JP6984347B2 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- JP6984347B2 JP6984347B2 JP2017226360A JP2017226360A JP6984347B2 JP 6984347 B2 JP6984347 B2 JP 6984347B2 JP 2017226360 A JP2017226360 A JP 2017226360A JP 2017226360 A JP2017226360 A JP 2017226360A JP 6984347 B2 JP6984347 B2 JP 6984347B2
- Authority
- JP
- Japan
- Prior art keywords
- trench
- type
- semiconductor
- region
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 152
- 239000000758 substrate Substances 0.000 claims description 60
- 230000004888 barrier function Effects 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 11
- 230000000149 penetrating effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 119
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 47
- 229910010271 silicon carbide Inorganic materials 0.000 description 45
- 238000009792 diffusion process Methods 0.000 description 32
- 238000004519 manufacturing process Methods 0.000 description 17
- 230000036961 partial effect Effects 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 230000003071 parasitic effect Effects 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Electrodes Of Semiconductors (AREA)
Description
この発明は、半導体装置に関する。 The present invention relates to a semiconductor device.
従来、シリコンよりもバンドギャップの広い半導体(以下、ワイドバンドギャップ半導体とする)を用いたパワー半導体装置では、低オン抵抗化が求められている。例えば、縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)においては、半導体チップのおもて面上に平板状にMOSゲートを設けたプレーナゲート構造に比べて構造的に低オン抵抗特性を得やすいトレンチゲート構造が採用されている。トレンチゲート構造は、半導体チップのおもて面に形成したトレンチ内にMOSゲートを埋め込んだMOSゲート構造であり、セルピッチの短縮により低オン抵抗化が可能である。 Conventionally, a power semiconductor device using a semiconductor having a wider bandgap than silicon (hereinafter referred to as a wide bandgap semiconductor) is required to have a low on-resistance. For example, in a vertical MOSFET (Metal Oxide Semiconductor Field Effect Transistor), it is structurally lower than a planar gate structure in which a MOS gate is provided in a flat plate shape on the front surface of a semiconductor chip. A trench gate structure that makes it easy to obtain on-resistance characteristics is adopted. The trench gate structure is a MOS gate structure in which a MOS gate is embedded in a trench formed on the front surface of a semiconductor chip, and low on-resistance can be achieved by shortening the cell pitch.
従来のトレンチゲート型MOSFETについて、ワイドバンドギャップ半導体として炭化珪素(SiC)を用いた場合を例に説明する。図14は、従来の半導体装置の構造を示す断面図である。図14に示すトレンチゲート型MOSFETは、炭化珪素からなるn+型支持基板(以下、n+型炭化珪素基板とする)101上にn-型ドリフト領域102およびp型ベース領域104となる各炭化珪素層を順にエピタキシャル成長させた、炭化珪素からなる半導体基板(以下、炭化珪素基板とする)110を用いて作製されている。炭化珪素基板110のおもて面からトレンチ(以下、ゲートトレンチとする)107の底面よりもドレイン側に深い位置に、第1,2p+型領域121,122が選択的に設けられている。
A case where silicon carbide (SiC) is used as a wide bandgap semiconductor will be described as an example of a conventional trench gate type MOSFET. FIG. 14 is a cross-sectional view showing the structure of a conventional semiconductor device. The trench gate MOSFET shown in FIG. 14 has an n-
第1p+型領域121は、ゲートトレンチ107の底面を覆う。第2p+型領域122は、隣り合うゲートトレンチ107間(メサ領域)に、ゲートトレンチ107から離して選択的に設けられている。これら第1,2p+型領域121,122を設けることで、オフ時にゲート絶縁膜にかかる電界が抑制される。このため、耐圧(耐電圧)を維持した状態で、セルピッチを短縮して低オン抵抗化が可能である。1つのゲートトレンチ107内のMOSゲートと、当該MOSゲートを挟んで隣り合うメサ領域と、で1つの単位セル(素子の構成単位)が構成される。符号103,105,106,108,109,111〜113は、それぞれn型電流拡散領域、n+型ソース領域、p++型コンタクト領域、ゲート絶縁膜、ゲート電極、層間絶縁膜、ソース電極およびドレイン電極である。
The first p + type region 121 covers the bottom surface of the
従来、部品点数を削減してコストダウンを図るために、外付けのショットキーバリアダイオード(SBD:Schottky Barrier Diode)の代用として、トレンチゲート型MOSFETの内部に形成される寄生ダイオード(ボディーダイオード)を用いることが知られている。しかしながら、外付けのSBDの代用として、トレンチゲート型MOSFETのボディーダイオードを用いる場合、ボディーダイオードの劣化やターンオン損失増加が生じる。この問題を回避するために、トレンチゲート型MOSFETを作製した同一の半導体チップに、トレンチ型SBDを内蔵させることが提案されている。 Conventionally, in order to reduce the number of parts and reduce costs, a parasitic diode (body diode) formed inside a trench gate type MOSFET is used as a substitute for an external Schottky Barrier Diode (SBD). It is known to be used. However, when a body diode of a trench gate type MOSFET is used as a substitute for an external SBD, deterioration of the body diode and an increase in turn-on loss occur. In order to avoid this problem, it has been proposed to incorporate the trench type SBD in the same semiconductor chip in which the trench gate type MOSFET is manufactured.
