[go: up one dir, main page]

JP7085083B2 - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
JP7085083B2
JP7085083B2 JP2017172567A JP2017172567A JP7085083B2 JP 7085083 B2 JP7085083 B2 JP 7085083B2 JP 2017172567 A JP2017172567 A JP 2017172567A JP 2017172567 A JP2017172567 A JP 2017172567A JP 7085083 B2 JP7085083 B2 JP 7085083B2
Authority
JP
Japan
Prior art keywords
light
led array
led
rod lens
irradiation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017172567A
Other languages
Japanese (ja)
Other versions
JP2019050082A (en
Inventor
孚 出島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AI Tec System Co Ltd
Original Assignee
AI Tec System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AI Tec System Co Ltd filed Critical AI Tec System Co Ltd
Priority to JP2017172567A priority Critical patent/JP7085083B2/en
Priority to CN201811041553.6A priority patent/CN109469838B/en
Publication of JP2019050082A publication Critical patent/JP2019050082A/en
Application granted granted Critical
Publication of JP7085083B2 publication Critical patent/JP7085083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Coating Apparatus (AREA)
  • Led Device Packages (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は光照射装置に関する。 The present invention relates to a light irradiation device.

この種の光照射装置として、紫外線を出す放電管と、放電管からの紫外線を帯状の照射位置に向かって反射する凹湾曲した反射部材とを備えたものが知られている(例えば、特許文献1参照。)。
また、放電管の代わりに複数の紫外線LEDをX方向およびY方向に並べ、複数の紫外線LEDによって照射位置を照射する光照射装置も知られている(例えば、特許文献2参照。)。
As this type of light irradiation device, a discharge tube that emits ultraviolet rays and a concave-curved reflective member that reflects the ultraviolet rays from the discharge tube toward a band-shaped irradiation position are known (for example, Patent Documents). See 1.).
Further, there is also known a light irradiation device in which a plurality of ultraviolet LEDs are arranged in the X direction and the Y direction instead of the discharge tube, and the irradiation position is irradiated by the plurality of ultraviolet LEDs (see, for example, Patent Document 2).

特開2009-107190号公報Japanese Unexamined Patent Publication No. 2009-107190 特開2006-136859号公報Japanese Unexamined Patent Publication No. 2006-136859

前者の光照射装置は、放電管として1cm当たり数百Wの出力を有するものを用いるので、紫外線硬化樹脂(以下、単に「樹脂」とも称する。)の硬化速度を上げるのに優れているが、放電管の寿命が短い。光照射装置は樹脂の硬化工程の奥深くに配置されている場合が多いので、放電管の交換には手間と時間を要する。また、放電管の交換により樹脂の硬化速度等が変化する可能性があるので、交換の度に樹脂硬化工程の再設定を行う必要が生ずる場合もある。また、放電管が高温になるため照射位置から離さなければならないという制約もある。 Since the former light irradiation device uses a discharge tube having an output of several hundred W per 1 cm, it is excellent in increasing the curing speed of an ultraviolet curable resin (hereinafter, also simply referred to as "resin"). The life of the discharge tube is short. Since the light irradiation device is often located deep in the resin curing process, it takes time and effort to replace the discharge tube. Further, since the curing speed of the resin may change due to the replacement of the discharge tube, it may be necessary to reset the resin curing process every time the discharge tube is replaced. In addition, there is a restriction that the discharge tube must be separated from the irradiation position because the temperature becomes high.

一方、後者の光照射装置は紫外線LEDを用いており、紫外線LEDは放電管に比べ十数倍から数十倍の寿命を有する。しかし、パワーLEDと呼ばれるLEDでも1つ当たり数Wの出力であるため、後者の光照射装置のように紫外線LEDをX方向およびY方向に並べただけでは放電管を用いた光照射装置と同等の樹脂の硬化速度を得ることはできない。 On the other hand, the latter light irradiation device uses an ultraviolet LED, and the ultraviolet LED has a life of ten to several tens of times that of a discharge tube. However, even an LED called a power LED has an output of several watts per LED, so simply arranging the ultraviolet LEDs in the X and Y directions as in the latter light irradiation device is equivalent to a light irradiation device using a discharge tube. It is not possible to obtain the curing rate of the resin.

例えば、図7に示すように、光照射装置100を複数設け、各光照射装置100に、パワーLEDと呼ばれる紫外線LEDがX方向に並べられたLEDアレイ110と、LEDアレイ110に沿うように配置され、LEDアレイ110からの光をX方向と直交するY方向に集光する石英等から成る円柱レンズ120とを設け、複数の光照射装置100からの光を1つの帯状の照射位置で重ねることも考えられる。これにより、帯状の照射位置の光のエネルギー密度を高くすることができる。 For example, as shown in FIG. 7, a plurality of light irradiation devices 100 are provided, and in each light irradiation device 100, an LED array 110 in which ultraviolet LEDs called power LEDs are arranged in the X direction and an LED array 110 are arranged along the LED array 110. A columnar lens 120 made of quartz or the like that collects the light from the LED array 110 in the Y direction orthogonal to the X direction is provided, and the light from the plurality of light irradiation devices 100 is overlapped at one band-shaped irradiation position. Can also be considered. This makes it possible to increase the energy density of the light at the band-shaped irradiation position.

ここで、紫外線は通常のガラスや透明プラスチックのレンズにより大幅に減衰するため、レンズの材質としては減衰が小さい石英等を用いる必要がある。なお、石英を用いても10%程度の減衰が生じる。
また、LEDから出た光は放射状に広がり、円柱レンズ120はX方向には集光しない。このため、光のロスを防ぐためには光照射装置と照射位置との距離をできるだけ近付ける必要があり、具体的には50mm程度まで近付けることが要求される場合が多い。
Here, since ultraviolet rays are significantly attenuated by a lens made of ordinary glass or transparent plastic, it is necessary to use quartz or the like, which has a small attenuation, as the material of the lens. Even if quartz is used, attenuation of about 10% occurs.
Further, the light emitted from the LED spreads radially, and the cylindrical lens 120 does not collect light in the X direction. Therefore, in order to prevent light loss, it is necessary to make the distance between the light irradiation device and the irradiation position as close as possible, and specifically, it is often required to bring the distance as close as possible to about 50 mm.

