[go: up one dir, main page]

JP7031477B2 - Hot-rolled steel sheet, square steel pipe, and its manufacturing method - Google Patents

Hot-rolled steel sheet, square steel pipe, and its manufacturing method Download PDF

Info

Publication number
JP7031477B2
JP7031477B2 JP2018089950A JP2018089950A JP7031477B2 JP 7031477 B2 JP7031477 B2 JP 7031477B2 JP 2018089950 A JP2018089950 A JP 2018089950A JP 2018089950 A JP2018089950 A JP 2018089950A JP 7031477 B2 JP7031477 B2 JP 7031477B2
Authority
JP
Japan
Prior art keywords
hot
phase
steel sheet
rolled steel
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018089950A
Other languages
Japanese (ja)
Other versions
JP2019196508A (en
Inventor
真輔 甲斐
治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018089950A priority Critical patent/JP7031477B2/en
Publication of JP2019196508A publication Critical patent/JP2019196508A/en
Application granted granted Critical
Publication of JP7031477B2 publication Critical patent/JP7031477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、熱延鋼板、角形鋼管、およびその製造方法に関する。 The present invention relates to a hot-rolled steel sheet, a square steel pipe, and a method for manufacturing the same.

建築構造部材向けに、低降伏比高靭性角形鋼管というものがある。これは、熱延鋼板を素材として、丸形鋼管を造管したのち、この丸形鋼管を冷間でロール成形により角形鋼管(角コラム)に成形したものである。
この角形鋼管には、容易に破壊しないための衝撃特性(靭性)が要求される。また、角形鋼管には、降伏比(YR=降伏応力(YP)/引張強さ(TS))が低いことが要求されている。角形鋼管に荷重が加わり変形し始めてから、さらに荷重が加わり破断するまでを考えたときに、角形鋼管の降伏比が低いことにより、変形から破壊までの時間がより長く持ちこたえるので、建築物に使用した際に安全である。
There is a low yield ratio high toughness square steel pipe for building structural members. In this method, a round steel pipe is made from a hot-rolled steel sheet, and then the round steel pipe is coldly rolled into a square steel pipe (square column).
This square steel pipe is required to have impact characteristics (toughness) so as not to be easily broken. Further, the square steel pipe is required to have a low yield ratio (YR = yield stress (YP) / tensile strength (TS)). When considering the period from when a load is applied to a square steel pipe and it begins to deform until it breaks when a load is further applied, the low yield ratio of the square steel pipe allows the time from deformation to fracture to last longer, so it can be used in buildings. Safe when used.

このような低降伏比高靭性角形鋼管の素材として用いられる熱延鋼板には、角形鋼管に成形するための高い成形性を備えつつ、角形鋼管に求められる靭性や降伏比YRの特性値以上に、高い靭性や低い降伏比YRが要求される。これら理由は次のようなことによる。
すなわち、角形鋼管は、熱延鋼板を素材として、丸形鋼管を造管したのち、この丸形鋼管を冷間でロール成形により角形鋼管(角コラム)に成形する。丸形鋼管から角形鋼管に成形する際には、角形鋼管のコーナー部は、丸形鋼管の丸形部分に追加して角状にする曲げ加工を受ける。このため、角形鋼管の素材として用いられる熱延鋼板には、厳しい加工を受けても割れることなく成形される高い成形性が要求される。この高い成形性を表す指標として、伸び(EL)から均一伸び(U.El)を引いた、局部伸びの値が高いことが求められる。また、角形鋼管の平坦部は、丸形形状に曲げた後に、逆に曲げ戻し加工を受ける。
そして、ロール成形によって冷間で製造される角形鋼管は、冷間歪が多く加わることによって降伏応力が上昇して、降伏比YRが高くなり、靭性も大きく劣化してしまう。
The hot-rolled steel sheet used as a material for such a low yield ratio high toughness square steel pipe has high formability for forming into a square steel pipe, and has a toughness and yield ratio higher than the characteristic values of YR required for the square steel pipe. , High toughness and low yield ratio YR are required. These reasons are as follows.
That is, the square steel pipe is made of a hot-rolled steel plate as a material, and then the round steel pipe is formed into a square steel pipe (square column) by cold roll forming. When forming from a round steel pipe to a square steel pipe, the corner portion of the square steel pipe is subjected to a bending process of adding to the round portion of the round steel pipe to make it square. Therefore, the hot-rolled steel sheet used as a material for a square steel pipe is required to have high formability so that it can be formed without cracking even if it is subjected to severe processing. As an index showing this high formability, it is required that the value of local elongation, which is obtained by subtracting uniform elongation (U.El) from elongation (EL), is high. Further, the flat portion of the square steel pipe is bent into a round shape and then subjected to bending back processing.
Then, in a square steel pipe coldly manufactured by roll forming, the yield stress increases due to a large amount of cold strain, the yield ratio YR increases, and the toughness also deteriorates significantly.

このような、低降伏比高靭性角形鋼管用の鋼板(鋼材)は、例えば、特許文献1、2に開示されているものがある。 Such steel plates (steel materials) for low yield ratio and high toughness square steel pipes are disclosed in, for example, Patent Documents 1 and 2.

特許文献1では、特にNを、Nと化合物を形成する元素の量との関係で規定し、さらに熱間圧延条件を規定することにより、低降伏比高靭性角形鋼管用鋼材を得ることが可能になるとしている。
特許文献2では、鋼板の状態で、降伏強さ:215MPa以上、引張強さ:400~510MPaの強度、75%以下の低降伏比で、試験温度0℃におけるシャルピー衝撃試験の吸収エネルギー:180J以上となる高靭性を有することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板が示されている。この鋼板を用いることで、管軸方向で、降伏強さ:295~445MPa、引張強さ:400~550MPaの強度と、80%以下の低降伏比で、試験温度0℃におけるシャルピー衝撃試験の吸収エネルギー:150J以上となる高靭性を有する建築構造部材向け角形鋼管を得ることができることが示されている。
In Patent Document 1, in particular, N is specified in relation to the relationship between N and the amount of the element forming the compound, and further, by specifying the hot rolling conditions, it is possible to obtain a steel material for a square steel pipe having a low yield ratio and high toughness. It is supposed to be.
In Patent Document 2, in the state of a steel sheet, the yield strength is 215 MPa or more, the tensile strength is 400 to 510 MPa, the yield ratio is as low as 75% or less, and the absorption energy of the Charpy impact test at a test temperature of 0 ° C. is 180 J or more. A thick-walled hot-rolled steel sheet for a square steel pipe for a building structural member, which is characterized by having high toughness. By using this steel sheet, the yield strength is 295 to 445 MPa, the tensile strength is 400 to 550 MPa, and the yield ratio is as low as 80% or less in the pipe axis direction. It has been shown that a square steel pipe for building structural members having a high toughness of energy: 150 J or more can be obtained.

この特許文献2では、素材として用いる熱延鋼板の合金組織(主相(フェライト)、第二相(ベイナイトおよびパーライト))のうち、特に第二相の存在が、冷間成形で製造された角形鋼管の降伏比YR、靭性に大きく影響すると述べている。そして、その影響は、通常用いられる第二相の体積分率、第二相の平均粒径では、うまく靭性を評価できないとして、第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数)を定義している。特許文献2では、この第二相頻度が0.20~0.42であり、主相と第二相とを含む平均結晶粒径が7~15μmである合金組織を有することを特徴とする鋼板が示されている。 In Patent Document 2, among the alloy structures (main phase (ferrite), second phase (bainite and pearlite)) of the hot-rolled steel sheet used as a material, the presence of the second phase is particularly a square formed by cold forming. It states that the yield ratio YR and toughness of steel pipes are greatly affected. The effect is that the toughness cannot be evaluated well with the volume fraction of the second phase and the average particle size of the second phase, which are usually used, and the frequency of the second phase = (the second crossing with a line segment of a predetermined length). The number of phase grains) / (total number of main phase grains and second phase grains intersecting with a line segment of a predetermined length) is defined. In Patent Document 2, the steel sheet has an alloy structure in which the frequency of the second phase is 0.20 to 0.42 and the average crystal grain size including the main phase and the second phase is 7 to 15 μm. It is shown.

特開平8-246095号公報Japanese Unexamined Patent Publication No. 8-246095 特開2012-132088号公報Japanese Unexamined Patent Publication No. 2012-132088

しかしながら、建築構造部材向けの低降伏比高靭性角形鋼管には、更なる高強度化が求められている。高強度化を追求すると、靭性が劣化し、降伏比YRは高くなるので、これらの特性をすべて高めることは困難であった。すなわち、十分に低降伏比高靭性で高強度な角形鋼管、およびそのような角形鋼管を製造できる熱延鋼板についての技術は未だになかった。 However, a low yield ratio high toughness square steel pipe for building structural members is required to have higher strength. In pursuit of high strength, the toughness deteriorates and the yield ratio YR becomes high, so it is difficult to improve all of these characteristics. That is, there has not yet been a technique for a square steel pipe having a sufficiently low yield ratio and high toughness and high strength, and a hot-rolled steel sheet capable of producing such a square steel pipe.

本発明は、降伏応力:300~460MPa、引張強さ:460~600MPaの強度と、85%以下の低降伏比で、試験温度-20℃におけるシャルピー衝撃試験の吸収エネルギーvE-20℃:180J以上となる高靭性を有する熱延鋼板およびその製造方法を提供することを目的とする。
そして、この熱延鋼板により、管軸方向で、降伏応力:365~515MPa、引張強さ:490~640MPaの強度と、90%以下の低降伏比で、試験温度0℃におけるシャルピー衝撃試験の吸収エネルギーvE0℃:70J以上となる高靭性を有する角形鋼管を提供することを目的とする。
In the present invention, the yield stress is 300 to 460 MPa, the tensile strength is 460 to 600 MPa, and the yield ratio is as low as 85% or less. It is an object of the present invention to provide a hot-rolled steel sheet having high toughness and a method for producing the same.
The hot-rolled steel sheet absorbs the Charpy impact test at a test temperature of 0 ° C. with a yield stress of 365 to 515 MPa, a tensile strength of 490 to 640 MPa, and a low yield ratio of 90% or less in the pipe axis direction. It is an object of the present invention to provide a square steel pipe having high toughness having an energy vE of 0 ° C.: 70 J or more.