同一の半導体チップにトレンチ型SBDを内蔵した従来のトレンチゲート型MOSFETについて説明する。図15は、従来の半導体装置の構造の別の一例を示す断面図である。図15に示す従来の半導体装置が図14に示す従来の半導体装置と異なる点は、トレンチゲート型MOSFET131の隣り合うゲートトレンチ107間に、トレンチ型SBD132が内蔵されている点である。トレンチ型SBD132は、ゲートトレンチ107間のトレンチ141と、このトレンチ141の内部に埋め込まれた導電層142と、を備え、トレンチ141の側壁に沿って形成される導電層142とn型電流拡散領域103とのショットキー接合143で構成される。
A conventional trench gate type MOSFET in which a trench type SBD is built in the same semiconductor chip will be described. FIG. 15 is a cross-sectional view showing another example of the structure of a conventional semiconductor device. The conventional semiconductor device shown in FIG. 15 differs from the conventional semiconductor device shown in FIG. 14 in that the trench type SBD 132 is built in between the
トレンチ141の底面141aおよび底面コーナー部141bには、ゲートトレンチ107の底面と同様に、トレンチゲート型MOSFET131のオフ時に電界が集中する。このため、トレンチ141の底面141aおよび底面コーナー部141bを第1p+型領域121で覆うことで、当該箇所での電界集中を緩和させている。すなわち、このトレンチ141の底面141aおよび底面コーナー部141bに沿った部分は、トレンチ型SBD132を形成しない無効領域となっている。ゲートトレンチ141の底面コーナー部141bとは、ゲートトレンチ141の底面141aと側壁141cとの境界であり、所定曲率で湾曲した円弧状となっている。第2p+型領域は設けられていない。
Similar to the bottom surface of the
同一の半導体チップにトレンチ型SBDを内蔵したトレンチゲート型MOSFETとして、ソースコンタクト用のトレンチの底面でバリアメタルとp-型ベース領域とのショットキー接合を形成した装置が提案されている(例えば、下記特許文献1(第0031〜0032段落、第1図)参照。)。下記特許文献1では、ソース電極からバリアメタル、p-型ベース領域、n-型チャネル領域、n型ドリフト領域、n+型基板を経由してドレイン電極に至る経路をショットキーバリアダイオードにして、内蔵ダイオードの逆回復特性を改善している。
As a trench gate type MOSFET in which a trench type SBD is built in the same semiconductor chip, a device in which a Schottky junction between a barrier metal and a p-type base region is formed at the bottom surface of a trench for source contact has been proposed (for example). See
また、同一の半導体チップにトレンチ型SBDを内蔵した別のトレンチゲート型MOSFETとして、ゲートトレンチよりも深いトレンチにショットキー電極を埋め込んで半導体基板との間にショットキー接合を形成した装置が提案されている(下記特許文献2(第0070〜0071段落、第9図)参照。)。下記特許文献2では、ショットキー電極を埋め込んだトレンチの間の半導体部を、ショットキー電極から伸びる空乏層により低い印加電圧でピンチオフする領域に設計し、ピンチオフするときの電界を著しく超えた電界がゲートトレンチ底面に印加されることを防止している。
Further, as another trench gate type MOSFET in which a trench type SBD is built in the same semiconductor chip, a device in which a Schottky electrode is embedded in a trench deeper than the gate trench to form a Schottky junction with a semiconductor substrate has been proposed. (See
しかしながら、上述した図15に示す従来の半導体装置において、ショットキー接合143面でのショットキー障壁の高さはトレンチ141の内壁の面方位によって異なる(図12参照)。例えば、図13に示すように、トレンチ141の底面コーナー部141bの曲率のばらつきや、トレンチ141の深さのばらつき等により、トレンチ141の底面コーナー部141bの湾曲している部分144が第1p+型領域121で覆われない虞がある。この場合、トレンチ141の側壁141cと底面コーナー部141bとで面方位が異なるため、異なる面方位にわたってショットキー接合143が形成される。
However, in the conventional semiconductor device shown in FIG. 15 described above, the height of the Schottky barrier at the Schottky
図12は、面方位ごとのショットキー障壁の高さを示す特性図である。図12には、半導体材料として炭化珪素を用い、導電層142がチタン(Ti)層である場合の、Si面、C面およびm面でのショットキー障壁の高さを示すが、導電層142を他の金属材料やポリシリコン(poly−Si)で形成した場合も図12と同様の特性を示す。図12の横軸は導電層142を形成した後に行うアニールの温度であり、縦軸はショットキー接合143面でのショットキー障壁の高さである。Si面は(0001)面である。C面は(000−1)面である。m面は、C面に垂直な{1−100}面の総称であり、(10−10)面、(−1010)面、(1−100)面、(−1100)面、(01−10)面および(0−110)面である。図13は、図15の従来の半導体装置において製造ばらつきが生じた状態を示す説明図である。
FIG. 12 is a characteristic diagram showing the height of the Schottky barrier for each plane direction. FIG. 12 shows the height of the shotkey barrier on the Si surface, the C surface, and the m surface when silicon carbide is used as the semiconductor material and the
異なる面方位にショットキー接合143が形成された場合、トレンチ型SBD132の1つの単位セルに障壁高さの異なる複数のショットキー障壁が存在することとなり、次の2つの問題が生じる。1つ目は、Si面やC面に形成されたショットキー接合143でショットキー障壁高さが低くなるため、トレンチ型SBD132のオフ時にリーク(漏れ)電流が増加して耐圧が低下するという問題である。2つ目は、トレンチ型SBD132のオンオフ特性が悪くなる等、ショットキー特性が安定しないという問題である。
When the Schottky
この発明は、上述した従来技術による問題点を解消するため、耐圧低下を防止することができ、かつ所定のショットキー特性を安定して得ることができる半導体装置を提供することを目的とする。 An object of the present invention is to provide a semiconductor device capable of preventing a decrease in withstand voltage and stably obtaining a predetermined Schottky characteristic in order to solve the above-mentioned problems caused by the prior art.
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。シリコンよりもバンドギャップの広い半導体からなる半導体基板のおもて面に、シリコンよりもバンドギャップの広い半導体からなる第1導電型の第1半導体層が設けられている。前記第1半導体層の、前記半導体基板側に対して反対側に、シリコンよりもバンドギャップの広い半導体からなる第2導電型の第2半導体層が設けられている。前記第2半導体層の内部に、第1導電型の第1半導体領域が選択的に設けられている。複数のトレンチは、前記第1半導体領域および前記第2半導体層を貫通して前記第1半導体層に達する。前記第1半導体層の内部に、前記第2半導体層と離して、前記トレンチの底面を覆う第2半導体領域が選択的に設けられている。複数の前記トレンチのうちの一部の第1トレンチの内部に、ゲート絶縁膜を介してゲート電極が設けられている。複数の前記トレンチのうちの、前記第1トレンチ以外の第2トレンチの内部に、前記第2トレンチの底面コーナー部を覆う絶縁層が設けられている。前記第2トレンチの内部において、前記絶縁層上に導電層が設けられている。第1電極は、前記第2半導体層、前記第1半導体領域および前記導電層に電気的に接続されている。第2電極は、前記半導体基板の裏面に設けられている。ショットキーバリアダイオードは、前記導電層と前記第1半導体層とのショットキー接合で構成されている。 In order to solve the above-mentioned problems and achieve the object of the present invention, the semiconductor device according to the present invention has the following features. A first conductive type first semiconductor layer made of a semiconductor having a bandgap wider than that of silicon is provided on the front surface of a semiconductor substrate made of a semiconductor having a bandgap wider than that of silicon. A second conductive type second semiconductor layer made of a semiconductor having a bandgap wider than that of silicon is provided on the opposite side of the first semiconductor layer with respect to the semiconductor substrate side. A first conductive type first semiconductor region is selectively provided inside the second semiconductor layer. The plurality of trenches penetrate the first semiconductor region and the second semiconductor layer and reach the first semiconductor layer. A second semiconductor region that covers the bottom surface of the trench is selectively provided inside the first semiconductor layer, apart from the second semiconductor layer. A gate electrode is provided inside the first trench, which is a part of the plurality of trenches, via a gate insulating film. An insulating layer covering the bottom corner portion of the second trench is provided inside the second trench other than the first trench among the plurality of trenches. Inside the second trench, a conductive layer is provided on the insulating layer. The first electrode is electrically connected to the second semiconductor layer, the first semiconductor region, and the conductive layer. The second electrode is provided on the back surface of the semiconductor substrate. The Schottky barrier diode is composed of a Schottky junction between the conductive layer and the first semiconductor layer.
