[go: up one dir, main page]

JP6958307B2 - 昇圧コンバータ装置およびその制御方法 - Google Patents

昇圧コンバータ装置およびその制御方法 Download PDF

Info

Publication number
JP6958307B2
JP6958307B2 JP2017236104A JP2017236104A JP6958307B2 JP 6958307 B2 JP6958307 B2 JP 6958307B2 JP 2017236104 A JP2017236104 A JP 2017236104A JP 2017236104 A JP2017236104 A JP 2017236104A JP 6958307 B2 JP6958307 B2 JP 6958307B2
Authority
JP
Japan
Prior art keywords
boost converter
learning
offset amount
current sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017236104A
Other languages
English (en)
Other versions
JP2019106744A (ja
Inventor
佐藤 和良
康宏 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017236104A priority Critical patent/JP6958307B2/ja
Priority to US16/106,827 priority patent/US10381931B2/en
Priority to CN201810972639.4A priority patent/CN109905026B/zh
Publication of JP2019106744A publication Critical patent/JP2019106744A/ja
Application granted granted Critical
Publication of JP6958307B2 publication Critical patent/JP6958307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Description

本発明は、昇圧コンバータ装置およびその制御方法に関し、詳しくは、昇圧コンバータと、電流センサと、を備える昇圧コンバータ装置およびその制御方法に関する。
従来、この種の昇圧コンバータ装置としては、昇圧コンバータ(DC/DCコンバータ)と、昇圧コンバータに流れる電流を検出する電流センサと、を備えるものが提案されている(例えば、特許文献1参照)。この装置では、昇圧コンバータのスイッチング素子が停止中で昇圧コンバータの出力電圧が入力電圧より大きいとき、すなわち、電流センサに電流が流れていないときに、電流センサのオフセット量の学習(原点学習)を実行している。
特開2012−248421号公報
上述の昇圧コンバータ装置では、電流センサのオフセット量には温度特性があることから、電流センサ自体の温度が変化すると、電流センサのオフセット量が変化してしまう。そのため、電流センサの温度に拘わらず、電流センサに電流が流れていないときに電流センサのオフセット量の学習(原点学習)を実行すると、オフセット量の学習を適正に行なえず、昇圧コンバータを適正に制御することができなくなる。
本発明の昇圧コンバータ装置およびその制御方法は、昇圧コンバータをより適正に制御することを主目的とする。
本発明の昇圧コンバータ装置およびその制御方法は、上述の主目的を達成するために以下の手段を採った。
本発明の昇圧コンバータ装置は、
蓄電装置に接続される第1電力ラインとモータを駆動するインバータに接続される第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう昇圧コンバータと、
前記昇圧コンバータに流れる電流を検出する電流センサと、
前記電流センサにより検出された検出値を用いて前記昇圧コンバータを制御する制御装置と、
を備える昇圧コンバータ装置であって、
前記制御装置は、
前記電流センサが規定温度範囲内の温度となったときには、前記第2電力ラインの電圧が目標電圧となるように前記昇圧コンバータを間欠的に作動させる間欠昇圧制御を実行すると共に前記電流センサのオフセット量を学習し、
前記学習したオフセット量と前記電流センサの温度とを用いて補正した補正値で前記検出値を補正した補正後電流値を用いて前記昇圧コンバータを制御する、
ことを要旨とする。
この本発明の昇圧コンバータ装置では、昇圧コンバータに流れる電流を検出する電流センサを備えている。そして、電流センサにより検出された検出値を用いて昇圧コンバータを制御する。さらに、電流センサが規定温度範囲内の温度となったときには、第2電力ラインの電圧が目標電圧となるように昇圧コンバータを間欠的に作動させる間欠昇圧制御を実行すると共に電流センサのオフセット量を学習する。「規定温度範囲」は、電流センサのオフセット量を学習する電流センサの温度範囲として予め規定されたものである。間欠昇圧制御を実行させて、昇圧コンバータの電流が値0となる期間で電流センサのオフセット量を学習することにより、より適正にオフセット量を学習することができる。そして、学習したオフセット量と電流センサの温度とを用いて補正した補正値で検出値を補正した補正後電流値を用いて昇圧コンバータを制御する。これにより、電流センサの温度を考慮せずに学習した学習値で検出値を補正するものに比して、より適正に補正値を設定し、より適正に昇圧コンバータを制御することができる。