上記の課題を解決するための本発明の要旨は以下のとおりである。
〔1〕質量%で、
C :0.050~0.100%、
Si:0.10~0.30%、
Mn:0.80~1.40%、
P :0.050%以下、
S :0.020%以下、
Al:0.010~0.040%、
N :0.0060%以下(0は含まない)、
Nb:0.015~0.045%を含有し、
残部がFeおよび不可避的不純物である熱延鋼板であり、
前記熱延鋼板の合金組織は、主相と第二相からなり、
前記主相は、フェライトであり、
前記主相の面積率が85~97%であり、
前記主相の硬さが、マイクロビッカース硬さ試験で150~200Hvであり、
前記第二相は、パーライト、またはパーライトおよびベイナイトであり、
前記第二相は、鋼板の1/4厚における下記(1)式により定義される第二相頻度が0.05~0.15であり、かつ、第二相面積率が3~15%であり、
鋼板の1/4厚における主相と第二相の平均結晶粒径が10~25μmである
ことを特徴とする熱延鋼板。
第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数) (1)
〔2〕さらに質量%で、前記Feの一部に代えて、
Ti:0~0.080%、
V :0~0.150%、
Cu:0~0.40%、
Ni:0~0.40%、
Cr:0~0.40%、
Mo:0~0.22%、
の一種または二種以上を、
下記(2)式の範囲内で含むことを特徴とする〔1〕に記載の熱延鋼板。
Cu+Ni+Cr+1.8×Mo≦0.40% (2)
〔3〕さらに質量%で、前記Feの一部に代えて、
Mg:0~0.0100%、
Ca:0~0.0100%、
REM:0~0.1000%、
B :0~0.0100%、
の一種または二種以上を含むことを特徴とする〔1〕または〔2〕に記載の熱延鋼板。
〔4〕〔1〕~〔3〕のいずれか1つに記載の成分組成を有するスラブについて、
前記スラブを加熱し、熱間粗圧延し、熱間仕上圧延して圧延材とし、前記圧延材を冷却し、巻取る熱延鋼板の製造方法であって、
前記加熱は、前記スラブを1100~1230℃に加熱し、
前記熱間粗圧延は、出側温度を900~1060℃で施し、
前記熱間仕上圧延は、
総圧下率を55~80%、
最終パスの圧下率を2~10%、
仕上圧延終了温度を750~840℃で施し、
前記冷却は、
前記仕上圧延の終了から、冷却開始までの時間を、4~10秒とし、
前記仕上圧延が終了し、前記冷却開始したときの1/4厚部の温度から、前記1/4厚部の冷却終了温度が570~650℃になるまで、1/4厚部の平均冷却速度が、10~30℃/秒となるように冷却し、
前記冷却後、前記巻取までは、前記1/4厚部の冷却終了温度から、前記巻取したときの1/4厚部の温度になるまで、1/4厚部の平均冷却速度が、5℃/秒以下となるように冷却し、
前記巻取は、
前記圧延材の巻取温度が500~650℃で行うことを
特徴とする〔1〕~〔3〕のいずれか1つに記載の熱延鋼板の製造方法。
〔5〕〔1〕~〔3〕のいずれか1つに記載の熱延鋼板を素材として丸形鋼管に造管し、冷間成形により製造される角形鋼管であって、
管軸方向で、降伏応力が365~515MPa、引張強さが490~640MPa、降伏比が90%以下で、0℃におけるシャルピー衝撃試験の吸収エネルギーが70J以上であることを特徴とする角形鋼管。
〔6〕〔4〕に記載された熱延鋼板の製造方法によって製造された熱延鋼板を素材とし、前記素材を丸形鋼管に造管し、冷間成形して製造することを特徴とする〔5〕に記載の角形鋼管の製造方法。
The gist of the present invention for solving the above problems is as follows.
[1] By mass%,
C: 0.050 to 0.100%,
Si: 0.10 to 0.30%,
Mn: 0.80 to 1.40%,
P: 0.050% or less,
S: 0.020% or less,
Al: 0.010 to 0.040%,
N: 0.0060% or less (0 is not included),
Nb: contains 0.015 to 0.045%,
The balance is Fe and hot-rolled steel sheet, which is an unavoidable impurity.
The alloy structure of the hot-rolled steel sheet consists of a main phase and a second phase.
The main phase is ferrite,
The area ratio of the main phase is 85 to 97%, and the area ratio is 85 to 97%.
The hardness of the main phase is 150 to 200 Hv in the Micro Vickers hardness test.
The second phase is pearlite, or pearlite and bainite.
In the second phase, the frequency of the second phase defined by the following equation (1) in the 1/4 thickness of the steel sheet is 0.05 to 0.15, and the area ratio of the second phase is 3 to 15%. can be,
A hot-rolled steel sheet characterized in that the average crystal grain size of the main phase and the second phase at 1/4 thickness of the steel sheet is 10 to 25 μm.
Second phase frequency = (number of second phase grains crossing a line segment of a predetermined length) / (total number of main phase grains and second phase grains crossing a line segment of a predetermined length) (1)
[2] Further, in% by mass, instead of a part of the Fe,
Ti: 0 to 0.080%,
V: 0 to 0.150%,
Cu: 0 to 0.40%,
Ni: 0 to 0.40%,
Cr: 0 to 0.40%,
Mo: 0 to 0.22%,
One or more of
The hot-rolled steel sheet according to [1], which comprises the range of the following formula (2).
Cu + Ni + Cr + 1.8 × Mo ≦ 0.40% (2)
[3] Further, in% by mass, instead of a part of the Fe,
Mg: 0 to 0.0100%,
Ca: 0-0.0100%,
REM: 0 to 0.1000%,
B: 0 to 0.0100%,
The hot-rolled steel sheet according to [1] or [2], which comprises one or more of the above.
[4] Regarding the slab having the component composition according to any one of [1] to [3].
A method for manufacturing a hot-rolled steel sheet in which the slab is heated, hot rough-rolled, hot-finished and rolled to obtain a rolled material, and the rolled material is cooled and wound.
The heating heats the slab to 1100 to 1230 ° C.
In the hot rough rolling, the output side temperature is applied at 900 to 1060 ° C.
The hot finish rolling
Total reduction rate is 55-80%,
The reduction rate of the final pass is 2 to 10%,
Finish rolling end temperature is applied at 750 to 840 ° C.
The cooling is
The time from the end of the finish rolling to the start of cooling is set to 4 to 10 seconds.
The average cooling rate of the 1/4 thick part from the temperature of the 1/4 thick part when the finish rolling is completed and the cooling is started until the cooling end temperature of the 1/4 thick part becomes 570 to 650 ° C. Cooled to 10-30 ° C / sec,
After the cooling, until the winding, the average cooling rate of the 1/4 thick part is changed from the cooling end temperature of the 1/4 thick part to the temperature of the 1/4 thick part at the time of winding. Cool to 5 ° C / sec or less,
The winding is
The method for producing a hot-rolled steel sheet according to any one of [1] to [3], wherein the rolled material is wound at a winding temperature of 500 to 650 ° C.
[5] A square steel pipe manufactured by cold forming a round steel pipe using the hot-rolled steel sheet according to any one of [1] to [3] as a material.
A square steel pipe characterized in that the yield stress is 365 to 515 MPa, the tensile strength is 490 to 640 MPa, the yield ratio is 90% or less, and the absorption energy of the Charpy impact test at 0 ° C. is 70 J or more in the pipe axis direction.
[6] A hot-rolled steel sheet manufactured by the method for manufacturing a hot-rolled steel sheet according to [4] is used as a material, and the material is formed into a round steel pipe and cold-formed to manufacture the material. The method for manufacturing a square steel pipe according to [5].

本発明により、高強度、高靱性、低降伏比の建築構造部材向け角形鋼管用厚肉熱延鋼板が提供できる。そして、この熱延鋼板によって高強度、高靱性、低降伏比の角形鋼管が製造できる。本発明の高強度、高靱性、低降伏比の建築構造部材向け角形鋼管は、高強度、高靱性のため変形しがたく、変形しても変形から破壊までの時間がより長く持ちこたえるので、建築物に使用した際に安全である。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a thick-walled hot-rolled steel sheet for a square steel pipe for a building structural member having high strength, high toughness and low yield ratio. Then, this hot-rolled steel sheet can be used to manufacture a square steel pipe having high strength, high toughness, and a low yield ratio. The high-strength, high-toughness, low-yield ratio square steel pipe for building structural members of the present invention is difficult to deform due to its high strength and high toughness, and even if it is deformed, it can withstand a longer time from deformation to fracture. It is safe when used in buildings.

高靭性化のためには、結晶粒(平均結晶粒径)を小さくすることが有効であることが知られている。また、結晶粒を微細化すると、降伏応力が大きくなることも、Hall-Petchの式で知られている。 It is known that it is effective to reduce the crystal grains (average crystal grain size) for high toughness. It is also known from the Hall-Petch equation that the yield stress increases when the crystal grains are miniaturized.

降伏比YRを低くするためには、引張強さを大きくすることが必要なので、2相組織化し、フェライトの生成を促進し、フェライトの強度を下げるとともに、パーライト、またはパーライトおよびベイナイトである第二相を増やすことが有効である。しかしながら、これらの第二相を増やしすぎると、これらの硬質相を起点とした破壊が発生し、靭性は劣化する。 In order to lower the yield ratio YR, it is necessary to increase the tensile strength, so a two-phase structure is formed to promote the formation of ferrite, reduce the strength of ferrite, and pearlite, or pearlite and bainite. It is effective to increase the phase. However, if the number of these second phases is increased too much, fracture starting from these hard phases occurs and the toughness deteriorates.

このように、高靱性化、あるいは高強度化のための結晶粒の微細化と、降伏比YRを低くすることは二律背反となる。 As described above, it is an antinomy to make the crystal grains finer for high toughness or high strength and to lower the yield ratio YR.

そこで本発明においては、靱性を付与するために、Nbを添加した。Nbを添加し、熱間仕上げ圧延の圧延条件を調整し、熱間仕上げ圧延後の冷却速度を調整することで、γ粒を微細化し、平均結晶粒径の粗大化を抑制した。このように、平均結晶粒径を小さくすることで、靭性を確保する。また、Nbを添加することで、Nbの炭化物、または窒化物を析出させるNbの析出強化により強度を確保することができる。
熱間仕上げ圧延の圧延条件を調整し、熱間仕上げ圧延後の冷却条件を調整したことで、本願で得られたフェライトは、硬さが適切な範囲であり、本願で得られた第二相は、第二相頻度が適切な範囲であるので、降伏比YRを低くすることができる。フェライトを生成させることにより、降伏比YRを低くすることができる。
Therefore, in the present invention, Nb was added in order to impart toughness. By adding Nb, adjusting the rolling conditions for hot finish rolling, and adjusting the cooling rate after hot finish rolling, the γ grains were made finer and the coarsening of the average crystal grain size was suppressed. By reducing the average crystal grain size in this way, toughness is ensured. Further, by adding Nb, the strength can be ensured by strengthening the precipitation of Nb that precipitates carbides or nitrides of Nb.
By adjusting the rolling conditions for hot finish rolling and adjusting the cooling conditions after hot finish rolling, the ferrite obtained in the present application has an appropriate hardness range, and the second phase obtained in the present application. Since the frequency of the second phase is in an appropriate range, the yield ratio YR can be lowered. By generating ferrite, the yield ratio YR can be lowered.

本発明について、各事項をさらに詳細に説明する。
(化学成分)
本発明の熱延鋼板、角形鋼管の成分組成について詳細に説明する。以下の%は、すべて質量%である。なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Each matter of the present invention will be described in more detail.
(Chemical composition)
The composition of the hot-rolled steel sheet and the square steel pipe of the present invention will be described in detail. The following% are all mass%. In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.

C :0.050~0.100%。
Cは、熱延鋼板および角形鋼管に含有されると、固溶強化により強度を増加させる。また、第二相であるパーライトやベイナイトの形成に寄与する元素である。本発明が目的とする強度、靭性を確保するための後述の合金組織とするには、0.050%以上の含有を必要とする。一方、0.100%を超える含有は、目的の合金組織が得られず、熱延鋼板の、さらには角形鋼管の引張特性、靭性を確保できなくなる。このため、Cは0.050~0.100%の範囲に限定した。なお、好ましくは0.070~0.090%である。
C: 0.050 to 0.100%.
When C is contained in hot-rolled steel sheets and square steel pipes, its strength is increased by solid solution strengthening. It is also an element that contributes to the formation of the second phase, pearlite and bainite. In order to obtain the alloy structure described later for ensuring the strength and toughness aimed at by the present invention, a content of 0.050% or more is required. On the other hand, if the content exceeds 0.100%, the desired alloy structure cannot be obtained, and the tensile properties and toughness of the hot-rolled steel sheet and further the square steel pipe cannot be ensured. Therefore, C is limited to the range of 0.050 to 0.100%. It is preferably 0.070 to 0.090%.

Si:0.10~0.30%。
Siは、固溶強化で熱延鋼板および角形鋼管の強度増加に寄与する元素であり、強度を確保するために0.10%以上含有させる。一方、0.30%を超える含有は、熱延鋼板表面に、赤スケールと称するファイアライトが形成しやすくなり、表面の外観性状が低下する場合が多くなる。このため、0.10~0.30%とする。なお、好ましくは0.15~0.25%である。
Si: 0.10 to 0.30%.
Si is an element that contributes to increasing the strength of hot-rolled steel sheets and square steel pipes by solid solution strengthening, and is contained in an amount of 0.10% or more in order to secure the strength. On the other hand, if the content exceeds 0.30%, fire light called red scale is likely to be formed on the surface of the hot-rolled steel sheet, and the appearance of the surface is often deteriorated. Therefore, it is set to 0.10 to 0.30%. It is preferably 0.15 to 0.25%.

Mn:0.80~1.40%。
Mnは、固溶強化を介して熱延鋼板および角形鋼板の強度を増加させる元素であり、目的の強度を確保するために、0.80%以上の含有を必要とする。なお、0.80%未満の含有では、フェライト変態開始温度の上昇を招き、合金組織が粗大化しやすい。一方、1.40%を超えて含有すると、熱延鋼板の降伏応力が高くなりすぎるため、冷間成形して製造される角形鋼管の降伏比YRが高くなり、目的の降伏比YRを確保できなくなる。このため、Mnは0.80~1.40%の範囲に限定した。なお、好ましくは0.90~1.20%である。
Mn: 0.80 to 1.40%.
Mn is an element that increases the strength of hot-rolled steel sheets and square steel sheets through solid solution strengthening, and requires a content of 0.80% or more in order to secure the desired strength. If the content is less than 0.80%, the ferrite transformation start temperature is increased and the alloy structure tends to be coarsened. On the other hand, if the content exceeds 1.40%, the yield stress of the hot-rolled steel sheet becomes too high, so that the yield ratio YR of the square steel pipe manufactured by cold forming becomes high, and the desired yield ratio YR can be secured. It disappears. Therefore, Mn was limited to the range of 0.80 to 1.40%. It is preferably 0.90 to 1.20%.

P :0.050%以下。
Pは、フェライト粒界に偏析して、靭性を低下させる作用を有する元素であり、本発明では、不純物としてできるだけ低減することが好ましいが、過度の低減は、精錬コストの高騰を招くため、0.002%以上とすることが好ましい。なお、0.050%までは許容できる。このため、Pは0.050%以下に限定した。なお、好ましくは0.025%以下である。
P: 0.050% or less.
P is an element that segregates into ferrite grain boundaries and has an action of lowering toughness. In the present invention, it is preferable to reduce it as an impurity as much as possible, but excessive reduction causes an increase in refining cost. It is preferably .002% or more. Up to 0.050% is acceptable. Therefore, P is limited to 0.050% or less. It is preferably 0.025% or less.

S :0.020%以下。
Sは、熱延鋼板および角形鋼管中では硫化物として存在し、本発明の組成範囲であれば、主としてMnSとして存在する。MnSは、熱間圧延工程で薄く延伸され、延性、靭性に悪影響を及ぼすため、本発明ではできるだけ低減することが好ましいが、過度の低減は、精錬コストの高騰を招くため、0.002%以上とすることが好ましい。なお、0.020%までは許容できる。このため、Sは0.020%以下に限定した。なお、好ましくは0.010%以下である。
S: 0.020% or less.
S exists as a sulfide in hot-rolled steel sheets and square steel pipes, and mainly exists as MnS within the composition range of the present invention. MnS is thinly stretched in the hot rolling process and adversely affects the ductility and toughness. Therefore, it is preferable to reduce MnS as much as possible in the present invention. Is preferable. Up to 0.020% is acceptable. Therefore, S is limited to 0.020% or less. It is preferably 0.010% or less.