また、この発明にかかる半導体装置は、上述した発明において、前記絶縁層は、前記第2トレンチの内部において前記第2トレンチの底面および底面コーナー部を覆うことを特徴とする。 Further, the semiconductor device according to the present invention is characterized in that, in the above-described invention, the insulating layer covers the bottom surface and the bottom corner portion of the second trench inside the second trench.
また、この発明にかかる半導体装置は、上述した発明において、前記ショットキー接合は前記第2トレンチの側壁のみに形成されていることを特徴とする。 Further, the semiconductor device according to the present invention is characterized in that, in the above-mentioned invention, the Schottky junction is formed only on the side wall of the second trench.
また、この発明にかかる半導体装置は、上述した発明において、前記第1半導体層の内部に、前記第2半導体層に接して、かつ当該第2半導体層との界面から前記トレンチの底面よりも前記第2電極側に深い位置に達する、前記第1半導体層よりも不純物濃度の高い第1導電型の第3半導体領域をさらに備える。前記ショットキーバリアダイオードは、前記導電層と前記第3半導体領域とのショットキー接合で構成されていることを特徴とする。 Further, in the above-described invention, the semiconductor device according to the present invention is in contact with the second semiconductor layer inside the first semiconductor layer, and from the interface with the second semiconductor layer to the bottom surface of the trench. A first conductive type third semiconductor region having a higher impurity concentration than the first semiconductor layer, which reaches a deep position on the second electrode side, is further provided. The Schottky barrier diode is characterized by being composed of a Schottky junction between the conductive layer and the third semiconductor region.
また、この発明にかかる半導体装置は、上述した発明において、前記トレンチは、前記半導体基板のおもて面に平行な方向に延在するストライプ状のレイアウトに配置されていることを特徴とする。 Further, the semiconductor device according to the present invention is characterized in that, in the above-described invention, the trench is arranged in a striped layout extending in a direction parallel to the front surface of the semiconductor substrate.
本発明にかかる半導体装置によれば、第2トレンチの底面および底面コーナー部にショットキー接合が形成されないため、耐圧低下を防止することができ、かつ所定のショットキー特性を安定して得ることができるという効果を奏する。 According to the semiconductor device according to the present invention, since the Schottky junction is not formed on the bottom surface and the bottom corner portion of the second trench, it is possible to prevent a decrease in withstand voltage and stably obtain a predetermined Schottky characteristic. It has the effect of being able to do it.
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味しており、指数の前に“−”を付けることで負の指数を表している。 Hereinafter, preferred embodiments of the semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the accompanying drawings, it means that the electron or hole is a large number of carriers in the layer or region marked with n or p, respectively. Further, + and-attached to n and p mean that the concentration of impurities is higher and the concentration of impurities is lower than that of the layer or region to which it is not attached, respectively. In the following description of the embodiment and the accompanying drawings, the same reference numerals are given to the same configurations, and duplicate description will be omitted. Further, in the present specification, in the notation of the Miller index, "-" means a bar attached to the index immediately after that, and "-" is added before the index to indicate a negative index.
(実施の形態1)
実施の形態1にかかる半導体装置は、シリコンよりもバンドギャップが広い半導体(ワイドバンドギャップ半導体とする)を用いて構成される。この実施の形態1にかかる半導体装置の構造について、ワイドバンドギャップ半導体として例えば炭化珪素(SiC)を用いた場合を例に説明する。図1は、実施の形態1にかかる半導体装置の構造を示す断面図である。図1には、トレンチゲート型MOSFET41の1つの単位セル(素子の構成単位)と、この単位セルの両隣に隣接する単位セルの1/2を示す。また、図1には活性領域に配置された一部の単位セルのみを図示し、活性領域の周囲を囲むエッジ終端領域を図示省略する(図2〜11においても同様)。
(Embodiment 1)
The semiconductor device according to the first embodiment is configured by using a semiconductor having a bandgap wider than that of silicon (referred to as a wide bandgap semiconductor). The structure of the semiconductor device according to the first embodiment will be described by exemplifying a case where, for example, silicon carbide (SiC) is used as the wide bandgap semiconductor. FIG. 1 is a cross-sectional view showing the structure of the semiconductor device according to the first embodiment. FIG. 1 shows one unit cell (a constituent unit of an element) of the trench
活性領域とは、半導体装置がオン状態のときに電流が流れる領域である。エッジ終端領域は、活性領域と半導体基板(半導体チップ)10の側面との間の領域であり、n-型ドリフト領域2の、基板おもて面(半導体基板10のおもて面)側の電界を緩和して耐圧(耐電圧)を保持する領域である。エッジ終端領域には、例えばガードリングや接合終端(JTE:Junction Termination Extension)構造を構成するp型領域や、フィールドプレート、リサーフ等の耐圧構造が配置される。耐圧とは、半導体装置が誤動作や破壊を起こさない限界の電圧である。 The active region is a region in which a current flows when the semiconductor device is in the ON state. The edge termination region is a region between the active region and the side surface of the semiconductor substrate (semiconductor chip) 10, and is on the substrate front surface (front surface of the semiconductor substrate 10) side of the n-type drift region 2. This is a region where the electric field is relaxed and the withstand voltage (withstand voltage) is maintained. In the edge termination region, for example, a p-type region constituting a guard ring or a junction termination extension (JTE) structure, and a pressure resistant structure such as a field plate or a resurf are arranged. The withstand voltage is the voltage limit at which the semiconductor device does not malfunction or break.