こうした本発明の昇圧コンバータ装置において、前記制御装置は、前記オフセット量を学習したときには、前記オフセット量の学習値と前記学習値を学習したときの前記電流センサの温度である学習時温度とを用いて前記学習値と前記電流センサの温度との関係である補正値テーブルを作成し、前記電流センサの温度と前記補正値テーブルとを用いて得られる前記学習値で前記検出値を補正した前記補正後電流値を用いて前記昇圧コンバータを制御してもよい。こうすれば、より適正に補正値を設定することができ、より適正に設定した補正後電流値を用いて昇圧コンバータを制御することができる。
また、本発明の昇圧コンバータ装置において、前記制御装置は、前記電流センサが前記規定温度範囲内の温度であるときでも、前記規定温度範囲内での前記電流センサのオフセット量の学習が既に実行されているときには、前記学習を実行しなくてもよい。こうすれば、より適正に昇圧コンバータを制御することができる。
さらに、本発明の昇圧コンバータ装置において、前記制御装置は、前記昇圧コンバータ装置のシステム停止要求がなされたときには、前記オフセット量の学習結果を初期化してもよい。こうすれば、電流センサの経時劣化に応じた補正値で検出値を補正することができる。
そして、本発明の昇圧コンバータ装置において、前記制御装置は、データを記憶する不揮発性メモリ、を備え、前記オフセット量を学習したときには、前記学習したオフセット量を前記不揮発性メモリに保存し、前記不揮発性メモリに保存されている前記オフセット量で前記検出値を補正した補正後電流値を用いて前記昇圧コンバータを制御してもよい。こうすれば、昇圧コンバータ装置の起動時に不揮発性メモリに学習したオフセット量が保存されているから、起動時から適正に昇圧コンバータを制御することができる。
不揮発性メモリを備える態様の本発明の昇圧コンバータ装置において、前記制御装置は、前記オフセット量の学習を実行した後における、前記昇圧コンバータ装置の起動回数をカウントし、前記カウントされた起動回数が所定回数以上となったときには、前記不揮発性メモリに保存されている前記オフセット量を初期化してもよい。こうすれば、オフセット量の学習を実行する回数を減らしつつ、電流センサの経時劣化に応じた補正値で検出値を補正することができる。
不揮発性メモリを備える態様の本発明の昇圧コンバータ装置において、前記制御装置は、前記電流センサが複数の規定温度範囲のうちのいずれか1つの規定温度範囲内の温度となったときには、前記間欠昇圧制御を実行して前記電流センサのオフセット量を学習し、前記補正後電流値を用いて前記昇圧コンバータを制御し、更に、前記制御装置は、前記複数の規定温度範囲毎に、前記オフセット量の学習を実行した後における、前記昇圧コンバータ装置の起動回数をカウントし、前記カウントした起動回数が所定回数を超えたときには、前記不揮発性メモリに保存されている前記オフセット量のうち前記カウントした起動回数が前記所定回数を超えている前記規定温度範囲におけるオフセット量を初期化してもよい。カウントした起動回数が所定回数を超えている規定温度範囲におけるオフセット量を初期化することにより、規定温度範囲を考慮せず、昇圧コンバータ装置の起動回数をカウントし、カウントされた起動回数が所定回数を超えたときには不揮発性メモリに保存されているオフセット量を初期化するものに比して、よりオフセット量の学習を実行する回数を減らすことができる。
本発明の昇圧コンバータ装置の制御方法は、
蓄電装置に接続される第1電力ラインとモータを駆動するインバータに接続される第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう昇圧コンバータと、
前記昇圧コンバータに流れる電流を検出する電流センサと、
を備える昇圧コンバータ装置の制御方法であって、
前記電流センサが規定温度範囲内の温度となったときには、前記第2電力ラインの電圧が目標電圧となるように前記昇圧コンバータを間欠的に作動させる間欠昇圧制御を実行すると共に前記電流センサのオフセット量を学習し、
前記学習したオフセット量と前記電流センサの温度とを用いて補正した補正値で前記検出値を補正した補正後電流値を用いて前記昇圧コンバータを制御する、
ことを要旨とする。
この本発明の昇圧コンバータ装置の制御方法では、昇圧コンバータに流れる電流を検出する電流センサを備えている。そして、電流センサにより検出された検出値を用いて昇圧コンバータを制御する。さらに、電流センサが規定温度範囲内の温度となったときには、第2電力ラインの電圧が目標電圧となるように昇圧コンバータを間欠的に作動させる間欠昇圧制御を実行すると共に電流センサのオフセット量を学習する。「規定温度範囲」は、電流センサのオフセット量を学習する電流センサの温度範囲として予め規定されたものである。間欠昇圧制御を実行させて、昇圧コンバータの電流が値0となる期間で電流センサのオフセット量を学習することにより、より適正にオフセット量を学習することができる。そして、学習したオフセット量と電流センサの温度とを用いて補正した補正値で検出値を補正した補正後電流値を用いて昇圧コンバータを制御する。これにより、電流センサの温度を考慮せずに学習した学習値で検出値を補正するものに比して、より適正に補正値を設定し、より適正に昇圧コンバータを制御することができる。
本発明の一実施例としての昇圧コンバータ装置を搭載する駆動装置20の構成の概略を示す構成図である。 制御装置70のCPUにより実行される起動時学習ルーチンの一例を示すフローチャートである。 制御装置70のCPUにより実行される通常時学習ルーチンの一例を示すフローチャートである。 オフセット量ILoffの時間変化の一例を示すタイミングチャートである。 制御装置70のCPUにより実行されるリアクトルLの電流ILを算出する電流算出ルーチンの一例を示すフローチャートである。 電流センサ40aの温度とオフセット量ILoffとの関係の一例を示す説明図である。 第1変形例の起動時学習ルーチンの一例を示すフローチャートである。 第1変形例の通常時学習ルーチンの一例を示すフローチャートである。 第2変形例の起動時学習ルーチンの一例を示すフローチャートである。 第2変形例の通常時学習ルーチンの一例を示すフローチャートである。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としての昇圧コンバータ装置を搭載する駆動装置20の構成の概略を示す構成図である。実施例の駆動装置20は、図示するように、モータ32と、インバータ34と、バッテリ36と、昇圧コンバータ40と、コンデンサ46,48と、システムメインリレーSMRと、制御装置70と、を備える。駆動装置20は、例えば、モータ32からの動力で走行する電気自動車などに搭載される。