Al:0.010~0.040%。
Alは、脱酸剤として作用するとともに、AlNとしてNを固定する作用を有する元素である。このような効果を得るためには、0.010%以上の含有を必要とする。0.010%未満では、脱酸力が不足し、COガスが溶鋼内に捕捉された状態となり、熱延鋼板の表面性状や材質特性が悪化する。一方、0.040%を超える含有は、溶鋼中の酸素と反応した酸化物が介在物として多く含むようになるため、熱延鋼板及び角形鋼管の清浄度が低下し、靭性が低下する。また、角形鋼管の溶接部の靭性も低下する。このため、Alは0.010~0.040%に限定した。なお、好ましくは0.020~0.030%である。
Al: 0.010 to 0.040%.
Al is an element that acts as a deoxidizing agent and also has an action of fixing N as AlN. In order to obtain such an effect, the content of 0.010% or more is required. If it is less than 0.010%, the deoxidizing power is insufficient, CO gas is trapped in the molten steel, and the surface texture and material properties of the hot-rolled steel sheet deteriorate. On the other hand, if the content exceeds 0.040%, the oxide that has reacted with oxygen in the molten steel is contained in a large amount as inclusions, so that the cleanliness of the hot-rolled steel sheet and the square steel pipe is lowered, and the toughness is lowered. In addition, the toughness of the welded portion of the square steel pipe is also reduced. Therefore, Al was limited to 0.010 to 0.040%. It is preferably 0.020 to 0.030%.

N :0.0060%以下(0は含まない)。
Nは、不純物として含まれ、熱延鋼板の延性、角形鋼管の溶接性が低下するため、本発明ではできるだけ低減することが好ましいが、0.0060%までは許容できる。このため、Nは0.0060%以下に限定した。なお、好ましくは0.0050%以下である。
N: 0.0060% or less (0 is not included).
N is contained as an impurity and reduces the ductility of the hot-rolled steel sheet and the weldability of the square steel pipe. Therefore, it is preferable to reduce N as much as possible in the present invention, but up to 0.0060% is acceptable. Therefore, N is limited to 0.0060% or less. It is preferably 0.0050% or less.

Nb:0.015~0.045%。
Nbは、熱延鋼板および角形鋼管のフェライト硬さを確保し、平均結晶粒径を小さくし、第二相頻度を向上させるために、0.015%以上含有させる。Nbを含有することで、熱延鋼板のフェライト硬さ、平均結晶粒径、第二相頻度が適正化し、熱延鋼板および角形鋼管の靱性と強度が向上する。一方、0.045%を超えると、主相の硬さ、第二相分率、第二相頻度が本発明の範囲を超過し、必要以上に平均結晶粒径が小さくするため、強度が高くなりすぎて靱性や局部伸びが確保できず、降伏比YRも高くなる。なお、好ましくは0.020~0.040%である。
Nb: 0.015 to 0.045%.
Nb is contained in an amount of 0.015% or more in order to secure the ferrite hardness of the hot-rolled steel sheet and the square steel pipe, reduce the average crystal grain size, and improve the frequency of the second phase. By containing Nb, the ferrite hardness, the average crystal grain size, and the frequency of the second phase of the hot-rolled steel sheet are optimized, and the toughness and strength of the hot-rolled steel sheet and the square steel pipe are improved. On the other hand, if it exceeds 0.045%, the hardness of the main phase, the second phase fraction, and the second phase frequency exceed the range of the present invention, and the average crystal grain size is made smaller than necessary, so that the strength is high. Too much toughness and local elongation cannot be ensured, and the yield ratio YR becomes high. It is preferably 0.020 to 0.040%.

Feおよび不可避的不純物。
本発明の熱延鋼板および角形鋼管の成分組成は、以上の元素の他、Feおよび不可避的不純物からなる。Feは、主成分であり、不可避的不純物とは、熱延鋼板を製造する際の原材料に含まれる、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことをいう。不可避的不純物として、例えば、O(酸素)が挙げられるが、Oについては、通常の鋼板の上限である0.005%程度であればよい。その他の不純物成分については、特に規定しないが、Sb、As等の元素が、原料のスクラップから不可避的不純物として混入する場合がある。しかしながら、不可避的不純物として混入するレベルの含有量では、本実施形態における熱延鋼板および角形鋼管の特性には著しい影響を与えない。
Fe and unavoidable impurities.
The composition of the hot-rolled steel sheet and the square steel pipe of the present invention comprises Fe and unavoidable impurities in addition to the above elements. Fe is a main component, and unavoidable impurities are components contained in raw materials for manufacturing hot-rolled steel sheets or mixed in the manufacturing process, and are not intentionally contained in steel. It means that. Examples of unavoidable impurities include O (oxygen), and O may be about 0.005%, which is the upper limit of a normal steel sheet. Although not particularly specified for other impurity components, elements such as Sb and As may be mixed as unavoidable impurities from the scrap of the raw material. However, the content at a level mixed as an unavoidable impurity does not significantly affect the characteristics of the hot-rolled steel sheet and the square steel pipe in the present embodiment.

以上が必須元素、あるいは不可避的に含まれる元素についての説明であるが、次に、必要に応じてFeの一部に代えて、選択的に含有してもよい元素について説明する。 The above is the description of the essential element or the element inevitably contained. Next, the element which may be selectively contained instead of a part of Fe will be described.

Ti:0~0.080%、
V :0~0.150%。
Ti、Vはいずれも、炭化物、窒化物を形成し、結晶粒径を小さくする作用を有する元素であり、熱延鋼板および角形鋼管に含有させることにより、降伏比YRが高くなる傾向となる。このため、本発明では、含有しないことが好ましいが、結晶粒を必要以上に極微細化しない範囲であれば、すなわち、フェライト相と第二相(パーライト、ベイナイト)を含む平均粒径で10μm以上を確保できる範囲であれば、含有してもよい。このような含有範囲はそれぞれ、Ti:0.080%以下、V:0.150%以下である。
Ti: 0 to 0.080%,
V: 0 to 0.150%.
Both Ti and V are elements that form carbides and nitrides and have the effect of reducing the crystal grain size, and when they are contained in hot-rolled steel sheets and square steel pipes, the yield ratio YR tends to increase. Therefore, in the present invention, it is preferable not to contain it, but as long as the crystal grains are not miniaturized more than necessary, that is, the average particle size including the ferrite phase and the second phase (pearlite, bainite) is 10 μm or more. May be contained as long as it can be ensured. Such content ranges are Ti: 0.080% or less and V: 0.150% or less, respectively.

Cu:0~0.40%、
Ni:0~0.40%、
Cr:0~0.40%、
Mo:0~0.22%、の一種以上、かつ、
Cu+Ni+Cr+1.8×Mo≦0.40% (2)
Cu: 0 to 0.40%,
Ni: 0 to 0.40%,
Cr: 0 to 0.40%,
Mo: 0 to 0.22%, one or more, and
Cu + Ni + Cr + 1.8 × Mo ≦ 0.40% (2)

Cu、Ni、Cr、Moは、熱延鋼板および角形鋼管に含有させることによって強度が向上するため、Cu:0.40%以下、Ni:0.40%以下、Cr:0.40%以下、Mo:0.22%以下、かつ、上記(2)式を満たす範囲であればFeの一部に代えて含有させてもよい。しかしながら、これらの元素の各々の含有量が上限を超えるか、Cu+Ni+Cr+1.8×Moが0.40%を超えると、フェライト面積率が低く、第二相面積率が高く、平均結晶粒径が小さくなり、第二相頻度が高くなり、降伏比YRが高くなる。より好ましくは、Cu+Ni+Cr+1.8×Moが0.20%以下である。一方、強度を向上させるためには、Cu+Ni+Cr+1.8×Moは0.05%以上が好ましい。 Since the strength of Cu, Ni, Cr, and Mo is improved by containing them in hot-rolled steel sheets and square steel pipes, Cu: 0.40% or less, Ni: 0.40% or less, Cr: 0.40% or less, Mo: 0.22% or less and may be contained in place of a part of Fe as long as it is within the range satisfying the above formula (2). However, when the content of each of these elements exceeds the upper limit or Cu + Ni + Cr + 1.8 × Mo exceeds 0.40%, the ferrite area ratio is low, the second phase area ratio is high, and the average crystal grain size is small. Therefore, the frequency of the second phase becomes high and the yield ratio YR becomes high. More preferably, Cu + Ni + Cr + 1.8 × Mo is 0.20% or less. On the other hand, in order to improve the strength, Cu + Ni + Cr + 1.8 × Mo is preferably 0.05% or more.

Mg:0~0.0100%、
Ca:0~0.0100%、
REM:0~0.1000%、
B :0~0.0100%。
Mg: 0 to 0.0100%,
Ca: 0-0.0100%,
REM: 0 to 0.1000%,
B: 0 to 0.0100%.

Mg:0.0100%以下。
Mgは、微量の添加で酸化物、硫化物の形態制御に有効な元素であるため、0.0100%以下であればFeの一部に代えて含有させてもよい。しかしながら、Mg含有量が0.0100%を超えると、局部伸びが低下する。より好ましくは、0.0050%以下である。一方、酸化物、硫化物の形態を制御するためには、Mg含有量は0.0003%以上が好ましい。
Mg: 0.0100% or less.
Since Mg is an element effective for controlling the morphology of oxides and sulfides by adding a small amount, it may be contained in place of a part of Fe if it is 0.0100% or less. However, when the Mg content exceeds 0.0100%, the local elongation decreases. More preferably, it is 0.0050% or less. On the other hand, in order to control the morphology of oxides and sulfides, the Mg content is preferably 0.0003% or more.

Ca:0.0100%以下。
Caは、微量の添加で酸化物、硫化物の形態制御に有効な元素であるため、0.0100%以下であればFeの一部に代えて含有させてもよい。しかしながら、Ca含有量が0.0100%を超えると、局部伸びが低下する。より好ましくは、0.0020%以下である。一方、酸化物、硫化物の形態を制御するためには、Ca含有量は0.0005%以上が好ましい。
Ca: 0.0100% or less.
Since Ca is an element effective for controlling the morphology of oxides and sulfides by adding a small amount, it may be contained in place of a part of Fe if it is 0.0100% or less. However, when the Ca content exceeds 0.0100%, the local elongation decreases. More preferably, it is 0.0020% or less. On the other hand, in order to control the morphology of oxides and sulfides, the Ca content is preferably 0.0005% or more.

REM:0.1000%以下。
Sc、Y、およびランタノイド元素の合計17元素の総称であるREMは、微量の添加で酸化物、硫化物の形態制御に有効な元素であるため、0.1000%以下であればFeの一部に代えて含有させてもよい。しかしながら、REM含有量が0.1000%を超えると、局部伸びが低下する。より好ましくは、0.0300%以下である。一方、酸化物、硫化物の形態を制御するためには、REM含有量は0.0002%以上が好ましい。また、REMとしては、La、Ce、Y、ミッシュメタルなどが好ましい。
REM: 0.1000% or less.
REM, which is a general term for a total of 17 elements of Sc, Y, and lanthanoid elements, is an element effective for morphological control of oxides and sulfides with a small amount of addition, so if it is 0.1000% or less, it is a part of Fe. It may be contained instead of. However, if the REM content exceeds 0.1000%, the local elongation will decrease. More preferably, it is 0.0300% or less. On the other hand, in order to control the morphology of oxides and sulfides, the REM content is preferably 0.0002% or more. Further, as the REM, La, Ce, Y, mischmetal and the like are preferable.

B :0~0.0100%
Bは、冷却過程のフェライト変態を遅延させ、低温変態フェライト、すなわちアシュキュラーフェライト相の形成を促進し、鋼板強度を増加させる作用を有する元素であり、Bの含有は、鋼板の降伏比YR、したがって角形鋼管の降伏比YRを増加させる。このため、本発明では、角形鋼管の降伏比YRが90%以下となるような範囲であれば、必要に応じて含有できる。このような範囲はB:0.0100%以下である。
B: 0 to 0.0100%
B is an element having the effect of delaying the ferrite transformation in the cooling process, promoting the formation of low temperature transformation ferrite, that is, the formation of an ashcular ferrite phase, and increasing the strength of the steel sheet. Therefore, the yield ratio YR of the square steel pipe is increased. Therefore, in the present invention, as long as the yield ratio YR of the square steel pipe is in the range of 90% or less, it can be contained as needed. Such a range is B: 0.0100% or less.

また、本発明の熱延鋼板は、Feの一部に代えて、Zr、Sn、Co、Zn、Wを、合計で0.05%以下であれば含有しても本発明の効果は損なわれない。このうちSnに関しては、0.01%以下であることが好ましい。 Further, even if the hot-rolled steel sheet of the present invention contains Zr, Sn, Co, Zn, and W in total of 0.05% or less instead of a part of Fe, the effect of the present invention is impaired. do not have. Of these, Sn is preferably 0.01% or less.

(合金組織)
本発明は、成分組成を規定するとともに、熱延鋼板において、以下の要件を必須とする合金組織を規定した。
(Alloy structure)
The present invention defines the composition of the components and the alloy structure of the hot-rolled steel sheet that requires the following requirements.