図1に示す実施の形態1にかかる半導体装置は、炭化珪素からなる同一の半導体基板(炭化珪素基板)10にトレンチ型SBD42を内蔵したトレンチゲート型MOSFET41である。半導体基板10は、炭化珪素からなるn+型支持基板(n+型炭化珪素基板)1上にn-型ドリフト領域2およびp型ベース領域4となる各炭化珪素層31,32を順にエピタキシャル成長させてなるエピタキシャル基板である。トレンチゲート型MOSFETのMOSゲートは、基板おもて面側に設けられたp型ベース領域4、n+型ソース領域5、p++型コンタクト領域(不図示)、第1トレンチ(ゲートトレンチ)7、ゲート絶縁膜8およびゲート電極9で構成される。トレンチ型SBD42は、基板おもて面側に設けられた第2トレンチ51、導電層53およびn型電流拡散領域3で構成される。
The semiconductor device according to the first embodiment shown in FIG. 1 is a trench
具体的には、n-型炭化珪素層31のソース側(ソース電極12側)の表面層には、p型炭化珪素層32(p型ベース領域4)に接するようにn型領域(以下、n型電流拡散領域(第3半導体領域)とする)3が設けられている。n型電流拡散領域3は、キャリアの広がり抵抗を低減させる、いわゆる電流拡散層(Current Spreading Layer:CSL)である。このn型電流拡散領域3は、例えば、第1,2トレンチ7,51の内壁を覆うように、基板おもて面に平行な方向に一様に設けられている。n型電流拡散領域3は、p型ベース領域4と界面から、第1,2トレンチ7,51の底面よりもドレイン側(ドレイン電極13側)に深い位置に達する。
Specifically, the surface layer on the source side (source electrode 12 side) of the n- type
n-型炭化珪素層31の、n型電流拡散領域3以外の部分がn-型ドリフト領域2である。すなわち、n型電流拡散領域3は、n-型ドリフト領域2とp型ベース領域4との間に、第1トレンチ7の内壁7a〜7c、第2トレンチ51の内壁51a〜51c、n-型ドリフト領域2およびp型ベース領域4に接して設けられている。n型電流拡散領域3の内部には、第1,2トレンチ7,51の底面をそれぞれ覆うように、p+型領域21が選択的に設けられている。第1トレンチ7の底面を覆うp+型領域21と、第2トレンチ51の底面を覆うp+型領域21と、は互いに離して配置されている。
The portion of the n - type
また、p+型領域21は、p型ベース領域4とn型電流拡散領域3との界面よりもドレイン側に深い位置に、p型ベース領域4と離して配置されている。p+型領域21のドレイン側端部は、n型電流拡散領域3の内部で終端していてもよいし、n型電流拡散領域3とn-型ドリフト領域2との界面に達していてもよいし、n-型ドリフト領域2の内部で終端していてもよい。すなわち、p+型領域21とn型電流拡散領域3(またはn-型ドリフト領域2)とのpn接合が第1,2トレンチ7,51の底面7a,51aよりもドレイン側に深く位置していればよく、第1p+型領域21の深さは種々変更可能である。
Further, the p + type region 21 is arranged at a position deeper on the drain side than the interface between the p-
p+型領域21は、トレンチゲート型MOSFET41のオフ時に空乏化し、第1,2トレンチ7,51の底面7a,51aにかかる電界を緩和する機能を有する。p+型領域21は、第1,2トレンチ7,51の底面7a,51aから底面コーナー部7b,51bにわたって、第1,2トレンチ7,51の底面7a,51aおよび底面コーナー部7b,51bを覆っていてもよい。第1,2トレンチ7,51の底面コーナー部7b,51bとは、第1,2トレンチ7,51の底面7a,51aと側壁7c,51cとの境界であり、所定曲率で湾曲した円弧状となっている。
The p + type region 21 has a function of depleting when the trench
第1,2トレンチ7,51の底面7a,51aとは、第1,2トレンチ7,51の内壁のうち、基板おもて面から最も深い部分に位置し、基板おもて面に略平行する面である。第1,2トレンチ7,51の底面コーナー部7b,51bの曲率が小さいほど、第1,2トレンチ7,51のドレイン側において底面コーナー部7b,51bの占める割合が多くなり、第1,2トレンチ7,51の底面7a,51aは点(頂点)に近づく。第1,2トレンチ7,51の側壁7c,51cとは、第1,2トレンチ7,51の内壁のうち、基板おもて面に連続し、基板おもて面に略直交する面である。
The bottom surfaces 7a and 51a of the first and
p型炭化珪素層32の内部には、隣り合う第1トレンチ7と第2トレンチ51との間(メサ領域)に、互いに接するようにn+型ソース領域5およびp++型コンタクト領域がそれぞれ選択的に設けられている。n+型ソース領域5は、第1トレンチ7に接するように配置され、第1トレンチ7の側壁7cのゲート絶縁膜8を介してゲート電極9に対向する。また、n+型ソース領域5は、第2トレンチ51に接するように配置され、第2トレンチ51の側壁51cにおいて導電層53に接する。
Inside the p-type silicon carbide layer 32, an n + type
第1,2トレンチ7,51は、半導体基板10のおもて面(p型炭化珪素層32の表面)からn+型ソース領域5およびp型ベース領域4を深さ方向Zに貫通してn型電流拡散領域3に達し、それぞれ異なるp+型領域21の内部で終端している。深さ方向Zとは、半導体基板10のおもて面から裏面へ向かう方向である。第1,2トレンチ7,51は、例えば、半導体基板10のおもて面側から見て、半導体基板10のおもて面に平行な方向(図1の奥行き方向)Xに延在するストライプ状のレイアウトに配置されている。第1トレンチ7と第2トレンチ51とは、半導体基板10のおもて面側から見て、第1,2トレンチ7,51がストライプ状に延在する方向Xと直交する方向Yに、互いに離して交互に繰り返し配置されている。
The first and second trenches 7 and 51 penetrate the n + type
第1トレンチ7の内部には、第1トレンチ7の内壁7a〜7cに沿ってゲート絶縁膜8が設けられている。第1トレンチ7の内部に埋め込むようにゲート絶縁膜8上にポリシリコン(poly−Si)層等のゲート電極9が設けられ、トレンチゲート型MOSFET41のMOSゲートが構成される。ゲート電極9のドレイン側端部は、p型ベース領域4とn型電流拡散領域3との界面よりもドレイン側に深い位置に達している。1つの第1トレンチ7内のMOSゲートと、当該MOSゲートを挟んで隣り合うメサ領域(隣り合う第1トレンチ7間の領域)と、でトレンチゲート型MOSFET41の1つの単位セルが構成される。
Inside the
第2トレンチ51の内部には、第2トレンチ51の最も底面51a側に、堆積酸化膜(SiO2膜)等の絶縁層52が埋め込まれている。絶縁層52は、第2トレンチ51の底面51aから側壁51cに達する厚さt1を有する。すなわち、絶縁層52は、第2トレンチ51の底面51aと底面コーナー部51bの湾曲した部分45とを埋め込むように、第2トレンチ51の内部に埋め込まれている。また、第2トレンチ51の内部には、絶縁層52上に、例えばチタン(Ti)やニッケル(Ni)、タングステン(W)、モリブデン(Mo)等の金属材料からなる金属層やポリシリコン(poly−Si)層等の導電層53が埋め込まれている。
Inside the
