向及びY軸方向の変位(Fx、Fy、Mz)は、所定の検知用梁の変形に基づいて検知することができる。すなわち、X軸方向及びY軸方向の力(Fx、Fy)は、第2の検知用梁である検知用梁13b、13e、13h、及び13kの変形に基づいて検知することができる。又、Z軸方向のモーメント(Mz)は、第3の検知用梁である検知用梁13f及び13lの変形に基づいて検知することができる。
各検知用梁の厚みと幅を可変することで、検出感度の均一化や、検出感度の向上等の調整を図ることができる。
但し、ピエゾ抵抗素子の数を減らし、5軸以下の所定の軸方向の変位を検知するセンサチップとすることも可能である。なお、ピエゾ抵抗素子は、本発明にかかる歪検出素子の代表的な一例である。
(起歪体20)
図7は、起歪体20を例示する斜視図である。
図7に示すように、起歪体20において、土台21上の四隅には、第1の柱である4本の柱22a~22dが配置され、隣接する柱同士を連結する第1の梁である4本の梁23a~23dが枠状に設けられている。又、土台21上の中央には、第2の柱である柱22eが配置されている。柱22eは、センサチップ10を固定するための柱であり、柱22a~22dよりも太くて短く形成されている。なお、センサチップ10は、柱22a~22dの上面から突出しないように、柱22e上に固定される。
起歪体20の概略形状は、例えば、縦500μm程度、横500μm程度、高さ700μm程度の直方体状とすることができる。柱22a~22dの横断面形状は、例えば、100μm角程度の正方形とすることができる。柱22eの横断面形状は、例えば、200μm角程度の正方形とすることができる。
梁23a~23dのそれぞれの上面の長手方向の中央部には、梁23a~23dの長手方向の中央部から上方に突起する突起部が設けられ、突起部上に、例えば円柱状の入力部(力点入力部)24a~24dが設けられている。入力部24a~24dは外部から力が印加される部分であり、入力部24a~24dに力が印加されると、それに応じて梁23a~23d及び柱22a~22dが変形する。
なお、柱22eは、印加された力により変形する梁23a~23dや、印加された力により変形する柱22a~22dとは分離されているため、入力部24a~24dに力が印加されても可動することはない(印加された力により変形しない)。
このように、4つの入力部24a~24dを設けることで、例えば1つの入力部の構造と比較して、梁23a~23dの耐荷重を向上することができる。
柱22eの上面の四隅には第3の柱である4本の柱25a~25dが配置され、柱22eの上面の中央部には第4の柱である柱25eが配置されている。柱25a~25eは、同一の高さに形成されている。
すなわち、柱25a~25eのそれぞれの上面は、同一平面上に位置している。柱25a~25eのそれぞれの上面は、センサチップ10の下面と接着される接合部となる。柱25a~25eは印加された力により変形する梁23a~23dや、印加された力により変形する柱22a~22dとは分離されているため、入力部24a~24dに力が印加されても可動することはない(印加された力により変形しない)。
梁23a~23dのそれぞれの内側面の長手方向の中央部には、梁23a~23dのそれぞれの内側面から水平方向内側に突出する梁26a~26dが設けられている。梁26a~26dは、梁23a~23dや柱22a~22dの変形をセンサチップ10に伝達する第2の梁である。又、梁26a~26dのそれぞれの上面の先端側には、梁26a~26dのそれぞれの上面の先端側から上方に突起する突起部27a~27dが設けられている。
突起部27a~27dは、同一の高さに形成されている。すなわち、突起部27a~27dのそれぞれの上面は、同一平面上に位置している。突起部27a~27dのそれぞれの上面は、センサチップ10の下面と接着される接合部となる。梁26a~26d及び突起部27a~27dは、可動部となる梁23a~23dと連結されているため、入力部24a~24dに力が印加されると、それに応じて変形する。
なお、入力部24a~24dに力が印加されていない状態では、柱25a~25eのそれぞれの上面と、突起部27a~27dのそれぞれの上面とは、同一平面上に位置している。
起歪体20において、土台21、柱22a~22e、梁23a~23d、入力部24a~24d、柱25a~25e、梁26a~26d、及び突起部27a~27dの各部位は、剛性を確保しかつ精度良く作製する観点から、一体に形成されていることが好ましい。起歪体20の材料としては、例えば、SUS(ステンレス鋼)等の硬質な金属材料を用いることができる。中でも、特に硬質で機械的強度の高いSUS630を用いることが好ましい。
このように、センサチップ10と同様に、起歪体20も柱と梁とを備えた構造とすることで、印加される力によって6軸それぞれで異なる変形を示すため、6軸の分離性が良い変形をセンサチップ10に伝えることができる。
すなわち、起歪体20の入力部24a~24dに印加された力を、柱22a~22d、梁23a~23d、及び梁26a~26dを介してセンサチップ10に伝達し、センサチップ10で変位を検知する。そして、センサチップ10において、1つの軸につき1個ずつ形成されたブリッジ回路から各軸の出力を得ることができる。
なお、起歪体20において、応力集中を抑制する観点から、内角を形成する部分はR状とすることが好ましい。
(応力のシミュレーション)
図8及び図9は、起歪体20に力及びモーメントを印加した際の変形(歪)についてのシミュレーション結果である。力及びモーメントは、起歪体20の入力部24a~24d(図9等参照)から印加した。又、図10~図12は、図8及び図9の力及びモーメントを印加した際にセンサチップ10に発生する応力についてのシミュレーション結果である。図10~図12において、引張の垂直応力を『+』、圧縮の垂直応力を『-』で示している。
X軸に沿ってX1からX2の方向に力Fxが印加された場合は、起歪体20は図8に示すように変形し、センサチップ10には図10(a)のような応力が発生する。具体的には、力Fxの印加により、検知用梁13k及び13eが力Fxの方向に歪む。
ここで、ピエゾ抵抗素子FxR1及びFxR2は、検知用梁13kの長手方向の中心よりもX1側に位置しているため、引張の垂直応力が発生して抵抗値が増加する。一方、ピエゾ抵抗素子FxR3及びFxR4は、検知用梁13eの長手方向の中心よりもX2側に位置しているため、圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子FxR1~FxR4のバランスが崩れるため、図10(a)に示すブリッジ回路から電圧が出力され、力Fxを検出することができる。
なお、検知用梁13d及び13jも力Fxの方向に歪むが、ピエゾ抵抗素子MyR1及びMyR2、並びにピエゾ抵抗素子MyR3及びMyR4の位置では、ほとんど応力が生じないか、或いは同方向の応力が生じる。そのため、ブリッジのバランスが維持され、図12(a)に示すモーメントMyのブリッジ回路からは電圧は出力されない。
Y軸に沿ってY1からY2の方向に力Fyが印加された場合は、センサチップ10には図10(b)のような応力が発生する。具体的には、力Fyの印加により、検知用梁13b及び13hが力Fyの方向に歪む。
ここで、ピエゾ抵抗素子FyR3及びFyR4は、検知用梁13bの長手方向の中心よりもY1側に位置しているため、引張の垂直応力が発生して抵抗値が増加する。一方、ピエゾ抵抗素子FyR1及びFyR2は、検知用梁13hの長手方向の中心よりもY2側に位置しているため、圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子FyR1~FyR4のバランスが崩れるため、図10(b)に示すブリッジ回路から電圧が出力され、力Fyを検出することができる。