鋼板の1/4厚における主相と第二相の平均結晶粒径:10~25μm。
本発明の熱延鋼板の合金組織は、主相と第二相からなる。本発明において、主相(フェライト)と第二相(パーライト、ベイナイト)以外は存在しない。本発明の熱延鋼板は、主相であるフェライト相と第二相の平均結晶粒径が10~25μmである組織を有する。
ここでいう「主相と第二相の平均結晶粒径」とは、主相であるフェライト相と第二相であるパーライト相、ベイナイト相を含んだ、全結晶粒について測定した平均結晶粒径を意味する。この平均結晶粒径の測定は、熱延鋼板の幅方向で1/4幅部の位置から採取した組織観察用試験片について、圧延方向断面(L断面)を研磨、ナイタール腐食を施し、板厚1/4t位置を、光学顕微鏡(倍率:500倍)、または走査型電子顕微鏡(倍率:500倍)を用いて、板厚方向300μm×圧延方向300μmの範囲を観察し、撮像し、画像処理して、切断法で板厚方向の粒径と圧延方向の粒径を求め、これらを単純平均して、平均粒径を算出するものとする。
上記した方法で測定された平均結晶粒径が、10μm未満では、微細すぎて、熱延鋼板および角形鋼管の降伏比YRが高くなる。一方、25μmを超えて粗大化すると、熱延鋼板および角形鋼管の靭性が低下する。
Average crystal grain size of the main phase and the second phase at 1/4 thickness of the steel sheet: 10 to 25 μm.
The alloy structure of the hot-rolled steel sheet of the present invention comprises a main phase and a second phase. In the present invention, there is no other than the main phase (ferrite) and the second phase (pearlite, bainite). The hot-rolled steel sheet of the present invention has a structure in which the average crystal grain size of the ferrite phase as the main phase and the second phase is 10 to 25 μm.
The "average crystal grain size of the main phase and the second phase" here means the average crystal grain size measured for all the crystal grains including the ferrite phase which is the main phase and the pearlite phase and the bainite phase which are the second phases. Means. The average crystal grain size is measured by polishing the rolling direction cross section (L cross section) of the test piece for microstructure observation collected from the position of 1/4 width in the width direction of the hot-rolled steel sheet, and subjecting it to nighttal corrosion to obtain the plate thickness. The 1 / 4t position is observed, imaged, and image-processed in a range of 300 μm in the plate thickness direction × 300 μm in the rolling direction using an optical microscope (magnification: 500 times) or a scanning electron microscope (magnification: 500 times). Then, the particle size in the plate thickness direction and the particle size in the rolling direction are obtained by the cutting method, and these are simply averaged to calculate the average particle size.
If the average crystal grain size measured by the above method is less than 10 μm, it is too fine and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe becomes high. On the other hand, if the coarseness exceeds 25 μm, the toughness of the hot-rolled steel sheet and the square steel pipe decreases.

主相:フェライト。
本発明でいう、主相とは、L断面(圧延方向および板厚方向に平行な断面)において、圧延面から板厚方向に板厚tの1/4深さ位置1/4厚(1/4t部)で、視野300μm×300μmの範囲で観察し、3~15%の面積率であるパーライト、またはパーライトおよびベイナイトを除いた残部である。すなわち、面積率で、85~97%を占める組織である。この主相が、フェライトであることを規定する。熱延鋼板の主相をフェライトとすることは、熱延鋼板および角形鋼管の靱性と局部伸びの確保と、降伏比YRを低くするために必要である。
Prime Minister: Ferrite.
The main phase referred to in the present invention is a 1/4 depth position 1/4 thickness (1 /) of the plate thickness t in the plate thickness direction from the rolled surface in the L cross section (cross section parallel to the rolling direction and the plate thickness direction). 4t part), observed in a range of 300 μm × 300 μm, pearlite having an area ratio of 3 to 15%, or the balance excluding pearlite and bainite. That is, it is an organization that occupies 85 to 97% of the area ratio. It is specified that this main phase is ferrite. It is necessary to use ferrite as the main phase of the hot-rolled steel sheet in order to secure the toughness and local elongation of the hot-rolled steel sheet and the square steel pipe and to lower the yield ratio YR.

主相の硬さ:マイクロビッカース硬さ試験で150~200Hv。
本発明の熱延鋼板の合金組織の大部分を占める主相の硬さが、マイクロビッカース硬さ試験で150Hv未満であると、組織を規定する他の条件との関係で、強度や靱性が十分ではない場合がある。一方、主相の硬さが200Hvを超えると、降伏比YRが高くなり、また、硬化しすぎて熱延鋼板および角形鋼管の靱性が確保できない場合がある。なお、好ましくは160~180Hvである。
Hardness of main phase: 150-200 Hv in Micro Vickers hardness test.
When the hardness of the main phase, which occupies most of the alloy structure of the hot-rolled steel sheet of the present invention, is less than 150 Hv in the Micro Vickers hardness test, the strength and toughness are sufficient in relation to other conditions defining the structure. May not be. On the other hand, if the hardness of the main phase exceeds 200 Hv, the yield ratio YR may become high, and the toughness of the hot-rolled steel sheet and the square steel pipe may not be ensured due to excessive hardening. It is preferably 160 to 180 Hv.

第二相:パーライト、またはパーライトおよびベイナイト。
主相以外の第二相は、パーライト、またはパーライトおよびベイナイトである。第二相を主相のフェライトに比べて強度、硬度が高いパーライト、またはパーライトおよびベイナイトとすることで、必要な強度を確保する。
Phase II: pearlite, or pearlite and bainite.
The second phase other than the main phase is pearlite, or pearlite and bainite. The required strength is ensured by using pearlite, which has higher strength and hardness than that of ferrite as the main phase, or pearlite and bainite as the second phase.

第二相の面積率:3~15%
第二相の面積率は、主相以外のパーライト、またはパーライトおよびベイナイトの面積率である。第二相の面積率は、熱延鋼板のL断面(圧延方向および板厚方向に平行な断面)において、圧延面から板厚方向に板厚tの1/4深さ位置1/4厚(1/4t部)で、視野300μm×300μmの範囲で観察した際の第二相の面積率である。
第二相の面積率が3%未満であると、引張強さが不足するなど強度不足となる、また靱性も不足する。一方、15%を超えると、必要以上に高強度化するため、熱延鋼板および角形鋼管の局部伸びが低下し、降伏比YRが高くなる。また、靱性が低下することもある。
Area ratio of the second phase: 3 to 15%
The area ratio of the second phase is the area ratio of pearlite other than the main phase, or pearlite and bainite. The area ratio of the second phase is 1/4 of the plate thickness t in the plate thickness direction from the rolled surface in the L cross section (cross section parallel to the rolling direction and the plate thickness direction) of the hot-rolled steel sheet. It is the area ratio of the second phase when observed in the range of 300 μm × 300 μm in the field of view (1 / 4t portion).
If the area ratio of the second phase is less than 3%, the strength is insufficient such as the tensile strength is insufficient, and the toughness is also insufficient. On the other hand, if it exceeds 15%, the strength becomes higher than necessary, so that the local elongation of the hot-rolled steel sheet and the square steel pipe decreases, and the yield ratio YR increases. It may also reduce toughness.

第二相頻度:0.05~0.15。
パーライト、または、パーライトおよびベイナイトからなる第二相は、0.05~0.15の第二相頻度を有する。第二相頻度が0.05未満では、熱延鋼板の-20℃におけるシャルピー衝撃試験の吸収エネルギーvE-20℃で、180J以上、建築構造部材用として角形鋼管に要求される、試験温度0℃におけるシャルピー衝撃試験の吸収エネルギーvE0℃で、70J以上という、所望の靭性を確保できなくなる。一方、第二相頻度が0.15を超えると、熱延鋼板の降伏比YRが、85%超となり、冷間成形して得た角形鋼管の降伏比YRが90%超となる。このため、第二相頻度を0.05~0.15の範囲に限定した。なお、好ましくは0.08~0.12である。
Phase II frequency: 0.05 to 0.15.
The second phase consisting of pearlite or pearlite and bainite has a second phase frequency of 0.05 to 0.15. When the frequency of the second phase is less than 0.05, the absorbed energy vE-20 ° C of the Charpy impact test at -20 ° C of the hot-rolled steel sheet is 180 J or more, and the test temperature required for the square steel pipe for building structural members is 0 ° C. At the absorption energy vE0 ° C. of the Charpy impact test, the desired toughness of 70 J or more cannot be secured. On the other hand, when the frequency of the second phase exceeds 0.15, the yield ratio YR of the hot-rolled steel sheet becomes more than 85%, and the yield ratio YR of the square steel pipe obtained by cold forming becomes more than 90%. Therefore, the frequency of the second phase was limited to the range of 0.05 to 0.15. It is preferably 0.08 to 0.12.

なお、本発明でいう「第二相頻度」とは、つぎのようにして、求めた値である。
まず、素材である熱延鋼板の圧延方向断面(L断面)組織を光学顕微鏡、走査型電子顕微鏡を用いて撮像する。得られた組織写真に、圧延方向および板厚方向にそれぞれ、所定長さの線分(たとえば125μm)を所定本数(たとえば6本)だけ描き、該線分と交差する結晶粒の粒数を、主相、第二相の各相についてそれぞれ測定する。なお、線分の端部が結晶粒内に留まる場合には、0.5個とする。得られた、各線分と交差する第二相の合計粒数(第二相の粒数)と、得られた、各線分と交差する各相の粒数の合計粒数(総粒数)との比、(第二相の粒数)/(総粒数)を求め、第二相頻度と定義する。なお、各線分の所定長さは、組織の大きさに応じて適宜決定すればよい。
The "second phase frequency" referred to in the present invention is a value obtained as follows.
First, the rolling direction cross-section (L cross-section) structure of the hot-rolled steel sheet, which is the material, is imaged using an optical microscope and a scanning electron microscope. On the obtained microstructure photograph, a predetermined number (for example, 6) of line segments (for example, 125 μm) having a predetermined length are drawn in each of the rolling direction and the plate thickness direction, and the number of crystal grains intersecting the line segments is determined. Measure each of the main phase and the second phase. If the end of the line segment stays in the crystal grain, the number is 0.5. The total number of grains of the second phase that intersects each line segment (total number of grains of the second phase) and the total number of grains of each phase that intersects each line segment (total number of grains). The ratio of (number of grains in the second phase) / (total number of grains) is obtained and defined as the frequency of the second phase. The predetermined length of each line segment may be appropriately determined according to the size of the tissue.

(製造方法)
次に、本発明の熱延鋼板の製造方法について説明する。本発明の製造方法は、上記の化学組成を有する溶鋼を製造する。製造された溶鋼から連続鋳造法などにより鋳片(スラブ)を製造する。このスラブを以下に規定する特定の条件によりスラブを加熱し、熱間粗圧延し、熱間仕上圧延して圧延材とし、圧延材を冷却し、巻取ることにより本発明の熱延鋼板を製造することができる。ただし、以下の製造工程は、製造方法の一例であって、本発明の熱延鋼板は、以下の製造方法によって限定されるものではない。
(Production method)
Next, the method for manufacturing the hot-rolled steel sheet of the present invention will be described. The production method of the present invention produces molten steel having the above chemical composition. A slab is manufactured from the manufactured molten steel by a continuous casting method or the like. The hot-rolled steel sheet of the present invention is manufactured by heating the slab under the specific conditions specified below, hot rough rolling, hot finish rolling to obtain a rolled material, cooling the rolled material, and winding the slab. can do. However, the following manufacturing process is an example of a manufacturing method, and the hot-rolled steel sheet of the present invention is not limited to the following manufacturing method.

スラブ加熱温度:1100~1230℃。
スラブの加熱温度が1100℃未満では、被圧延材の変形抵抗が大きくなりすぎて、粗圧延機、仕上圧延機の耐荷重、圧延トルクの不足が生じ、圧延が困難となる。一方、1230℃を超えると、オーステナイト結晶粒が粗大化し、粗圧延、仕上圧延でオーステナイト粒の加工・再結晶を繰返しても、細粒化することが困難となり、所望の熱延鋼板の平均結晶粒径を確保することが困難となる。このため、スラブの加熱温度は1100~1230℃に限定する。なお、より好ましくは1150~1220℃である。スラブ厚さは、通常用いられる200~350mm程度でよく、特に限定されない。
なお、スラブ加熱温度は、加熱炉へスラブを装入したときのスラブの実測温度から、逐次、伝熱計算を行い求めた、スラブ厚方向の各点(5点以上)のスラブ温度の計算値を平均したものである。
Slab heating temperature: 1100-1230 ° C.
If the heating temperature of the slab is less than 1100 ° C., the deformation resistance of the material to be rolled becomes too large, and the load capacity and rolling torque of the rough rolling mill and the finish rolling mill are insufficient, which makes rolling difficult. On the other hand, when the temperature exceeds 1230 ° C., the austenite crystal grains become coarse, and even if the austenite grains are repeatedly processed and recrystallized by rough rolling and finish rolling, it becomes difficult to make them finer, and the average crystal of the desired hot-rolled steel sheet is obtained. It becomes difficult to secure the particle size. Therefore, the heating temperature of the slab is limited to 1100 to 1230 ° C. The temperature is more preferably 1150 to 1220 ° C. The slab thickness may be about 200 to 350 mm, which is usually used, and is not particularly limited.
The slab heating temperature is a calculated value of the slab temperature at each point (5 points or more) in the slab thickness direction obtained by sequentially performing heat transfer calculation from the measured temperature of the slab when the slab is charged into the heating furnace. Is the average.