導電層53と絶縁層52との界面はp型ベース領域4とn型電流拡散領域3との界面よりもドレイン側に深い位置にあり、導電層53は第2トレンチ51の側壁51cでn型電流拡散領域3に接する。p型ベース領域4とn型電流拡散領域3との界面から絶縁層52と導電層53との界面までの距離t2は、例えば0.5μm程度であってもよい。この導電層53とn型電流拡散領域3とで第2トレンチ51の側壁51cに沿ってショットキー接合54が形成される。すなわち、ショットキー接合54は第2トレンチ51の側壁51cのみに形成され、1つの面方位(第2トレンチ51の側壁51cの面方位)に基づくショットキー障壁高さのみでトレンチ型SBD42のショットキー特性が決まる。
The interface between the
1つの第2トレンチ51の側壁51cに形成されたショットキー接合54でトレンチ型SBD42の1つの単位セルが構成される。このため、トレンチ型SBD42の各単位セルは、第2トレンチ51がストライプ状に延在する方向Xに延在している。トレンチ型SBD42の単位セルの面積(ショットキー接合54の表面積)は、第2トレンチ51の深さおよび第2トレンチ51がストライプ状に延在する長さ(半導体基板10のおもて面側から見て、第2トレンチ51の長手方向の長さ)で調整可能である。トレンチ型SBD42は、トレンチゲート型MOSFET41の内部に形成される寄生ダイオード(ボディーダイオード)の劣化を防止する機能を有する。導電層53のソース側端部は、第2トレンチ51から外側へ突出していてもよい。
A
上述したように第2トレンチ51の底面51aおよび底面コーナー部51bは、第2トレンチ51の内部から絶縁層52で覆われている。このため、例えばプロセスばらつきにより第2トレンチ51の底面コーナー部51bの曲率や第2トレンチ51の深さにばらつきが生じ、n型電流拡散領域3(または、n型電流拡散領域3の深さによってはn-型ドリフト領域2)に第2トレンチ51の底面コーナー部51bが露出したとしても、第2トレンチ51の底面51aおよび底面コーナー部51bにショットキー接合54は形成されない。したがって、トレンチ型SBD42に、複数のショットキー障壁が存在することによるリーク電流の増加は生じない。また、この第2トレンチ51の底面51aおよび底面コーナー部51bに沿った部分は、従来構造(図15参照)と同様にトレンチ型SBD42を形成しない無効領域であるため、トレンチ型SBD42のショットキー特性に対する損失は生じない。
As described above, the
ゲート電極9は、図示省略する部分で半導体基板10のおもて面に引き出され、ゲート電極パッド(不図示)に電気的に接続されている。ソース電極12は、層間絶縁膜11に開口されたコンタクトホールを介して、n+型ソース領域5、p++型コンタクト領域および導電層53に接し、これらに電気的に接続されている。ソース電極12および導電層53は、層間絶縁膜11によってゲート電極9と電気的に絶縁されている。ソース電極12は、例えばソース電極パッドを兼ねる。半導体基板10の裏面(n+型ドレイン領域となるn+型炭化珪素基板1の裏面)には、ドレイン電極13が設けられている。
The
次に、実施の形態1にかかる半導体装置の動作について説明する。トレンチゲート型MOSFET41のp型ベース領域4とn型電流拡散領域3とのpn接合で形成される寄生pnダイオードの順方向バイアス時、トレンチ型SBD42は、トレンチゲート型MOSFET41の上記寄生pnダイオードよりも低い電圧で、当該寄生pnダイオードよりも早くオンする。このため、トレンチゲート型MOSFET41のn型電流拡散領域3、p型ベース領域4およびn+型ソース領域5からなる縦型の寄生npnバイポーラトランジスタ(ボディーダイオード)にベース電流が流れず、当該寄生npnバイポーラトランジスタは動作しない。したがって、当該寄生npnバイポーラトランジスタによる順方向劣化が生じない。かつ、当該寄生npnバイポーラトランジスタによるターンオン損失を低減させることができる。
Next, the operation of the semiconductor device according to the first embodiment will be described. When the parasitic pn diode formed by the pn junction between the p-
次に、実施の形態1にかかる半導体装置の製造方法について説明する。図2〜10は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。まず、図2に示すように、n+型ドレイン領域となるn+型炭化珪素基板1を用意する。次に、n+型炭化珪素基板1のおもて面に、n-型炭化珪素層31をエピタキシャル成長させる。次に、図3に示すように、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層31の表面層に、p+型領域21を選択的に形成する。
Next, a method of manufacturing the semiconductor device according to the first embodiment will be described. 2 to 10 are cross-sectional views showing a state in which the semiconductor device according to the first embodiment is in the process of being manufactured. First, as shown in FIG. 2, an n + type
次に、フォトリソグラフィおよびn型不純物のイオン注入により、例えば活性領域全域にわたって、n-型炭化珪素層31の表面層にn型領域(以下、n型部分領域とする)3aを形成する。このn型部分領域3aは、n型電流拡散領域3の一部である。このとき、n型部分領域3aの深さは種々変更可能である。図3には、n型部分領域3aの深さをp+型領域21よりも深くし、p+型領域21のドレイン側(n+型炭化珪素基板1側)全体をn型部分領域3aで覆った場合を示す(図4〜9においても同様)。n-型炭化珪素層31の、n型部分領域3aよりもドレイン側の部分がn-型ドリフト領域2となる。n型部分領域3aとp+型領域21との形成順序を入れ替えてもよい。
Next, by ion implantation of photolithography and an n-type impurity, for example, over the active region whole, n - n-type region in a surface layer of -type silicon carbide layer 31 (hereinafter referred to as n-type partial regions) 3a are formed. The n-type
次に、図4に示すように、n-型炭化珪素層31上にさらにn-型炭化珪素層をエピタキシャル成長させて、n-型炭化珪素層31の厚さを厚くする。次に、フォトリソグラフィおよびn型不純物のイオン注入により、例えば活性領域全域にわたって、n-型炭化珪素層31の厚さを増した部分31aに、n型部分領域3aに達する深さでn型部分領域3bを形成する。n型部分領域3bの不純物濃度は、n型部分領域3aと略同じである。n型部分領域3a,3bが深さ方向に連結されることで、n型電流拡散領域3が形成される。n-型炭化珪素層31の厚さを増やす際に、n型電流拡散領域3と同じ不純物濃度のn型炭化珪素層をエピタキシャル成長させてn型部分領域3bとしてもよい。
Next, as shown in FIG. 4, n - further n on the -type silicon carbide layer 31 - -type silicon carbide layer is epitaxially grown, n - the thickness of the -type