モータ32は、同期発電電動機として構成されており、永久磁石が埋め込まれた回転子と、三相コイルが巻回された固定子と、を備える。
インバータ34は、モータ32に接続されると共に高電圧系電力ライン42aに接続されている。インバータ34は、図示しない複数のトランジスタ(スイッチング素子)を備えている。モータ32は、高電圧系電力ライン42aに電圧が作用しているときに、制御装置70によってインバータ34の複数のトランジスタがスイッチング制御されることにより、回転駆動される。
バッテリ36は、例えば定格電圧が200Vや250Vなどのリチウムイオン二次電池やニッケル水素二次電池として構成されており、第2電力ラインとしての低電圧系電力ライン42bに接続されている。
昇圧コンバータ40は、高電圧系電力ライン42aと低電圧系電力ライン42bとに接続されている。昇圧コンバータ40は、2つのトランジスタT31,T32と、トランジスタT31,T32に並列接続された2つのダイオードD31,D32と、リアクトルLと、を有する。トランジスタT31は、高電圧系電力ライン42aの正極側ラインに接続されている。トランジスタT32は、トランジスタT31と、高電圧系電力ライン42aおよび低電圧系電力ライン42bの負極側ラインと、に接続されている。リアクトルLは、トランジスタT31,T32同士の接続点と、低電圧系電力ライン42bの正極側ラインと、に接続されている。昇圧コンバータ40は、制御装置70によってトランジスタT31,T32のオン時間の割合が調節されることにより、低電圧系電力ライン42bの電力を昇圧して高電圧系電力ライン42aに供給したり、高電圧系電力ライン42aの電力を降圧して低電圧系電力ライン42bに供給したりする。コンデンサ46は、高電圧系電力ライン42aの正極側ラインと負極側ラインとに取り付けられており、コンデンサ48は、低電圧系電力ライン42bの正極側ラインと負極側ラインとに取り付けられている。
システムメインリレーSMRは、低電圧系電力ライン42bにおけるコンデンサ48よりもバッテリ36側に設けられている。このシステムメインリレーSMRは、制御装置70によってオンオフ制御されることにより、バッテリ36とコンデンサ48側との接続および接続の解除を行なう。
制御装置70は、図示しないCPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムや各種マップ等を記憶するROMやデータを一時的に記憶するRAM,入出力ポートを備える。制御装置70は、更に、不揮発性メモリ70aを備えている。
制御装置70には、各種センサからの信号が入力ポートを介して入力されている。制御装置70に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する回転位置検出センサ32aからの回転位置θmや、モータ32の各相に流れる電流を検出する電流センサからの相電流Iu,Ivを挙げることができる。また、バッテリ36の端子間に取り付けられた電圧センサ36aからのバッテリ36の電圧Vbや、バッテリ36の出力端子に取り付けられた電流センサ36bからのバッテリ36の電流Ibも挙げることができる。さらに、コンデンサ46の端子間に取り付けられた電圧センサ46aからのコンデンサ46(高電圧系電力ライン42a)の電圧VHや、コンデンサ48の端子間に取り付けられた電圧センサ48aからのコンデンサ48(低電圧系電力ライン42b)の電圧VL,昇圧コンバータ40のリアクトルLに流れる電流を検出する電流センサ40aからの検出値ILdも挙げることができる。電流センサ40aの近くに取り付けられ電流センサ40aの温度を検出する温度センサ40bからのセンサ温度Tsも挙げることができる。また、イグニッションスイッチ80からのイグニッション信号も挙げることができる。
制御装置70からは、各種制御信号が出力ポートを介して出力されている。制御装置70から出力される信号としては、例えば、インバータ34の図示しない複数のトランジスタへのスイッチング制御信号や、昇圧コンバータ40のトランジスタT31,T32へのスイッチング制御信号を挙げることができる。制御装置70は、回転位置検出センサ32aからのモータ32の回転子の回転位置θmに基づいてモータ32の電気角θeや回転数Nmを演算している。また、制御装置70は、電流センサ36bからのバッテリ36の電流Ibの積算値に基づいてバッテリ36の蓄電割合SOCを演算している。ここで、蓄電割合SOCは、バッテリ36の全容量に対するバッテリ36から放電可能な電力の容量の割合である。
こうして構成された実施例の駆動装置20では、制御装置70は、以下の駆動制御を行なう。駆動制御では、モータ32のトルク指令Tm*を設定し、モータ32がトルク指令Tm*で駆動されるようにインバータ34の複数のトランジスタのスイッチング制御を行なう。また、モータ32を目標動作点(トルク指令Tm*および回転数Nm)で駆動できるように高電圧系電力ライン42aの目標電圧VH*を設定する。そして、高電圧系電力ライン42aの電圧VHが目標電圧VH*となるように昇圧コンバータ40のリアクトルILの目標電流IL*を設定する。そして、昇圧コンバータ40のリアクトルLの電流ILが目標電流IL*となるように昇圧コンバータ40のトランジスタT31,T32のスイッチング制御を行なう。これにより、バッテリ36からの電力を昇圧してインバータ34を介してモータ32に供給する。