一方、このようなパワーLEDは発熱量が多いため、LEDアレイ110が実装された基板を水冷式のヒートシンクに接触させる必要がある。つまり、各光照射装置100に水冷式のヒートシンクを設ける必要があるので、各光照射装置のY方向の寸法が大きくなる。具体的には、紫外線のパワーLEDはかなりの発熱量があるので、ヒートシンクのY方向の寸法は50mm程度、またはそれ以上になる場合が多い。従って、図7のように3つの光照射装置100をY方向に並べる場合、照射位置に対し光を45°程度の角度から斜めに入射させる光照射装置100が存在することになる。水冷のヒートシンクの代わりに空冷のヒートシングが使われる場合もあるが、発熱量が大きいためヒートシンクの寸法が大きくなる傾向に変わりはない。 On the other hand, since such a power LED generates a large amount of heat, it is necessary to bring the substrate on which the LED array 110 is mounted into contact with a water-cooled heat sink. That is, since it is necessary to provide each light irradiation device 100 with a water-cooled heat sink, the dimension of each light irradiation device in the Y direction becomes large. Specifically, since the ultraviolet power LED has a considerable amount of heat generation, the dimension of the heat sink in the Y direction is often about 50 mm or more. Therefore, when the three light irradiation devices 100 are arranged in the Y direction as shown in FIG. 7, there is a light irradiation device 100 that incidents light obliquely from an angle of about 45 ° with respect to the irradiation position. Air-cooled heat sinks may be used instead of water-cooled heat sinks, but the heat sinks tend to be larger due to the large amount of heat generated.

硬化対象の樹脂の形状、色、表面状態は様々であるが、樹脂印刷における樹脂の硬化の場合、黒色は内部まで光が入射し難いため、他の色に比べて硬化が遅い傾向がある。つまり、照射位置に光を斜めに入射させると反射が生じ易く、入射深度も浅くなる傾向があるので、このようなロスが生じないよう樹脂の内部まで光を入れるために、照射位置に対し光をできるだけ90°に近い方向から入射させることが好ましい。 The shape, color, and surface condition of the resin to be cured are various, but in the case of curing the resin in resin printing, since it is difficult for light to enter the inside of black, the curing tends to be slower than other colors. That is, when light is obliquely incident on the irradiation position, reflection tends to occur and the incident depth tends to be shallow. Therefore, in order to allow light to enter the inside of the resin so as not to cause such loss, light is applied to the irradiation position. Is preferably incident from a direction as close to 90 ° as possible.

本発明は、このような事情に鑑みてなされたものであって、照射位置に照射される光量を増加させると共に光のロスの低減を図ることのできる光照射装置の提供を目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a light irradiation device capable of increasing the amount of light irradiated to an irradiation position and reducing light loss.

本発明の第1の態様に係る光照射装置は、X方向に延びるロッドレンズであって、前記X方向と直交するY方向に曲率を有する凸曲面を有し、該凸曲面に照射される光を前記Y方向に集光するロッドレンズと、前記X方向にLEDが並び、前記凸曲面における前記Y方向の第1の所定範囲に光を照射する第1のLEDアレイと、前記X方向にLEDが並び、前記凸曲面における前記Y方向の第2の所定範囲に光を照射する第2のLEDアレイと、前記ロッドレンズを通過した前記第2のLEDアレイからの光を反射する反射部材とを備え、該反射部材は、前記ロッドレンズを通過した前記第1のLEDアレイからの光が帯状に照射される所定の照射位置に、前記ロッドレンズを通過した前記第2のLEDアレイからの光を帯状に照射できるものである。 The light irradiation device according to the first aspect of the present invention is a rod lens extending in the X direction, has a convex curved surface having a curvature in the Y direction orthogonal to the X direction, and irradiates the convex curved surface with light. A rod lens that collects light in the Y direction, a first LED array in which LEDs are arranged in the X direction and irradiates light in a first predetermined range in the Y direction on the convex curved surface, and an LED in the X direction. A second LED array that irradiates a second predetermined range in the Y direction on the convex curved surface, and a reflecting member that reflects light from the second LED array that has passed through the rod lens. The reflecting member comprises light from the second LED array that has passed through the rod lens at a predetermined irradiation position where the light from the first LED array that has passed through the rod lens is irradiated in a band shape. It can be irradiated in a band shape.

上記第1の態様では、同一のロッドレンズに第1のLEDアレイからの光と第2のLEDアレイからの光が照射され、第1のLEDアレイからの光が帯状に照射される照射位置に、第2のLEDアレイからの光が反射部材により反射されて帯状に照射される。このため、帯状の照射位置に第1および第2のLEDアレイからの光が照射されることになり、照射位置に照射される光量を増加することができる。 In the first aspect, the same rod lens is irradiated with the light from the first LED array and the light from the second LED array, and the light from the first LED array is irradiated at the irradiation position in a band shape. , The light from the second LED array is reflected by the reflecting member and irradiated in a band shape. Therefore, the light from the first and second LED arrays is irradiated to the band-shaped irradiation position, and the amount of light emitted to the irradiation position can be increased.

また、例えば、第1のLEDアレイと第2のLEDアレイとのY方向の距離を近付けることや、ロッドレンズと反射部材とのY方向の距離を近付けることにより、ロッドレンズを通過した第1のLEDアレイからの光の光軸と、反射部材により反射した第2のLEDアレイからの光の光軸とがなす角度の差を小さくすることができる。 Further, for example, by bringing the distance between the first LED array and the second LED array in the Y direction closer, or by bringing the distance between the rod lens and the reflecting member in the Y direction closer, the first one that has passed through the rod lens. The difference in angle between the optical axis of the light from the LED array and the optical axis of the light from the second LED array reflected by the reflecting member can be reduced.

本発明の第2の態様に係る光照射装置は、X方向に延びるロッドレンズであって、前記X方向と直交するY方向に曲率を有する凸曲面を有し、該凸曲面に照射される光を前記Y方向に集光するロッドレンズと、前記X方向に並び、前記凸曲面における周前記Y方向の第1の所定範囲を照射する第1の紫外線LEDアレイと、前記X方向に並び、前記凸曲面における周前記Y方向の第2の所定範囲を照射する第2の紫外線LEDアレイと、前記ロッドレンズを通過した前記第1の紫外線LEDアレイからの光を反射し所定の照射位置に帯状に照射する第1の反射部材と、前記集光ロッドレンズを通過した前記第2の紫外線LEDアレイからの光を反射し前記所定の照射位置に帯状に照射できる第2の反射部材とを備える。 The light irradiation device according to the second aspect of the present invention is a rod lens extending in the X direction, has a convex curved surface having a curvature in the Y direction orthogonal to the X direction, and irradiates the convex curved surface with light. A rod lens that collects light in the Y direction, a first ultraviolet LED array that is aligned in the X direction and irradiates a first predetermined range in the Y direction around the convex curved surface, and a first ultraviolet LED array that is aligned in the X direction. The light from the second ultraviolet LED array that irradiates the second predetermined range in the Y direction on the convex curved surface and the first ultraviolet LED array that has passed through the rod lens is reflected and formed into a band at a predetermined irradiation position. It includes a first reflecting member to irradiate, and a second reflecting member capable of reflecting light from the second ultraviolet LED array that has passed through the condensing rod lens and irradiating the predetermined irradiation position in a band shape.