熱間粗圧延の出側温度:900~1060℃。
加熱されたスラブは、熱間粗圧延により、オーステナイト粒が加工、再結晶されて微細化する。熱間粗圧延の出側温度が900℃未満では、粗圧延機の耐荷重、圧延トルクの不足が生じやすくなる。一方、1060℃を超えて高温となると、オーステナイト粒が粗大化し、その後に熱間仕上圧延を施しても、平均結晶粒径:25μm以下という所望の平均結晶粒径を確保することが困難となる。このため、熱間粗圧延の出側温度は900~1060℃の範囲に限定する。この熱間粗圧延の出側温度範囲は、スラブの加熱温度、熱間粗圧延のパス間での滞留、スラブ厚さ等を調整することにより達成できる。なお、シートバー厚は、後述する仕上圧延で、所望の製品厚さの製品板(熱延鋼板)とするときに、仕上圧延での総圧下率を確保できるように調整すればよい。本発明では、シートバー厚さは32~60mm程度が適当である。
なお、粗圧延の出側温度は、鋼板の表面を実測した温度である。
Outside temperature for hot rough rolling: 900-1060 ° C.
In the heated slab, austenite grains are processed and recrystallized by hot rough rolling to make them finer. If the output side temperature of hot rough rolling is less than 900 ° C., the load capacity of the rough rolling mill and the rolling torque are likely to be insufficient. On the other hand, when the temperature exceeds 1060 ° C., the austenite grains become coarse, and even if hot finish rolling is performed thereafter, it becomes difficult to secure the desired average crystal grain size of 25 μm or less. .. Therefore, the output side temperature of hot rough rolling is limited to the range of 900 to 1060 ° C. The output temperature range of the hot rough rolling can be achieved by adjusting the heating temperature of the slab, the retention between the hot rough rolling passes, the slab thickness, and the like. The sheet bar thickness may be adjusted so as to secure the total reduction ratio in the finish rolling when a product plate (hot-rolled steel plate) having a desired product thickness is obtained in the finish rolling described later. In the present invention, the seat bar thickness is appropriately about 32 to 60 mm.
The output side temperature of rough rolling is the temperature measured on the surface of the steel sheet.

熱間仕上圧延。
熱間粗圧延に引き続き、熱間仕上圧延を施す。
Hot finish rolling.
Following hot rough rolling, hot finish rolling is performed.

総圧下率(以下、「圧下率1」ともいう):55~80%。
熱間仕上圧延の総圧下率が55%未満であると、平均結晶粒径が十分に小さくならず、第二相頻度も十分でない。その結果、熱延鋼板および角形鋼管の靱性が確保できない。一方、総圧下率が80%を超えると、平均結晶粒径が小さくなりすぎ、第二相頻度が規定を超える。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高くなる。なお、総圧下率(圧下率1)は、以下(3)式のとおり定義する。
圧下率1=(粗圧延後の板厚-仕上圧延後の板厚)/粗圧延後の板厚×100% (3)
Total reduction rate (hereinafter, also referred to as "reduction rate 1"): 55-80%.
When the total reduction rate of hot finish rolling is less than 55%, the average crystal grain size is not sufficiently small and the frequency of the second phase is not sufficient. As a result, the toughness of hot-rolled steel sheets and square steel pipes cannot be ensured. On the other hand, when the total reduction rate exceeds 80%, the average crystal grain size becomes too small and the frequency of the second phase exceeds the regulation. As a result, the yield stress becomes too high, the local elongation becomes low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe becomes high. The total reduction rate (reduction rate 1) is defined by the following equation (3).
Rolling ratio 1 = (plate thickness after rough rolling-plate thickness after finish rolling) / plate thickness after rough rolling x 100% (3)

最終パスの圧下率(以下、「圧下率2」ともいう):2~10%。
熱間仕上圧延の最終パスでは、それまでの圧延に比べて温度が落ちてきている。そのため、温度が低いので、再結晶することが少なくなり、微細歪が付与されやすい。熱間仕上圧延の最終パスの圧下率が10%を超えると、微細歪の付与が大きくなり、平均結晶粒径が小さくなりすぎて、降伏応力が高くなり、熱延鋼板および角形鋼管の降伏比YRが高くなる。
一方、熱間仕上圧延の最終パスの圧下率が2%未満であると、平均結晶粒径が十分に小さくならず、熱延鋼板および角形鋼管の靱性が確保できない。
なお、最終パスの圧下率(圧下率2)は、以下(4)式のとおり定義する。
圧下率2=(仕上圧延機(n-1)圧延後の板厚-仕上圧延機(n)圧延後の板厚)/仕上圧延機(n-1)圧延後の板厚×100% (4)
ここで、nは、熱間仕上圧延の最終圧延パスを表し、n-1は、熱間仕上圧延の最終圧延パスの一つ前の圧延パスを表す。
Reduction rate of the final pass (hereinafter, also referred to as "reduction rate 2"): 2 to 10%.
In the final pass of hot finish rolling, the temperature has dropped compared to the previous rolling. Therefore, since the temperature is low, recrystallization is less likely to occur, and fine strain is likely to be applied. When the reduction rate of the final pass of hot finish rolling exceeds 10%, the application of fine strain becomes large, the average crystal grain size becomes too small, the yield stress becomes high, and the yield ratio of hot-rolled steel sheets and square steel pipes becomes large. YR becomes high.
On the other hand, if the reduction rate of the final pass of hot finish rolling is less than 2%, the average crystal grain size is not sufficiently small, and the toughness of the hot-rolled steel sheet and the square steel pipe cannot be ensured.
The reduction rate (reduction rate 2) of the final pass is defined by the following equation (4).
Rolling ratio 2 = (plate thickness after finish rolling mill (n-1) rolling-plate thickness after finish rolling mill (n) rolling) / plate thickness after finish rolling mill (n-1) rolling x 100% (4) )
Here, n represents the final rolling path of hot finish rolling, and n-1 represents the rolling path immediately before the final rolling pass of hot finish rolling.

仕上圧延終了温度:750~840℃。
仕上圧延終了温度(仕上圧延出側温度)が840℃を超えて高温となると、仕上圧延時に付加される加工歪が不足し、γ粒の微細化が達成されず、したがって、平均結晶粒径:25μm以下という所望の熱延鋼板の平均結晶粒径を確保することが困難となる。一方、仕上圧延終了温度(仕上圧延出側温度)が750℃未満では、仕上圧延機内で鋼板表面近傍の温度がAr3変態点以下となり、圧延方向に伸長したフェライト粒が形成され、フェライト粒が混粒となり、局所伸びが小さくなるなどして加工性が低下する危険性が増大する。このため、仕上圧延出側温度(仕上圧延終了温度)840~750℃の範囲に限定する。より好ましくは820~780℃である。
なお、仕上圧延終了温度は、鋼板の表面を実測した温度である。
Finish rolling end temperature: 750 to 840 ° C.
When the finish rolling end temperature (finish rolling output side temperature) becomes higher than 840 ° C., the processing strain added during the finish rolling is insufficient, and the miniaturization of γ grains is not achieved. Therefore, the average crystal grain size: It becomes difficult to secure the desired average crystal grain size of the hot-rolled steel sheet of 25 μm or less. On the other hand, when the finish rolling end temperature (finish rolling output side temperature) is less than 750 ° C., the temperature near the surface of the steel sheet in the finish rolling machine becomes equal to or less than the Ar3 transformation point, ferrite grains elongated in the rolling direction are formed, and the ferrite grains are mixed. There is an increased risk that the workability will be reduced due to the formation of grains and the reduction of local elongation. Therefore, it is limited to the range of the finish rolling output side temperature (finish rolling end temperature) of 840 to 750 ° C. More preferably, it is 820 to 780 ° C.
The finish rolling end temperature is the temperature measured on the surface of the steel sheet.

仕上圧延終了後、鋼板を冷却する。
仕上圧延の終了から、冷却開始までの時間:4~10秒。
冷却では、仕上圧延終了後、4~10秒で熱延鋼板の冷却を開始する。冷却開始までの時間が4秒未満であると、フェライト面積率が低くなり、第二相の面積率が過剰となり、平均結晶粒径が小さくなりすぎ、第二相頻度が規定を超える。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高くなる。
一方、仕上圧延終了後、10秒を超えて冷却を開始すると、すなわち高温での滞留時間が長くなると、結晶粒の成長が進行して、平均結晶粒径が十分に小さくならず、第二相頻度も十分でない。その結果、熱延鋼板および角形鋼管の靱性が確保できない。なお、好ましくは8秒以内である。
After finishing rolling, the steel sheet is cooled.
Time from the end of finish rolling to the start of cooling: 4 to 10 seconds.
In cooling, cooling of the hot-rolled steel sheet is started 4 to 10 seconds after the finish rolling is completed. If the time until the start of cooling is less than 4 seconds, the ferrite area ratio becomes low, the area ratio of the second phase becomes excessive, the average crystal grain size becomes too small, and the frequency of the second phase exceeds the regulation. As a result, the yield stress becomes too high, the local elongation becomes low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe becomes high.
On the other hand, when cooling is started for more than 10 seconds after the finish rolling, that is, when the residence time at high temperature is long, the growth of crystal grains progresses, the average crystal grain size is not sufficiently reduced, and the second phase. Not enough frequency. As a result, the toughness of hot-rolled steel sheets and square steel pipes cannot be ensured. It is preferably within 8 seconds.

仕上圧延が終了し、冷却開始したときの1/4厚部の温度から、1/4厚部の冷却終了温度が570~650℃になるまでの、1/4厚部の平均冷却速度:10~30℃/秒。
仕上圧延が終了し、冷却開始したときの1/4厚部の温度から、1/4厚部の冷却終了温度が570~650℃になるまでの、1/4厚部の平均冷却速度が10℃/秒未満では、フェライト粒の生成頻度が減少し、フェライト結晶粒が粗大化して、平均結晶粒径:25μm以下という平均結晶粒径を確保できず、第二相頻度も十分でない。その結果、熱延鋼板および角形鋼管の靱性が確保できない。一方、30℃/秒を超えると、フェライト面積率が低くなり、第二相の面積率が過剰となり、平均結晶粒径が小さくなりすぎ、第二相頻度が規定を超える。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高くなる。このため、1/4厚部の平均冷却速度を10~30℃/秒の範囲とする。より好ましくは15~25℃/秒である。
なお、1/4厚部の温度や冷却速度は、伝熱計算により求めた値を用いるものとする。
Average cooling rate of 1/4 thick part from the temperature of 1/4 thick part when finish rolling is finished and cooling is started to the cooling end temperature of 1/4 thick part is 570 to 650 ° C: 10 ~ 30 ° C / sec.
The average cooling rate of the 1/4 thick part is 10 from the temperature of the 1/4 thick part when the finish rolling is completed and the cooling is started to the cooling end temperature of the 1/4 thick part being 570 to 650 ° C. If the temperature is less than ° C./sec, the frequency of forming ferrite grains decreases, the ferrite crystal grains become coarse, the average crystal grain size of 25 μm or less cannot be secured, and the frequency of the second phase is not sufficient. As a result, the toughness of hot-rolled steel sheets and square steel pipes cannot be ensured. On the other hand, when the temperature exceeds 30 ° C./sec, the ferrite area ratio becomes low, the area ratio of the second phase becomes excessive, the average crystal grain size becomes too small, and the frequency of the second phase exceeds the regulation. As a result, the yield stress becomes too high, the local elongation becomes low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe becomes high. Therefore, the average cooling rate of the 1/4 thick portion is set in the range of 10 to 30 ° C./sec. More preferably, it is 15 to 25 ° C./sec.
For the temperature and cooling rate of the 1/4 thick part, the values obtained by heat transfer calculation shall be used.

冷却終了温度:570~650℃。
冷却終了温度が570℃未満であると、フェライト面積率が低くなり、第二相の面積率が過剰となり、平均結晶粒径が小さくなりすぎ、第二相頻度が規定を超える。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高くなる。
一方、冷却終了温度が650℃を超えると、すなわち高温の状態で鋼板が滞留する時間が長くなると、粒成長が進行して、平均結晶粒径が十分に小さくならず、第二相頻度も十分でない。その結果、熱延鋼板および角形鋼管の靱性が確保できない。
なお、上述した、仕上圧延終了後の鋼板の冷却は、ラミナー冷却、スプレー冷却等の冷却装置による、冷却水を用いて行う鋼板の冷却(水冷)であり、ここでいう「冷却終了温度」とは、ラミナー冷却、スプレー冷却等の冷却装置により、鋼板に冷却水が噴射されて、冷却水を用いて行う鋼板の冷却(水冷)を最後に行った地点での鋼板の温度を、鋼板の表面から鋼板の板厚方向に伝熱計算上5つ以上分割して、板厚方向の各位置での鋼板の温度を求めたときの、上述の伝熱計算により求めた、1/4厚部の温度である。
Cooling end temperature: 570 to 650 ° C.
When the cooling end temperature is less than 570 ° C., the ferrite area ratio becomes low, the area ratio of the second phase becomes excessive, the average crystal grain size becomes too small, and the frequency of the second phase exceeds the regulation. As a result, the yield stress becomes too high, the local elongation becomes low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe becomes high.
On the other hand, when the cooling end temperature exceeds 650 ° C., that is, when the steel sheet stays at a high temperature for a long time, grain growth progresses, the average crystal grain size does not become sufficiently small, and the frequency of the second phase is also sufficient. Not. As a result, the toughness of hot-rolled steel sheets and square steel pipes cannot be ensured.
The above-mentioned cooling of the steel plate after finishing rolling is cooling (water cooling) of the steel plate using cooling water by a cooling device such as laminar cooling or spray cooling, and is referred to as "cooling end temperature" here. Is the surface of the steel plate at the point where the cooling water is sprayed onto the steel plate by a cooling device such as laminar cooling or spray cooling, and the steel plate is cooled (water-cooled) using the cooling water at the end. When the temperature of the steel plate at each position in the plate thickness direction is obtained by dividing into 5 or more in the heat transfer calculation in the plate thickness direction of the steel plate, the 1/4 thickness portion obtained by the above heat transfer calculation. The temperature.

冷却後、巻取を行う。
1/4厚部の冷却終了温度から、巻取したときの1/4厚部の温度になるまでの、1/4厚部の平均冷却速度:5℃/秒以下。
上記の冷却終了温度から後述の巻取温度までの冷却速度が5℃/秒を超えると、平均結晶粒径が小さくなりすぎ、第二相頻度が規定を超える。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高くなる。この冷却速度は、たとえば、空冷、放冷等の水冷によらない方式による冷却の冷却速度に対応する。
なお、1/4厚部の温度や冷却速度は、伝熱計算により求めた値を用いる。
After cooling, wind up.
The average cooling rate of the 1/4 thick part from the cooling end temperature of the 1/4 thick part to the temperature of the 1/4 thick part at the time of winding: 5 ° C./sec or less.
When the cooling rate from the above cooling end temperature to the winding temperature described later exceeds 5 ° C./sec, the average crystal grain size becomes too small and the frequency of the second phase exceeds the regulation. As a result, the yield stress becomes too high, the local elongation becomes low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe becomes high. This cooling rate corresponds to, for example, the cooling rate of cooling by a method that does not rely on water cooling such as air cooling and air cooling.
For the temperature and cooling rate of the 1/4 thick part, the values obtained by heat transfer calculation are used.

巻取温度:500~650℃。
巻取温度が500℃未満では、パーライト生成が抑制され、塊状でラス間隔の粗いベイナイト粒が混在する割合が高くなり、所望の組織を確保できなくなり、冷間成形により製造される角形鋼管や、角形鋼管用の厚肉熱延鋼板で所望の降伏比YR、靭性を達成できなくなる。一方、650℃を超えて高くなると、平均粒径が大きくなり所望の靭性を確保できない。このため、巻取温度は500~650℃の範囲とする。なお、より好ましくは520~630℃である。
なお、巻取温度は、鋼板の表面を実測した温度である。
Winding temperature: 500-650 ° C.
When the winding temperature is less than 500 ° C, the formation of pearlite is suppressed, the proportion of lumpy and coarsely spaced bainite grains is high, and the desired structure cannot be secured. The desired yield ratio YR and toughness cannot be achieved with thick-walled hot-rolled steel sheets for square steel pipes. On the other hand, if the temperature rises above 650 ° C., the average particle size becomes large and the desired toughness cannot be secured. Therefore, the take-up temperature is in the range of 500 to 650 ° C. The temperature is more preferably 520 to 630 ° C.
The take-up temperature is the temperature measured on the surface of the steel sheet.

巻き取った後は、特段冷却条件を限定せずとも本発明の熱延鋼板は製造できるので、通常の条件で放冷するなど、適宜冷却すればよい。 After winding, the hot-rolled steel sheet of the present invention can be manufactured without limiting the cooling conditions, and therefore, it may be appropriately cooled by allowing it to cool under normal conditions.

(機械的条件)
本発明の熱延鋼板は、丸形鋼管、さらには、角形鋼管に成形するためには、板厚12~25mmとすることが好ましい。より好ましい板厚は、16~25mmである。
本発明の熱延鋼板は、降伏応力が300~460MPa、引張強さが460~600MPa、降伏比YRが85%以下で、試験温度-20℃におけるシャルピー衝撃試験の吸収エネルギーvE-20℃が180J以上であることが好ましい。
(Mechanical conditions)
The hot-rolled steel sheet of the present invention preferably has a plate thickness of 12 to 25 mm in order to form a round steel pipe or even a square steel pipe. A more preferable plate thickness is 16 to 25 mm.
The hot-rolled steel sheet of the present invention has a yield stress of 300 to 460 MPa, a tensile strength of 460 to 600 MPa, a yield ratio of YR of 85% or less, and an absorption energy vE-20 ° C of a Charpy impact test at a test temperature of −20 ° C. of 180 J. The above is preferable.

さらに、本発明の熱延鋼板は、熱延鋼板の板厚が、12mm以上16mm以下では、局所伸びが19%以上、16mm超、19mm以下では、局所伸びが23%以上、19mm超、22mm以下では、局所伸びが26%以上、22mm超、25mm以下では、局所伸びが29%以上であることが好ましい。なお、局所伸びは、伸び(EL)から均一伸び(U.El)を引いたものである。 Further, in the hot-rolled steel sheet of the present invention, when the thickness of the hot-rolled steel sheet is 12 mm or more and 16 mm or less, the local elongation is 19% or more, 16 mm or more, and when the plate thickness is 19 mm or less, the local elongation is 23% or more, 19 mm or more, 22 mm or less. Then, when the local elongation is 26% or more, more than 22 mm, and 25 mm or less, the local elongation is preferably 29% or more. The local elongation is obtained by subtracting the uniform elongation (U.El) from the elongation (EL).

本発明の角形鋼管は、本発明の上記熱延鋼板を素材として丸形鋼管に造管し、冷間成形により製造することができる。
本発明の角形鋼管は、各辺の寸法が150×150~550×550mm、厚さが12~25mmであることが好ましい。
本発明の角形鋼管は、管軸方向で、降伏応力が365~515MPa、引張強さが490~640MPa、降伏比YRが90%以下で、0℃におけるシャルピー衝撃試験の吸収エネルギーvE0℃が70J以上であることが好ましい。
The square steel pipe of the present invention can be manufactured by forming a round steel pipe into a round steel pipe using the hot-rolled steel sheet of the present invention as a material and cold forming.
The square steel pipe of the present invention preferably has dimensions of 150 × 150 to 550 × 550 mm and a thickness of 12 to 25 mm on each side.
The square steel pipe of the present invention has a yield stress of 365 to 515 MPa, a tensile strength of 490 to 640 MPa, a yield ratio of YR of 90% or less, and an absorption energy of Charpy impact test at 0 ° C. of 70 J or more in the pipe axis direction. Is preferable.

種々の化学組成を有する熱延鋼板を種々の製造条件で製造し、降伏応力(MPa)、引張強さ(MPa)、降伏比YR(%)、局部伸び(%)、-20℃におけるシャルピー衝撃試験の吸収エネルギーvE-20℃(J)について調査した。さらに、種々の熱延鋼板から、角形鋼管を造管し、降伏応力(MPa)、引張強さ(MPa)、降伏比YR(%)、局部伸び(%)、0℃におけるシャルピー衝撃試験の吸収エネルギーvE0℃(J)について調査した。 Hot-rolled steel sheets with various chemical compositions are manufactured under various manufacturing conditions, yield stress (MPa), tensile strength (MPa), yield ratio YR (%), local elongation (%), Charpy impact at -20 ° C. The absorbed energy vE-20 ° C. (J) of the test was investigated. Furthermore, square steel pipes are made from various hot-rolled steel sheets, and yield stress (MPa), tensile strength (MPa), yield ratio YR (%), local elongation (%), and absorption of Charpy impact test at 0 ° C. The energy vE 0 ° C. (J) was investigated.

表1に示す成分組成の鋼種記号A~Vのスラブを製造した。 Slaves having steel grade symbols A to V having the composition shown in Table 1 were produced.

Figure 0007031477000001
Figure 0007031477000001

各鋼種のスラブを、表2に示す熱延条件(加熱温度(℃)、粗圧延出側温度(℃)、仕上圧延終了温度(℃)、圧下率1(%)、圧下率2(%)、冷却開始迄の時間(秒)、仕上圧延後の冷却の平均冷却速度(℃/秒)、仕上圧延後の冷却の冷却終了温度(℃)、冷却終了から巻取迄の平均冷却速度(℃/秒)、巻取温度(℃))で熱間圧延を実施して、表2に示す板厚の熱延鋼板を製造した。 The slabs of each steel type are subjected to hot rolling conditions (heating temperature (° C), rough rolling output side temperature (° C), finish rolling end temperature (° C), rolling reduction 1 (%), rolling reduction 2 (%)) shown in Table 2. , Time to start cooling (seconds), average cooling rate of cooling after finish rolling (° C / sec), cooling end temperature of cooling after finish rolling (° C), average cooling rate from the end of cooling to winding (° C) Hot rolling was carried out at (/ sec) and winding temperature (° C.)) to produce hot-rolled steel sheets with the plate thickness shown in Table 2.

Figure 0007031477000002
Figure 0007031477000002

得られた熱延鋼板について、合金組織と機械的特性を測定した。結果を表3に示した。また、角形鋼管については、機械的特性を測定した。結果を表4に示した。 The alloy structure and mechanical properties of the obtained hot-rolled steel sheet were measured. The results are shown in Table 3. The mechanical properties of the square steel pipe were measured. The results are shown in Table 4.

Figure 0007031477000003
Figure 0007031477000003

Figure 0007031477000004
Figure 0007031477000004

[試験方法]
(合金組織観察)
フェライトの面積分率。
フェライトの面積分率は、圧延方向および板厚方向に平行な断面を取り、熱延鋼板表面から板厚方向に板厚tの1/4深さ位置(1/4t部)について、視野300μm×300μmの範囲でフェライトの面積分率を測定した。なお、フェライトは、試料をナイタールエッチングして、白色に見えるものとした。
なお、本願発明では、フェライト以外の第二相は、ベイナイトまたはパーライトである。ベイナイトは灰色に観察され、パーライトは黒色に観察される。そのため、第二相の面積分率も測定することができる。
[Test method]
(Observation of alloy structure)
Surface integral of ferrite.
The surface integral of ferrite has a cross section parallel to the rolling direction and the plate thickness direction, and the field of view is 300 μm × about the 1/4 depth position (1 / 4t portion) of the plate thickness t in the plate thickness direction from the surface of the hot-rolled steel plate. The surface integral of ferrite was measured in the range of 300 μm. For ferrite, the sample was subjected to night game etching to make it look white.
In the present invention, the second phase other than ferrite is bainite or pearlite. Bainite is observed in gray and pearlite is observed in black. Therefore, the surface integral of the second phase can also be measured.

フェライトの硬さ。
フェライトの硬さは、圧延方向および板厚方向に平行な断面を取り、熱延鋼板表面から板厚方向に板厚tの1/4深さ位置(1/4t部)について、組織観察用試験片を採取し、研磨、ナイタール腐食して、光学顕微鏡(倍率:500倍)または走査型電子顕微鏡(倍率:500倍)を用いて、板厚1/4t位置における組織を観察し、白色に見える箇所(すわなちフェライト)について、硬さ(HV)を測定した。詳細には、マイクロビッカース硬さ試験機を用い、硬さ測定の荷重は5gとし、鋼板の圧延方向と平行な方向の線上で、10点の硬さ(HV)測定を行い、その単純平均値をフェライト硬さとした。
Hardness of ferrite.
The hardness of the ferrite has a cross section parallel to the rolling direction and the plate thickness direction, and a structure observation test is performed at a depth position (1 / 4t portion) of the plate thickness t in the plate thickness direction from the surface of the hot-rolled steel plate. Pieces are collected, polished, and Nital corroded, and the structure at a plate thickness of 1 / 4t is observed using an optical microscope (magnification: 500x) or a scanning electron microscope (magnification: 500x) and looks white. The hardness (HV) was measured at the location (that is, ferrite). Specifically, using a Micro Vickers hardness tester, the load for hardness measurement is 5 g, and 10 points of hardness (HV) are measured on the line in the direction parallel to the rolling direction of the steel sheet, and the simple average value thereof. Was defined as ferrite hardness.

平均結晶粒径。
得られた熱延鋼板から、観察面が、L断面となるように、組織観察用試験片を採取し、研磨、ナイタール腐食して、光学顕微鏡(倍率:500倍)または走査型電子顕微鏡(倍率:500倍)を用いて、板厚1/4t位置における組織を観察し、撮像した。得られた組織写真について、画像解析装置を用いて、主相と第二相(ベイナイト、パーライト)とを含めた、全結晶粒の平均結晶粒径(直径)を求めた。詳細には、圧延方向と板厚方向にそれぞれ長さ125μmの線分を6本描き、切断法を用いて結晶粒径(直径)を求め、単純平均して平均結晶粒径(直径)を求めた。
Average crystal grain size.
From the obtained hot-rolled steel plate, a test piece for microstructure observation is collected so that the observation surface has an L cross section, polished, and nital corroded, and then subjected to an optical microscope (magnification: 500 times) or a scanning electron microscope (magnification: magnification). : 500 times) was used to observe and image the structure at the plate thickness 1 / 4t position. With respect to the obtained microstructure photograph, the average crystal grain size (diameter) of all crystal grains including the main phase and the second phase (bainite, pearlite) was determined by using an image analysis device. Specifically, six line segments having a length of 125 μm are drawn in each of the rolling direction and the plate thickness direction, the crystal grain size (diameter) is obtained using the cutting method, and the average crystal grain size (diameter) is obtained by simple averaging. rice field.