なお、モーメントMyと同様の理由により、図11(b)に示すモーメントMxのブリッジ回路からは電圧は出力されない。
Z軸に沿ってZ2からZ1の方向に力Fzが印加された場合は、起歪体20は図14に示すように変形し、センサチップ10には図11(a)のような応力が発生する。具体的には、力Fzの印加により、検知用梁13a、13b、13g、13h、13d、13e、13j、13k、13c、13f、13l、及び13iが力Fzの方向に歪む。
ここで、ピエゾ抵抗素子FzR1及びFzR4には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子FzR2及びFzR3には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子FzR1~FzR4のバランスが崩れるため、図11(a)に示すブリッジ回路により、力Fzを検出することができる。
なお、上記と同様の理由により、図10(a)に示す力Fxのブリッジ回路、図10(b)に示す力Fyのブリッジ回路、図11(b)に示すモーメントMxのブリッジ回路、及び図12(a)に示すモーメントMyのブリッジ回路、図12(b)に示すモーメントMzのブリッジ回路からは電圧は出力されない。
X軸を回転軸としてY2-Z2-Y1の方向にモーメントMxが印加された場合は、センサチップ10には図11(b)のような応力が発生する。具体的には、モーメントMxの印加により、検知用梁13g及び13aがモーメントMxの方向に歪む。そのため、ピエゾ抵抗素子MxR1及びMxR2には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子MxR3及びMxR4には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子MxR1~MxR4のバランスが崩れるため、図11(b)に示すブリッジ回路により、モーメントMxを検出することができる。
なお、上記と同様の理由により、図10(b)に示す力Fyのブリッジ回路からは電圧は出力されない。
Y軸を回転軸としてX1-Z2-X2の方向にモーメントMyが印加された場合は、起歪体20は図9に示すように変形し、センサチップ10には図12(a)のような応力が発生する。具体的には、モーメントMyの印加により、検知用梁13j及び13dがモーメントMyの方向に歪む。
ここで、ピエゾ抵抗素子MyR1及びMyR2には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子MyR3及びMyR4には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子MyR1~MyR4のバランスが崩れるため、図12(a)に示すブリッジ回路により、モーメントMyを検出することができる。
なお、上記と同様の理由により、図10(a)に示す力Fxのブリッジ回路からは電圧は出力されない。
Z軸を回転軸としてX2-Y2-X1の方向にモーメントMzが印加された場合は、起歪体20は図9に示すように変形し、センサチップ10には図12(b)のような応力が発生する。具体的には、モーメントMzの印加により、検知用梁13a、13b、13g、13h、13d、13e、13j、13k、13c、13f、13l、及び13iがモーメントMzの方向に歪む。
ここで、ピエゾ抵抗素子MzR1及びMzR4には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子MzR2及びMzR3には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子MzR1~MzR4のバランスが崩れるため、図12(b)に示すブリッジ回路により、モーメントMzを検出することができる。
なお、上記と同様の理由により、図10(a)に示す力Fxのブリッジ回路、図10(b)に示す力Fyのブリッジ回路、図11(b)に示すモーメントMxのブリッジ回路、図12(a)に示すモーメントMyのブリッジ回路からは電圧は出力されない。
このように、センサチップ10では、力点に変位(力又はモーメント)が入力されると、入力に応じた曲げ及び捩れの応力が所定の検知用梁に発生する。発生した応力により検知用梁の所定位置に配置されたピエゾ抵抗素子の抵抗値が変化し、センサチップ10に形成された各ブリッジ回路からの出力電圧を電極15から得ることができる。更に、電極15の出力電圧は、入出力基板30を経由して外部で得ることができる。
又、センサチップ10では、1つの軸につき1個のブリッジ回路が形成されているため、出力の合成を伴わずに各軸の出力を得ることができる。これにより、複雑な計算や信号処理を必要としない簡易な方法で多軸の変位を検知して出力可能となる。
又、ピエゾ抵抗素子を入力の種類により異なる検知用梁に分けて配置している。これにより、該当する検知用梁の剛性(厚みや幅)を変更することで、任意の軸の感度を独立して調整することができる。
6軸センサの詳細な構成については、特願2016-199486を参照して適宜援用する。このような6軸センサにより、簡易な方法で多軸(少なくとも4軸)の変位を検知して出力が可能となる。
<アタッチメントと先端部材の係合の別の例>
図13は、センサアッセンブリにおけるアタッチメント3-1と先端部材5‐1との他の係合の例を示す。
アタッチメントへの先端部材5の取り付けには、上記図2のような雄ネジ53、雌ネジ33を用いたネジ嵌合に限らず、他の任意の方式を採用可能である。
例えば図13のように、アタッチメント3-1側に溝34を設け、先端部材5‐1のピン54を嵌合させて固定する方式であっても良い。この構成においても、アタッチメント3‐1及び先端部材5‐1は、筐体4の内周面との間に空間ギャップGが存在するように、筐体4の内周側に設けられる。したがって、先端部材5‐1に加えられる3軸力及びその軸回りのモーメントが効果的に6軸センサ1へ伝達される。
また、センサアッセンブリ100に設けられる6軸センサ1の構成は、図3~図12に示したものに限られず、下記の構成であってもよい。
<6軸センサの他の構成例>
図14は、6軸センサの他の構成例を示す。本構成例では、6軸フォースセンサ1αの起歪体20αが、略円錐台形状である。
詳しくは、図14に示すように、本構成では、柱201a~201dは、柱202の周囲に離間して略等間隔で配置されている。柱201a~201dは、平面視において、各々の上面の中央の位置が各々の下面の中央の位置よりも台座部204の中心側に近付くように、斜めに配置されている。つまり、柱201a~201dは、台座部204から離れるほど(接触部20側に向かうほど)、柱202に近付くように斜めに配置されている。
又、本実施の形態では、柱201a~201dは、台座部204から離れるほど(アタッチメント3α側に向かうほど)横断面積(Z軸と垂直な断面の面積)が小さくなるような形状とされている。他の構成や機能は、図7に示す起歪体と同様であり、本構成の起歪体20αにおいても、アタッチメント3α付近の内部に、センサチップ10が設けられているものとする。
この構成では、筐体4αの先端(先端部材側)は、内側に折り曲げられた円環状の縁辺が形成されている。この構成では、縁辺よりも先端側に設けられ、ペン先が変形した際に接触するストッパーを備えていてもよい。
次に、上記のセンサアッセンブリを、様々な分野の先端部材を含む部材に適用する、具体的な構成例について説明する。
<第1実施形態:スタイラスペン>
まず、第1の実施形態として、センサアッセンブリをスタイラスペンに適用する例を、図15~図20を用いて詳述する。
図15は、センサアッセンブリがスタイラスペン100Aである場合の構成例である。
スタイラスペン(電子ペン、デジタイザーペンともいう)100Aでは、上記の先端部材5として、ペン先5Aを有している。