次に、図5に示すように、n-型炭化珪素層31上に、p型炭化珪素層32をエピタキシャル成長させる。これにより、n+型炭化珪素基板1上にn-型炭化珪素層31およびp型炭化珪素層32を順に堆積した炭化珪素基板(半導体ウエハ)10が形成される。次に、フォトリソグラフィおよびイオン注入を一組とする工程を異なる条件で繰り返し行い、p型炭化珪素層32の表面層にn+型ソース領域5およびp++型コンタクト領域(不図示)をそれぞれ選択的に形成する。n+型ソース領域5およびp++型コンタクト領域の形成順序を種々入れ替え可能である。p型炭化珪素層32の、n+型ソース領域5およびp++型コンタクト領域以外の部分がp型ベース領域4となる。そして、イオン注入で形成したすべての領域について、不純物を活性化させるための熱処理(活性化アニール)を行う。
Next, as shown in FIG. 5, the p-type
次に、n+型ソース領域5およびp型ベース領域4を貫通して、n型電流拡散領域3の内部のp+型領域21に達する第1,2トレンチ7,51を形成する。第1,2トレンチ7,51は異なる工程で別々に形成してもよい。次に、図6に示すように、半導体基板10のおもて面に絶縁層61を形成する。次に、フォトリソグラフィおよびエッチングにより絶縁層61を選択的に除去して、絶縁層61の開口部に第1トレンチ7を露出させる。
Next, the first and
次に、絶縁層61の開口部に露出した半導体基板10のおもて面および第1トレンチ7の内壁を熱酸化して、半導体基板10のおもて面および第1トレンチ7の内壁に沿ってゲート絶縁膜8を形成する。次に、例えば堆積法により、第1トレンチ7の内部に埋め込むように、半導体基板10のおもて面に例えばポリシリコン層を堆積する。次に、このポリシリコン層をエッチバックして、第1トレンチ7の内部にのみゲート電極9となるポリシリコン層を残す。
Next, the front surface of the
次に、図7に示すように、例えばエッチバックにより絶縁層61を除去する。このとき、基板おもて面上および第2トレンチ51の底面51a上に絶縁層61が残っていてもよい。次に、図8に示すように、ゲート電極9を覆い、かつ第2トレンチ51の内部に埋め込むように、半導体基板10のおもて面に絶縁層62を形成する。次に、図9に示すように、フォトリソグラフィおよびエッチングにより絶縁層62およびゲート絶縁膜8を選択的に除去して、ゲート電極9を覆う部分、エッジ終端領域において基板おもて面を覆う部分(フィールド酸化膜等となる部分)および第2トレンチ51の内部に絶縁層62を残す。
Next, as shown in FIG. 7, the insulating
すなわち、この絶縁層62は、ゲート電極9を覆う部分を層間絶縁膜11として残し、かつ第2トレンチ51の内部において第2トレンチ51の底面51aおよび底面コーナー部51bの湾曲した部分45を覆う部分を絶縁層52として残す。絶縁層62の、絶縁層52となる部分は、第2トレンチ51の側壁51cにn型電流拡散領域3が露出されるように所定厚さt1で残す。絶縁層62およびゲート絶縁膜8の開口部がコンタクトホールとなり、当該コンタクトホールにn+型ソース領域5、p++型コンタクト領域および第2トレンチ51が露出される。
That is, the insulating
次に、図10に示すように、例えば堆積法により、第2トレンチ51の内部に埋め込むように、基板おもて面上に導電層53を堆積する。次に、例えば導電層53をエッチバックして、第2トレンチ51の内部にのみ導電層53を残す。次に、一般的な方法により、n+型ソース領域5、p++型コンタクト領域および導電層53に接するソース電極12を形成する。半導体基板10の裏面にドレイン電極13を形成する。その後、半導体ウエハをダイシング(切断)して個々のチップ状に個片化することで、図1に示すMOSFETが完成する。
Next, as shown in FIG. 10, the
以上、説明したように、実施の形態1によれば、第2トレンチの内部に、第2トレンチの底面および底面コーナー部を覆う絶縁層を設けることで、製造プロセスばらつきにより第2トレンチの底面コーナー部がp+型領域に覆われていない状態になったとしても、第2トレンチの底面および底面コーナー部にショットキー接合が形成されない。すなわち、1つの面方位(第2トレンチの側壁の面方位)に基づくショットキー障壁高さのみでトレンチ型SBDのショットキー特性が決まる。このため、第2トレンチの面方位がショットキー障壁高さの低いSi面やC面にならないように設計することで、リーク電流が増加することを防止することができ、耐圧低下を防止することができる。かつ、1つの面方位のみのショットキー障壁高さに基づいて所定のショットキー特性を安定して得ることができる。したがって、製造プロセスばらつきの悪影響を受けない構造で、同一の半導体チップにトレンチ型SBDを内蔵したトレンチゲート型MOSFETを実現することができる。 As described above, according to the first embodiment, by providing the insulating layer covering the bottom surface and the bottom surface corner portion of the second trench inside the second trench, the bottom surface corner of the second trench is provided due to the variation in the manufacturing process. Even if the portion is not covered with the p + type region, the Schottky junction is not formed on the bottom surface and the bottom surface corner portion of the second trench. That is, the Schottky characteristic of the trench type SBD is determined only by the Schottky barrier height based on one surface orientation (the surface orientation of the side wall of the second trench). Therefore, by designing the surface orientation of the second trench so that it does not become the Si surface or the C surface having a low Schottky barrier height, it is possible to prevent the leakage current from increasing and prevent the withstand voltage from decreasing. Can be done. Moreover, a predetermined Schottky characteristic can be stably obtained based on the Schottky barrier height of only one surface direction. Therefore, it is possible to realize a trench gate type MOSFET in which a trench type SBD is built in the same semiconductor chip with a structure that is not adversely affected by variations in the manufacturing process.