第二相頻度。
得られた組織写真に、圧延方向と板厚方向にそれぞれ長さ125μmの線分を6本描き、それら線分と交差する各相の結晶粒数を測定した。そして、得られた、線分と交差する各相の結晶粒数から、(1)式で定義される、第二相頻度を算出した。
第二相頻度=(線分と交叉する第二相粒の粒数)/(線分と交叉する主相粒および第二相粒の合計粒数) (1)
Phase 2 frequency.
Six line segments having a length of 125 μm were drawn on the obtained microstructure photograph in the rolling direction and the plate thickness direction, respectively, and the number of crystal grains in each phase intersecting the line segments was measured. Then, the frequency of the second phase defined by the equation (1) was calculated from the obtained number of crystal grains of each phase intersecting with the line segment.
Second phase frequency = (number of second phase grains crossing the line segment) / (total number of main phase grains and second phase grains crossing the line segment) (1)

引張試験。
得られた熱延鋼板から、引張方向が圧延方向となるように、JIS 5号引張試験片を採取し、JIS Z 2241(2011)の規定に準拠して引張試験を実施し、0.2%塑性伸び時の耐力オフセット法に基づき降伏応力、引張強さ、伸び(EL)から均一伸び(u-EL)を引いた、局部伸びを測定し、(降伏応力)/(引張強さ)で定義される降伏比YR(%)を算出した。
Tensile test.
From the obtained hot-rolled steel sheet, JIS No. 5 tensile test pieces were collected so that the tensile direction was the rolling direction, and a tensile test was carried out in accordance with the provisions of JIS Z 2241 (2011). Yield stress, tensile strength, and local elongation obtained by subtracting uniform elongation (u-EL) from elongation (EL) are measured based on the yield strength offset method during plastic elongation, and defined as (yield stress) / (tensile strength). The yield ratio YR (%) to be calculated was calculated.

衝撃試験。
得られた熱延鋼板の板厚1/4t位置から、試験片長手方向が圧延方向となるように、Vノッチ試験片を採取し、JIS Z 2242(2005)の規定に準拠して、試験温度:-20℃で、シャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本とした。
また、得られた角形鋼管の平坦部から、試験片を採取し、引張試験、衝撃試験を実施し、降伏比YR、靭性を評価した。試験方法はつぎの通りとした。
Impact test.
A V-notch test piece is collected from the obtained hot-rolled steel sheet at a plate thickness of 1 / 4t so that the longitudinal direction of the test piece is the rolling direction, and the test temperature is in accordance with the provisions of JIS Z 2242 (2005). : A Charpy impact test was carried out at −20 ° C. to determine the absorbed energy (J). The number of test pieces was 3 for each.
In addition, test pieces were collected from the flat portion of the obtained square steel pipe, and a tensile test and an impact test were carried out to evaluate the yield ratio YR and toughness. The test method was as follows.

角形鋼管引張試験。
得られた角形鋼管平坦部から、引張方向が管長手方向となるように、JIS 5号引張試験片を採取し、JIS Z 2241(2011)の規定に準拠して引張試験を実施し、熱延鋼板の引張試験と同様に、降伏応力、引張強さを測定し、(降伏応力)/(引張強さ)で定義される降伏比YR(%)を算出した。
Square steel pipe tensile test.
From the obtained square steel pipe flat part, a JIS No. 5 tensile test piece was collected so that the tensile direction was the longitudinal direction of the pipe, and a tensile test was carried out in accordance with the provisions of JIS Z 2241 (2011). Similar to the tensile test of the steel plate, the yield stress and the tensile strength were measured, and the yield ratio YR (%) defined by (yield stress) / (tensile strength) was calculated.

角形鋼管衝撃試験。
得られた角形鋼管平坦部の板厚1/4t位置から、試験片長手方向が管長手方向となるように、Vノッチ試験片を採取し、JIS Z 2242(2005)の規定に準拠して、試験温度:0℃で、シャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本とした。
Square steel pipe impact test.
A V-notch test piece was collected from the obtained square steel pipe flat portion at a plate thickness of 1 / 4t so that the test piece longitudinal direction was the tube longitudinal direction, and in accordance with the provisions of JIS Z 2242 (2005). A Charpy impact test was carried out at a test temperature of 0 ° C., and the absorbed energy (J) was determined. The number of test pieces was 3 for each.

(試験結果)
No.30(比較例)は、Nbの量が、本発明に規定する量を超えていたので、フェライト面積率が低く、第二相の面積率が過剰で、フェライト硬さが過剰で、平均結晶粒径が小さく、第二相頻度が過剰であった。その結果、熱延鋼板および角形鋼管の強度が高くなりすぎ、靱性、局部伸びが低くなり、降伏比YRが高くなった。
(Test results)
No. In No. 30 (Comparative Example), since the amount of Nb exceeded the amount specified in the present invention, the ferrite area ratio was low, the area ratio of the second phase was excessive, the ferrite hardness was excessive, and the average crystal grains were obtained. The diameter was small and the frequency of the second phase was excessive. As a result, the strength of the hot-rolled steel sheet and the square steel pipe became too high, the toughness and local elongation became low, and the yield ratio YR became high.

No.31(比較例)は、Cu+Ni+Cr+1.8×Moが規定する量を超えていたので、フェライト面積率が低く、第二相の面積率が過剰で、フェライト硬さが過剰で、平均結晶粒径が小さかった。その結果、降伏応力が高くなりすぎ、熱延鋼板および角形鋼管の降伏比YRが高くなった。 No. In No. 31 (comparative example), since the amount specified by Cu + Ni + Cr + 1.8 × Mo was exceeded, the ferrite area ratio was low, the area ratio of the second phase was excessive, the ferrite hardness was excessive, and the average crystal grain size was high. It was small. As a result, the yield stress became too high, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe became high.

No.32、33(比較例)は、Nbを含有していないので、平均結晶粒径が大きく、第二相頻度が満たなかった。その結果、熱延鋼板および角形鋼管の強度が低かった。 No. Since 32 and 33 (Comparative Examples) did not contain Nb, the average crystal grain size was large and the frequency of the second phase was not satisfied. As a result, the strength of the hot-rolled steel plate and the square steel pipe was low.

No.34(比較例)は、圧下率2が過剰であるため、フェライト面積率が低く、第二相の面積率が過剰で、平均結晶粒径が小さく、第二相頻度が過剰であった。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高かった。 No. In No. 34 (Comparative Example), since the reduction ratio 2 was excessive, the ferrite area ratio was low, the area ratio of the second phase was excessive, the average crystal grain size was small, and the frequency of the second phase was excessive. As a result, the yield stress was too high, the local elongation was low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe was high.

No.35(比較例)は、圧下率2が満たないため、平均結晶粒径が十分に小さくならず、第二相頻度も不十分であった。その結果、熱延鋼板および角形鋼管の靱性が確保できなかった。 No. In 35 (Comparative Example), since the reduction rate 2 was not satisfied, the average crystal grain size was not sufficiently small, and the frequency of the second phase was also insufficient. As a result, the toughness of hot-rolled steel sheets and square steel pipes could not be ensured.

No.36(比較例)は、冷却開始までの時間が短かったため、フェライト面積率が低く、第二相の面積率が過剰で、平均結晶粒径が小さく、第二相頻度が過剰であった。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高かった。 No. In 36 (Comparative Example), since the time until the start of cooling was short, the ferrite area ratio was low, the area ratio of the second phase was excessive, the average crystal grain size was small, and the frequency of the second phase was excessive. As a result, the yield stress was too high, the local elongation was low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe was high.

No.37(比較例)は、冷却開始までの時間が長すぎたため、結晶粒が成長して、平均結晶粒径が十分に小さくならず、第二相頻度も不十分であった。その結果、熱延鋼板および角形鋼管の靱性が確保できなかった。 No. In 37 (Comparative Example), the time until the start of cooling was too long, so that the crystal grains grew, the average crystal grain size was not sufficiently small, and the frequency of the second phase was also insufficient. As a result, the toughness of hot-rolled steel sheets and square steel pipes could not be ensured.

No.38(比較例)は、圧下率1が満たないため、平均結晶粒径が十分に小さくならず、第二相頻度も不十分であった。その結果、局所伸びが低くなり、熱延鋼板および角形鋼管の靱性が確保できなかった。 No. In 38 (Comparative Example), since the reduction rate 1 was not satisfied, the average crystal grain size was not sufficiently small, and the frequency of the second phase was also insufficient. As a result, the local elongation became low, and the toughness of the hot-rolled steel sheet and the square steel pipe could not be secured.

No.39(比較例)は、圧下率1が過剰あるため、フェライト面積率が低く、第二相の面積率が過剰で、平均結晶粒径が小さく、第二相頻度が過剰であった。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高かった。 No. In 39 (comparative example), since the reduction ratio 1 was excessive, the ferrite area ratio was low, the area ratio of the second phase was excessive, the average crystal grain size was small, and the frequency of the second phase was excessive. As a result, the yield stress was too high, the local elongation was low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe was high.

No.40(比較例)は、圧下率1が満たず、平均冷却速度が遅すぎるため、平均結晶粒径が十分に小さくならず、第二相頻度も不十分であった。その結果、局所伸びが低くなり、熱延鋼板および角形鋼管の靱性が確保できなかった。 No. In No. 40 (Comparative Example), the reduction rate 1 was not satisfied and the average cooling rate was too slow, so that the average crystal grain size was not sufficiently small and the frequency of the second phase was also insufficient. As a result, the local elongation became low, and the toughness of the hot-rolled steel sheet and the square steel pipe could not be secured.

No.41(比較例)は、平均冷却速度が速すぎるため、フェライト面積率が低く、第二相の面積率が過剰で、平均結晶粒径が小さく、第二相頻度が過剰であった。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高かった。 No. In No. 41 (Comparative Example), the average cooling rate was too fast, so that the ferrite area ratio was low, the area ratio of the second phase was excessive, the average crystal grain size was small, and the frequency of the second phase was excessive. As a result, the yield stress was too high, the local elongation was low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe was high.

No.42(比較例)は、冷却終了温度が高すぎるため、平均結晶粒径が十分に小さくならず、第二相頻度も不十分であった。その結果、熱延鋼板および角形鋼管の靱性が確保できなかった。 No. In No. 42 (Comparative Example), the cooling end temperature was too high, so that the average crystal grain size was not sufficiently small and the frequency of the second phase was also insufficient. As a result, the toughness of hot-rolled steel sheets and square steel pipes could not be ensured.

No.43(比較例)は、冷却終了温度が低すぎるため、フェライト面積率が低く、第二相の面積率が過剰で、平均結晶粒径が小さく、第二相頻度が過剰であった。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高かった。 No. In No. 43 (Comparative Example), the cooling end temperature was too low, so that the ferrite area ratio was low, the area ratio of the second phase was excessive, the average crystal grain size was small, and the frequency of the second phase was excessive. As a result, the yield stress was too high, the local elongation was low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe was high.

No.44(比較例)は、冷却終了温度から巻取までの平均冷却速度が速すぎるため、平均結晶粒径が小さく、第二相頻度が過剰であった。その結果、降伏応力が高くなりすぎ、局部伸びが低くなり、熱延鋼板および角形鋼管の降伏比YRが高かった。 No. In 44 (comparative example), the average cooling rate from the cooling end temperature to winding was too fast, so that the average crystal grain size was small and the frequency of the second phase was excessive. As a result, the yield stress was too high, the local elongation was low, and the yield ratio YR of the hot-rolled steel sheet and the square steel pipe was high.

これに対し、本発明であるNo.1~29では、熱延鋼板において、降伏応力:300~460MPa、引張強さ:460~600MPaの強度、85%以下の低降伏比で、試験温度-20℃におけるシャルピー衝撃試験の吸収エネルギーvE-20℃:180J以上となる高靭性を実現した。その結果、この熱延鋼板を使用した角形鋼管において、管軸方向で、降伏応力:365~515MPa、引張強さ:490~640MPaの強度と、90%以下の低降伏比で、試験温度0℃におけるシャルピー衝撃試験の吸収エネルギーvE0℃:70J以上となる高靭性を実現したことが確認できた。 On the other hand, No. 1 of the present invention. In 1 to 29, in the hot-rolled steel sheet, the yield stress is 300 to 460 MPa, the tensile strength is 460 to 600 MPa, the yield ratio is as low as 85% or less, and the absorbed energy vE- of the Charpy impact test at the test temperature of -20 ° C. 20 ° C: Achieves high toughness of 180 J or more. As a result, in a square steel pipe using this hot-rolled steel pipe, the test temperature is 0 ° C. with a yield stress of 365 to 515 MPa, a tensile strength of 490 to 640 MPa, and a low yield ratio of 90% or less in the pipe axial direction. It was confirmed that the absorption energy vE0 ° C. of the Charpy impact test in the above was 70 ° C. or higher and the high toughness was realized.