さらに、スタイラスペン100Aでは上記の6軸フォースセンサ1Aと、アタッチメント(ペン先取付部)3Aと、筐体4Aと、ペン先(先端部材)5Aとに加えて、位置発信部6を有している。
この構成においても、アタッチメント(ペン先取付部)3Aと、筐体4Aの内側面の間には空間ギャップが存在する。そのため、ペン先5Aに加えられる3軸力及びその軸回りのモーメントに相当するペンの傾き(回転)と筆圧が効果的に6軸センサ1Aへ伝達される。
即ち、6軸センサ1Aは、タッチパネル(パネル)210(図20参照)に対するペン先5Aの接触圧力及びパネル上のペン先5Aの傾き及び/又は回転が検出可能である。
位置発信部6は、磁性体61と、磁性芯62と、磁性コイル63とを備える。図15に示すように、磁性体61はペン先5Aに内包されている。磁性コイル63は、6軸フォースセンサ1の後方に設けられている。磁性芯62は、6軸フォースセンサ1A及びアタッチメント3Aを貫いて、磁性体61と、磁性コイル63とを連結している。
このスタイラスペン100Aは、電磁誘導方式用のペンである。タブレット200の表面のタッチパネル(パネル面、表示部)のデジタイザ212(図21参照)が表面に作った磁界(電磁)の中を電子ペンが動くことで、スタイラスペン100Aに内蔵された磁性コイル63に電気が流れ、その電気を用いてスタイラスペン100Aが作る誘導信号をタブレットが受信する(誘導)。このプロセスを高速で繰り返すことにより、滑らかなスタイラスペンの軌跡がタブレットに読み取られる。
また、図15に示す、スタイラスペン100Aでは、6軸センサ1が筆圧、傾き、回転などを検知する機能により、タッチパネル100A上に、描線の強弱や色の濃淡を表現できる。
ここで、一般的な電磁誘導方式のスタイラスペンに用いられる磁性コイルは、そのサイズが比較的大きいことが知られている。よって、ペン先側に磁性コイルを設け、その後方に6軸センサを設ける場合、タッチパネルに接触する接点であるペン先と力点である6軸センサとの距離が大きくなり、筆圧、傾き、回転などのセンシング感度が低下してしまう。
一方、本構成の場合、図15に示すように、磁性芯62が6軸センサ1及びアタッチメント3Aを貫く構成であることで、磁性コイル63がアタッチメント3Aの後方に設けられるため、磁性コイル63のサイズは、ペン先5Aと6軸センサ1Aとの間の距離に影響を与えない。そのため、6軸センサ1Aは、ペン先5Aに近接して設けることが可能になるため、6軸センサ1Aのセンシング感度の低下を回避できる。
図16は、図15のスタイラスペン100Aのペン先5Aがタッチパネル210(図20参照)に接触した状態を示す。図17は、ユーザーOが本実施形態のスタイラスペン100Aで、タッチパネル210に入力している様子を示す。
図16に示すように、本実施形態に係るペン先5Aは、パネルに接触する際の圧力により変形可能であると好ましい。この際、磁性芯62は、弾性を有してペン先5Aの変形に追従する。
そのため、例えば、ペン先5Aの材料は、樹脂やファイバー等で有ると好適である。また、磁性芯62はある程度の変形を許容する、例えば、ピアノ線で構成すると好適である。
仮に、本願のスタイラスペン100Aのペン先5Aが硬い場合は、硬いパネル面上で滑ってしまい、書きづらい。一方、筆のように柔らかくし過ぎると、力が掛かると力から跳ね返って来る感覚が6軸センサ1Aにうまく伝達されない。
上記のように、ペン先5A及び磁性芯62に弾性を持たせることで、タッチパネル上にスタイラスペンを用いて入力するときに、ペン先5Aの変形に追従して、スタイラスペン100Aを把持するユーザーOが、紙に描くときの触感(フォースフィードバック、テクスチャー)に近い手ごたえを得ることが可能になる。
また、樹脂やシリコン、ポリエステルファイバー等によって摩擦係数を所望の範囲に設定することで、6軸フォースセンサ1Aは、パネル22Aに当接しているペン先の圧力(筆圧)及び検出する。そのため、タッチパネル側が接触面積を検出しなくても、図17に示すように、線の太さを変更させることができる。
(スタイラスペンのペン先種類交換)
図18に、スタイラスペンのペン先の種類を、共振周波数を用いて特定する例を示す。
スタイラスペン100Aは、ペン先の種類が交換可能であってもよい。図18の例では、ペン先は、種類ごとに、コイル及びコンデンサによる異なる共振回路が搭載されている例を示す。例えば、図18(a)の接触部51Aを有するペン先5A―1の共振回路64Aの共振周波数はω1であり、図18(b)の接触部51Bを有するペン先5A-2の共振回路64Bの共振周波数はω2である。
ペン先を交換するとき、タッチパネル210のデジタイザ212(図21参照)が、図18に示すペン先5A-1,5A-2に搭載された、共振回路(LC回路)の共振周波数(ω1,ω2)をスキャンすることによって、ペン先の種類を認識可能にする。
上記例では、共振回路64を用いてペン先の種類の交換を認識させる例を説明したが、他の方法で、ペン先の交換を認識させてもよい。
図19に、スタイラスペンのペン先の種類を、インピーダンスとマイコンを用いて特定する例を示す。
スタイラスペン100A‐1にマイコンを設ける場合、マイコン65は、6軸センサ1Aよりも後方に設けられる。
ペン先5A-3,5A-4に、スタイラスペン100A‐1との接続状態を検知する検知機構66が設けられており、この検知機構66は、例えば、RLC直列回路であって、ペン先の種類毎の所定のインピーダンスZを有している。例えば、図19(a)の接触部51Cを有するペン先5A-3のRLC直列回路66CのインピーダンスはZ1であり、図19(b)の接触部51Dを有するペン先5A-4のRLC直列回路66DのインピーダンスはZ2である。
本構成でペン先を交換するとき、スタイラスペン100A‐1のマイコン65が、検知機構66(66C,66D)を介してペン先5A-3,5A-4の種類を特定すると共にタッチパネル210へ無線伝送し、そのタッチパネル210を備える装置(例えばタブレット200)にペン先の種類を認識させる。
上記の方法を用いて、ペン先の種類を認識させることで、認識させた複数のペン先の夫々に対応する、太さや質感で、タッチパネル上に、文字や線を描くことができる。
<スタイラスペンの応用例>
図20は、本実施形態のスタイラスペンで、文字を書いている最中にスタイラスペンの筆圧や向きについて指導を受ける例を示す。図21は、図15に示すスタイラスペン100Aを用いた作品描画手法指導システム1000のブロック図である。
図21に示す、作品描画手法指導システム1000は、スタイラスペン100Aとタブレット200とを有する。
図21において、タブレット200はUSB(Universal Serial Bus)等の、外部記憶媒体290に接続されているものとする。外部記憶媒体290は、USBアダプタ295(図20参照)を介して、タブレット200と接続されていてもよい。
外部記憶媒体290は、見本筆跡テーブルと、見本ペン傾きテーブルと、見本筆圧テーブルと、定型アドバイスデータ(表示用)と、定型アドバイスデータ(音声用)等を記憶している。
図21の例では、必要なデータを外部記憶媒体290内に格納している例を示しているが、例えば、ダウンロードすることで、作品描画手法指導に必要なデータを、タブレット200の内部メモリに記憶させてもよい。
スタイラスペン100Aは上述の、6軸センサ1A及び位置発信部6Aに加えて、通信部7Aと有している。
タブレット200は、LCD(Liquid Cristal Display)211と、位置検出部(デジタイザ)212の機能を有するタッチパネル210を有している。
さらに、タブレット200は、制御部220、表示制御部230、音声制御部240、スピーカー250、記憶部260、通信部270、及びデータ入出力部280などを有している。
スタイラスペン100Aと、タブレット200とは、電磁誘導方式で検出可能になるように、上述の図18又は図19の方式により予めペアリング(無線接続)されている。スタイラスペン100Aの位置発信部6から発信される位置を、タブレット200のタッチパネル210における、位置検出部(デジタイザ)212が検出することで、タッチパネル210が認識し、画面上にスタイラスペン100Aが接触した位置を検出する。
そして、検出したスタイラスペン100Aのタッチパネル210上の位置を、LCD211上に表示するとともに、記憶部260の検出結果記憶領域261へ送る。
また、スタイラスペン100Aの6軸センサ1Aが検出した、ペン先の傾きや筆圧の情報は、通信部7Aを介して、タブレット200の通信部270に送られ、検出結果記憶領域261に一時的に保存される。
制御部220は、比較部221と、指示情報設定部222とを有している。
比較部221は、検出結果記憶領域261に記憶されたスタイラスペン100Aの筆跡、ペンの傾き、及び筆圧を、リアルタイムに、外部記憶媒体290に記憶され、データ入出力部(取得部)280を介して取得した、見本筆跡テーブル、見本ペン傾きテーブル、及び見本筆圧テーブルと比較する。なお、本例では、検出されたペン先の位置情報や、スタイラスペン100Aのペン先5Aの傾き、筆圧の情報を、一時的に検出結果記憶領域261に記憶する例を示すが、保存せずに比較部221に検出結果を直接、入力してもよい。
そして、比較結果に応じて、指示情報設定部222で指示情報を設定する。詳しくは、比較結果に応じて、表示用や音声用の定型アドバイスデータを参照して、そのアドバイスを指示情報として選択する。
即ち、制御部220は、ユーザーが書道や絵画などの作品形成中の、スタイラスペン100Aの進行方向、力のかけ方、及びペン先の傾きのアドバイス情報を生成する。
音声による指示が設定されている場合、指示情報設定部222で設定した指示内容を、音声制御部240に送り、図20に示すように、タブレット200に設けられるスピーカー250から音声によって、ユーザーへアドバイスする。
表示による指示が設定されている場合、指示情報設定部222で設定した指示内容を、表示制御部230に送り、LCD211により、その指示内容をタッチパネル210上に表示することで、ユーザーへアドバイスする。
従来のタッチパネルを用いた指導システムでは、筆跡のみ指導であったが、本願の6軸センサを用いることで、文字や、絵画、描画などを、ペンの傾きや筆圧などをリアルタイムに、見本と比較して評価を受けることができる。
なお、本例では、スタイラスペン100Aとペアリングされたタブレット200が、音声又はタッチパネル210上で表示することで、スタイラスペン100Aのペン先の筆跡、力の強さ、又は傾き、次にペン先が向かう位置等をアドバイスする例を示している。
しかし、スタイラスペン100A側にスピーカー機能を持たせることで、タブレット200とペアリングされた、スタイラスペン100A自体が、進行方向、力のかけ方、及びペン先の傾き等をアドバイスするように構成してもよい。
なお、図20は、習字の指導を受ける例を示しているが、指導を受けるものは、描画や絵画や漫画等の他の作品であってもよい。
従来のタッチパネルは筆跡の指導のみ可能であったが、本構成のように上記6軸センサを含むスタイラスペンを用いることで、文字や、絵画、描画などを、筆跡に加えてペンの傾きや筆圧なども、リアルタイムに、見本と比較して評価を受けることができる。
<第2実施形態>
次に、第2実施形態として、センサアッセンブリを、歯科技工器具に適用する例を、図22~図24を用いて詳述する。
図22は、センサアッセンブリが歯科技工器具100Bである場合の構成例である。
歯科技工用の工具である歯科技工器具(歯科技工工具)100Bでは、先端部材として、先端工具5Bを有している。
なお、図22では、先端工具の例として、形態修正用のプッシュカーバイドバーの例を示しているが、先端工具は、形態修正用の超硬カッターやダイヤモンドポイント、中仕上げ又は仕上げ研磨用の、ペーパーコーンや、クロスコーン、シリコンポイント、マージンポイント、砥石等の他の先端工具であってもよい。
先端工具5Bは、義歯や補綴物等の技工対象物AT(図23参照)と接触することにより、技工対象物ATを加工(研磨、掘削等の形態修正や、仕上げ)する。
歯科技工器具100Bは、さらに、先端工具5Bの傾き及び圧力を検出する6軸フォースセンサ1Bと、アタッチメントである先端工具取付部3Bと、筐体4Bとを有している。
図22に示す本構成においても、先端工具取付部3Bと、筐体4Bの内側面の間には空間ギャップが存在する。そのため、先端部材である先端工具5Bに加えられる3軸力及びその軸回りのモーメントが効果的に6軸センサ1Bへ伝達される。即ち、6軸センサ1Bは、先端工具5Bが技工対象物と接触した際に、技工対象物へ力をかけた方向と圧力の情報を検出する。
さらに、接触した技工対象物への力のかけた方向と、圧力の情報、圧力及び方向の継続時間の情報を記憶する記憶部を、歯科技工器具100Bの内部に有していてもよい。
<第2実施形態の応用例>
図23は、本実施形態の歯科技工器具100Bを用いて技工中に、技工対象物ATに対する歯科技工器具の接触の角度や圧力を表示する、歯科技工手法表示システムの例である。図24は、図23の歯科技工手法表示システム2000のブロック図の一例である。
図24に示す、歯科技工手法表示システム2000は、歯科技工器具100Bと、PC300と、カメラ400と、を有する。
情報処理装置の一例であるPC300は、歯科技工器具100Bと、有線、又は無線のネットワークを介して接続されている。カメラ400は、PC300と、有線、又は無線のネットワークを介して接続されている。
PC300は、表示部310と、制御部320と、表示制御部330と、音声制御部340と、スピーカー350と、記憶部360と、通信部370等とを備える。
記憶部360は、完成形状記憶領域、歯型記憶領域、検出結果記憶領域を有する。完成形状記憶領域、歯型記憶領域には、技工対象物となる患者の歯型を基に、予めデータを設定しておく。
記憶部360は、歯科技工器具100Bが接触した際に、技工対象物ATへ力をかけた方向と、圧力の情報を記憶する。
制御部320の切削情報累積部321は、例えば、技工実行時の、同じ角度及び同じ圧力での接触時間の継続時間を累積してカウントする。
PC300は、表示部310上に、カメラ400で撮影した映像と、技工者Oが、現在の作業中の先端工具5Bの圧力、及び傾き情報を、関連付けて一緒に表示部310の画面上に表示する。
本構成の歯科技工手法表示システム2000では、熟練者の技工者Oの歯科技工器具100Bの使用方法を映像とともに、圧力のかけ方や向きを数値化して表示することで、学生等の技工学習において、より具体的な、工具を用いた技の習得が可能になる。
なお、本例では、歯科技工の例を示しているが、電動の工具を用いる技術習得な必要な分野にも、本技術を応用することも可能である。例えば、木工技工や、金属加工等へも応用可能である。
<第3実施形態>
図25は、センサアッセンブリを医療用機器に搭載する場合の構成例である。図25において、(a)はセンサアッセンブリを医療用メス100Cに搭載する場合の構成例であって、(b)はセンサアッセンブリを医療用触手100Dに搭載する場合の構成例である。医療用メス100C及び医療用触手100Dは、医療用器具の一例である。
図25(a)に示す医療用メス100Cでは、先端部材として、医療用ブレード5Cを有している。医療用ブレード5Cは、医療用メスの刃先の部分に相当する。なお、図25(a)に示す医療用ブレード(刃先)5Cは替刃メスの一例を示すが、適用可能な医療用ブレード5Cは、他の形状の替刃メスやマイクロスコープ用の替刃メスであってもよいし、スカルペルであってもよい。
医療用メス100Cは、さらに、医療用ブレード5Cの傾き及び圧力を検出する6軸フォースセンサ1Cと、アタッチメント(ブレード取付部)3Cと、筐体4Cとを有している。
この構成においても、アタッチメントであるブレード取付部3Cと、筐体4Cの内側面の間には空間ギャップが存在する。そのため、先端部材である医療用ブレード5Cに加えられる3軸力及びその軸回りのモーメントが効果的に6軸センサ1Cへ伝達される。
図25(b)に示す医療用触手100Dでは、先端部材として、医療用の触手5Dを有している。触手5Dは、例えばやわらかい丸みを帯びた弾性体であって、外科医Oや獣医などの術者が手術する際に指の代わりに患者(又は患畜)の手術部位やその周辺部位にゆっくりと接触することで、患部と、患部以外の部位を触感によって判別するのと同様に、触手5Dを用いて触感を検出する。
医療用触手100Dは、さらに、触手5Dの傾き及び圧力を検出する6軸フォースセンサ1Dと、アタッチメント(触手取付部)3Dと、筐体4Dとを有している。
この構成においても、アタッチメントである触手取付部3Dと、筐体4Dの内側面の間には空間ギャップが存在する。そのため、先端部材である触手5Dに加えられる3軸力及びその軸回りのモーメントが効果的に6軸センサ1Dへ伝達される。
本実施形態においては、6軸フォースセンサ1C,1Dは、医療用ブレード5C及び/又は触手5Dが接触する手術対象物(患者や患畜)の柔らかさ及び手術対象物に対して圧力がかかる方向を検出する。
<第3実施形態の応用例1>
図26は、図25の医療用メス及び/又は医療用触手を使用した遠隔手術システムの例である。図27は、図26の遠隔手術システム3000のブロック図である。
図27に示す遠隔手術システム3000は、手術用ロボット(患者手術ロボット)500と、操作側コンソール600とを有している。手術用ロボット500は、医療用メス100Cと、医療用触手100Dとを操作可能に保持している。
手術用ロボット500と、操作側コンソール600とは、ネットワーク(有線、近距離無線、指定の無線)を介して、接続されている。
手術用ロボット500は、ロボットアーム510,520と、情報処理部530と、カメラ540と、マイク550と、スピーカー560と、を有している。情報処理部530は、6軸情報取得部531、音声処理部532、映像処理部533、通信部534等を備えている。
操作側コンソール600は、入力デバイス610,620と、情報処理部630と、ディスプレイ640と、マイク650と、スピーカー660と、脚用ペダル670と、を有する。情報処理部630は、移動情報取得部631,632、6軸情報変換部633、音声処理部634、映像処理部635、ペダル情報取得部636、通信部637等を備えている。
手術用ロボット500は、操作側コンソール600からの指示を受けて、患者に対して、直接手術を行う装置である。
手術用ロボット500において、ロボットアーム(スレーブマニピュレーター)510,520は、外科医が操作側コンソール600を操縦することによって、その操縦の位置情報を移動情報取得部631,632が取得し、移動情報伝達駆動部511,521に伝達されることで、入力デバイス610,620に連動して動くように操縦される。
本実施形態では、ロボットアーム(スレーブマニピュレーター)510,520の先端には医療用メス100C及び/又は医療用触手100Dを着脱自在に把持している。医療用メス100C及び/又は医療用触手100Dが検出したメス/触手の傾きや圧力は、ロボットアーム510、520を介して、又は無線により、情報処理部530の6軸情報取得部531に伝達され、検出した量が数値化される。
カメラ540は、患者の手術部位を撮影する。カメラ540は、3次元に撮影可能なカメラであるとより好ましい。
マイク(マイクロフォン)550は、手術に立ち会っている、手術助手や、手術看護師からの音声コマンドを受信する。スピーカー560は、操作側コンソール600に入力された外科医の音声コマンドを音声情報として流す。
操作側コンソール600は、外科医によって操縦される装置である。
入力デバイス(マスターマニピュレータ)610,620は、任意の1つ以上の様々な入力デバイス、例えば、ジョイスティック、グローブ、トリガーガン、手動コントローラなどを含み得る。本実施形態では、メス入力デバイス610は、図25(a)の医療用メス100Cの操作に対応する入力デバイスであって、触手入力デバイス620は、図25(b)の医療用触手100Dの操作に対応する入力デバイスである例を示す。
なお、脚用ペダル670も、手を用いて入力する入力デバイス610,620とは、異なる指示を行う脚用の入力デバイスである。
本実施形態では、入力デバイス610,620には、振動発生部611,621が設けられている。なお、脚用ペダル670にも、必要に応じて振動発生部を設けてもよい。
マイク(マイクロフォン)650は、外科医からの音声コマンドを受信する。
ディスプレイ(マスターディスプレイ)640は、患者内の外科手術の部位の1つ以上の画像と、外科医に対する他の情報として、医療用メス100C、医療用触手100Dで検出した、メスや触手の傾きや圧力等も表示する。
上記の構成では、医療用メス100C及び/又は医療用触手100Dが検出したメス/触手の傾き/圧力は、ロボットアーム510,520を介して、又は無線により、手術用ロボット500の情報処理部530に伝達される。そして、手術対象物の柔らかさ及び前記手術対象物に対して圧力がかかる方向として、通信部534,637を介して操作側コンソール600に伝達され、6軸情報変換部633で振動量に変換され、入力デバイス610,620に設けられた振動発生部611,621が振動することで、振動として伝達することができる。
これにより、遠隔手術システムにおいて、ロボットアーム510,520が把持する医療用メス100C及び/又は医療用触手100Dが、臓器や腹壁など、術部以外に接触している場合に、操作側コンソール600において、術者である外科医は、振動により手ごたえとして感知することが可能になる。
<第3実施形態の応用例2>
図28は、図25の医療用メス100C及び/又は医療用触手100Dを使用した3次元手術手法表示システムの例である。図29は、図28の3次元手術手法表示システム4000のブロック図である。
図29に示す、3次元手術手法表示システム4000は、PC700、3次元位置検出装置800、及びカメラ900を有する。3次元位置検出装置800及びカメラ900は、医療用器具(100C,100D)の医療用ブレード5C又は触手5Dの位置を測位する、3次元カメラとして機能する。
なお、カメラ900を2次元で設ける場合は、医療用メス100Cによって手術が行われる術部が視認可能なように、撮影されるのが好ましい。そのため、カメラ900は、真上に設置されてもよく、又は、医療用メス100Cと連動として移動してもよい。あるいは、カメラ900と医療用メス100Cとが一体化していてもよい。
PC700は、表示部710と、制御部720と、表示制御部730と音声制御部740と、スピーカー750と、記憶部760と、を備える。
記憶部760は、3次元情報記憶領域、画像情報記憶領域、6軸検出結果記憶領域等を有する。
制御部720は、情報合成部721を有しており、通信部を介して取得した、カメラ900からの手術部位の画像と、3次元位置検出装置800で検出した医療用メス100C及び/又は医療用触手100Dの位置を合成して、表示部710上に表示する。
さらに、医療用メス100C及び/又は医療用触手100Dで検出した6軸センサの傾きや圧力を検出することで、手術対象物(患者や患畜)の柔らかさ及び手術対象物に対して圧力がかかる方向を検出する。
PC700は、撮影した映像と、位置情報と、現在の作業中の先端工具5Bの圧力、及び傾き情報を一緒に表示部710の画面上に表示する。
本構成の手術手法表示システム4000では、熟練者のメスの使用方法や、患部箇所(腫瘍箇所等)の特定方法を映像とともに数値化して表示することで、学生等の手術技術学習において、より具体的な、手術中のメスの使い方や、患部の発見方法等の習得が可能になる。