(実施の形態2)
次に、実施の形態2にかかる半導体装置の構造について説明する。図11は、実施の形態2にかかる半導体装置の構造を示す断面図である。実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、第2トレンチ51の底面コーナー部51bのみに絶縁層72を配置した点である。すなわち、第2トレンチ51の底面コーナー部51bのみが、第2トレンチ51の内側から絶縁層72で覆われている。導電層53は、第2トレンチ51の両底面コーナー部51bにそれぞれ配置された絶縁層72間に挟まれ、第2トレンチ51の底面51aにおいてp+型領域21に接している。
(Embodiment 2)
Next, the structure of the semiconductor device according to the second embodiment will be described. FIG. 11 is a cross-sectional view showing the structure of the semiconductor device according to the second embodiment. The difference between the semiconductor device according to the second embodiment and the semiconductor device according to the first embodiment is that the insulating
一般的に、トレンチの内部に埋め込んだ絶縁層を例えばエッチバックして除去する際に、トレンチの両底面コーナー部に当該絶縁層が残る。このようにトレンチの両底面コーナー部に残る絶縁層を上記絶縁層72として用いてもよい。すなわち、実施の形態1にかかる半導体装置の製造方法において、絶縁層72となる絶縁層62(図8参照)をエッチバックした際に、当該絶縁層62の、第2トレンチ51の底面51aの部分が除去されても、第2トレンチ51の両底面コーナー部51bに絶縁層62が残っていればよい。したがって、実施の形態2にかかる半導体装置の製造方法は、実施の形態1にかかる半導体装置の製造方法と同様である。
Generally, when the insulating layer embedded in the inside of the trench is removed by etching back, for example, the insulating layer remains at the corners of both bottom surfaces of the trench. In this way, the insulating layer remaining at the corners of both bottom surfaces of the trench may be used as the insulating
以上、説明したように、実施の形態2によれば、第2トレンチの両底面コーナー部を覆うように絶縁層が設けられていれば、実施の形態1と同様の効果を得ることができる。 As described above, according to the second embodiment, if the insulating layer is provided so as to cover the corners of both bottom surfaces of the second trench, the same effect as that of the first embodiment can be obtained.
以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、本発明は、深さ方向にn+型ソース領域を貫通してp型ベース領域に達する、ソースコンタクト用のトレンチを設けたダブルトレンチ構造にも適用可能である。この場合、ソースコンタクト用のトレンチを形成するためのマスクとして用いた絶縁層を、第2トレンチの底面および底面コーナー部に残してもよい。 In the above, the present invention can be variously modified without departing from the spirit of the present invention, and in each of the above-described embodiments, for example, the dimensions of each part, the impurity concentration, and the like are set variously according to the required specifications and the like. The present invention is also applicable to a double trench structure provided with a trench for source contact, which penetrates the n + type source region in the depth direction and reaches the p-type base region. In this case, the insulating layer used as a mask for forming the trench for the source contact may be left on the bottom surface and the bottom corner portion of the second trench.
また、上述した実施の形態では、炭化珪素基板に炭化珪素層をエピタキシャル成長させてなるエピタキシャル基板を用いた場合を例に説明しているが、本発明にかかる半導体装置を構成する各領域を例えばイオン注入等により炭化珪素基板に形成してもよい。また、本発明は、炭化珪素以外のワイドバンドギャップ半導体(例えばガリウム(Ga)など)に適用した場合においても同様の効果を奏する。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。 Further, in the above-described embodiment, the case where an epitaxial substrate obtained by epitaxially growing a silicon carbide layer on the silicon carbide substrate is described as an example, but each region constituting the semiconductor device according to the present invention is described by, for example, ions. It may be formed on a silicon carbide substrate by implantation or the like. Further, the present invention has the same effect when applied to a wide bandgap semiconductor other than silicon carbide (for example, gallium (Ga)). Further, the present invention is similarly established even if the conductive type (n type, p type) is inverted.
以上のように、本発明にかかる半導体装置は、トレンチゲート構造のMOS型半導体装置に有用である。 As described above, the semiconductor device according to the present invention is useful for a MOS type semiconductor device having a trench gate structure.
1 n+型炭化珪素基板
2 n-型ドリフト領域
3 n型電流拡散領域
3a,3b n型部分領域
4 p型ベース領域
5 n+型ソース領域
7 第1トレンチ(ゲートトレンチ)
7a 第1トレンチの底面
7b 第1トレンチの底面コーナー部
7c 第1トレンチの側壁
8 ゲート絶縁膜
9 ゲート電極
10 半導体基板
11 層間絶縁膜
12 ソース電極
13 ドレイン電極
21 p+型領域
31 n-型炭化珪素層
31a n-型炭化珪素層の厚さを増した部分
32 p型炭化珪素層
41 トレンチゲート型MOSFET
42 トレンチ型SBD
45 第2トレンチの底面および底面コーナー部の湾曲した部分
51 第2トレンチ(トレンチ型SBDを埋め込んだトレンチ)
51a 第2トレンチの底面
51b 第2トレンチの底面コーナー部
51c 第2トレンチの側壁
52,61,62,72 絶縁層
53 導電層
54 ショットキー接合
t1 絶縁層の厚さ
t2 p型ベース領域とn型電流拡散領域との界面から絶縁層と導電層との界面までの距離
X 第1,2トレンチがストライプ状に延在する方向
Y 第1,2トレンチがストライプ状に延在する方向と直交する方向
Z 深さ方向
1 n + type silicon carbide substrate 2 n - type drift region 3 n type
7a Bottom of
42 Trench type SBD
45 Curved part of the bottom surface and bottom corner of the
51a Bottom of the
Claims (5)
前記半導体基板のおもて面に設けられた、シリコンよりもバンドギャップの広い半導体からなる第1導電型の第1半導体層と、
前記第1半導体層の、前記半導体基板側に対して反対側に設けられた、シリコンよりもバンドギャップの広い半導体からなる第2導電型の第2半導体層と、
前記第2半導体層の内部に選択的に設けられた第1導電型の第1半導体領域と、
前記第1半導体領域および前記第2半導体層を貫通して前記第1半導体層に達する複数のトレンチと、
前記第1半導体層の内部に、前記第2半導体層と離して選択的に設けられ、前記トレンチの底面を覆う第2半導体領域と、
複数の前記トレンチのうちの一部の第1トレンチの内部にゲート絶縁膜を介して設けられたゲート電極と、
複数の前記トレンチのうちの、前記第1トレンチ以外の第2トレンチの内部に設けられ、前記第2トレンチの底面コーナー部を覆う絶縁層と、
前記第2トレンチの内部において、前記絶縁層上に設けられた導電層と、
前記第2半導体層、前記第1半導体領域および前記導電層に電気的に接続された第1電極と、
前記半導体基板の裏面に設けられた第2電極と、
前記導電層と前記第1半導体層とのショットキー接合で構成されたショットキーバリアダイオードと、
を備えることを特徴とする半導体装置。 A semiconductor substrate made of a semiconductor with a wider bandgap than silicon,
A first conductive type first semiconductor layer made of a semiconductor having a bandgap wider than that of silicon, which is provided on the front surface of the semiconductor substrate, and
A second conductive type second semiconductor layer made of a semiconductor having a bandgap wider than that of silicon, which is provided on the opposite side of the first semiconductor layer with respect to the semiconductor substrate side.