上記第2の態様では、同一のロッドレンズに第1のLEDアレイからの光と第2のLEDアレイからの光が照射され、第1のLEDアレイからの光が第1の反射部材により帯状に照射される照射位置に、第2のLEDアレイからの光が第2の反射部材により照射位置に帯状に照射される。このため、帯状の照射位置に第1および第2のLEDアレイからの光が照射されることになり、照射位置に照射される光量を増加することができる。 In the second aspect, the same rod lens is irradiated with the light from the first LED array and the light from the second LED array, and the light from the first LED array is formed into a band by the first reflecting member. The light from the second LED array is irradiated to the irradiated position in a band shape by the second reflecting member. Therefore, the light from the first and second LED arrays is irradiated to the band-shaped irradiation position, and the amount of light emitted to the irradiation position can be increased.

また、例えば、第1のLEDアレイと第2のLEDアレイとのY方向の距離を近付けることや、ロッドレンズと第1および第2の反射部材とのY方向の距離を近付けることにより、第1の反射部材により反射した第1のLEDアレイからの光の光軸と、第2の反射部材により反射した第2のLEDアレイからの光の光軸とがなす角度の差を小さくすることができる。 Further, for example, by reducing the distance between the first LED array and the second LED array in the Y direction, or by reducing the distance between the rod lens and the first and second reflecting members in the Y direction, the first method is performed. The difference in angle between the optical axis of the light from the first LED array reflected by the reflecting member and the optical axis of the light from the second LED array reflected by the second reflecting member can be reduced. ..

本発明によれば、照射位置に照射される光量を増加させると共に光のロスの低減を図ることができる。 According to the present invention, it is possible to increase the amount of light irradiated to the irradiation position and reduce the loss of light.

本発明の第1の実施形態に係る光照射装置の概略構成図である。It is a schematic block diagram of the light irradiation apparatus which concerns on 1st Embodiment of this invention. 第1の実施形態の光照射装置により照射した光の分布を示す図である。It is a figure which shows the distribution of the light irradiated by the light irradiation apparatus of 1st Embodiment. 第1の実施形態の光照射装置により照射した光の分布を示す図である。It is a figure which shows the distribution of the light irradiated by the light irradiation apparatus of 1st Embodiment. 第1の実施形態の第1の変形例の光照射装置の概略構成図である。It is a schematic block diagram of the light irradiation apparatus of the 1st modification of 1st Embodiment. 第1の実施形態の第2の変形例の光照射装置の概略構成図である。It is a schematic block diagram of the light irradiation apparatus of the 2nd modification of 1st Embodiment. 本発明の第2の実施形態に係る光照射装置の概略構成図である。It is a schematic block diagram of the light irradiation apparatus which concerns on 2nd Embodiment of this invention. 従来の光照射装置の概略構成図である。It is a schematic block diagram of the conventional light irradiation apparatus.

本発明の第1の実施形態に係る光照射装置について図面を参照して以下に説明する。
この光照射装置は、図1に示すように、X方向(図1の紙面厚さ方向)に延びる円柱レンズであるロッドレンズ10を有する。ロッドレンズ10は石英、ホウケイ酸ガラス等の紫外線の減衰が少ない材質から成ることが好ましい。
The light irradiation device according to the first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, this light irradiation device has a rod lens 10 which is a cylindrical lens extending in the X direction (paper surface thickness direction in FIG. 1). The rod lens 10 is preferably made of a material such as quartz or borosilicate glass that does not attenuate ultraviolet rays.

光照射装置は、紫外線LEDがX方向に並び、ロッドレンズ10の上面(凸曲面)におけるY方向(図1の左右方向)の第1の所定範囲A1に光を照射する第1のLEDアレイ21と、紫外線LEDがX方向に並び、ロッドレンズ10の上面におけるY方向の第2の所定範囲A2に光を照射する第2のLEDアレイ22と、紫外線LEDがX方向に並び、ロッドレンズ10の上面におけるY方向の第3の所定範囲A3に光を照射する第3のLEDアレイ23とを有する。 In the light irradiation device, the ultraviolet LEDs are arranged in the X direction, and the first LED array 21 irradiates the first predetermined range A1 in the Y direction (left-right direction in FIG. 1) on the upper surface (convex curved surface) of the rod lens 10. The second LED array 22 in which the ultraviolet LEDs are arranged in the X direction and irradiate the second predetermined range A2 in the Y direction on the upper surface of the rod lens 10 with light, and the ultraviolet LEDs are arranged in the X direction and the rod lens 10 is arranged. It has a third LED array 23 that irradiates a third predetermined range A3 in the Y direction on the upper surface with light.

本実施形態では、X方向は各LEDアレイ21,22,23のLEDの並設方向と一致しており、X方向およびY方向に直交する方向がZ方向である。また、ロッドレンズ10はその上面に照射される光をY方向に集光するものであり、一例として、LEDから放射状に出る光を図1のように略平行光となるようにY方向に屈折する。ここで言う集光とは、LEDからの光をLEDの光軸L1,L2,L3に向けてY方向に屈折させることを言い、ロッドレンズ10を通った後の光が若干拡がりながら進む場合も含む。なお、図1に示す破線は光線軌跡のイメージを示すものであり、完全に正確な光線軌跡を示すものではない。 In the present embodiment, the X direction coincides with the parallel direction of the LEDs of each LED array 21, 22, 23, and the direction orthogonal to the X direction and the Y direction is the Z direction. Further, the rod lens 10 collects the light radiated on its upper surface in the Y direction, and as an example, refracts the light radiating from the LED in the Y direction so as to be substantially parallel light as shown in FIG. do. Condensing here means refracting the light from the LED toward the optical axes L1, L2, L3 of the LED in the Y direction, and the light after passing through the rod lens 10 may travel while spreading slightly. include. The broken line shown in FIG. 1 shows an image of a ray trajectory, and does not show a completely accurate ray trajectory.

この光照射装置は、第1~第3のLEDアレイ21,22,23がそれぞれ実装された基板21a,22a,23aを有する。また、基板21a,22a,23aが固定されたヒートシンク31と、ヒートシンク31のY方向の両端にそれぞれ一端が取付けられ、Z方向に延びる一対の側板32と、側板32の他端に取付けられた透明なカバー33と、一対の側板32の間に形成される空間をX方向の一端および他端で閉鎖する一対の端部材(図示せず)とを備えた照射装置本体30を有する。ヒートシンク31は内部に冷却水が通る冷却水通路(図示せず)が設けられ、冷却水通路に冷却水供給装置から冷却水が供給される。また、ロッドレンズ10の両端は例えば照射装置本体30の一対の端部材により支持されている。 This light irradiation device has substrates 21a, 22a, 23a on which the first to third LED arrays 21, 22, 23 are mounted, respectively. Further, a heat sink 31 to which the substrates 21a, 22a, 23a are fixed, a pair of side plates 32 having one ends attached to both ends of the heat sink 31 in the Y direction and extending in the Z direction, and a transparent side plate 32 attached to the other ends of the side plates 32. The irradiation device main body 30 includes a cover 33 and a pair of end members (not shown) that close the space formed between the pair of side plates 32 at one end and the other end in the X direction. The heat sink 31 is provided with a cooling water passage (not shown) through which the cooling water passes, and the cooling water is supplied to the cooling water passage from the cooling water supply device. Further, both ends of the rod lens 10 are supported by, for example, a pair of end members of the irradiation device main body 30.

本実施形態では、第1のLEDアレイ21の光軸L1はZ軸に平行であり、光軸L1に対して第2および第3のLEDアレイ22,23の光軸L2、L3はY方向に45°傾いている。
光照射装置は、ロッドレンズ10を通過した第2のLEDアレイ22からの光を反射する反射部材42と、ロッドレンズ10を通過した第3のLEDアレイ23からの光を反射する反射部材43とを有する。
In the present embodiment, the optical axis L1 of the first LED array 21 is parallel to the Z axis, and the optical axes L2 and L3 of the second and third LED arrays 22 and 23 are in the Y direction with respect to the optical axis L1. It is tilted 45 °.
The light irradiation device includes a reflecting member 42 that reflects light from the second LED array 22 that has passed through the rod lens 10, and a reflecting member 43 that reflects light from the third LED array 23 that has passed through the rod lens 10. Have.

各反射部材42,43は照射装置本体30に取付けられている。具体的には、各反射部材42,43のZ方向の一端(各LEDアレイ21,22,23に近い側)は照射装置本体30に固定され、各反射部材42,43のZ方向の他端側はねじ部材(調整機構)42b,43bによってY方向に位置決めされている。 The reflecting members 42 and 43 are attached to the irradiation device main body 30. Specifically, one end of each reflecting member 42, 43 in the Z direction (the side closer to each LED array 21, 22, 23) is fixed to the irradiation device main body 30, and the other end of each reflecting member 42, 43 in the Z direction. The side is positioned in the Y direction by the screw members (adjustment mechanism) 42b and 43b.

反射部材42のロッドレンズ10側の面には第2のLEDアレイ22からの光を反射する平面状の反射面42aが設けられ、反射部材43のロッドレンズ10側の面には第3のLEDアレイ23からの光を反射する平面状の反射面43aが設けられている。各反射面42a,43aは、例えば、基材表面にアルミニウムを蒸着して形成された白色の反射面や、基材表面を研磨して形成された鏡面である。基材はガラス、金属、プラスチック等である。Z方向の一端側から他端側に向かって反射面42a,43aの間隔が徐々に離れるように、各反射部材42,43が形成されている。 A planar reflecting surface 42a that reflects light from the second LED array 22 is provided on the surface of the reflecting member 42 on the rod lens 10 side, and a third LED is provided on the surface of the reflecting member 43 on the rod lens 10 side. A planar reflecting surface 43a that reflects light from the array 23 is provided. Each of the reflective surfaces 42a and 43a is, for example, a white reflective surface formed by depositing aluminum on the surface of the base material or a mirror surface formed by polishing the surface of the base material. The base material is glass, metal, plastic or the like. The reflecting members 42 and 43 are formed so that the distance between the reflecting surfaces 42a and 43a gradually increases from one end side to the other end side in the Z direction.

ねじ部材42b,42bはそれぞれX方向に間隔をおいて複数設けられている。また、ねじ部材42b,43bは側板32に螺合すると共に、各反射部材42,43のZ方向の他端側にY方向に当接している。この構造により、ねじ部材42b,43bは各反射部材42,43のZ方向の他端側を互いに近付くようにY方向に弾性変形させ、反射面42a,43aのY方向の傾きの角度αを調整することができる。例えば、ねじ部材42bを回転させてねじ部材42bの照射装置本体30内の突出量を増加させると、反射部材42の弾性変形量が大きくなり角度αが小さくなる。 A plurality of screw members 42b and 42b are provided at intervals in the X direction, respectively. Further, the screw members 42b and 43b are screwed into the side plate 32 and are in contact with the other end side of each of the reflective members 42 and 43 in the Z direction in the Y direction. With this structure, the screw members 42b and 43b are elastically deformed in the Y direction so that the other ends of the reflective members 42 and 43 in the Z direction are close to each other, and the angle α of the inclination of the reflective surfaces 42a and 43a in the Y direction is adjusted. can do. For example, when the screw member 42b is rotated to increase the amount of protrusion of the screw member 42b in the irradiation device main body 30, the amount of elastic deformation of the reflection member 42 becomes large and the angle α becomes small.

第1のLEDアレイ21からの光はロッドレンズ10によりY方向に集光され、所定の搬送方向Aに向かって搬送される樹脂P上における所定の照射位置に帯状に照射される。また、第2のLEDアレイ22からの光は、ロッドレンズ10によりY方向に集光されると共に反射部材42により反射され、樹脂P上に帯状に照射される。第3のLEDアレイ23からの光は、ロッドレンズ10によりY方向に集光されると共に反射部材43により反射され、樹脂P上に帯状に照射される。 The light from the first LED array 21 is collected in the Y direction by the rod lens 10 and is irradiated in a band shape at a predetermined irradiation position on the resin P transported in the predetermined transport direction A. Further, the light from the second LED array 22 is collected in the Y direction by the rod lens 10 and reflected by the reflecting member 42, and is irradiated on the resin P in a band shape. The light from the third LED array 23 is collected in the Y direction by the rod lens 10 and reflected by the reflecting member 43, and is irradiated on the resin P in a band shape.

このように、本実施形態によれば、同一のロッドレンズ10に第1のLEDアレイ21からの光と、第2のLEDアレイ22からの光と、第3のLEDアレイ23からの光とが照射され、第1のLEDアレイ21からの光が帯状に照射される照射位置に、第2のLEDアレイ22からの光が反射部材42により反射されて帯状に照射され、また、第3のLEDアレイ23からの光も反射部材43により反射されて帯状に照射される。このため、帯状の照射位置に第1、第2、および第3のLEDアレイ21,22,23からの光が照射されることになり、照射位置に照射される光量を増加することができる。 As described above, according to the present embodiment, the same rod lens 10 has the light from the first LED array 21, the light from the second LED array 22, and the light from the third LED array 23. The light from the second LED array 22 is reflected by the reflecting member 42 and irradiated in a band shape at the irradiation position where the light from the first LED array 21 is irradiated in a band shape, and the third LED is also irradiated. The light from the array 23 is also reflected by the reflecting member 43 and irradiated in a band shape. Therefore, the light from the first, second, and third LED arrays 21, 22, and 23 is irradiated to the band-shaped irradiation position, and the amount of light emitted to the irradiation position can be increased.