以上のように、本発明の熱延鋼板および角形鋼管は、高い強度と局部伸びが付与され、高い靱性と低い降伏比YRを有するから、角形鋼管を建築物、たとえば立体駐車場の柱部等に利用した際に、変形から破壊までの時間がより長く持ちこたえるので、建築物に使用した際に安全である。 As described above, since the hot-rolled steel plate and the square steel pipe of the present invention are endowed with high strength and local elongation, have high toughness and a low yield ratio YR, the square steel pipe can be used as a building, for example, a pillar of a three-dimensional parking lot. It is safe when used in buildings because it lasts longer from deformation to destruction when used in a building.

Claims (6)

質量%で、
C :0.050~0.100%、
Si:0.10~0.30%、
Mn:0.80~1.40%、
P :0.050%以下、
S :0.020%以下、
Al:0.010~0.040%、
N :0.0060%以下(0は含まない)、
Nb:0.015~0.045%を含有し、
残部がFeおよび不可避的不純物である熱延鋼板であり、
前記熱延鋼板の合金組織は、主相と第二相からなり、
前記主相は、フェライトであり、
前記主相の面積率が85~97%であり、
前記主相の硬さが、マイクロビッカース硬さ試験で150~200Hvであり、
前記第二相は、パーライト、またはパーライトおよびベイナイトであり、
前記第二相は、鋼板の1/4厚における下記(1)式により定義される第二相頻度が0.05~0.15であり、かつ、第二相面積率が3~15%であり、
鋼板の1/4厚における主相と第二相の平均結晶粒径が10~25μmであることを特徴とする熱延鋼板。
第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数) (1)
By mass%,
C: 0.050 to 0.100%,
Si: 0.10 to 0.30%,
Mn: 0.80 to 1.40%,
P: 0.050% or less,
S: 0.020% or less,
Al: 0.010 to 0.040%,
N: 0.0060% or less (0 is not included),
Nb: contains 0.015 to 0.045%,
The balance is Fe and hot-rolled steel sheet, which is an unavoidable impurity.
The alloy structure of the hot-rolled steel sheet consists of a main phase and a second phase.
The main phase is ferrite,
The area ratio of the main phase is 85 to 97%, and the area ratio is 85 to 97%.
The hardness of the main phase is 150 to 200 Hv in the Micro Vickers hardness test.
The second phase is pearlite, or pearlite and bainite.
In the second phase, the frequency of the second phase defined by the following equation (1) in the 1/4 thickness of the steel sheet is 0.05 to 0.15, and the area ratio of the second phase is 3 to 15%. can be,
A hot-rolled steel sheet characterized in that the average crystal grain size of the main phase and the second phase at 1/4 thickness of the steel sheet is 10 to 25 μm.
Second phase frequency = (number of second phase grains crossing a line segment of a predetermined length) / (total number of main phase grains and second phase grains crossing a line segment of a predetermined length) (1)
さらに質量%で、前記Feの一部に代えて、
Ti:0~0.080%、
V :0~0.150%、
Cu:0~0.40%、
Ni:0~0.40%、
Cr:0~0.40%、
Mo:0~0.22%、
の一種または二種以上を、
下記(2)式の範囲内で含むことを特徴とする請求項1に記載の熱延鋼板。
Cu+Ni+Cr+1.8×Mo≦0.40% (2)
Further, in% by mass, instead of a part of the Fe,
Ti: 0 to 0.080%,
V: 0 to 0.150%,
Cu: 0 to 0.40%,
Ni: 0 to 0.40%,
Cr: 0 to 0.40%,
Mo: 0 to 0.22%,
One or more of
The hot-rolled steel sheet according to claim 1, wherein the hot-rolled steel sheet is included within the range of the following formula (2).
Cu + Ni + Cr + 1.8 × Mo ≦ 0.40% (2)
さらに質量%で、前記Feの一部に代えて、
Mg:0~0.0100%、
Ca:0~0.0100%、
REM:0~0.1000%、
B :0~0.0100%、
の一種または二種以上を含むことを特徴とする請求項1または請求項2に記載の熱延鋼板。
Further, in% by mass, instead of a part of the Fe,
Mg: 0 to 0.0100%,
Ca: 0-0.0100%,
REM: 0 to 0.1000%,
B: 0 to 0.0100%,
The hot-rolled steel sheet according to claim 1 or 2, wherein the hot-rolled steel sheet comprises one or more of the above.
請求項1~請求項3のいずれか1項に記載の成分組成を有するスラブについて、
前記スラブを加熱し、熱間粗圧延し、熱間仕上圧延して圧延材とし、前記圧延材を冷却し、巻取る熱延鋼板の製造方法であって、
前記加熱は、前記スラブを1100~1230℃に加熱し、
前記熱間粗圧延は、出側温度を900~1060℃で施し、
前記熱間仕上圧延は、
総圧下率を55~80%、
最終パスの圧下率を2~10%、
仕上圧延終了温度を750~840℃で施し、
前記冷却は、
前記仕上圧延の終了から、冷却開始までの時間を、4~10秒とし、
前記仕上圧延が終了し、前記冷却開始したときの1/4厚部の温度から、前記1/4厚部の冷却終了温度が570~650℃になるまで、1/4厚部の平均冷却速度が、10~30℃/秒となるように冷却し、
前記冷却後、前記巻取までは、前記1/4厚部の冷却終了温度から、前記巻取したときの1/4厚部の温度になるまで、1/4厚部の平均冷却速度が、5℃/秒以下となるように冷却し、
前記巻取は、
前記圧延材の巻取温度が500~650℃で行う
ことを特徴とする請求項1~請求項3のいずれか1項に記載の熱延鋼板の製造方法。
Regarding the slab having the component composition according to any one of claims 1 to 3.
A method for manufacturing a hot-rolled steel sheet in which the slab is heated, hot rough-rolled, hot-finished and rolled to obtain a rolled material, and the rolled material is cooled and wound.
The heating heats the slab to 1100 to 1230 ° C.
In the hot rough rolling, the output side temperature is applied at 900 to 1060 ° C.
The hot finish rolling
Total reduction rate is 55-80%,
The reduction rate of the final pass is 2 to 10%,
Finish rolling end temperature is applied at 750 to 840 ° C.
The cooling is
The time from the end of the finish rolling to the start of cooling is set to 4 to 10 seconds.
The average cooling rate of the 1/4 thick part from the temperature of the 1/4 thick part when the finish rolling is completed and the cooling is started until the cooling end temperature of the 1/4 thick part becomes 570 to 650 ° C. Cooled to 10-30 ° C / sec,
After the cooling, until the winding, the average cooling rate of the 1/4 thick part is changed from the cooling end temperature of the 1/4 thick part to the temperature of the 1/4 thick part at the time of winding. Cool to 5 ° C / sec or less,
The winding is
The method for manufacturing a hot-rolled steel sheet according to any one of claims 1 to 3, wherein the winding temperature of the rolled material is 500 to 650 ° C.
請求項1~請求項3のいずれか1項に記載の熱延鋼板を素材として丸形鋼管に造管し、冷間成形により製造される角形鋼管であって、
管軸方向で、降伏応力が365~515MPa、引張強さが490~640MPa、降伏比が90%以下で、0℃におけるシャルピー衝撃試験の吸収エネルギーが70J以上であることを特徴とする角形鋼管。
A square steel pipe manufactured by cold forming a round steel pipe using the hot-rolled steel sheet according to any one of claims 1 to 3 as a material.
A square steel pipe characterized in that the yield stress is 365 to 515 MPa, the tensile strength is 490 to 640 MPa, the yield ratio is 90% or less, and the absorption energy of the Charpy impact test at 0 ° C. is 70 J or more in the pipe axis direction.
請求項4に記載された熱延鋼板の製造方法によって製造された熱延鋼板を素材とし、前記素材を丸形鋼管に造管し、冷間成形して製造することを特徴とする請求項5に記載の角形鋼管の製造方法。 5. The method of claim 5 is characterized in that the hot-rolled steel sheet manufactured by the method for manufacturing a hot-rolled steel sheet according to claim 4 is used as a material, the material is formed into a round steel pipe, and cold-formed. The method for manufacturing a square steel pipe according to.
JP2018089950A 2018-05-08 2018-05-08 Hot-rolled steel sheet, square steel pipe, and its manufacturing method Active JP7031477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089950A JP7031477B2 (en) 2018-05-08 2018-05-08 Hot-rolled steel sheet, square steel pipe, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089950A JP7031477B2 (en) 2018-05-08 2018-05-08 Hot-rolled steel sheet, square steel pipe, and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019196508A JP2019196508A (en) 2019-11-14
JP7031477B2 true JP7031477B2 (en) 2022-03-08

Family

ID=68537500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089950A Active JP7031477B2 (en) 2018-05-08 2018-05-08 Hot-rolled steel sheet, square steel pipe, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7031477B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473792B2 (en) * 2020-03-17 2024-04-24 日本製鉄株式会社 Hot-rolled steel sheet, square steel pipe, and manufacturing method thereof
CN112080684B (en) * 2020-07-17 2021-11-19 南京钢铁股份有限公司 High-strength container thick plate with excellent core toughness and manufacturing method thereof
WO2024062686A1 (en) * 2022-09-20 2024-03-28 Jfeスチール株式会社 Hot-rolled steel sheet, square steel tube, methods for producing same, and building structure
KR20250035570A (en) * 2022-09-20 2025-03-12 제이에프이 스틸 가부시키가이샤 Hot rolled steel plates, square steel pipes and their manufacturing methods and building structures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209443A (en) 2008-03-06 2009-09-17 Sumitomo Metal Ind Ltd Steel sheet for line pipe, method for producing the same, and line pipe
WO2011052095A1 (en) 2009-10-28 2011-05-05 新日本製鐵株式会社 Steel plate for line pipes with excellent strength and ductility and process for production of same
JP2012153963A (en) 2011-01-28 2012-08-16 Jfe Steel Corp Method for manufacturing thick hot-rolled steel sheet for use in square steel pipe for building structural member
WO2013153679A1 (en) 2012-04-12 2013-10-17 Jfeスチール株式会社 Hot-rolled steel plate for square steel tube for use as builiding structural member and process for producing same
JP2013245360A (en) 2012-05-23 2013-12-09 Nippon Steel & Sumitomo Metal Corp Steel sheet for lpg tank
JP2016011439A (en) 2014-06-27 2016-01-21 新日鐵住金株式会社 Thick steel plate for cold press molding rectangular steel tube, cold press molding rectangular steel tube and weld joint
JP2016125077A (en) 2014-12-26 2016-07-11 新日鐵住金株式会社 High-strength and high-ductility thick steel plate and production method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246095A (en) * 1995-03-07 1996-09-24 Nkk Corp Low yield ratio and high toughness steel for square steel pipe and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209443A (en) 2008-03-06 2009-09-17 Sumitomo Metal Ind Ltd Steel sheet for line pipe, method for producing the same, and line pipe
WO2011052095A1 (en) 2009-10-28 2011-05-05 新日本製鐵株式会社 Steel plate for line pipes with excellent strength and ductility and process for production of same
JP2012153963A (en) 2011-01-28 2012-08-16 Jfe Steel Corp Method for manufacturing thick hot-rolled steel sheet for use in square steel pipe for building structural member
WO2013153679A1 (en) 2012-04-12 2013-10-17 Jfeスチール株式会社 Hot-rolled steel plate for square steel tube for use as builiding structural member and process for producing same
JP2013245360A (en) 2012-05-23 2013-12-09 Nippon Steel & Sumitomo Metal Corp Steel sheet for lpg tank
JP2016011439A (en) 2014-06-27 2016-01-21 新日鐵住金株式会社 Thick steel plate for cold press molding rectangular steel tube, cold press molding rectangular steel tube and weld joint
JP2016125077A (en) 2014-12-26 2016-07-11 新日鐵住金株式会社 High-strength and high-ductility thick steel plate and production method thereof

Also Published As

Publication number Publication date
JP2019196508A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP5609383B2 (en) High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
CA2869700C (en) Hot rolled steel sheet for square column for building structural members and method for manufacturing the same
KR101492753B1 (en) High strength hot rolled steel sheet having excellent fatigue resistance and method for manufacturing the same
JP5598225B2 (en) High-strength hot-rolled steel sheet with excellent bending characteristics and low-temperature toughness and method for producing the same
JP5630125B2 (en) High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
KR100799421B1 (en) 490MPa-resistance-ratio cold-formed steel pipe with excellent weldability and manufacturing method
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
KR101624439B1 (en) High-strength steel sheet and method for producing the same
KR20140072180A (en) High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same
TW202016327A (en) Hot rolled steel plate and manufacturing method thereof
JP7031477B2 (en) Hot-rolled steel sheet, square steel pipe, and its manufacturing method
JP2012132088A (en) Thick hot-rolled steel sheet for square steel tube for building structure member, and method for manufacturing the same
WO2012033210A1 (en) High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
TWI661056B (en) Hot-rolled steel sheet and manufacturing method thereof
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP2011052295A (en) High-strength cold-rolled steel sheet superior in balance between elongation and formability for extension flange
JP2017137576A (en) Angle steel and production method of angle steel
JP7473792B2 (en) Hot-rolled steel sheet, square steel pipe, and manufacturing method thereof
JP6866932B2 (en) Hot-rolled steel sheet and its manufacturing method
JP4513552B2 (en) High-tensile hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and method for producing the same
KR102387484B1 (en) High-strength steel sheet and its manufacturing method
JP6123734B2 (en) Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same
JP3559455B2 (en) Low-yield-ratio type refractory steel, steel pipe, and method for producing the same
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R151 Written notification of patent or utility model registration

Ref document number: 7031477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151