次に、こうして構成された実施例の駆動装置20の動作、特に、電流センサ40aのオフセット量を学習する(ゼロ点学習を実行する)際の動作と学習したオフセット量を用いて電流センサ40aにより検出された検出値ILdを補正する際の動作について説明する。
最初に、電流センサ40aのオフセット量を学習する(ゼロ点学習を実行する)際の動作について説明する。図2は、制御装置70のCPUにより実行される起動時学習ルーチンの一例を示すフローチャートである。起動時学習ルーチンは、イグニッションスイッチ80がオンされて駆動装置20が起動された直後に実行される。図3は、制御装置70のCPUにより実行される通常時学習ルーチンの一例を示すフローチャートである。通常時学習ルーチンは、図2に例示した起動時学習ルーチンが実行された後、イグニッションスイッチ80がオフされて駆動装置20がシステム停止されるまで繰り返し実行される。ここでは、図2に例示した起動時学習ルーチン,図3に例示した通常時学習ルーチンについて、この順で説明する。なお、制御装置70のCPUは、イグニッションスイッチ80がオンされて駆動装置20が起動されるとシステムメインリレーSMRをオンとし、イグニッションスイッチ80がオフされて駆動装置20が停止する際にはシステムメインリレーSMRをオフとする。
最初に、図2に例示した起動時学習ルーチンについて説明する。起動時学習ルーチンが実行されると、制御装置70のCPUは、センサ温度Tsの4つの温度領域1〜4の学習完了フラグF1〜F4を初期化する(学習完了フラグF1〜F4に値0を設定する)処理を実行する(ステップS100)。ここで、温度領域1〜4は、電流センサ40aがとり得る温度範囲を所定温度T毎に分割した温度範囲として設定される。実施例では、昇圧コンバータ40がとり得る温度範囲を0℃から80℃とし、所定温度Tを20℃として、温度領域1を0℃以上20℃未満の範囲とし、温度領域2を20℃以上40℃未満の範囲とし、温度領域3を40℃以上60℃未満の範囲とし、温度領域4を40℃以上80℃未満の範囲としている。ステップS100で学習完了フラグF1〜F4を初期化しているから、駆動装置20が起動される度に学習完了フラグF1〜F4が初期化されている。
続いて、初期学習条件が成立しているか否かを判定する(ステップS110)。この処理では、昇圧コンバータ40のトランジスタT31,T32のスイッチング制御が開始されていないときなど昇圧コンバータ40がリアクトルLの実際の電流が値0となる状態であるときに、初期学習条件が成立していると判定する。ステップS110で初期学習条件が成立していないときには、起動時学習ルーチンを終了する。
ステップS110で初期学習条件が成立しているときには、リアクトルLの実際の電流が値0であると判断して、電流センサ40aのオフセット量ILoffの学習を実行する(ステップS120)。この学習では、電流センサ40aにより検出された検出値ILdと温度センサ40bにより検出されたセンサ温度Tsとを規定回数Nref(例えば、128回,256回,512回など)入力し、入力したセンサ温度Tsの平均値を学習時温度Tcに設定すると共に、入力した検出値ILdの平均値を学習時温度Tcにおけるオフセット量ILoffに設定する。このように、リアクトルLの実際の電流が値0であるときに学習時温度Tcと学習時温度Tcにおけるオフセット量ILoffとを設定するから、より適正にオフセット量ILoffを設定することができる。また、電流センサ40aにより検出された検出値ILdを規定回数Nref(例えば、128回,256回,512回など)入力し、入力した検出値ILdの平均値をオフセット量ILoffに設定することにより、電流センサ40aから入力した検出値ILdがノイズなどで変動したときでもより精度良くオフセット量ILoffを設定することができる。
こうしてオフセット量ILoffの初期学習を実行すると、温度領域1〜4のうちステップS120で学習時温度Tcが含まれる温度領域に対応する学習完了フラグ(学習完了フラグF1〜F4のいずれか)を値1に設定して(ステップS130)、起動時制御ルーチンを終了する。
次に、図3に例示した通常時学習ルーチンについて説明する。通常時学習ルーチンが実行されると、制御装置70のCPUは、温度センサ40bにより検出されたセンサ温度Tsを入力し、センサ温度Tsが未学習領域に含まれているか否かを判定する処理を実行する(ステップS200)。この判定は、上述した温度領域1〜4のうち現在のセンサ温度Ts(ステップS200でのセンサ温度Ts)が含まれる温度領域を特定し、特定した温度領域の学習完了フラグ(学習完了フラグF1〜F4のいずれか)が値0であるときに、センサ温度Tsが未学習領域に含まれていると判定する。センサ温度Tsが未学習領域に含まれていないときには、現在のセンサ温度Tsでの学習が終了していると判断して、通常時学習ルーチンを終了する。
センサ温度Tsが未学習領域に含まれているときには、昇圧コンバータ40の間欠昇圧制御を実行する(ステップS210)。間欠昇圧制御では、高電圧系電力ライン42aの電圧VHが目標電圧VH*より若干高い電圧となるように昇圧コンバータ40のリアクトルILの目標電流IL*を設定する。そして、昇圧コンバータ40のリアクトルLの電流ILが目標電流IL*となるように昇圧コンバータ40のトランジスタT31,T32のスイッチング制御を行なう。そして、電圧VHが目標電圧VH*より若干高い電圧となったときには、トランジスタT31,T32のスイッチング制御を停止し(トランジスタT31,T32をオフとし)、電圧VHが目標電圧VH*より若干低い電圧となったときには、電圧VHが目標電圧VH*より若干高い電圧となるように昇圧コンバータ40のトランジスタT31,T32のスイッチング制御を開始する。このように、間欠昇圧制御では、昇圧コンバータ40のスイッチング制御の停止と実行とを繰り返し、昇圧コンバータ40を間欠的に作動させる。間欠昇圧制御では、トランジスタT31,T32のスイッチング制御を停止している期間は、リアクトルILに実際に流れる電流ILが値0となる。
こうして間欠昇圧制御の実行を開始すると、続いて、通常時学習条件が成立しているか否かを判定する(ステップS220)。この処理では、昇圧コンバータ40のトランジスタT31,T32のスイッチング制御が停止しているときなどリアクトルLの実際の電流が値0であると推定されるときに、通常時学習条件が成立していると判定する。通常時学習条件が成立していないときには、ステップS210の処理に戻り、通常時学習条件が成立するまで、ステップS210,S220の処理を繰り返す。
ステップS220で通常時学習条件が成立しているときには、ステップS120と同様の処理で、オフセット量ILoffを学習し(ステップS230)、ステップS130と同様の処理で、温度領域1〜4のうちステップS230で設定した学習時温度Tcが含まれる温度領域に対応する学習完了フラグ(学習完了フラグF1〜F4のいずれか)を値1に設定して(ステップS240)、通常時学習ルーチンを終了する。こうした処理により、学習時温度Tcに応じてオフセット量ILoffを設定することができる。また、間欠昇圧制御を実行して検出された検出値ILdが値0であるときにオフセット量ILoffを設定するから、間欠昇圧制御より適正にオフセット量Ioffを設定することができる。そして、電流センサ40aにより検出された検出値ILdを規定回数Nref(例えば、128回,256回,512回など)入力し、入力した検出値ILdの平均値をオフセット量ILoffに設定するから、電流センサ40aから入力した検出値ILdがノイズなどで変動したときでもより精度良くオフセット量ILoffを設定することができる。
図4は、オフセット量ILoffの時間変化の一例を示すタイミングチャートである。図中、黒四角印は、実施例の駆動装置20でのオフセット量ILoffの時間変化の一例を示している。図中、白丸印は、間欠昇圧制御を実行せずに、駆動装置が起動されてからしばらくして電流ILが値0のときにオフセット量ILoffを学習する従来例の駆動装置でのオフセット量ILoffの時間変化の一例を示している。図示するように、実施例の駆動装置20では、間欠昇圧制御を実行することにより、間欠昇圧制御を実行しないものに比して、リアクトルLの実際の電流が値0となる機会が多くなるから、オフセット量ILoffを学習する機会をより多くすることができる。
続いて、こうして学習したオフセット量ILoffを用いて電流センサ40aにより検出された検出値ILdを補正する際の動作について説明する。図5は、制御装置70のCPUにより実行されるリアクトルLの電流ILを算出する電流算出ルーチンの一例を示すフローチャートである。電流算出ルーチンは、イグニッションスイッチ80がオンされて駆動装置20が起動されてからイグニッションスイッチ80がオフされるまでの期間に所定時間毎(例えば、数msec毎)に繰り返し実行される。
電流算出ルーチンが実行されると、制御装置70のCPUは、リアクトル電流ILの検出値ILdと昇圧コンバータ40のセンサ温度Tsを入力する処理を実行する(ステップS300)。検出値ILdは、電流センサ40aにより検出された値を入力している。センサ温度Tsは、温度センサ40bにより検出された値を入力している。
続いて、記憶している学習時温度TcとステップS300で入力した現在のセンサ温度Tsとを用いて算出用温度Tc1,Tc2を設定する(ステップS310)。算出用温度Tc1は、図2のステップS120や図3のステップS230の処理で設定した学習時温度TcのうちステップS300で入力した現在のセンサ温度Ts未満の温度で最も近い温度である。算出用温度Tc2は、図2のステップS120や図3のステップS230の処理で設定した学習時温度TcのうちステップS300で入力した現在のセンサ温度Tsより高い温度で最も近い温度である。したがって、ステップS320は、現在のセンサ温度Tsの前後の温度を算出用温度Tc1,Tc2に設定する処理となっている。
こうして算出用温度Tc1,Tc2を設定すると、図2のステップS120や図3のステップS230の処理で設定したオフセット量ILoffのうち算出用温度Tc1,Tc2に対応するオフセット量Toffを算出用オフセット量ILoff1,ILoff2に設定する(ステップS320)。そして、現在のセンサ温度Tsと算出用温度Tc1,Tc2と算出用オフセット量ILoff1,ILoff2とを用いて次式(1)より補正値ILcを算出し(ステップS330)、ステップS300の処理で入力した検出値ILdに補正値ILcを加えたものをリアクトル電流ILに設定して(ステップS340)、電流算出ルーチンを終了する。
ILc=(Ts-Tc1)・(ILoff2-ILoff1)/(Tc2-Tc1) ・・・(1)
図6は、電流センサ40aの温度とオフセット量ILoffとの関係の一例を示す説明図である。図中、黒四角印が温度領域1〜4における学習時温度Tcであり、黒丸印が現在のセンサ温度Tsである。図示するように、現在のセンサ温度Tsの前後の学習時温度である算出用温度Tc1,Tc2と対応する算出用オフセット量ILoff1,ILoff2と現在のセンサ温度Tsとから補正値ILcを設定する。したがって、電流センサ40aの温度を考慮せずに学習した学習値で検出値ILdの補正値を設定するものに比して、より適正に補正値ILcを設定することができ、より適正に昇圧コンバータ40を制御することができる。
以上説明した実施例の昇圧コンバータ装置を搭載する駆動装置20では、電流センサ40aが学習が完了していない未学習温度領域内の温度となったときには、間欠昇圧制御を実行し、通常時学習条件が成立したときには、オフセット量ILoffを学習し、学習したオフセット量ILoffとセンサ温度Tsとを用いて補正した補正値ILcで検出値ILdを補正した補正後の電流ILを用いて昇圧コンバータを制御する。これにより、電流センサ40aの温度を考慮せずに学習した学習値で検出値ILdを補正するものに比して、より適正に補正値ILcを設定し、より適正に昇圧コンバータ40を制御することができる。
実施例の昇圧コンバータ装置では、図2に例示した起動時学習ルーチンのステップS100の処理で学習完了フラグF1〜F4を初期化した上で、図2のステップS120や図3のステップS230でオフセット量ILoffの学習をしている。駆動装置20が起動される度に学習完了フラグF1〜F4を初期化するから、駆動装置20が起動される度に温度領域1〜4のオフセット量ILoffの学習を実行する。しかしながら、図2の起動時学習ルーチンに代えて図7に例示する第1変形例の起動時学習ルーチンを実行し、図3の通常時学習ルーチンに代えて図8に例示する第1変形例の通常時学習ルーチンを実行することで、オフセット量ILoffの学習の実行回数を減らしても良い。ここでは、説明の都合上、最初に図8の通常時学習ルーチンについて説明し、続いて、図7の起動時学習ルーチンを説明する。
図8の第1変形例の通常時学習ルーチンでは、ステップS240の処理の後にステップS500の処理を実行する点を除いて、図3の通常時学習ルーチンと同一の処理を実行する。したがって、図3の通常時学習ルーチンと同一の処理については、同一の符号を付し、詳細な説明を省略する。
図8の第1変形例の通常時学習ルーチンでは、ステップS200の処理でセンサ温度Tsが未学習領域に含まれているときには、ステップ200〜S240の処理を実行し、ステップS230で設定した学習時温度Tc,オフセット量ILoff,ステップS240で設定した学習完了フラグを不揮発性メモリ70aに記憶して(ステップS500)、通常時学習ルーチンを終了する。こうした処理により、オフセット量ILoffの学習を実行したときには、学習時温度Tc,オフセット量ILoff,ステップS240で設定した学習完了フラグを不揮発性メモリ70aに記憶することができる。
図7の第1変形例の起動時学習ルーチンでは、ステップS100の前にステップS400〜S420を実行し、ステップS100とステップS110との間にステップS430を実行し、ステップS130の後にステップS440を実行する点を除いて、図2の起動時学習ルーチンと同一の処理を実行する。したがって、図2の起動時学習ルーチンと同一の処理については、詳細な説明を省略する。
図7の第1変形例の起動時学習ルーチンでは、最初に、今回の駆動装置20の起動がオフセット量ILoffの学習を実行した後の起動であるか否かを判定する処理を実行する(ステップS400)。この判定は、不揮発性メモリ70aに学習時温度Tc,オフセット量ILoffや学習完了フラグF1〜F4のいずれかが記憶されているか否かを判定し、これらが記憶されているときには今回の駆動装置20の起動がオフセット量ILoffの学習を実行した後の起動であると判定する。今回の駆動装置20の起動がオフセット量ILoffの学習を実行した後の起動ではないときには、初期学習条件が成立しているか否かを判定する(ステップS110)。初期学習条件が成立していないときには、起動時学習ルーチンを終了する。
ステップS110で初期学習条件が成立しているときには、オフセット量ILoffの学習を実行すると共に学習時温度が含まれる温度領域の学習完了フラグを値1に設定し(ステップS120,S130)、上述したステップS500と同様の処理で、ステップS120で設定した学習時温度Tc,オフセット量ILoff,ステップS130で設定した学習完了フラグを不揮発性メモリ70aに記憶して(ステップS440)、本ルーチンを終了する。こうした処理により、オフセット量ILoffの学習を実行したときには、学習時温度Tc,オフセット量ILoff,ステップS130で設定した学習完了フラグを不揮発性メモリ70aに記憶することができる。
ステップS400で今回の駆動装置20の起動がオフセット量ILoffの学習を実行した後の起動であるときには、学習後起動回数Nsをカウントアップする(ステップS410)。学習後起動回数Nsは、初期値として値0が設定されている。
続いて、学習後起動回数Nsが判定用閾値Nsrefを超えているか否かを判定する(ステップS420)。判定用閾値Nsrefは、オフセット量ILoffの学習をしていない起動回数が多いため、オフセット量ILoffに誤差が生じているか否かを判定するための閾値である。
ステップS420で学習後起動回数Nsが判定用閾値Nsref以下であるときには、既に、不揮発性メモリ70aに学習時温度Tc,オフセット量ILoffや学習完了フラグF1〜F4のいずれかが記憶されており、起動時学習ルーチンでオフセット量ILoffの学習を実行する必要がないと判断して、起動時学習ルーチンを終了する。この場合、図8に例示した第1変形例の通常時制御ルーチンにおいて必要に応じて、オフセット量ILoffの学習が実行されることになる。したがって、起動の度にオフセット量ILoffの学習を実行するものに比して、オフセット量ILoffの学習の実行回数を減らすことができる。
ステップS420で学習後起動回数Nsが判定用閾値Nsrefを超えているときには、オフセット量ILoffの学習をしていない起動回数が多いため、オフセット量ILoffに誤差が生じていると判断して、温度領域1〜4の学習完了フラグF1〜F4を初期化して(ステップS100)、学習後起動回数Nsを値0に初期化して(ステップS430)、ステップS110以降の処理を実行して、起動時学習ルーチンを終了する。こうした処理により、学習後起動回数Nsが判定用閾値Nsrefを超えているときには、必要に応じてオフセット量ILoffの学習処理を実行するから、オフセット量ILoffの学習の実行回数を減らすことによってオフセット量ILoffの誤差が大きくなり過ぎることを抑制できる。
また、図7の第1変形例の起動時学習ルーチンに代えて図9の第2変形例の起動時学習ルーチンを実行し、図8の第1変形例の通常時学習ルーチンに代えて図10の第2変形例の通常時学習ルーチンを実行してもよい。
図9の第2変形例の起動時学習ルーチンは、ステップS410の処理に代えてステップS600の処理を実行する点、ステップS430の処理に代えてステップS610の処理を実行する点、ステップS440の処理の後にステップS630の処理を実行する点を除いて、図7の第1変形例の起動時学習ルーチンと同一の処理を実行する。したがって、図7の第2変形例の起動時学習ルーチンと同一の処理については、同一の符号を付し、詳細な説明を省略する。
図9の第2変形例の起動時学習ルーチンでは、最初に、今回の駆動装置20の起動がオフセット量ILoffの学習を実行した後の起動であるか否かを判定する(ステップS400)。今回の駆動装置20の起動がオフセット量ILoffの学習を実行した後の起動ではないときには、ステップS110の処理へ進む。
今回の駆動装置20の起動がオフセット量ILoffの学習を実行した後の起動であるときには、現在のセンサ温度Tsが含まれる温度領域の学習後起動回数Nsをカウントアップする(ステップS600)。第2変形例において、学習後起動回数Nsは、温度領域1〜4に対して個別に設定され、初期値として値0が設定されている。
続いて、ステップS600でカウントアップした学習後起動回数Nsが判定用閾値Nsrefを超えているか否かを判定し(ステップS420)、学習後起動回数Nsが判定用閾値Nsref以下であるときには、現在のセンサ温度Tsが含まれる温度領域での学習時温度Tc,オフセット量ILoffや学習完了フラグF1〜F4のいずれかが既に不揮発性メモリ70aに記憶されており、起動時学習ルーチンでオフセット量ILoffの学習を実行する必要がないと判断して、起動時学習ルーチンを終了する。この場合、後述する図10に例示した第2変形例の通常時制御ルーチンにおいて、必要に応じて、オフセット量ILoffの学習が実行されることになる。したがって、起動の度にオフセット量ILoffの学習を実行するものに比して、オフセット量ILoffの学習の実行回数を減らすことができる。
ステップS420で学習後起動回数Nsが判定用閾値Nsrefを超えているときには、現在のセンサ温度Tsが含まれる温度領域においてオフセット量ILoffの学習をしていない起動回数が多いため、オフセット量ILoffに誤差が生じていると判断して、現在のセンサ温度Tsが含まれる温度領域の学習完了フラグ(学習完了フラグF1〜F4のいずれか)に値0を設定して初期化して(ステップS610)、ステップS110の処理へ進む。
ステップS110の処理では、初期学習条件が成立しているか否かを判定する(ステップS110)。初期学習条件が成立していないときには、起動時学習ルーチンを終了する。
ステップS110で初期学習条件が成立しているときには、オフセット量ILoffの学習を実行する(ステップS120)と共にステップS120で設定した学習時温度Tcが含まれる温度領域の学習完了フラグを値1に設定し(ステップS120,S130)、上述したステップS500と同様の処理で、ステップS120で設定した学習時温度Tc,オフセット量ILoff,ステップS130で設定した学習完了フラグを不揮発性メモリ70aに記憶する(ステップS440)。そして、ステップS120で設定した学習時温度Tcが含まれる温度領域の学習後起動回数Nsを値0に初期化して(ステップS630)、起動時学習ルーチンを終了する。こうした処理により、ステップS120のオフセット量ILoffの学習を実行すると、学習時温度Tcが含まれる温度領域の学習後起動回数Nsが初期化され、次に駆動装置20が起動されステップS420の処理が実行されたときに、学習後起動回数Nsが判定用閾値Nsref以下と判定されてオフセット量ILoffの学習を実行せずに起動時学習ルーチンを終了する。これにより、よりオフセット量ILoffの学習の実行回数を減らすことができる。
図10の第2変形例の通常時学習ルーチンは、ステップS500の処理の後にステップS700の処理を実行する点を除いて、図8の第1変形例の通常時学習ルーチンと同一の処理を実行する。したがって、図8の第1変形例の通常時学習ルーチンと同一の処理については、同一の符号を付し、詳細な説明を省略する。
図10の第2変形例の通常時学習ルーチンでは、ステップS200の処理でセンサ温度Tsが未学習領域に含まれているときには、ステップ200〜S240の処理を実行し、ステップS230で設定した学習時温度Tc,オフセット量ILoff,ステップS240で設定した学習完了フラグを不揮発性メモリ70aに記憶して(ステップS500)、ステップS200の処理に用いられた学習時温度Tcが含まれる温度領域の学習後起動回数Nsを値0に初期化して(ステップS700)、通常時学習ルーチンを終了する。次に駆動装置20が起動されステップS420の処理が実行されたときに、学習後起動回数Nsが判定用閾値Nsref以下と判定されてオフセット量ILoffの学習を実行せずに起動時学習ルーチンを終了する。これにより、よりオフセット量ILoffの学習の実行回数を減らすことができる。
実施例の昇圧コンバータ装置では、図7の起動時学習ルーチンのステップS100や図9のステップS610で、学習完了フラグを初期化しているが、学習完了フラグの初期化と共に不揮発性メモリ70aに記憶しているオフセット量ILoffを値0に初期化してもよい。
実施例の昇圧コンバータ装置では、温度領域を、電流センサ40aがとり得る温度範囲を所定温度Tを20℃として所定温度T毎に分割した温度温度範囲としている。しかしながら、所定温度Tは適宜設定してもよく、電流センサ40aがとり得る温度範囲を少なくとも2つの分割すればよく、例えば、3つや5つに分割してもよい。