また、第1のLEDアレイ21の位置と第2のLEDアレイ22の位置とをY方向に近付けることや、ロッドレンズ10の位置と反射部材42の位置とをY方向に近付けることにより、第1のLEDアレイ21からの光の光軸L1と、反射部材42により反射した第2のLEDアレイ22からの光の光軸L2とがなす角度βを小さくすることができる。第3のLEDアレイ23および反射部材43についても同様である。 Further, by bringing the position of the first LED array 21 and the position of the second LED array 22 closer to each other in the Y direction, and bringing the position of the rod lens 10 and the position of the reflecting member 42 closer to each other in the Y direction, the first position is obtained. The angle β formed by the optical axis L1 of the light from the LED array 21 and the optical axis L2 of the light reflected by the reflecting member 42 from the second LED array 22 can be reduced. The same applies to the third LED array 23 and the reflective member 43.

また、図1の状態では、LED基板22a,23aは光軸L2および光軸L3がY方向に45°傾くようにヒートシンク31に取付けられると共に、第1~第3のLEDアレイ21,22,23からの光が同一の照射位置に照射されている状態で、角度βが15°程度であるが、光軸L2,L3のY軸方向の傾きを小さくし、LED基板22aおよびLED基板23aの位置とLED基板21aの位置とをY方向に近付けることにより、角度βをより小さくすることができる。 Further, in the state of FIG. 1, the LED substrates 22a and 23a are attached to the heat sink 31 so that the optical axis L2 and the optical axis L3 are tilted by 45 ° in the Y direction, and the first to third LED arrays 21, 22, 23 are attached. Although the angle β is about 15 ° in a state where the light from the light is irradiated to the same irradiation position, the inclination of the optical axes L2 and L3 in the Y-axis direction is reduced, and the positions of the LED substrate 22a and the LED substrate 23a are reduced. By bringing the position of the LED substrate 21a and the position of the LED substrate 21a closer to each other in the Y direction, the angle β can be made smaller.

また、反射部材42,43のZ方向の他端側(反射面42a,43a)のY方向の傾きを調整する調整機構としてねじ部材42b,43bを有する。このため、ねじ部材42b,43bにより反射面42a,43aのY方向の傾きを調整して、第2のLEDアレイ22からの光の帯状の照射位置を例えば搬送方向Aの上流側に移動させ、第3のLEDアレイ23からの光の帯状の照射位置を例えば搬送方向Aの下流側に移動させることができる。 Further, the screw members 42b and 43b are provided as an adjustment mechanism for adjusting the inclination of the reflection members 42 and 43 on the other end side in the Z direction (reflection surfaces 42a and 43a) in the Y direction. Therefore, the inclination of the reflecting surfaces 42a and 43a in the Y direction is adjusted by the screw members 42b and 43b, and the band-shaped irradiation position of the light from the second LED array 22 is moved to the upstream side in the transport direction A, for example. The band-shaped irradiation position of the light from the third LED array 23 can be moved, for example, to the downstream side in the transport direction A.

例えば、図1では第1、第2、および第3のLEDアレイ21,22,23の帯状の照射位置が一致しているので、図2のように照射位置内の各々の位置の光量が多い状態であるが、第2のLEDアレイ22の光の照射位置をその幅の分だけ搬送方向Aの上流側に移動させ、第3のLEDアレイ23の光の照射位置を移動させない場合は、図3のように照射位置が搬送方向Aに広くなると共に、照射位置内の各々の位置における光量が変化する。なお、第2のLEDアレイ22の光の照射位置を搬送方向Aの上流側に移動させ、第3のLEDアレイ23の光の照射位置を搬送方向Aの下流側に移動させると、照射幅が広がり、同時に角度βをより小さくすることができる。 For example, in FIG. 1, since the band-shaped irradiation positions of the first, second, and third LED arrays 21, 22, and 23 are the same, the amount of light at each position in the irradiation position is large as shown in FIG. However, when the light irradiation position of the second LED array 22 is moved to the upstream side of the transport direction A by the width thereof and the light irradiation position of the third LED array 23 is not moved, the figure is shown in the figure. As shown in No. 3, the irradiation position becomes wider in the transport direction A, and the amount of light at each position in the irradiation position changes. When the light irradiation position of the second LED array 22 is moved to the upstream side of the transport direction A and the light irradiation position of the third LED array 23 is moved to the downstream side of the transport direction A, the irradiation width is increased. It can be expanded and at the same time the angle β can be made smaller.

このように、反射部材42,43のZ方向の他端側のY方向の傾きを調整することにより、照射位置の照射幅や光量の分布を調整することができる。硬化する樹脂の種類、形状、特性、搬送方向Aへの搬送速度等により、照射位置の幅や光量の最適な条件が異なるので、当該構成は様々な状況に対応する上で極めて有利である。 In this way, by adjusting the inclination of the reflecting members 42, 43 in the Y direction on the other end side in the Z direction, the irradiation width of the irradiation position and the distribution of the amount of light can be adjusted. Since the optimum conditions for the width of the irradiation position and the amount of light differ depending on the type, shape, characteristics, transfer speed in the transfer direction A, etc. of the resin to be cured, the configuration is extremely advantageous in dealing with various situations.

また、例えば第1のLEDアレイ21の紫外線LEDの種類と第2のLEDアレイ22の紫外線LEDの種類を異ならせることも可能である。例えば、第1のLEDアレイ21に405nmの近傍に光量のピークがある紫外線LEDを使用し、第2のLEDアレイ22に365nmの近傍に光量のピークがある紫外線LEDを使用することができる。この場合に図3の状態にすると、搬送方向Aに搬送される樹脂Pに最初に第2のLEDアレイ22の光が照射され、その後に第1および第3のLEDアレイ21,23の光が照射されることになる。樹脂の種類、形状、特性等によっては、硬化のきっかけを作る紫外線の波長と硬化を進める紫外線の波長とが異なる場合もあり得る。このような状況の時に、各LEDアレイ21,22,23の紫外線LEDの種類を異ならせることは有効である。 Further, for example, it is possible to make the type of the ultraviolet LED of the first LED array 21 different from the type of the ultraviolet LED of the second LED array 22. For example, an ultraviolet LED having a light intensity peak in the vicinity of 405 nm can be used in the first LED array 21, and an ultraviolet LED having a light intensity peak in the vicinity of 365 nm can be used in the second LED array 22. In this case, in the state of FIG. 3, the resin P transported in the transport direction A is first irradiated with the light of the second LED array 22, and then the light of the first and third LED arrays 21 and 23 is emitted. It will be irradiated. Depending on the type, shape, characteristics, etc. of the resin, the wavelength of the ultraviolet rays that triggers curing and the wavelength of ultraviolet rays that promote curing may differ. In such a situation, it is effective to make different types of ultraviolet LEDs in each LED array 21, 22, 23.

なお、本実施形態において、第3のLEDアレイ23を設けない仕様とすることも可能である。一方、例えば図4に示すように、第4のLEDアレイ24および第5のLEDアレイ25のように、さらに他のLEDアレイを設けることも可能である。この場合、第4のLEDアレイ24からの光と第5のLEDアレイ25からの光もそれぞれ光軸L4,L5に沿って樹脂P上に照射される。 In addition, in this embodiment, it is also possible to make the specification that the third LED array 23 is not provided. On the other hand, as shown in FIG. 4, for example, it is also possible to provide further other LED arrays such as the fourth LED array 24 and the fifth LED array 25. In this case, the light from the fourth LED array 24 and the light from the fifth LED array 25 are also irradiated on the resin P along the optical axes L4 and L5, respectively.

さらに、反射面42a,42bは、凹湾曲した反射面、複数の平面から成る反射面等であってもよい。例えば、図5に示すように反射面42a,42bを凹湾曲面としてもよい。凹湾曲の程度を調整することにより、図5のように照射位置における光軸L2およびL3と光軸L4およびL5との距離を近付けることも可能であり、一致させることも可能である。 Further, the reflective surfaces 42a and 42b may be a concavely curved reflective surface, a reflective surface composed of a plurality of planes, or the like. For example, as shown in FIG. 5, the reflective surfaces 42a and 42b may be concave curved surfaces. By adjusting the degree of concave curvature, it is possible to bring the optical axes L2 and L3 and the optical axes L4 and L5 at the irradiation position closer to each other as shown in FIG. 5, and it is also possible to make them match.

本発明の第2の実施形態に係る光照射装置について図面を参照して以下に説明する。
この光照射装置は、図6に示すように、第1の実施形態において第1のLEDアレイ21を設けない仕様である。また、第2の実施形態では、第1のLEDアレイ21を設けていないので、第2のLEDアレイ22を第1のLEDアレイと称し、第3のLEDアレイ23を第2のLEDアレイと称する。また、反射部材42を第1の反射部材と称し、反射部材43を第2の反射部材と称する。
The light irradiation device according to the second embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 6, this light irradiation device is a specification in which the first LED array 21 is not provided in the first embodiment. Further, in the second embodiment, since the first LED array 21 is not provided, the second LED array 22 is referred to as a first LED array, and the third LED array 23 is referred to as a second LED array. .. Further, the reflective member 42 is referred to as a first reflective member, and the reflective member 43 is referred to as a second reflective member.

本実施形態でも、第1の実施形態と同様に、同一のロッドレンズ10に第1のLEDアレイ22からの光と、第2のLEDアレイ23からの光とが照射され、第1のLEDアレイ22からの光が第1の反射部材42により帯状に照射される照射位置に、第2のLEDアレイ23からの光が反射部材43により反射されて帯状に照射される。このため、帯状の照射位置に第1および第2のLEDアレイ22,23からの光が照射されることになり、照射位置に照射される光量を増加することができる。 Also in the present embodiment, as in the first embodiment, the same rod lens 10 is irradiated with the light from the first LED array 22 and the light from the second LED array 23, and the first LED array The light from the second LED array 23 is reflected by the reflecting member 43 and irradiated in a band shape at the irradiation position where the light from the 22 is irradiated in a band shape by the first reflecting member 42. Therefore, the light from the first and second LED arrays 22 and 23 is irradiated to the band-shaped irradiation position, and the amount of light emitted to the irradiation position can be increased.

また、第1の実施形態と同様に、第1のLEDアレイ22の位置と第2のLEDアレイ23の位置とをY方向に近付けることや、ロッドレンズ10の位置と反射部材42,43の位置とをY方向に近付けることや、光軸L2,L3のY軸方向の傾きを小さくすることが可能である。
また、第1の実施形態と同様に、ねじ部材42b,43bにより反射部材42,43のZ方向の他端側(反射面42a,43a)のY方向の傾きを調整して、各LEDアレイ22,23からの光の照射位置を搬送方向Aに調整することが可能である。
Further, as in the first embodiment, the position of the first LED array 22 and the position of the second LED array 23 are brought closer to each other in the Y direction, and the position of the rod lens 10 and the positions of the reflecting members 42 and 43. And can be brought closer to the Y direction, and the inclination of the optical axes L2 and L3 in the Y axis direction can be reduced.
Further, as in the first embodiment, the inclination of the other end side (reflection surface 42a, 43a) in the Z direction of the reflection members 42, 43 in the Y direction is adjusted by the screw members 42b, 43b, and each LED array 22 is adjusted. , The irradiation position of the light from 23 can be adjusted in the transport direction A.

また、第1の実施形態と同様に、第1のLEDアレイ22の紫外線LEDの種類と第2のLEDアレイ23の紫外線LEDの種類を異ならせることも可能であり、LEDアレイ24およびLEDアレイ25を設けることも可能であり、反射面42a,42bを凹湾曲した反射面、複数の平面から成る反射面等としてもよい。 Further, as in the first embodiment, it is possible to make the type of the ultraviolet LED of the first LED array 22 different from the type of the ultraviolet LED of the second LED array 23, and the LED array 24 and the LED array 25 can be different. It is also possible to provide the reflective surfaces 42a and 42b as a concavely curved reflective surface, a reflective surface composed of a plurality of planes, and the like.

なお、第1の実施形態において、第1のLEDアレイ21の各紫外線LEDの位置と、第2のLEDアレイ22の各紫外線LEDの位置とを、X方向にずらすと共に、第2のLEDアレイ22の各紫外線LEDの位置と、第3のLEDアレイ23の各紫外線LEDの位置とを、X方向にずらすことも可能である。これにより、照射位置における光量のムラが低減される。
同様に、第2の実施形態において、第1のLEDアレイ22の各紫外線LEDの位置と、第2のLEDアレイ23の各紫外線の位置とを、X方向にずらすことも可能である。
In the first embodiment, the position of each ultraviolet LED of the first LED array 21 and the position of each ultraviolet LED of the second LED array 22 are shifted in the X direction, and the second LED array 22 is used. It is also possible to shift the position of each ultraviolet LED of the third LED array 23 and the position of each ultraviolet LED of the third LED array 23 in the X direction. As a result, unevenness in the amount of light at the irradiation position is reduced.
Similarly, in the second embodiment, it is possible to shift the position of each ultraviolet LED of the first LED array 22 and the position of each ultraviolet ray of the second LED array 23 in the X direction.

また、第1および第2の実施形態において、照射位置の光量のムラを低減するために、ロッドレンズ10および反射部材42,43と照射位置との間に光を拡散させる拡散レンズを配置することも可能である。拡散レンズとしては、例えばフライアイレンズを用いることができ、カバー33の近傍やカバー33の代わりに拡散レンズを設けることができる。 Further, in the first and second embodiments, in order to reduce unevenness in the amount of light at the irradiation position, a diffuser lens that diffuses light is arranged between the rod lens 10 and the reflection members 42, 43 and the irradiation position. Is also possible. As the diffuser lens, for example, a fly-eye lens can be used, and a diffuser lens can be provided in the vicinity of the cover 33 or in place of the cover 33.

また、第1および第2の実施形態では、ねじ部材42b,43bが、反射部材42,43の弾性変形の反力に抗して、反射部材42,43のZ方向の他端側をY方向に移動させるものを示した。これに対し、反射部材42,43のZ方向の他端側を互いに離れる方向に付勢するスプリング等の付勢部材を設け、ねじ部材42b,43bが付勢部材の付勢力に抗して反射部材42,43のZ方向の他端側をY方向に移動させるように構成してもよい。この場合、反射部材42,43自体が弾性変形するものでなくても、ねじ部材42b,43bの照射装置本体30内の突出量を変化させることにより、反射部材42,43のZ方向の他端側の傾きを調整することができる。なお、ねじ部材42b,43bの代わりにモータ、歯車等の他の機構を用いて反射部材42,43のY方向の傾きを調整する調整機構を構成することも可能である。 Further, in the first and second embodiments, the screw members 42b and 43b counteract the reaction force of the elastic deformation of the reflective members 42 and 43, and the other end side of the reflective members 42 and 43 in the Z direction is in the Y direction. Shown what to move to. On the other hand, an urging member such as a spring that urges the other ends of the reflecting members 42 and 43 in the Z direction away from each other is provided, and the screw members 42b and 43b reflect against the urging force of the urging member. The other end side of the members 42, 43 in the Z direction may be configured to move in the Y direction. In this case, even if the reflective members 42, 43 themselves are not elastically deformed, the other end of the reflective members 42, 43 in the Z direction is changed by changing the amount of protrusion of the screw members 42b, 43b in the irradiation device main body 30. The tilt of the side can be adjusted. It is also possible to configure an adjusting mechanism for adjusting the inclination of the reflecting members 42 and 43 in the Y direction by using other mechanisms such as a motor and gears instead of the screw members 42b and 43b.

また、第1および第2の実施形態では、反射部材42,43のZ方向の他端側のY方向の位置を調整可能に構成しているが、反射部材42,43のZ方向の一端側のY方向の位置を調整するように構成してもよい。
また、第1および第2の実施形態において、各LEDアレイ21,22,23,24,25のLEDが可視光を射出するLEDとし、光照射装置により検査対象に帯状に光を照射するように構成してもよい。この場合、帯状の照射位置を検査用センサを用いて観察し、光量の増加によって検査の高速化を図ることができる。
Further, in the first and second embodiments, the positions of the reflective members 42 and 43 on the other end side in the Z direction in the Y direction can be adjusted, but the one end side of the reflective members 42 and 43 in the Z direction is adjustable. It may be configured to adjust the position of the above in the Y direction.
Further, in the first and second embodiments, the LEDs of the LED arrays 21, 22, 23, 24, and 25 are LEDs that emit visible light, and the light irradiating device irradiates the inspection target with light in a band shape. It may be configured. In this case, the band-shaped irradiation position can be observed using an inspection sensor, and the inspection can be speeded up by increasing the amount of light.

さらに、各LEDアレイ21,22,23,24,25を互いに異なる色を照射するLEDアレイとすることもできる。例えば、図1において第1のLEDアレイ21を青色の光を照射するLEDアレイとし、第2のLEDアレイ22を緑色の光を照射するLEDアレイとし、第3のLEDアレイ23を赤色の光を照射するLEDアレイとすることができる。これにより、照射位置に青、緑、又は赤色の光を照射することが可能となり、さらに青、緑、赤色の光が混合された光を照射することも可能となる。 Further, each LED array 21, 22, 23, 24, 25 may be an LED array that irradiates different colors. For example, in FIG. 1, the first LED array 21 is an LED array that irradiates blue light, the second LED array 22 is an LED array that irradiates green light, and the third LED array 23 is red light. It can be an LED array to illuminate. As a result, it is possible to irradiate the irradiation position with blue, green, or red light, and it is also possible to irradiate light in which blue, green, and red light are mixed.

10…ロッドレンズ、21…第1のLEDアレイ、22…第2のLEDアレイ、23…第3のLEDアレイ、30…照射装置本体、31…ヒートシンク、32…側板、42,43…反射部材、42a,43a…反射面、42b,43b…ねじ部材、P…樹脂 10 ... rod lens, 21 ... first LED array, 22 ... second LED array, 23 ... third LED array, 30 ... irradiation device main body, 31 ... heat sink, 32 ... side plate, 42, 43 ... reflective member, 42a, 43a ... Reflective surface, 42b, 43b ... Screw member, P ... Resin

Claims (5)

X方向に延びるロッドレンズであって、前記X方向と直交するY方向に曲率を有する凸曲面を有し、該凸曲面に照射される光を前記Y方向に集光するロッドレンズと、
前記X方向にLEDが並び、前記凸曲面における前記Y方向の第1の所定範囲に光を照射する第1のLEDアレイと、
前記X方向にLEDが並び、前記凸曲面における前記Y方向の第2の所定範囲に光を照射する第2のLEDアレイと、
前記ロッドレンズを通過した前記第2のLEDアレイからの光を反射する反射部材とを備え、
該反射部材は、前記ロッドレンズを通過した前記第1のLEDアレイからの光が帯状に照射される所定の照射位置に、前記ロッドレンズを通過した前記第2のLEDアレイからの光を帯状に照射できるものである光照射装置。
A rod lens extending in the X direction, having a convex curved surface having a curvature in the Y direction orthogonal to the X direction, and condensing the light radiated to the convex curved surface in the Y direction.
A first LED array in which LEDs are arranged in the X direction and irradiates a first predetermined range in the Y direction on the convex curved surface.
A second LED array in which LEDs are arranged in the X direction and irradiates a second predetermined range in the Y direction on the convex curved surface.
A reflecting member that reflects light from the second LED array that has passed through the rod lens is provided.
The reflective member forms a band of light from the second LED array that has passed through the rod lens at a predetermined irradiation position where the light from the first LED array that has passed through the rod lens is irradiated in a band shape. A light irradiation device that can irradiate.
X方向に延びるロッドレンズであって、前記X方向と直交するY方向に曲率を有する凸曲面を有し、該凸曲面に照射される光を前記Y方向に集光するロッドレンズと、
前記X方向に並び、前記凸曲面における前記Y方向の第1の所定範囲を照射する第1のLEDアレイと、
前記X方向に並び、前記凸曲面における前記Y方向の第2の所定範囲を照射する第2のLEDアレイと、
前記ロッドレンズを通過した前記第1のLEDアレイからの光を反射し所定の照射位置に帯状に照射する第1の反射部材と、
前記ロッドレンズを通過した前記第2のLEDアレイからの光を反射し前記所定の照射位置に帯状に照射できる第2の反射部材とを備える光照射装置。
A rod lens extending in the X direction, having a convex curved surface having a curvature in the Y direction orthogonal to the X direction, and condensing the light radiated to the convex curved surface in the Y direction.
A first LED array that is aligned in the X direction and illuminates a first predetermined range in the Y direction on the convex curved surface.
A second LED array that is aligned in the X direction and illuminates a second predetermined range in the Y direction on the convex curved surface.
A first reflecting member that reflects light from the first LED array that has passed through the rod lens and irradiates a predetermined irradiation position in a band shape.
A light irradiation device including a second reflection member that can reflect light from the second LED array that has passed through the rod lens and irradiate the predetermined irradiation position in a band shape.
前記X方向に並び、前記凸曲面における前記Y方向の第3の所定範囲に光を照射する第3のLEDアレイと、
前記ロッドレンズを通過した前記第3のLEDアレイからの光を反射する他の反射部材とを備え、
該他の反射部材は、前記所定の照射位置に前記ロッドレンズを通過した前記第3のLEDアレイからの光を帯状に照射できるものである請求項1に記載の光照射装置。
A third LED array that is aligned in the X direction and irradiates a third predetermined range in the Y direction on the convex curved surface.
It comprises another reflective member that reflects light from the third LED array that has passed through the rod lens.
The light irradiation device according to claim 1, wherein the other reflective member can irradiate the predetermined irradiation position with light from the third LED array that has passed through the rod lens in a band shape.
前記各反射部材の前記Y方向の傾きを調整する調整機構をさらに備える請求項1~3の何れかに記載の光照射装置。 The light irradiation device according to any one of claims 1 to 3, further comprising an adjusting mechanism for adjusting the inclination of each reflecting member in the Y direction. 前記第1のLEDアレイのLEDに対し前記第2のLEDアレイのLEDは異なる波長に光量のピークを有する請求項1~4の何れかに記載の光照射装置。 The light irradiation device according to any one of claims 1 to 4, wherein the LED of the second LED array has a peak of the amount of light at a different wavelength with respect to the LED of the first LED array.
JP2017172567A 2017-09-07 2017-09-07 Light irradiation device Active JP7085083B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017172567A JP7085083B2 (en) 2017-09-07 2017-09-07 Light irradiation device
CN201811041553.6A CN109469838B (en) 2017-09-07 2018-09-07 Light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017172567A JP7085083B2 (en) 2017-09-07 2017-09-07 Light irradiation device

Publications (2)

Publication Number Publication Date
JP2019050082A JP2019050082A (en) 2019-03-28
JP7085083B2 true JP7085083B2 (en) 2022-06-16

Family

ID=65663065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017172567A Active JP7085083B2 (en) 2017-09-07 2017-09-07 Light irradiation device

Country Status (2)

Country Link
JP (1) JP7085083B2 (en)
CN (1) CN109469838B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119094A (en) 2010-11-29 2012-06-21 Mitsubishi Electric Corp Lighting system
JP2017049111A (en) 2015-09-01 2017-03-09 株式会社アイテックシステム Lighting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558237A1 (en) * 1984-01-13 1985-07-19 Peugeot Aciers Et Outillage Indicator light for motor vehicle.
JPH1051605A (en) * 1996-05-29 1998-02-20 Fuji Electric Co Ltd Image reading device with shading correction
JP2007229682A (en) * 2006-03-03 2007-09-13 Harison Toshiba Lighting Corp UV irradiation equipment
JP2007294337A (en) * 2006-04-27 2007-11-08 Seiko Epson Corp Lighting device and projector
JP4816367B2 (en) * 2006-09-27 2011-11-16 ウシオ電機株式会社 Light irradiator and inkjet printer
JP2009110787A (en) * 2007-10-30 2009-05-21 Aitec System:Kk Illuminating apparatus and its manufacturing method
CN201428958Y (en) * 2009-07-14 2010-03-24 刘思健 Light source device
KR20130012559A (en) * 2011-07-25 2013-02-04 이와사키 덴끼 가부시키가이샤 Light source device
US8485692B2 (en) * 2011-09-09 2013-07-16 Xicato, Inc. LED-based light source with sharply defined field angle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119094A (en) 2010-11-29 2012-06-21 Mitsubishi Electric Corp Lighting system
JP2017049111A (en) 2015-09-01 2017-03-09 株式会社アイテックシステム Lighting device

Also Published As

Publication number Publication date
CN109469838A (en) 2019-03-15
JP2019050082A (en) 2019-03-28
CN109469838B (en) 2023-11-14

Similar Documents

Publication Publication Date Title
TWI514002B (en) An optical projection array exposure system and the method thereof
US20170050166A1 (en) Irradiation systems using curved surfaces
EP2798266B1 (en) Light mixing lenses and systems
US8330938B2 (en) Solid-state array for lithography illumination
US7741622B2 (en) Exposure device
CN112654492B (en) Three-dimensional printing equipment
CN113330338A (en) Diffusion plate
TWI494706B (en) Projection exposure apparatus for semiconductor lithography comprising an optical correction arrangement
JP7070146B2 (en) Light source module and optical device
KR20110120872A (en) Laser exposure equipment
KR101440874B1 (en) Photo lithography optical module having collimation function with an LED light sourc
JP7085083B2 (en) Light irradiation device
US9994045B2 (en) Light irradiation apparatus including a light shield
CN113924522A (en) Apparatus for forming a uniform intensity distribution with brighter or darker edges
US11806988B2 (en) Pivoted elliptical reflector for large distance reflection of ultraviolet rays
KR102331470B1 (en) Methods and systems for release and curing via narrow-width radiation
JP5178610B2 (en) Light irradiation device
KR101180016B1 (en) Apparatus for Exposing Peripheral Portion of Substrate
CN111993780A (en) Light irradiation device
JP6809928B2 (en) Light irradiation device
KR102574615B1 (en) Optical module of exposure device
JP2014203604A (en) Lighting device
KR100598933B1 (en) Light emitting device of ultraviolet exposure machine
KR101623959B1 (en) Uv irradiation device
KR20150122028A (en) UV exposuring apparatus with alignment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7085083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150