A first conductive type first semiconductor region selectively provided inside the second semiconductor layer,
A plurality of trenches penetrating the first semiconductor region and the second semiconductor layer and reaching the first semiconductor layer,
A second semiconductor region, which is selectively provided inside the first semiconductor layer separately from the second semiconductor layer and covers the bottom surface of the trench,
A gate electrode provided inside a first trench of a part of the plurality of trenches via a gate insulating film, and a gate electrode.
An insulating layer provided inside a second trench other than the first trench among the plurality of the trenches and covering the bottom corner portion of the second trench.
Inside the second trench, the conductive layer provided on the insulating layer and
The second semiconductor layer, the first semiconductor region, and the first electrode electrically connected to the conductive layer,
The second electrode provided on the back surface of the semiconductor substrate and
A Schottky barrier diode composed of a Schottky junction between the conductive layer and the first semiconductor layer,
A semiconductor device characterized by being provided with.
前記ショットキーバリアダイオードは、前記導電層と前記第3半導体領域とのショットキー接合で構成されていることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。 The first semiconductor layer inside the first semiconductor layer, which is in contact with the second semiconductor layer and reaches a position deeper from the interface with the second semiconductor layer to the second electrode side than the bottom surface of the trench. Further provided with a first conductive type third semiconductor region having a higher impurity concentration than
The semiconductor device according to any one of claims 1 to 3, wherein the Schottky barrier diode is composed of a Schottky junction between the conductive layer and the third semiconductor region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017226360A JP6984347B2 (en) | 2017-11-24 | 2017-11-24 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017226360A JP6984347B2 (en) | 2017-11-24 | 2017-11-24 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019096794A JP2019096794A (en) | 2019-06-20 |
JP6984347B2 true JP6984347B2 (en) | 2021-12-17 |
Family
ID=66973090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017226360A Active JP6984347B2 (en) | 2017-11-24 | 2017-11-24 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6984347B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7593320B2 (en) | 2019-08-05 | 2024-12-03 | 住友電気工業株式会社 | Silicon carbide semiconductor device and manufacturing method thereof |
JP7643833B2 (en) * | 2020-02-13 | 2025-03-11 | 株式会社デンソー | Switching Elements |
CN111933711B (en) * | 2020-08-18 | 2022-08-23 | 电子科技大学 | SBD integrated super-junction MOSFET |
WO2024185313A1 (en) * | 2023-03-07 | 2024-09-12 | 富士電機株式会社 | Semiconductor device and method for manufacturing semiconductor device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4456013B2 (en) * | 2005-01-25 | 2010-04-28 | トヨタ自動車株式会社 | Semiconductor device |
JP5852555B2 (en) * | 2012-12-26 | 2016-02-03 | 株式会社豊田中央研究所 | Semiconductor device |
JP6092749B2 (en) * | 2013-10-17 | 2017-03-08 | 新電元工業株式会社 | Semiconductor device and manufacturing method of semiconductor device |
JP2016225333A (en) * | 2015-05-27 | 2016-12-28 | トヨタ自動車株式会社 | Sbd |
JP6667893B2 (en) * | 2015-10-20 | 2020-03-18 | 富士電機株式会社 | Semiconductor device and method of manufacturing semiconductor device |
DE212018000102U1 (en) * | 2017-05-17 | 2019-08-05 | Rohm Co., Ltd. | Semiconductor device |
-
2017
- 2017-11-24 JP JP2017226360A patent/JP6984347B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019096794A (en) | 2019-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7471267B2 (en) | Semiconductor Device | |
JP7059555B2 (en) | Semiconductor device | |
JP5449094B2 (en) | Semiconductor device | |
JP5900698B2 (en) | Semiconductor device | |
US11888057B2 (en) | Semiconductor device | |
JP7127445B2 (en) | semiconductor equipment | |
JP6848316B2 (en) | Semiconductor devices and methods for manufacturing semiconductor devices | |
JP7293750B2 (en) | Super-junction silicon carbide semiconductor device and method for manufacturing super-junction silicon carbide semiconductor device | |
JP7176239B2 (en) | semiconductor equipment | |
US10600864B2 (en) | Semiconductor device | |
JP6984347B2 (en) | Semiconductor device | |
US12068366B2 (en) | Semiconductor device | |
JP7155641B2 (en) | semiconductor equipment | |
JP6293380B1 (en) | Semiconductor device | |
JP3998454B2 (en) | Power semiconductor device | |
JP2024177672A (en) | Semiconductor Device | |
JP7067698B2 (en) | Semiconductor device | |
JP6400202B2 (en) | Power semiconductor device | |
JP2017092364A (en) | Semiconductor device and semiconductor device manufacturing method | |
TW201929230A (en) | Wide-gap semiconductor device | |
JP4997715B2 (en) | Semiconductor device and manufacturing method thereof | |
CN115411111A (en) | Semiconductor device and manufacturing method thereof | |
JP2019003966A (en) | Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20201016 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20201016 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211019 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211026 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211108 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6984347 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |