[go: up one dir, main page]

JP6979171B2 - 鋳包み用部材及びその製造方法 - Google Patents

鋳包み用部材及びその製造方法 Download PDF

Info

Publication number
JP6979171B2
JP6979171B2 JP2017220946A JP2017220946A JP6979171B2 JP 6979171 B2 JP6979171 B2 JP 6979171B2 JP 2017220946 A JP2017220946 A JP 2017220946A JP 2017220946 A JP2017220946 A JP 2017220946A JP 6979171 B2 JP6979171 B2 JP 6979171B2
Authority
JP
Japan
Prior art keywords
casting
convex portion
region
mold
wrapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017220946A
Other languages
English (en)
Other versions
JP2019089115A (ja
Inventor
諒 長澤
昭人 山元
未来 久岡
雄一 水村
延明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2017220946A priority Critical patent/JP6979171B2/ja
Priority to DE102018125395.8A priority patent/DE102018125395B4/de
Priority to FR1859763A priority patent/FR3073434B1/fr
Priority to CN201811347787.3A priority patent/CN109794593B/zh
Publication of JP2019089115A publication Critical patent/JP2019089115A/ja
Application granted granted Critical
Publication of JP6979171B2 publication Critical patent/JP6979171B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C23/00Tools; Devices not mentioned before for moulding
    • B22C23/02Devices for coating moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • B22D13/023Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/101Moulds
    • B22D13/102Linings for moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/08Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

本発明は、鋳包み用部材及びその製造方法に関する。
ダイカスト鋳造技術などの発展に伴い、先に鋳造しておいた部材を鋳型にセットし、該部品と鋳型との間に溶かしたアルミニウム等の金属を流し込んで、該部品に接着又は密着させる鋳包み鋳造と呼ばれる手法が用いられるようになってきた。この手法により鋳込まれる部材は、鋳包み用部材(鋳ぐるみ用部材ともいう)と呼ばれる。
鋳包み用部材としては、例えば、内燃機関のシリンダブロックに鋳込まれるシリンダスリーブ(シリンダライナ又はスリーブともいう)や、ダイカストホイールハブのボスやドラム、さらにはシリンダブロックやロアケース等の軸受部、その他、ミッションケース内軸受部に鋳込まれる軸受け部材などがある。特に上記の用途に用いられる場合、鋳包み用部材に熱負荷や大きな外力が作用することが多く、鋳包み用部材とこの部材を鋳包む金属との密着性を向上させて放熱性や伝熱性や、さらには剛性を改善することが求められている。
特許文献1〜3には、ダイカストで鋳包まれるスリーブにおいて、スリーブ外周面に先端が括れた単独の針状の凸部を有し、且つスリーブの上部と下部で密着性ないし熱伝導性を変える処理を施したスリーブが記載されている。
特開2007−016736号公報 特開2007−016734号公報 特開2007−016735号公報
スリーブにおける鋳包み用部材のうちの異なる2つの領域で、異なる特性が求められる場合がある。例えば、エンジン用のシリンダブロックにおいて、デッキ側のピストン摺動領域では、鋳包み用部材と鋳包む金属との間の高い密着性および高い熱伝導性が求められるのに対し、ピストン摺動領域ではないクランクケース側の領域では、相対的に低い密着性および低い熱伝導性が求められる。このような鋳包み部材の異なる2つの領域で密着性および熱伝導性を変えるためには、鋳包み用部材の粗面化処理や皮膜成形処理を行うという方法もあるが、これらの方法では製造工程が煩雑になるという問題がある。
そこで本発明は、上記の課題に鑑み、スリーブにおける鋳包み用部材の異なる2つの領域において密着性や熱伝導性等の特性を容易に大きく変えることができる、鋳包み用部材及びその製造方法を提供することを目的とする。
上記目的を達成するため、本発明は、その一態様によれば、鋳包まれる面上に網目状の凸部と平坦面とを有する鋳包み用部材であって、前記網目状の凸部は、線状部分と、少なくとも2つの線状部分が合流している集合部分とを備え、前記凸部は、前記平坦面から立ち上がる縦壁部分を備え、前記線状部分の凸部の前記平坦面からの高さが相対的に高い、高凸部領域と、前記線状部分の凸部の前記平坦面からの高さが相対的に低い、低凸部領域とを備えるものである。
前記高凸部領域と前記低凸部領域は、それぞれ複数の領域が形成されていてもよい。また、高凸部領域と低凸部領域の中間の高さの凸部が存在してもよい。前記線状部分の凸部の縦壁部分としては、平坦面に対して垂直であることに限定されず、傾きがあってもよい。また、前記凸部は、前記縦壁部分に加え、頂部を備え、前記凸部は、前記縦壁部分の幅と比較して前記頂部の幅が大きい形状を備えてもよい。
前記鋳包み用部材は円筒形状を有してもよく、この場合、この円筒形状の軸方向または周方向に沿って前記高凸部領域と前記低凸部領域とを備えることが好ましい。
前記鋳包み用部材は、エンジンシリンダブロックに鋳込まれるシリンダスリーブであってもよく、この場合、デッキ面側に前記高凸部領域を備え、クランクケース側に前記低凸部領域を備えることが好ましい。また、この場合、吸排方向に前記高凸部領域を備え、前後方向に前記低凸部領域を備えることも好ましい。
前記高凸部領域における前記凸部の高さと前記低凸部領域における前記凸部の高さとの差は、0.1mm以上であることが好ましく、0.2mm以上がより好ましい。また、この差の上限は、1.0mm以下が好ましく、0.5mm以下がより好ましい。なお、ここでの凸部の高さの差とは、高凸部領域における平均の凸部の高さと低凸部領域における平均の凸部の高さの差をいう。
本発明は、また別の態様として、鋳包み用部材の製造方法であって、鋳型の溶湯を流し込もうとする面に塗型剤を塗布する工程と、前記塗布した塗型剤を乾燥させて、表面にひび割れの形状を有する塗型層を形成する工程と、前記塗型層上から溶湯を流しこみ、前記鋳型を回転させながら鋳造する工程とを少なくとも含み、前記鋳型の溶湯を流し込もうとする面は、少なくとも2つの異なる高さの領域を有しており、これによって、前記塗型層は、厚さが相対的に厚い領域と薄い領域とを有し、前記ひび割れは、前記厚い領域において、相対的にひび割れの幅が大きく深さが深く、前記薄い領域において、相対的にひび割れの幅が小さく深さが浅いものが形成される。
前記塗型層の前記厚い領域に形成される前記幅が大きく深さが深くいひび割れは、前記薄い領域の前記塗型層の厚さよりも、ひび割れの深さを浅くするように制御することが好ましい。特に、前記鋳型が円筒形状を有し、前記溶湯を流し込もうとする面がその内周面である場合、前記鋳型は、前記薄い領域として、相対的に内径の小さい基準内径からなる基準内径領域と、前記厚い領域として、相対的に内径の大きい非基準内径領域とを備え、前記幅が大きく深さが深いひび割れは、その深さが、前記基準内径の領域内に留まるように制御することが好ましい。前記基準内径領域と前記非基準内径領域との内径差は、0.1mm以上であることが好ましく、0.2mm以上がより好ましい。また、この内径差の上限は、1.0mm以下が好ましく、0.5mm以下がより好ましい。
本発明によれば、鋳包み用部材の鋳包まれる面上に、網目状の凸部であって、その内の線状部分の凸部の高さが相対的に高い、高凸部領域と、凸部の高さが相対的に低い、低凸部領域とを備えることによって、この鋳包み用部材を用いて鋳包み鋳造した部材は、高凸部領域の部分において鋳包み用部材と鋳包む金属との間の高い密着性および高い熱伝導性が得られる一方、低凸部領域の部分においては、相対的に低い密着性および低い熱伝導性が得られる。このように単一の鋳包み用部材を用いて、鋳包み部材の異なる2つの領域において密着性および熱伝導性を容易に大きく変えることができる。
特に、この鋳包み用部材を、エンジンシリンダブロックに鋳込まれるシリンダスリーブとして用いる場合、デッキ面側に高凸部領域を備え、クランクケース側に低凸部領域を備えるようにすることで、鋳包み鋳造によって得られるシリンダブロックは、デッキ面側のピストン摺動領域では、鋳鉄とアルミとの間の高い密着性および高い熱伝導性を得ることができ、エンジン実稼働時のボア歪を抑制できる。一方で、クランクケース側のピストン摺動領域以外の領域では、熱伝導性が低いことから、スリーブからシリンダバレル(アルミ側)への熱放散を抑制し、スリーブ全体の温度を均一にすることが可能となるため、全体的にボア歪を抑制可能となる。これにより、メカロスやブローバイガスの低減により燃費を向上させることができる。
また、エンジンのF−R方向とスリーブの低凸部領域を一致させて鋳包むことで、アルミの肉厚を確保しつつスリーブ同士を近づけることが可能となり、ボア間ピッチを短縮できるので、エンジンの軽量化またはダウンサイジング化が可能となる。さらに、凸部を形成することで、アンカー効果によりスリーブとアルミの接触界面における部分的な隙間の発生がなくなるため、スリーブ壁温も安定化する。これにより、スリーブからシリンダバレルへの熱伝導性が向上かつ均一化し、エンジン燃焼熱の放散性を改善できるため、筒内温度上昇にも対応できるため、エンジンの高圧縮化を達成できる。
本発明に係る鋳包み用部材の一例であるシリンダスリーブを模式的に示す斜視図である。 図1のシリンダスリーブの表面を拡大して模式的に示す平面図である。 図1のIII−III線に沿ってシリンダスリーブを示す模式的な断面図である。 図1のシリンダスリーブを一構成要素とするシリンダブロックの一例を示す断面図を示す。 図4においてシリンダスリーブ周辺を拡大して示す断面図である。 (A)、(B)それぞれ、図9〜図11に示す鋳型に適用した場合の、本発明に係る鋳包み用部材の表面の線状の凸部の一例を模式的に示す断面図である。 (A)、(B)それぞれ、図11に示す鋳型に適用した場合の、本発明に係る鋳包み用部材の表面の線状の凸部の略Γ型の一例を模式的に示す断面図である。 (A)、(B)、(C)それぞれ、図11に示す鋳型に適用した場合の、本発明に係る鋳包み用部材の表面の線状の凸部の略T型の一例を模式的に示す断面図である。 本発明に係る鋳包み用部材の製造方法に用い得る鋳型の一例を模式的に示す断面図である。 本発明に係る鋳包み用部材の製造方法に用い得る鋳型の別の例を模式的に示す断面図である。 本発明に係る鋳包み用部材の製造方法に用い得る鋳型の更に別の例を模式的に示す断面図である。 本発明に係る鋳包み用部材の製造方法の一実施の形態を説明する模式的なフロー図である。 本発明に係る鋳包み用部材の製造方法における塗型層の形成メカニズムを説明する模式的なフロー図である。
以下、添付図面を参照して、本発明を実施するための形態を詳細に説明するが、本発明の範囲は、この形態に限定されるものではない。なお、図面は、本発明の理解を優先し、必ずしも縮尺通りに描いたものではない。
先ず、本発明に係る鋳包み用部材の一実施の形態については説明する。本実施形態の鋳包み用部材は、鋳包まれる面上に網目状の凸部を有する。鋳包み用部材の素材としては、鋳鉄、銅合金、錫又は亜鉛合金などの比重が大きく自己摺動性を有する金属が挙げられる。鋳鉄は、一般的に鉄と炭素とケイ素を含む三元合金であり、用途によって他の元素を含んでいてもよい。例えば、鋳鉄は、Fe以外に、鋳鉄全体の質量に対して、3.1〜3.8質量%のT.C(Total Carbon)、1.9〜2.5質量%のSi、0.5〜1.0質量%のMn、0.01〜0.5質量%のP、0.02〜0.1質量%のSを含んでいてもよい。鋳包み用部材の粗材の肉厚が大きい場合や溶湯の鋳込み量が多い場合は、最適な硬さや金属組織を得るために、場合によって、0.01〜1.0質量%のCu、0.01〜0.10質量%のSn、0.01〜0.4質量%のCr、及び他の不可避不純物を含んでいてもよい。
鋳包み用部材本体の形状は、特に限定されるものではなく、用途に合わせて適宜選定することが可能である。例えば筒状、半円筒状、断面がコの字状や⊥の字状となる形状、曲面又は略平面の板状等の形状が挙げられる。鋳包み用部材の例としては、エンジンシリンダブロックに鋳込まれるシリンダスリーブ、電気自動車等の回生ブレーキにおけるアルミ製のドラムブレーキに鋳込まれるブレーキシューと接する摺動部材やブレーキシューのバックプレート、二輪車及び特殊機械用のダイカストホイールハブのボス、さらにはシリンダブロックやロアケースのクランクジャーナル部、ミッションケース等のハウジングの軸受部などの何らかのダイカスト部品に鋳込まれるものが挙げられる。以下、筒状のシリンダスリーブを例示して本発明を説明するが、本発明は特定の形状の鋳包み用部材や特定の製品に限定されるものではない。
図1は、鋳包み用部材の一例であるシリンダスリーブ11の斜視図である。シリンダスリーブの形状としては、筒状形状が挙げられる。シリンダスリーブ11は、外側の表面11sが鋳包まれる面である。図2に、図1のd1で表す領域を拡大した模式的な平面図を示す。シリンダスリーブは、鋳包まれる面11sに、網目状の凸部3を有する。網目状の凸部3は、シリンダスリーブを構成する略平坦な面Fから突出した部分であり、連続した線状の突起構造を有しており、鋳包まれる面の全体にわたって存在している。網目状の凸部3は、線状部分1と、該線状部分が複数合流して形成される集合部分2を備える。
網目状の凸部は、鋳包み用部材の表面において、連続的に形成されており、「連続的に」は、全ての線状部分が繋がっている態様に限定されるものではなく、一部の線状部分のみが繋がっている態様も含む。
図2において、線状部分1は、鋳包み用部材の鋳包まれる面を当該面の鉛直方向から平面視した場合に、凸部が、連続した線状又は帯状の形態で確認できる部分をいう。線状部分は、直線であっても曲線であってもよく、幅や長さ、高さが不均一であっても不定形であってもよい。つまり、凸部の高さがランダムに異なる、線状部分と、集合部分とを備えていてもよい。これにより、凸部間やボア間に金属の溶湯が充填される際、凸部の高さが一様の場合と比べて、凸部の高さの低い部位同士が対面する箇所が存在するようになり凸部間やボア間へ溶湯がより通り易くなり、金属の充填性が向上する。さらに、ボアピッチを従来より更に狭く設定することができ、エンジンのダウンサイジングが可能となる。線状部分の長手方向Laの長さ、及び線状部分の頂部の幅方向の長さLbは、特に限定されるものではない。なお、線状部分の頂部の上面の幅方向の長さは、例えばデジタルマイクロスコープを用いて測定することができ、例えば1〜50点測定し、その平均値又は最小値と最大値に基づいてその測定値が含まれる範囲、好ましくはその測定値全てが含まれる範囲として求めてもよい。
図2において集合部分2は、集合部分2a、2b、2c、及び2dからなる。集合部分2aは、3つの線状部分1a、1b、1cが合流して形成される。集合部分に合流している線状部分の本数は、特に限定されるものではなく、少なくとも2つであり、好ましくは2つ以上6つ以下である。網目状の凸部は、少なくとも2つの集合部分を備えることが好ましい。網目状の凸部に集合部分が2つ以上ある場合、各々の集合部分で合流している線状部分の本数は、同じであっても異なっていてもよい。外周面に形成した網目状の凸部は、鋳包み用部材の剛性を向上させる補強リブの効果をもたらす。かつ、集合部分は、鋳包まれた際に外力により発生する応力を分散させる点から、線状部分が互いにランダムな方向で合流していることが好ましい。線状部分が互いにランダムな方向で合流しているとは、例えば2つの線状部分が平行ではなく異なる向きで集合部分に合流していることである。
図3は、鋳包み用部材の表面の構成を拡大して示す模式的な断面図である。この断面は、鋳包み用部材であるシリンダスリーブの表面に対して軸方向の、線状部分の断面である。凸部3は、高さが相対的に高い高凸部領域3aと、前記凸部の高さが相対的に低い低凸部領域3bとを鋳包まれる面上に部分的に備える。例えば、高凸部領域3aと低凸部領域3bを、鋳包み用部材の軸方向又は周方向に備えることが好ましい。用途、目的に応じて適切な部分に高凸部領域を備えることによって、例えば、エンジン用シリンダブロックにおいて、デッキ面側、吸排方向、ピストンの摺動領域等に適用することによって、鋳包み用部材と鋳包むアルミとの密着性や熱伝導性を向上させ、ボア歪を抑制できる。同様に、適切な部分に低凸部領域を備えることによって、例えば、エンジン用シリンダブロックにおいて、クランクケース側、前後方向、ピストンの摺動領域以外の領域等に適用することによって、スリーブからシリンダバレル(アルミ側)への熱放散を抑制し、スリーブ全体の温度を均一にすることが可能となるため、ボア歪を抑制可能となる。これにより、メカロスやブローバイガスの低減により燃費を向上させることができる。また、エンジンのF−R方向とスリーブの低凸部領域を一致させて鋳包むことで、アルミの肉厚を確保しつつスリーブ同士を近づけることが可能となり、ボア間ピッチを短縮できるので、エンジンの軽量化またはダウンサイジング化が可能となる。
凸部3は、平坦面6から略垂直に立ち上がっている。高凸部領域3aの凸部の高さhaは、好ましくは0.5mm以上2.0mm以下、より好ましくは0.5mm〜1.5mm、さらにより好ましくは0.8〜1.2mmである。0.5mm未満では、鋳包むアルミに対するアンカー効果が不十分となる場合があり、また、剛性を向上させる補強リブの効果を低下させる場合がある。さらに、熱を拡散させるために必要なアルミとの接触面積も不足する場合がある。2.0mmを超えると、遠心鋳造による形成は困難となる場合がある。凸部の高さを上記の範囲とすることで、鋳包む金属と接触する有効面積が増加し、密着性及び熱伝導性を向上させ、ボア歪を抑制でき、かつ、エンジン等の高圧縮化に伴う筒内温度上昇にも対応できる。低凸部領域3bの凸部の高さhbは、凸部の高さhaよりも0.1mm〜1.0mm低く、好ましくは0.2〜0.5mm低い。hbとhaの差が0.1mmよりも小さいと、クランクケース側等に適用される低凸部領域で、鋳包むアルミへの熱放散が過剰になり、全体の温度が不均一になりボア歪が生じやすくなる。hbとhaの差が1.0mmよりも大きいと、特に低凸部領域で、鋳包むアルミに対するアンカー効果が不十分となる場合があり、また、剛性を向上させる補強リブの効果を低下させる場合がある。高凸部領域3aと低凸部領域3bのそれぞれの凸部の高さの差を上記の範囲とすることで、鋳包み用部材から鋳包む金属への熱伝導性が全体的に均一化し、ボア歪を抑制できる。さらに、低凸部領域同士を一致させて鋳包むことによりボア間ピッチを短縮できる。
なお、凸部の高さは、例えばデジタルマイクロスコープの計測機能と画像解析ソフトWinROOF2013を用いて、鋳包み用部材の任意の表面をライン分析して平均値で求めてもよい。または、デジタルマイクロスコープにて断面観察し、任意の計測エリア内において、平坦面6からの各凸部の最小高さと最大高さに基づいてその測定値が含まれる範囲、好ましくはその測定値全てが含まれる範囲として求めてもよい。
ここで、本発明の鋳包み用部材の一用途であるシリンダスリーブについて簡単に説明する。図4に示すように、シリンダブロック10は、シリンダスリーブを一構成要素とするものであり、シリンダブロック10は、鋳包み用部材11をアルミ12で鋳包むことで鋳造される。図5は、図4のシリンダスリーブ周辺の拡大図である。図4、図5に示すように、シリンダブロック10において、デッキ13側のピストンの摺動領域に高凸部領域を、クランクケース14側のピストンの摺動領域以外の領域に低凸部領域を備えることができる。
図6は、線状の凸部の断面の模式的な拡大図である。凸部3が平坦面に対する垂直線に対し傾きを有する形状を含んでもよい。凸部は、線状の突起構造の他に、図6(A)のように、その側面22に凹凸を有していてもよい。また、図6(B)のように、凸部は、平坦面に対する垂直線20に対し、ある程度の角度θで傾斜21して延びていてもよい。図6に示す形状を、凸部3が平坦面に対する垂直線に対し傾きを有する形状ということができる。
線状の凸部を長手方向に対して垂直に切断した際の断面形状は、鋳包み用部材の製造方法によっては、線状の突起構造の他に、略T型や略Γ型の形状となる場合がある。これらの断面形状は、例えば、鋳包まれた際に、鋳包む金属との密着強さや熱伝導性を向上させる観点からは好ましい。略Γ型は、L字を逆さまにしたような形状をしたものである。図7(A)及び(B)は、略Γ型の断面を有する線状部分の一例である。図7(A)において、凸部の頂部は端部になるにつれて細くなっており、図7(B)においては、凸部の頂部は端部まで一定の厚みを有する。略T型は、T字のような形状をしたものである。図8(A)、(B)及び(C)は、略T型の断面を有する線状部分の一例である。
図2に示すように、線状部分1a、1b、1d、1eと集合部分2a、2b、2c、2dによって囲まれた平坦面Fに、内接円Icを描くことができる。この内接円の直径は、好ましくは0.5mm以上30mm以下、より好ましくは1.0〜15mm、さらにより好ましくは1.5mm〜5.0mmである。0.5mm未満では、鋳包み時のアルミと接する有効面積が不十分であり、鋳包むアルミに対する有効なアンカー効果を保ちにくく、また、熱伝導性も不十分となる場合がある。30mmを超えると、鋳包み後にアルミと接する有効面積が不足する場合があり、さらに外力により発生する応力の分散に寄与する有効な網状構造とならない場合がある。内接円の直径を上記範囲とすることにより、鋳包み時のアルミと接する有効面積が十分となり、鋳包み部材として使用された際に熱伝導性が良好となり、また、網状構造が応力を分散し得る。なお、内接円の直径は、例えば鋳包み用部材が筒状の形状である場合、例えばデジタルマイクロスコープを用いて曲面上の凸部の撮影画像を平面上に補正した画像に基づいて、その平坦面に内接円を作成し、例えば1〜50点の内接円から平均値で求めてもよいし、又は、最小径と最大径に基づいてその測定値が含まれる範囲、好ましくはその測定値全てが含まれる範囲として求めてもよい。なお、本発明は、全ての平坦部分が線状部分に周囲全体を囲まれている態様には限定されない。この場合は、いくつかの線状部分に沿った内接円を描き、その直径を上記同様に取り扱うことができる。
また、鋳包み用部材の鋳包まれる面を平面上に投影した場合に、網目状の凸部を平面上に投影した投影面積は、全投影面積に対して、好ましくは5%以上70%以下、より好ましくは10%以上60%以下、さらにより好ましくは16%以上43%以下である。5%未満だと、鋳包み時のアルミと接する有効面積が不十分となる場合があり、また、外力によって発生する応力を低減する補強リブとしての効果が低下する場合がある。70%を超えると、軽量化効果が活かされない場合がある。網目状の凸部の投影面積は、凸部の頂部の上方より凸部を投影した面積である。当該網目状の凸部の投影面積を、全投影面積に対して上記の範囲とすることで、鋳包んだ際に鋳包む金属との密着強さや熱伝達性、熱放散性、剛性を向上させることが可能となり、鋳包んだ後の鋳包み部材としての熱伝導率や比弾性率を向上させることも可能となり得る。なお、投影面積は、例えばマイクロスコープを用いて撮影し、平面補正した画像に基づいて2値化処理を行って算出してもよく、例えば1〜50点の測定結果から平均の凸部投影面積率で求めてもよいし、又は、当該面積率の最小値と最大値に基づいてその測定値が含まれる範囲、好ましくはその測定値全てが含まれる範囲として求めてもよい。
鋳包み用部材の肉厚11bは、好ましくは2〜20mmの厚みを有する。鋳包み用部材の肉厚は、例えば図3では、鋳包み用部材の内周面から外周面の平坦面までの厚みh9と、高凸部領域の網目状の凸部の高さhaの和であり、凸部の高さhaは、鋳包み用部材の肉厚の好ましくは1〜70%、より好ましくは10〜50%を有していてもよい。
このように、鋳包み用部材は、その鋳包まれる表面に、線状部分と集合部分とを備える凸部を有するので、鋳包む金属と接触する面積を従来よりも増大し、熱伝達性、放熱性を効率的に向上させることができる。また、鋳包み用部材は、任意の領域で、凸部の高さが相対的に高い、高凸部領域と、凸部の高さが相対的に低い、低凸部領域とを備える。デッキ面側、吸排方向、ピストン摺動領域等に適用される高凸部領域に鋳包む金属が食い込んで、密着強さを向上させ鋳包む金属との間に隙間を生じにくくさせ、鋳包む金属への熱伝導性を向上かつ均一化させることができるため、ボア歪を抑制でき、かつ、エンジンの高圧縮化に伴う筒内温度上昇にも対応できるようになる。また、クランケース側、前後方向、ピストン摺動領域以外の領域等に適用される低凸部領域では、熱放散を抑制し、全体の温度を均一にすることができるため、ボア歪を抑制でき、かつ、ボア歪を抑制することでメカロスやブローバイガスを低減し、燃費を向上できる。また、エンジンのF−R方向とスリーブの低凸部領域を一致させて鋳包むことで、アルミの肉厚を確保しつつスリーブ同士を近づけることが可能となるため、ボア間ピッチを短縮できる。
さらに、凸部が例えば等方性の網状構造である場合、凸部が補強リブとしての効果をもたらし、様々な方向からの外力により生じる応力の分散と軽減に寄与することが可能となる。例えば鋳包み用部材がシリンダスリーブであれば、ボア径方向又は軸方向の比弾性率を向上させることができ、強いては鋳包み部材の変形を防止し得る。このため、同一の剛性を維持しつつシリンダスリーブを薄肉化や軽量化することが可能となる。
鋳包み用部材は、アルミニウム(アルミともいう)、アルミニウム合金、又は、その他の非鉄合金によって鋳包まれる。ここで、鋳包み用部材をこれらの金属又は合金によって鋳包んで得られる鋳包み部材は、上述したように鋳包み用部材と鋳包むアルミニウム等の金属又は合金との密着性が良好であり、鋳包み部材としての熱伝導性も良好となる。なお、熱伝導率は、レーザーフラッシュ法によって測定することができる。
例えば、鋳包み用部材がエンジンシリンダブロックに鋳込まれるシリンダスリーブである場合、シリンダスリーブは、周囲のアルミ製のシリンダバレルに熱を均一に放散すること、及び、燃焼圧力やシリンダヘッド締結時の圧縮荷重がかかりやすいため剛性が高いことが求められる。本発明をシリンダスリーブに適用し、そのシリンダスリーブを例えばアルミで鋳包むことで、熱伝導率や熱拡散性に優れたエンジンシリンダブロックとすることができる。また、エンジンの圧縮比を上げても効率よくシリンダスリーブからアルミのシリンダバレルへと放熱することができ、高圧縮化に伴う燃焼温度の上昇を抑制し得る。さらに、シリンダスリーブの比弾性率を向上し得るため、同一の重量であれば上記の運転時や締結時に、鋳包んだシリンダスリーブのボア変形、つまり真円度の変化を防止でき、エンジンのメカニカルロスやブローバイガスを低減し得る。同一の剛性のシリンダスリーブであれば、スリーブ自体を薄肉化及び軽量化することができ、強いてはエンジンの軽量化を可能とし得る。
次に、本発明に係る鋳包み用部材の製造方法の一実施の形態については説明する。本実施形態の方法は、鋳型の溶湯を流し込もうとする面に塗型剤を塗布する工程と、塗布した塗型剤を乾燥させて、表面にひび割れの形状を有する塗型層を形成する工程と、塗型層上から溶湯を流しこみ、鋳型を回転させながら鋳造する工程とを主に含む。これら各工程について以下に詳細に説明する。
鋳包み用部材を成形するための鋳型の材質や形状は、特に限定されるものではなく、対象の鋳包み用部材の粗材や用途に合わせて選定してもよい。例えば、鋳包み用部材としてエンジンシリンダブロックに鋳込まれるシリンダスリーブを成形する場合は、鋳型は、金属製の鋳型であることが好ましく、筒状の形状であることが好ましい。
本実施形態の方法に使用し得る鋳型として、例えば、図9に示すように、鋳型の内周面31sは、軸方向に相対的に内径が小さい、基準内径領域Dbと、相対的に内径が大きい、非基準内径領域Daとを備えてもよい。基準内径領域Dbと、非基準内径領域Daは交互に備えられていてもよく、ランダムに備えられていてもよく、また、領域境界80で段になっていてもよく、対象の鋳包み用部材の粗材や用途に合わせて変更してもよい。基準内径領域Dbと非基準内径領域Daは、それぞれ、鋳包み用部材における、低凸部領域と高凸部領域に対応する。基準内径領域Dbの内径は基準内径Dであり、基準内径領域Dbと非基準内径領域Daとの内径差Dcは、0.1mm〜1.0mm、好ましくは0.2〜0.5mmである。内径差Dcを上記の範囲とすることで、適当な箇所に高さの違う凸部領域を備えることにより、例えば、成形後の鋳包み用部材において、エンジン用シリンダブロックに適用した場合に、デッキ面側、吸排方向、ピストン摺動領域等に高凸部領域を適用し、クランクケース側、前後方向、ピストン摺動領域以外の領域等に低凸部領域を適用することにより、鋳包み用部材から鋳包む金属への熱伝導性が全体的に均一化し、ボア歪を抑制できる。さらに、低凸部領域同士を一致させて鋳包むことによりボア間ピッチを短縮できる。
本実施形態の方法に使用し得る鋳型として、別の例として、図10に示すように、鋳型の内周面31sに備える基準内径領域Dbと非基準内径領域Daは、段になっていなくてもよく、例えば連続的に内径が変化する波形状であってもよい。
本実施形態の方法に使用し得る鋳型として、更に別の例として、図11に示すように、鋳型の内周面31sは、軸に対して垂直方向に基準内径領域Dbと非基準内径領域Daとを備えてもよい。このように、軸方向に溝を有する形状にすることにより、成形体を鋳型から抜きやすくなり、鋳包み用部材の作製を簡便にする。また、成形した複数の鋳包み用部材同士を近づける(並列に近づける)場合は、低凸部領域同士を向い合せることで、アルミの肉厚を確保しつつ鋳包み用部材同士を近づけることが可能となるため、確実に充填しつつボア間ピッチを短縮できる。
高凸部領域と低凸部領域とを備える鋳包み用部材は、鋳型内周面に相対的に内径が小さい基準内径領域と、相対的に内径が大きい非基準内径領域を部分的に備える鋳型を使用し、鋳型を回転させた状態で溶湯を遠心力により流し込む遠心鋳造法によって成形することが好ましい。他の成形方法では、内径が一定の鋳型にて、外周面に凸部を有する鋳包み用部材を作製後、切削加工により凸部の高さを低くすることで密着力ないし熱伝導性を任意領域で変更できるが、切削加工に必要な工程が増え、製造コストが高くなるため好ましくない。なお、鋳包み用部材を成形する鋳型の表面は、例えば機械加工のままの略平滑面であってもよい。
図12の模式的なフロー図を用いて、本実施形態の製造方法を更に詳細に説明する。先ず、図12(a)に示すように、容器36内で塗型剤32を調製する。塗型剤は、耐火材と粘結材と溶媒とを少なくとも含むものである。場合によって、骨材を含んでいてもよい。
耐火材としては、鋳型表面の保護に加え、特に、溶湯の白銑化防止や十分な離型性を確保する点から、珪藻土粉体が好ましい。耐火材の配合量の下限値は、塗型剤全体の質量に対して、好ましくは2質量%以上、より好ましくは8質量%以上であり、上限値は、好ましくは40質量%以下、より好ましくは27質量%以下、さらにより好ましくは15質量%以下である。
粘結材としては、ベントナイト、モンモリロナイト、カオリナイト、セピオライト、アタパルジャイト、耐火粘土などが挙げられる。特に、耐火材や骨材と共に溶媒に混合した際、分離を抑制し、塗型剤を鋳型の表面に貼り付けることができる粘度とし得る点から、溶媒を吸収して膨潤するベントナイトが好ましい。粘結材の配合量の下限値は、塗型剤全体の質量に対して、好ましくは2質量%以上、より好ましくは5質量%以上、さらに好ましくは8質量%以上であり、上限値は、好ましくは20質量%以下、より好ましくは12質量%以下、さらに好ましくは10質量%以下である。2質量%未満では、耐火材との分離が発生しやすく、また塗型層の強度が不十分となる場合があり、20質量%を超えると、塗型剤のスラリー粘度が高くなり過ぎてコーティングが困難となる場合がある。
溶媒としては、水を用いてもよい。溶媒の配合量の下限値は、塗型剤全体の質量に対して、好ましくは60質量%以上であり、上限値は、好ましくは85質量%以下である。塗型剤は、上述した材料の他に、例えばブタノールなどの水より沸点の高い有機溶剤を含んでいてもよく、この場合、水と混和して用いてもよい。
塗型剤は、また、上述した材料の他に骨材を含んでいてもよい。骨材としては、ムライトやセラビーズのような酸化アルミニウムと二酸化ケイ素からなる鉱物粉体又は人工セラミックス砂、また、ジルコン砂、クロマイト砂、けい砂、オリビン砂、スピネル砂などの鋳造砂を用いてもよい。特に、耐火材や粘結材との分離を防ぐために比重が小さく、さらに溶媒を吸収せず、乾燥固化時に塗型層の収縮量を促進させて、塗型層のひび割れを増加させる点から、ムライトやセラビーズが好ましい。骨材の配合量の下限値は、塗型剤全体の質量に対して、好ましくは1.0質量%以上、より好ましくは1.5質量%以上、さらにより好ましくは3.0質量%以上であり、上限値は、特に限定されるものではないが、好ましくは25質量%以下であり、より好ましくは10質量%以下である。
耐火材と粘結材と溶媒とを少なくとも混合し、場合によって骨材も混合して、スラリー状の塗型剤としてもよい。
次に、図12(b)に示すように、鋳型31の溶湯を流し込もうとする内周面31sに塗型剤32を塗布する。この塗型剤を塗布する工程では、筒状の鋳型31を一定の向き40に回転させながら、ノズル41を用いて鋳型の内周面31sに塗型剤32を塗布する。ノズル41は、鋳型の内周面31sから一定の距離を保ちながら、一定の速度で筒の長手方向42に移動させて、筒の内周面全体に均一に塗布することが好ましい。円筒状の鋳型を用いる場合、例えば、筒を横にして転がすような状態で、鋳型を回転させることが好ましい。回転時の鋳型の遠心加速度は、4G以上40G以下に設定することが好ましい。
鋳型に塗型剤を塗布する際の鋳型の内周面31sは、塗型剤が急騰しない温度に加熱されていることが好ましい。加熱温度としては、好ましくは110〜210℃、より好ましくは120〜180℃である。
そして、図12(c)に示すように、塗布した塗型剤を乾燥させて、ひび割れの幅と深さが部分的に異なる領域を備える塗型層32sを形成する。この塗型層を形成する工程では、塗型剤を乾燥させるまでの間、鋳型31を一定の向き40に回転させることが好ましい。
塗型剤の乾燥は、塗布後にそのまま鋳型を回転させたまま行うことができる。加熱したまま又はさらに加熱した鋳型の熱によって塗型剤を乾燥・固化させてもよい。回転保持時間は0.25〜3分間であることが好ましい。または、鋳型の回転を停止させた後に、必要に応じて鋳型の内側または外側から鋳型を加熱し、乾燥固化時間の短縮を図ってもよい。
塗布後にさらに加熱することで乾燥させる場合、好ましくは、溶媒の蒸発温度以上であって蒸発温度から110℃高い温度以下の温度で加熱する。これにより、塗型剤の内部から溶媒が急騰するのを抑制し、また、気泡(水蒸気)の過度な発生を抑制した状態で、所定のひび割れの塗型層を形成することができる。加熱温度の下限値は、好ましくは溶媒の蒸発温度以上であり、より好ましくは溶媒の蒸発温度より10℃高い温度以上であり、さらに好ましくは溶媒の蒸発温度より20℃高い温度である。加熱温度の上限値は、好ましくは溶媒の蒸発温度より110℃高い温度以下であり、より好ましくは溶媒の蒸発温度より80℃高い温度以下である。
塗型層の乾燥後の厚みは、特に限定されるものではないが、好ましくは0.1mm〜5.0mm、より好ましくは0.5mm〜2.0mmの平均厚さを有していることが好ましい。
ここで、図13を参照して、塗型層の形成メカニズムについて説明する。図13(a)に示すように、例えば、鋳型31の内周面31sに段差等があって高さが異なっていても、塗型剤32の表面は略平滑に形成される。そして、加熱した鋳型31の内周面31sの塗型剤32から、揮発成分33の一部が蒸発する。図13(b)は、塗型層32sの乾燥固化時の初期の状態を示す。この段階では、塗型層32sから揮発成分33が大量に蒸発し、塗型層32sの表面においてランダムな間隔で収縮34が生じ始め、ひび割れ35iが発生する。ここで、塗型層32sの厚さの違いにより、揮発成分33の量も異なるため、収縮34の量も異なる。塗型層32sの厚さが大きい程、収縮量は大きくなるため、ひび割れ35iの幅はより大きくなり、また、より深くなる。よって、乾燥が進むにつれて、基準内径領域Dbにおける塗型層は相対的にひび割れの幅が小さく深さが浅くなり、非基準内径領域Daにおける塗型層は相対的にひび割れの幅が大きく深さが深くなる。
図13(c)は、乾燥固化時の末期の状態を示す。塗型層32sの収縮34がさらに進行し、塗型層32sの表面から、鋳型31の表面に向かって拡大したひび割れ35mが生じ、塗型層の厚み方向における空隙の断面が楔形状となる。この状態では、塗型層32sの厚さの違いによるひび割れの幅と深さの違いが顕著になり、相対的にひび割れの幅が小さく深さが浅いひび割れ35mbからなる、低ひび割れ領域Ebと、相対的にひび割れの幅が大きく深さが深いひび割れ35maからなる、高ひび割れ領域Eaが形成される。このようなひび割れの状態で完全に乾燥固化する。
この乾燥固化時の末期の状態のとき、軸方向に基準内径領域と、非基準内径領域とを備える図9のような鋳型、及び、基準内径領域と非基準内径領域が、段になっていない、例えば連続的に内径が変化する波形状になっている図10のような鋳型を用いる場合は、どちらの領域のひび割れ35ma、35mbも、鋳型の内周面31sに達しないように調節することが好ましい。特に、幅が大きく深さが深いひび割れ35maが、鋳型31の基準内径Dよりも深くならないようにひび割れの深さをコントロールすることが好ましい。これにより、鋳包み用部材を成形した後、鋳型31から引き抜くときに、高ひび割れ領域Eaのひび割れ35maにおいて形成された高凸部領域が鋳型31の内周面31sによって損傷されることなく、スムーズに引き抜くことができ、より簡便に所望の構造の鋳包み用部材を成形することができる。
一方で、この乾燥固化時の末期の状態のとき、軸に対して垂直方向に基準内径領域と、非基準内径領域とを備える図11のような鋳型を用いる場合は、鋳包み用部材を成形した後、軸方向に鋳型31から引き抜くので、ひび割れ35ma、35mbが、鋳型の内周面31sに達しても、及び、ひび割れ35maが、鋳型31の基準内径Dよりも深くなっても、ひび割れ35ma、35mbにおいて形成された高凸部領域と低凸部領域の凸部が損傷されることなく、スムーズに引き抜くことができ、より簡便に所望の構造の鋳包み用部材を成形することができる。
図13(d)は、図13(c)よりもさらに乾燥固化を進行させた状態を示す。塗型層32sにてより深いひび割れ35fが生じる。低ひび割れ領域Ebでは、塗型層を貫通し鋳型の内周面31sに達したひび割れ35fbが生じ、高ひび割れ領域Eaでは、基準内径Dよりも深いひび割れ35faが生じる。
この乾燥固化を進行させた状態のとき、軸方向に基準内径領域と、非基準内径領域とを備える図9のような鋳型、及び、基準内径領域と非基準内径領域が、段になっていない、例えば連続的に内径が変化する波形状になっている図10のような鋳型を用いる場合は、ひび割れ35fbが鋳型の内周面31sに達したり、基準内径Dよりも深いひび割れ35faが生じたりすると、鋳包み用部材を成形した後、鋳型31から引き抜くときに、ひび割れ35faにおいて形成された高凸部領域を引き抜くことが困難になる。よって、軸方向に基準内径領域と非基準内径領域を有する鋳型を用いた場合、低凸部領域及び高凸部領域では、図6で示すような傾きを有する凸部を備える場合はあるが、図7及び図8で示すような括れを有する凸部を備えないように凸部の高さをコントロールすることが好ましい。
一方で、この乾燥固化を進行させた状態のとき、軸に対して垂直方向に基準内径領域と、非基準内径領域とを備える図11のような鋳型を用いる場合は、高ひび割れ領域Eaで基準内径Dよりも深いひび割れ35faが生じていても、低ひび割れ領域Ebのひび割れ35fbが鋳型の内周面31sに達していてもよい。鋳包み用部材を成形した後、軸方向に鋳型31から引き抜くので、スムーズに引き抜くことができるからである。このように内周面31sに達したひび割れ35fbは、塗型層の収縮により、鋳型表面に沿ってさらに広がる。このようにして得られたひび割れにおいて形成される凸部領域は、図7及び図8で示すような括れを有する凸部を備える。すなわち、軸に対して垂直方向に基準内径領域と、非基準内径領域とを備える鋳型を用いる場合は、図6で示すような傾きを有する凸部の他に、図7及び図8で示すような括れを有する凸部を備える場合もある。
鋳包み用部材の製造方法の説明に戻ると、図12(d)に示すように、塗型層32sの上から鋳型31に鋳鉄溶湯43を流しこみ、鋳型31を一定の向き40に回転させながら遠心鋳造する。この鋳造工程では、図12(b)と同様に、鋳型を回転させながら、ノズル等の溶湯供給手段を用いて筒の内側に溶湯を流し込むことができる。鋳型を回転させる場合、鋳型の遠心加速度は、100G以上120G以下に設定することが好ましい。鋳型を回転させることにより、遠心力によって溶湯が塗型層のひび割れの内にも流れ込み、鋳包み用部材の表面に所望の線状突起構造を形成することができる。溶湯の温度は、使用する鋳鉄、金属又は合金等が溶融する温度であれば特に限定されるものではないが、鋳鉄であれば1380〜1450℃であることが好ましい。また、溶湯を鋳型に投入する際の、鋳型の温度は、100〜300℃であることが好ましい。
そして、図12(e)に示すように、鋳鉄溶湯を凝固させる。この凝固工程では、鋳鉄溶湯43を鋳型31の外側から冷却して凝固させることで、鋳包み用部材型の成形体44を得る。鋳型に溶湯を流し込んで鋳造した後、例えば0.25〜1分間保持して自然冷却し凝固させてもよいし、例えば成形体の温度が共晶凝固終了温度から共晶凝固終了温度より100℃低い温度となる温度まで自然冷却し、溶湯を凝固させてもよい。溶湯を凝固させた後に、鋳型の回転を停止させることが好ましい。成形体44を構成する金属組織内にフェライトが析出するのを防ぐため、鋳包み用部材の質量又は肉厚によっては、共析変態(Ar1変態)の終了温度、例えば約730℃までの温度で、鋳型を回転させながら、鋳型の外側を例えば水冷してもよい。このようにして溶湯を凝固、冷却させることで、鋳包み用部材型の成形体が得られる。
次に、図12(f)に、鋳包み用部材型の成形体44を鋳型31から取り出す。鋳型から成形体を取り出す方法としては、特に限定されるものではなく、鋳型の形状に合わせて手法を選定する。例えば、筒型の鋳型の場合、成形体44の内径端部に外側に開口する爪を有するチャックを取り付け、チャックの他端側を油圧シリンダなどを用いて図中の矢印方向45へ引き抜くようにして、鋳型31から取り出すことができる。
そして、図12(g)に示すように、鋳型31から取り出した成形体44から塗型層32sを取り除く。鋳型から取り出した成形体には、その表面に塗型層が付着している場合がある。成形体から塗型層を取り除く方法として、特に限定されるものではないが、ショットブラスト又はウォータージェット、ドライアイス研掃等が挙げられる。例えば成形体44を矢印方向46へ移動させ、成形体44の表面の塗型層32sにブラスト47を投射し、成形体44から塗型層32sを除去することができる。ショットブラストの場合、投射メディアとして、粒度が#240〜#8000、平均粒径が0.5〜60μmのセラミックス粉末を用いてもよく、投射圧力は、0.1〜0.4MPaであることが好ましい。ウォータージェットの場合、投射圧力は、0.1〜0.4MPaであることが好ましい。
図12(h)に、成形体から塗型層を取り除いた後の、鋳包み用部材48を示す。成形体から塗型層を取り除くことで、その表面48sに網目状の凸部を有する鋳包み用部材48が得られる。
本発明によれば、単一の鋳包み用部材の鋳包まれる表面上に、従来の製造方法では成し得なかった、網目状の凸部であって、線状部分の凸部の高さが異なる高凸部領域と低凸部領域を形成することができる。また、本発明の鋳包み用部材は、高剛性で、熱伝達性、熱放散性や熱伝導性に優れた摺動部品以外の部材、例えば、アルミブレーキドラムや二輪車用アルミダイカスト製ホィールハブ、パワートレーン系の軸受ジャーナル部など回転トルクが作用する部位の鋳包み部材にも適用できる。
鋳包み用部材の鋳包まれる表面に、高凸部領域と低凸部領域とを部分的に備えた連続した線状の突起構造を形成するためには、上記した製法が好ましい。鋳包み用部材の鋳包まれる表面の一部を研削又は切削してもよい。
得られた鋳包み用部材を、例えば、ダイカスト法によって鋳包んでもよい。射出条件は、特に限定されるものではないが、例えばADC12やADC10、ADC3を用いて、620〜670℃で注湯し、射出圧力50〜100MPa、射出速度1.5〜4.0m/秒で行ってもよい。このようにして鋳包み部材を得ることができる。
(鋳包み用部材の作製)
<試験例1>
塗型剤は、珪藻土15質量%、ベントナイト10質量%、及び水75質量%の混合比で混合し、パワーミキサー装置(リョービ株式会社製)で攪拌して作製した。
鋳包み用部材の鋳型として、図9に示す、基準内径領域の基準内径約79mm、非基準内径領域の内径約80mmの、軸方向に内径が異なる領域を備える円筒状の鋳型を用い、筒の内周面の鋳型温度を160℃とした。この温度は、接触温度計又は放射温度計によって測定できる。鋳型は、筒状の部分(筒の長手方向)を横にし、4〜10Gの遠心加速度で回転させながら、鋳型の内周面にノズルを用いて塗型剤を塗布し、塗型層を形成した。塗布後、約1分間、鋳型の回転を保持し、鋳型の内周面上に塗型層を形成した。得られた塗型層は、その表面にひび割れの幅と深さが部分的に異なる領域を備える形状を形成しており、層の平均厚みは約1mmであった。層の厚みは、電磁式膜厚計((株)サンコウ電子研究所製、型番SWT−8000II)に測定プローブ(Fe−2.5LwA)を接続して塗型層の表面を10箇所測定し、それらの測定値から平均を算出した。
次に、内周面上に塗型層を形成した鋳型に溶湯を流し込み、鋳包み用部材を鋳造した。溶湯として、1420℃で溶融させた鋳鉄を用いた。溶湯を鋳型に注湯する際、鋳型の内周面の温度を160℃とし、120Gの遠心加速度で回転させながら行った。鋳型に溶湯を注湯した後、鋳型を回転させたまま0.5分間保持し、その後、鋳型を回転させたまま鋳型の外周面から冷水を用いて730℃以下となるまで冷却し、溶湯を凝固、冷却させて、鋳包み用部材の成形体を得た。
溶湯を凝固、冷却させた後、鋳型の回転を停止させ、成形体の内径端部に外側に開口する爪チャックを取り付け、チャックの他端を油圧シリンダにつないで鋳型と逆方向に移動させて成形体を鋳型から引き抜いた。引き抜いた成形体の外周面にブラストを投射して、成形体から塗型層を除去した。投射したブラストは、平均粒径23μmのセラミックス粉末であり、投射圧力は、0.3MPaであった。このようにして、塗型層を除去し、内径64mm、鋳包み用部材の肉厚7.5mmの鋳包み用部材の長筒状粗材を得た。さらに、この鋳包み用部材の粗材を必要な長さに切断し、さらに外径を基準とする旋盤加工によって内周面に機械加工を施して、長さ124mm、肉厚4.5mmの鋳包み用部材を得た。上記鋳包み用部材の肉厚は、鋳包み用部材の内周面から外周面の平坦面までの厚みと、高凸部領域の網目状の凸部の高さの和であり、ノギスによって両端面の厚さを5箇所測定し、それらの平均値を算出した。表1に、観察した凸部の領域、鋳包み用部材を得るための塗型剤の配合比、鋳型温度、鋳包み用部材の肉厚、及び高凸部領域と低凸部領域のそれぞれの平均凸部高さを示す。
Figure 0006979171
<試験例2〜8>
塗型剤の配合比、鋳型温度、鋳包み用部材の肉厚、及び高凸部領域と低凸部領域のそれぞれの平均凸部高さを表1となるようにした以外は、試験例1と同様にして行い、鋳包み用部材を得た。
(鋳包み部材の作製)
試験例1〜8の各鋳包み用部材をダイカスト法により、その外周面をアルミで鋳包んだ略円筒形状の鋳包み部材を作製した。アルミはADC12を用い、650℃で注湯し、射出圧力65MPa、射出速度2.0m/秒で鋳造した。得られた鋳包み部材を、その内周面を基準にして外周面のアルミを外径81mmとなるまで旋盤加工し、その後、外周面を基準として鋳包み部材の内周面を内径73mmとなるよう旋盤加工して鋳包み部材の厚みが4mmとなるようにした。
[鋳包み部材の熱伝導性評価]
試験例1〜8の鋳包み部材から試験装置に適合できる直径の円形板を削り出して試験片とした。試験片は、鋳包み用部材とそれを鋳包むアルミの界面を中心として双方が同じ肉厚となるようにした。熱伝導性試験として、熱定数測定装置(アルバック理工社製、TC−7000)を用いて、レーザーフラッシュ法(LF法)により、室温(25℃)、大気中において、試験片の鋳鉄面にレーザー照射を行い、比熱と熱拡散率を測定し、以下の式(1)から熱伝導率を算出した。
λ=Cp×α×ρ (1)
式中、λは熱伝導率、Cpは比熱、αは熱拡散率、ρは室温における密度である。室温における密度は、室温(25℃)、大気中で測定した試験片の寸法と重量を用いて算出した。表2に、アルミ溶湯充填時の熱伝導率を示す。
[鋳包み部材の密着強さ評価]
試験例1〜8の鋳包み部材から300〜500mmの密着面積を有する四角形の試験片を8個削り出した。試験片のアルミ側の面と鋳鉄側の表面に、熱硬化性エポキシ系接着剤で引張治具をそれぞれ固定し、精密万能試験機(島津製作所製、AG−100kN Xplus)を用いて、垂直剥離試験を行った。鋳包み用部材とアルミが剥離した時の最大荷重を試験前の試験片の密着面積で除した値を密着強さとした。表2に、アルミ溶湯充填時のアルミとの密着強さを示す。
Figure 0006979171
高凸部領域凸部では、凸部が相対的に高いことにより、密着性及び熱伝導性が向上したことが確認された。低凸部領域の凸部では、凸部が相対的に低いことにより、熱伝導率が抑制されることが確認された。このように、試験例1〜4に示すような高凸部領域と試験例5〜8に示すような低凸部領域とを単一の鋳包み用部材に設けることで、大きく異なる密着性及び熱伝導性を有する領域を有する鋳包み用部材を提供することができる。
1 :線状部分
1a、1b、1c、1d、1e:線状部分
2 :集合部分
2a、2b、2c、2d :集合部分
3 :網目状の凸部
3a :高凸部領域
3b :低凸部領域
6 :凸部の底面(平坦面)
35i、35ma、35mb、35fa、35fb:ひび割れ
D :基準内径
Da :非基準内径領域
Db :基準内径領域
Ea :高ひび割れ領域
Eb :低ひび割れ領域
La :線状部分の長手方向の長さ
Lb :線状部分の短手方向の長さ(幅)
h3 :凸部の高さ
h9 :鋳包み部材の平坦面までの厚み
ha :高凸部領域の凸部の高さ
hb :低凸部領域の凸部の高さ
F :平坦面
Ic :内接円

Claims (6)

  1. 鋳包まれる面上に網目状の凸部と平坦面とを有する鋳包み用部材であって、
    前記網目状の凸部が、線状部分と、少なくとも2つの線状部分が合流している集合部分とを備え、
    前記凸部が、前記平坦面から立ち上がる縦壁部分を備え、
    a)前記凸部が、前記縦壁部分と頂部とを備え、前記縦壁部分の幅と比較して前記頂部の幅が大きい形状を備え、及び/または
    b)前記凸部の高さがランダムに異なる形状を備え、
    前記線状部分の凸部の前記平坦面からの高さが相対的に高い、高凸部領域と、前記線状部分の凸部の前記平坦面からの高さが相対的に低い、低凸部領域とを備える、鋳包み用部材。
  2. 前記鋳包み用部材が円筒形状を有し、この円筒形状の軸方向または周方向に沿って前記高凸部領域と前記低凸部領域とを備える、請求項1に記載の鋳包み用部材。
  3. 前記鋳包み用部材が、エンジンシリンダブロックに鋳込まれるシリンダスリーブであって、デッキ面側に前記高凸部領域を備え、クランクケース側に前記低凸部領域を備える、請求項1又は2に記載の鋳包み用部材。
  4. 前記高凸部領域における前記凸部の高さと前記低凸部領域における前記凸部の高さとの差が、0.1mm以上である、請求項1〜3のいずれか一項に記載の鋳包み用部材。
  5. 鋳型の溶湯を流し込もうとする面に塗型剤を塗布する工程と、
    前記塗布した塗型剤を乾燥させて、表面にひび割れの形状を有する塗型層を形成する工程と、
    前記塗型層上から溶湯を流しこみ、前記鋳型を回転させながら鋳造する工程とを少なくとも含み、
    前記鋳型の溶湯を流し込もうとする面は、少なくとも2つの異なる高さの領域を有しており、これによって、前記塗型層は、厚さが相対的に厚い領域と薄い領域とを有し、
    前記ひび割れは、前記厚い領域において、相対的にひび割れの幅が大きく深さが深く、前記薄い領域において、相対的にひび割れの幅が小さく深さが浅い、鋳包み用部材の製造方法。
  6. 前記塗型層の前記厚い領域に形成される前記幅が大きく深さが深くひび割れが、前記薄い領域の前記塗型層の厚さよりも、ひび割れの深さを浅くするように制御する、請求項5に記載の鋳包み用部材の製造方法。
JP2017220946A 2017-11-16 2017-11-16 鋳包み用部材及びその製造方法 Active JP6979171B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017220946A JP6979171B2 (ja) 2017-11-16 2017-11-16 鋳包み用部材及びその製造方法
DE102018125395.8A DE102018125395B4 (de) 2017-11-16 2018-10-15 Einsetzelement und verfahren zur herstellung desselben
FR1859763A FR3073434B1 (fr) 2017-11-16 2018-10-23 Element d'insertion et son procede de fabrication
CN201811347787.3A CN109794593B (zh) 2017-11-16 2018-11-13 镶铸用构件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017220946A JP6979171B2 (ja) 2017-11-16 2017-11-16 鋳包み用部材及びその製造方法

Publications (2)

Publication Number Publication Date
JP2019089115A JP2019089115A (ja) 2019-06-13
JP6979171B2 true JP6979171B2 (ja) 2021-12-08

Family

ID=66335319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017220946A Active JP6979171B2 (ja) 2017-11-16 2017-11-16 鋳包み用部材及びその製造方法

Country Status (4)

Country Link
JP (1) JP6979171B2 (ja)
CN (1) CN109794593B (ja)
DE (1) DE102018125395B4 (ja)
FR (1) FR3073434B1 (ja)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593178Y2 (ja) * 1980-04-23 1984-01-28 スズキ株式会社 内燃機関のシリンダ
JPH075240Y2 (ja) * 1989-07-06 1995-02-08 本田技研工業株式会社 内燃機関のシリンダーライナー構造
US5291862A (en) * 1992-01-09 1994-03-08 Honda Giken Kogyo Kabushiki Kaisha Cylinder sleeve assembly used in cylinder block for multi-cylinder internal combustion engine, and forming mold for use in production of sand mold for casting the same
JP2816920B2 (ja) * 1992-01-09 1998-10-27 本田技研工業株式会社 多気筒内燃機関用シリンダブロックに用いられるシリンダスリーブ集合体
GB9515926D0 (en) * 1995-08-03 1995-10-04 T & N Technology Ltd Manufacture of brake pads
JP3866473B2 (ja) * 2000-02-08 2007-01-10 本田技研工業株式会社 シリンダブロックのスリーブ構造
JP3976991B2 (ja) * 2000-07-12 2007-09-19 本田技研工業株式会社 金属製被鋳包み部材
JP3300331B2 (ja) * 2000-09-01 2002-07-08 本田技研工業株式会社 円筒状金属製被鋳込み部材の製造方法
DE10125615A1 (de) * 2001-05-25 2002-12-05 Mahle Gmbh Form und Verfahren zur Herstellung eines verlorenen Schaumstoffgußmodells für eine Leichtmetall-Laufbuchse
JP4429025B2 (ja) * 2004-01-09 2010-03-10 トヨタ自動車株式会社 鋳包み用シリンダライナ
JP4474338B2 (ja) 2005-07-08 2010-06-02 トヨタ自動車株式会社 シリンダライナ及びエンジン
JP4452661B2 (ja) * 2005-07-08 2010-04-21 トヨタ自動車株式会社 鋳ぐるみ用部品、シリンダブロック、鋳ぐるみ用部品被膜形成方法及びシリンダブロック製造方法
JP4584058B2 (ja) 2005-07-08 2010-11-17 トヨタ自動車株式会社 シリンダライナ及びその製造方法
JP4512001B2 (ja) * 2005-07-08 2010-07-28 トヨタ自動車株式会社 シリンダライナ、シリンダブロック及びシリンダライナ製造方法
JP2009243386A (ja) * 2008-03-31 2009-10-22 Toyota Motor Corp シリンダライナおよびシリンダブロック
JP5388475B2 (ja) * 2008-04-30 2014-01-15 Tpr株式会社 鋳包構造体
JP2012141044A (ja) * 2011-01-06 2012-07-26 Honda Motor Co Ltd クランク軸支持構造
DE102012211866A1 (de) 2012-07-06 2014-01-09 Mahle International Gmbh Zylinderlaufbuchse
CN103016723B (zh) * 2012-11-29 2016-08-03 广东肇庆动力金属股份有限公司 一种铝包容气缸套的制备方法
US10094325B2 (en) * 2014-01-28 2018-10-09 ZYNP International Corp. Cylinder liner
CN106555697A (zh) * 2015-09-29 2017-04-05 张凌 石墨铸铁气缸套
US10215128B2 (en) * 2016-04-27 2019-02-26 Mahle International Gmbh Rough cast cylinder liner
DE102017206858A1 (de) 2016-04-27 2017-11-02 Mahle International Gmbh Raugusszylinderlaufbuchse
JP6256524B2 (ja) * 2016-05-17 2018-01-10 スズキ株式会社 鋳包み用部材及びその製造方法

Also Published As

Publication number Publication date
FR3073434A1 (fr) 2019-05-17
DE102018125395B4 (de) 2021-09-23
FR3073434B1 (fr) 2023-08-04
DE102018125395A1 (de) 2019-05-16
JP2019089115A (ja) 2019-06-13
CN109794593A (zh) 2019-05-24
CN109794593B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6256524B2 (ja) 鋳包み用部材及びその製造方法
JP3253605B2 (ja) 鋳ぐるみ用鋳鉄部材、それを用いた鋳ぐるみ製品、及び鋳ぐるみ用鋳鉄部材の製造方法
US7383805B2 (en) Cylinder liner for insert casting and method for manufacturing thereof
US3069209A (en) Method of bonding a bi-metallic casting
JP5388475B2 (ja) 鋳包構造体
CN100578005C (zh) 气缸套和发动机
JP6705045B2 (ja) 鋳包み用シリンダライナ、及びシリンダブロックの製造方法
JP7039953B2 (ja) 鋳包み用部材及びその製造方法
JP2012067740A (ja) 鋳包用シリンダライナ
JP6979171B2 (ja) 鋳包み用部材及びその製造方法
CN214517524U (zh) 铸造用气缸套筒
CN107377944B (zh) 镶铸用构件
JP3883502B2 (ja) 鋳ぐるみ用鋳鉄部材
JP7429853B2 (ja) 鋳ぐるみ用部材
JP4409101B2 (ja) 鋳ぐるみ部材とその製造方法およびそれを鋳込んだ鋳造品
JP2003181621A (ja) 鋳ぐるみ用鋳鉄部品
US20220088671A1 (en) High heat-absorption core for manufacturing of castings
CN117020119A (zh) 一种金属铸件的铸造方法
KR20210078950A (ko) 수축결합용 주철재 인써트 및 이를 이용한 이종금속 부품의 주조방법
BRPI0904476B1 (pt) estrutura de fundição de inserção
JP2011245521A (ja) ダイキャスト方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211028

R151 Written notification of patent or utility model registration

Ref document number: 6979171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151