<第4実施形態>
図30は、センサアッセンブリを靴底に搭載する場合の構成例である。
本実施形態では、センサアッセンブリが靴底に設けられているバランス検出靴100Eである場合の構成例である。
バランス検出靴100では、上記の先端部材として、靴底に設けられたセンサ5Eを有している。
さらに、バランス検出靴100Eでは上記の6軸フォースセンサ5Eと、アタッチメントと、を有している。なお、靴底に穴を開けてセンサを設けられているため、筐体4Eは、靴の穴部に相当する。
図30に示すように、この構成においても、センサ及びセンサ取付部、筐体4Eとの内側面の間には空間ギャップが存在する。そのため、靴底に配置されたセンサ5Eに加えられる3軸力及びその軸回りのモーメントに相当する体重移動の動き及びかかり方が効果的に6軸センサへ伝達される。
このように検出した6軸センサの結果は、例えば、靴を履いているユーザーの携帯電話やスマートフォン5100に送信され、図20に示す第1実施形態の応用例同様に、予め、基準となるデータを登録しておくことで、スマートフォン5100から歩行やジョギング時のアドバイスが受けられると好ましい。
以上、センサアッセンブリを複数の実施形態例により説明したが、本発明は上記実施形態例に限定されるものではない。他の実施形態例の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
1 6軸センサ(6軸フォースセンサ、力覚センサ)
3,3‐1 アタッチメント(先端部材取付部)
3A ペン先取付部(アタッチメント)
3B 技工具取付部(アタッチメント)
3C ブレード取付部(アタッチメント)
3D 触手取付部(アタッチメント)
3E 靴底検知部取付部(アタッチメント)
4,4A,4B,4C,4D,4E 筐体
4i 内周面
5,5‐1 先端部材
5A,5A‐1,5A‐2,5A‐3,5A‐4 ペン先
5B 先端工具
5C 医療用ブレード
5D 触手
5E 靴底センサ
6 位置発信部
10 センサチップ(6軸フォースセンサ)
20 起歪体(6軸フォースセンサ)
31 受け部
32 取付け起立部
33 雌ネジ
34 溝
51 接触部
52 嵌合部
53 雄ネジ
54 ピン
61 磁性体
62 磁性芯
63 磁性コイル
100 センサアッセンブリ
100A スタイラスペン
100B 歯科技工器具
100C 医療用メス(医療用器具)
100D 医療用触手(医療用器具)
100E バランス検出靴
200 タブレット
210 タッチパネル(パネル)
212 デジタイザ(位置検出部)
270 通信部
280 データ入出力部(取得部)
300 PC(情報処理装置)
400 カメラ
500 手術用ロボット(患者手術ロボット)
540 カメラ
600 操作用コンソール
610,620 入力デバイス
640 ディスプレイ
700 PC(情報処理装置)
800 3次元位置検出装置(3次元カメラ)
900 カメラ(3次元カメラ)
1000 作品描画手法指導システム
2000 歯科技工手法表示システム
3000 遠隔手術システム
4000 手術手法表示システム
5000 歩行状態表示システム

Claims (12)

  1. 筒状の筐体と、
    前記筐体の一端から一部が突出した状態で、対象物に接触可能な先端部材と、
    前記筐体内に設けられ、先端側に突出している力点入力部が設けられた、6軸フォースセンサと、
    前記6軸フォースセンサの前記力点入力部に接続され、前記先端部材を取り付け可能な先端部材取付部と、を備え、
    前記6軸フォースセンサは、起歪体と、該起歪体の先端側の面に装着されたセンサチップとを有し、
    前記起歪体は前記先端側の面において、前記センサチップを取り囲むように、前記センサチップよりも前記先端側に突出している4つの力点入力部を有し、
    前記先端部材取付部は、前記先端部材の後端側を取り囲む取付け起立部と、前記4つの力点入力部の先端が接着される面状の受け部と、を有し、
    前記先端部材取付部及び前記先端部材は、前記筐体の内周面との間に空間ギャップが存在するように、前記筐体の内周側に設けられ
    前記起歪体は、
    後端側の面である土台と、
    前記土台の四隅から先端側に伸びる4本の第1の柱と、
    隣接する柱同士を先端側で連結し、中央する4本の第1の梁と、
    前記4本の第1の梁の中央側の面から突出する4本の第2の梁と、
    前記4本の第2の梁の先端側の面から先端側に突出し、先端が前記4つの力点入力部よりも後端側に位置する4つの突起部と、を有しており、
    前記4つの力点入力部は、前記4本の第1の梁の先端側の面の中央から先端側にそれぞれ突出しており、
    前記4つの突起部に、前記センサチップが接合されており、
    前記4つの力点入力部に力が印加されると、前記4本の第1の梁と、前記4本の第1の柱と、前記4本の第2の梁と、前記4つの突起部が変形して、前記センサチップに力を伝達する
    ことを特徴とするセンサアッセンブリ。
  2. 前記センサチップは、外力が入力される4つの力点がそれぞれ設けられた4つの検知ブロックを有し、
    前記センサチップの前記4つの力点は、前記起歪体の前記4つの力点入力部に力が印加されると、それに応じて変形する部分に接触して設けられており、
    前記4つの検知ブロックの各検知ブロックには、少なくとも1つ以上のピエゾ抵抗素子が設けられている
    ことを特徴とする請求項1に記載のセンサアッセンブリ。
  3. 前記センサチップは、
    四隅に設けられた4つの角部支持部と、
    前記4つの角部支持部における隣接する角部支持部を連結して前記センサチップの外形を構成する4本の第1の補強用梁と、
    中央に位置する中央支持部と、
    前記4つの角部支持部と前記中央支持部とを対角線状に連結する4本の第2の補強用梁と、
    両端が、隣接する角部支持部に連結され、前記第1の補強用梁と間隔を開けて平行に延伸し、外力により変形可能であって、中央には突出する前記4つの力点がそれぞれ設けられた、4本の第1の検知用梁と、
    両端が、隣接する第2の補強用梁に連結され、前記中央支持部と間隔をあけて平行に延伸し、外力により変形可能な、4本の第2の検知用梁と、
    前記4本の第1の検知用梁のそれぞれの中央と、前記4本の第2の検知用梁のそれぞれの中央とを連結し、外力により変形可能な、4本の第3の検知用梁と、をさらに有し、
    前記各検知ブロックは、1本の第1の検知用梁と、1本の第2の検知用梁と、1本の第3の検知用梁と、1つの力点を有し、
    前記ピエゾ抵抗素子は、4本の第1の検知用梁と、4本の第2の検知用梁と、同一直線状に延伸する2本の第3の検知用梁に、配置されている
    ことを特徴とする請求項2に記載のセンサアッセンブリ。
  4. 位置検出可能なタッチパネルに文字や線を入力可能なスタイラスペンであって、
    筒状の筐体と、
    磁性体を内包しており、前記筐体の一端から一部が突出した状態で前記タッチパネルに接触可能なペン先と、
    前記筐体内に設けられ、ペン先側に突出している力点入力部が設けられた、6軸フォースセンサと、
    前記6軸フォースセンサの前記力点入力部に接続され、前記ペン先を取り付け可能な、ペン先取付部と、
    前記6軸フォースセンサ及び前記ペン先取付部を貫く磁性芯と、
    前記磁性芯と接続され、前記6軸フォースセンサの後方に設けられる磁性コイルと、を備え、
    前記ペン先取付部及び前記ペン先は、前記筐体の内周面との間に空間ギャップが存在するように、前記筐体の内周側に設けられ、
    前記6軸フォースセンサは、前記タッチパネルに対する前記ペン先の接触圧力及び前記タッチパネル上の前記ペン先の傾き及び/又は回転を検出し、
    前記磁性芯が前記ペン先に内包される前記磁性体へ接続可能であり、
    前記磁性体及び前記磁性芯を検出して、前記磁性コイルに電流が流れる電磁誘導方式により前記タッチパネル上の前記ペン先の位置を検出可能とする
    ことを特徴とするスタイラスペン。
  5. 前記6軸フォースセンサは、起歪体と、該起歪体の前記ペン先側の面に装着されたセンサチップとを有し、
    前記起歪体は前記ペン先側の面において、前記センサチップを取り囲むように、前記センサチップよりも前記ペン先側に突出している4つの力点入力部を有し、
    前記ペン先取付部は、前記ペン先の後端側を取り囲む取付け起立部と、前記4つの力点入力部の先端が接着される面状の受け部と、を有する
    ことを特徴とする請求項に記載のスタイラスペン。
  6. 前記ペン先は、前記タッチパネルに接触する際の圧力により変形可能であり、
    前記磁性芯が、弾性を有して前記ペン先の変形に追従することで、ユーザーへフォースフィードバックを与える
    ことを特徴とする請求項4又は5に記載のスタイラスペン。
  7. 前記6軸フォースセンサの起歪体が、円錐台形状である
    ことを特徴とする請求項4乃至6のいずれか一項に記載のスタイラスペン。
  8. 前記筐体の先端は、内側に折り曲げられた円環状の縁辺が形成されており、
    前記縁辺よりも先端側に設けられ、前記ペン先が変形した際に接触するストッパーを備える
    ことを特徴とする請求項に記載のスタイラスペン。
  9. 請求項4乃至8のいずれか一項に記載のスタイラスペンと、
    位置検出可能なタッチパネルを備える装置と、を備える手書き入力システムであって、
    前記タッチパネルは、磁界を形成することで前記ペン先の位置を、前記電磁誘導方式により、検出する
    ことを特徴とする手書き入力システム。
  10. 前記スタイラスペンの前記ペン先の種類が交換可能であり、
    前記ペン先に、コイル及びコンデンサによる共振回路が搭載されており、
    前記タッチパネルは、前記ペン先に搭載された前記共振回路の共振周波数をスキャンすることによって、前記ペン先の種類を認識可能である
    ことを特徴とする請求項に記載の手書き入力システム。
  11. 前記筐体内において、前記6軸フォースセンサよりも後方に設けられる、マイコンを備え、
    前記ペン先の種類が交換可能であり、
    前記ペン先に、前記スタイラスペンとの接続状態を検知する検知機構が設けられており、
    前記マイコンが、前記検知機構を介して前記ペン先の種類を特定すると共に前記タッチパネルへ伝送し、前記タッチパネルに前記ペン先の種類を認識させる
    ことを特徴とする請求項10に記載の手書き入力システム。
  12. 請求項4乃至8のいずれか一項に記載のスタイラスペンと、
    位置検出可能なタッチパネルを備えるタブレットと、を有し、
    前記タブレットは、前記スタイラスペンで、書道、描画、絵画、又は漫画を入力した際の前記ペン先の進行方向、力のかけ方、及びペン先の傾きをアドバイスすることができる
    ことを特徴とする作品描画手法指導システム。
JP2018013447A 2018-01-30 2018-01-30 センサアッセンブリ、スタイラスペン、手書き入力システム、及び作品描画手法指導システム Active JP7125588B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018013447A JP7125588B2 (ja) 2018-01-30 2018-01-30 センサアッセンブリ、スタイラスペン、手書き入力システム、及び作品描画手法指導システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018013447A JP7125588B2 (ja) 2018-01-30 2018-01-30 センサアッセンブリ、スタイラスペン、手書き入力システム、及び作品描画手法指導システム

Publications (2)

Publication Number Publication Date
JP2019132636A JP2019132636A (ja) 2019-08-08
JP7125588B2 true JP7125588B2 (ja) 2022-08-25

Family

ID=67546023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018013447A Active JP7125588B2 (ja) 2018-01-30 2018-01-30 センサアッセンブリ、スタイラスペン、手書き入力システム、及び作品描画手法指導システム

Country Status (1)

Country Link
JP (1) JP7125588B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113272768B (zh) * 2019-02-08 2024-04-30 株式会社和冠 电磁耦合方式的电子笔
JP7424926B2 (ja) * 2020-06-26 2024-01-30 株式会社日立製作所 デジタル化システム
KR20230071081A (ko) * 2021-11-15 2023-05-23 주식회사 로엔서지컬 수술 장치 및 이를 포함하는 원격 수술 시스템
TWI801051B (zh) * 2021-12-22 2023-05-01 宏碁股份有限公司 觸控裝置
WO2025028569A1 (ja) * 2023-07-31 2025-02-06 株式会社ワコム 入力システム及び入力方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254843A (ja) 2002-03-05 2003-09-10 Honda Motor Co Ltd 6軸力センサ
JP2006092410A (ja) 2004-09-27 2006-04-06 Pioneer Electronic Corp 電子ペンおよびタッチパネル装置
JP2008033603A (ja) 2006-07-28 2008-02-14 National Institute Of Advanced Industrial & Technology 6軸力覚センサ用把持型ツール
US20130088465A1 (en) 2010-06-11 2013-04-11 N-Trig Ltd. Object orientation detection with a digitizer
JP2014119936A (ja) 2012-12-17 2014-06-30 Wacom Co Ltd 静電方式スタイラスペン
JP2014531675A (ja) 2011-09-28 2014-11-27 アマゾン テクノロジーズ インコーポレイテッド 磁気スタイラス
JP5697186B1 (ja) 2013-03-27 2015-04-08 Semitec株式会社 接触力センサ
US20160334288A1 (en) 2013-10-05 2016-11-17 Bertec Limited Load Transducer and Force Measurement Assembly Using the Same
JP2017058337A (ja) 2015-09-18 2017-03-23 株式会社東芝 力覚センサ
CN107179841A (zh) 2017-06-09 2017-09-19 苏州零次方智能科技有限公司 一种多功能智能笔及包括该智能笔的记录装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953192A (ja) * 1982-09-21 1984-03-27 富士通株式会社 支持装置
US4635479A (en) * 1984-08-29 1987-01-13 Massachusetts Institute Of Technology Force sensing apparatus
JPS6159523A (ja) * 1984-08-30 1986-03-27 Fujitsu Ltd 筆字体入出力装置
JPS61139820A (ja) * 1984-12-12 1986-06-27 Seiko Instr & Electronics Ltd 座標読取装置
JPS63266329A (ja) * 1987-04-24 1988-11-02 Nekushii Kenkyusho:Kk 力検出装置
JPH02228532A (ja) * 1989-03-02 1990-09-11 Wako:Kk 力検出装置およびその応用
JPH11353108A (ja) * 1998-06-05 1999-12-24 Hosiden Corp 入力装置
JP2000284894A (ja) * 1999-03-29 2000-10-13 Seiko Epson Corp 筆跡送受信装置
JP3261653B2 (ja) * 1999-07-07 2002-03-04 独立行政法人産業技術総合研究所 指装着型6軸力覚センサ
JP2002312113A (ja) * 2001-04-18 2002-10-25 Fuji Xerox Co Ltd ペン型手書き入力データ処理装置、筆記具およびペン型手書き入力データ処理方法、並びにプログラム
US7202862B1 (en) * 2004-03-03 2007-04-10 Finepoint Innovations, Inc. Pressure sensor for a digitizer pen
JP2013234975A (ja) * 2012-05-11 2013-11-21 Kazuhiro Nakamura 力覚センサ
JP6551915B2 (ja) * 2015-07-06 2019-07-31 シグマセンス,エルエルシー 内圧、傾き及び回転についてのペンシステム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254843A (ja) 2002-03-05 2003-09-10 Honda Motor Co Ltd 6軸力センサ
JP2006092410A (ja) 2004-09-27 2006-04-06 Pioneer Electronic Corp 電子ペンおよびタッチパネル装置
JP2008033603A (ja) 2006-07-28 2008-02-14 National Institute Of Advanced Industrial & Technology 6軸力覚センサ用把持型ツール
US20130088465A1 (en) 2010-06-11 2013-04-11 N-Trig Ltd. Object orientation detection with a digitizer
JP2014531675A (ja) 2011-09-28 2014-11-27 アマゾン テクノロジーズ インコーポレイテッド 磁気スタイラス
JP2014119936A (ja) 2012-12-17 2014-06-30 Wacom Co Ltd 静電方式スタイラスペン
JP5697186B1 (ja) 2013-03-27 2015-04-08 Semitec株式会社 接触力センサ
US20160334288A1 (en) 2013-10-05 2016-11-17 Bertec Limited Load Transducer and Force Measurement Assembly Using the Same
JP2017058337A (ja) 2015-09-18 2017-03-23 株式会社東芝 力覚センサ
CN107179841A (zh) 2017-06-09 2017-09-19 苏州零次方智能科技有限公司 一种多功能智能笔及包括该智能笔的记录装置

Also Published As

Publication number Publication date
JP2019132636A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
JP7125588B2 (ja) センサアッセンブリ、スタイラスペン、手書き入力システム、及び作品描画手法指導システム
Stocco et al. Optimal kinematic design of a haptic pen
US20080100588A1 (en) Tactile-feedback device and method
JP4982877B2 (ja) 触覚ディスプレイ装置、多自由度アクチュエータ、及び、ハンドリング装置
US20120251991A1 (en) Peripheral Probe with Six Degrees of Freedom Plus Compressive Force Feedback
CN112041789B (zh) 位置指示设备及空间位置指示系统
JP2014148037A (ja) マスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、並びに、制御プログラム
CN113341564A (zh) 一种计算机输入装置
US11024195B2 (en) Diagnostic and therapeutic system for manual therapy
WO2015137014A1 (ja) 情報入出力装置及び情報入出力方法
CN108177144A (zh) 机器人系统
Sieber et al. A novel haptic platform for real time bilateral biomanipulation with a MEMS sensor for triaxial force feedback
JP2016117121A (ja) 組立支援システム、及び、組立支援方法
WO2016181469A1 (ja) シミュレーションシステム
JP6966777B2 (ja) 入力システム
RU2670649C1 (ru) Способ изготовления перчатки виртуальной реальности (варианты)
Evreinova et al. From kinesthetic sense to new interaction concepts: Feasibility and constraints
EP3891466B1 (en) System and method for measuring using multiple modalities
US20140018820A1 (en) Palpation apparatus and method using robot
JP2013169952A (ja) 車両用入力装置
JP6088208B2 (ja) 触力覚提示装置
CN115867880B (zh) 显示系统及显示方法
JP2006523873A (ja) 材料加工時の手動式動作支援を提供するための対話式方法及び装置
KR100838181B1 (ko) 초소형 절대 위치 센서를 이용한 핸드 인터페이스 글로브및 이를 이용한 핸드 인터페이스 시스템
JP5660971B2 (ja) Cadシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7125588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150