実施例の昇圧コンバータ装置では、図2,図7,図9のステップS120や図3,図8,図10のステップS230の処理で、電流センサ40aにより検出された検出値ILdと温度センサ40bにより検出されたセンサ温度Tsとを規定回数Nref入力し、入力したセンサ温度Tsの平均値を学習時温度Tcに設定すると共に、入力した検出値ILdの平均値を学習時温度Tcにおけるオフセット量ILoffに設定している。しかしながら、規定回転数Nrefを1回として、入力したセンサ温度Tを学習時温度Tcとし、検出値ILdを学習時温度Tcにおけるオフセット量ILoffに設定してもよい。
実施例の昇圧コンバータ装置では、蓄電装置としてリチウムイオン二次電池やニッケル水素二次電池として構成されたバッテリ36を用いているが、蓄電装置としてバッテリ36に代えてキャパシタを用いてもよい。
実施例では、本発明の昇圧コンバータ装置を駆動装置20に適用した場合について例示している。しかしながら、本発明の昇圧コンバータ装置を駆動装置20と異なる装置に適用しても構わない。
実施例では、本発明を昇圧コンバータ装置の形態で説明しているが、昇圧コンバータ装置の制御方法の形態としても構わない。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、昇圧コンバータ40が「昇圧コンバータ」に相当し、電流センサ40aが「電流センサ」に相当し、制御装置70が「制御装置」に相当する。また、不揮発性メモリ70aが「不揮発性メモリ」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、昇圧コンバータ装置の製造産業などに利用可能である。
20 駆動装置、32 モータ、32a 回転位置検出センサ、34 インバータ、36 バッテリ、36a,46a,48a,50a 電圧センサ、36b,40 昇圧コンバータ、40a 電流センサ、40b 温度センサ、42a 高電圧系電力ライン、42b 低電圧系電力ライン、46,48 コンデンサ、70 制御装置、70a 不揮発性メモリ、80 イグニッションスイッチ、D31,D32 ダイオード、L リアクトル、SMR システムメインリレー、T31,T32 トランジスタ。

Claims (7)

  1. 蓄電装置に接続される第1電力ラインとモータを駆動するインバータに接続される第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう昇圧コンバータと、
    前記昇圧コンバータに流れる電流を検出する電流センサと、
    前記電流センサにより検出された検出値を用いて前記昇圧コンバータを制御する制御装置と、
    を備える昇圧コンバータ装置であって、
    前記制御装置は、
    前記電流センサが規定温度範囲内の温度となったときには、前記第2電力ラインの電圧が目標電圧となるように前記昇圧コンバータを間欠的に作動させる間欠昇圧制御を実行すると共に前記電流センサのオフセット量を学習し、
    前記学習したオフセット量と前記電流センサの温度とを用いて補正した補正値で前記検出値を補正した補正後電流値を用いて前記昇圧コンバータを制御する、
    昇圧コンバータ装置。
  2. 請求項記載の昇圧コンバータ装置であって、
    前記制御装置は、前記電流センサが前記規定温度範囲内の温度であるときでも、前記規定温度範囲内での前記電流センサのオフセット量の学習が既に実行されているときには、前記学習を実行しない、
    昇圧コンバータ装置。
  3. 請求項1または2記載の昇圧コンバータ装置であって、
    前記制御装置は、前記昇圧コンバータ装置の停止要求がなされたときには、前記オフセット量の学習結果を初期化する、
    昇圧コンバータ装置。
  4. 請求項1または2記載の昇圧コンバータ装置であって、
    前記制御装置は、
    データを記憶する不揮発性メモリ、
    を備え、
    前記オフセット量を学習したときには、前記学習したオフセット量を前記不揮発性メモリに保存し、
    前記不揮発性メモリに保存されている前記オフセット量で前記検出値を補正した補正後電流値を用いて前記昇圧コンバータを制御する、
    昇圧コンバータ装置。
  5. 請求項記載の昇圧コンバータ装置であって、
    前記制御装置は、
    前記オフセット量の学習を実行した後における、前記昇圧コンバータ装置の起動回数をカウントし、
    前記カウントした起動回数が所定回数を超えたときには、前記不揮発性メモリに保存されている前記オフセット量を初期化する、
    昇圧コンバータ装置。
  6. 請求項記載の昇圧コンバータ装置であって、
    前記制御装置は、
    前記電流センサが複数の規定温度範囲のうちのいずれか1つの規定温度範囲内の温度となったときには、前記間欠昇圧制御を実行して前記電流センサのオフセット量を学習し、前記補正後電流値を用いて前記昇圧コンバータを制御し、
    前記制御装置は、更に、
    前記複数の規定温度範囲毎に、前記オフセット量の学習を実行した後における前記昇圧コンバータ装置の起動回数をカウントし、前記カウントした起動回数が所定回数を超えたときには、前記不揮発性メモリに保存されている前記オフセット量のうち前記カウントされた起動回数が前記所定回数を超えている前記規定温度範囲におけるオフセット量を初期化する、
    昇圧コンバータ装置。
  7. 蓄電装置に接続される第1電力ラインとモータを駆動するインバータに接続される第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう昇圧コンバータと、
    前記昇圧コンバータに流れる電流を検出する電流センサと、
    を備える昇圧コンバータ装置の制御方法であって、
    前記電流センサが規定温度範囲内の温度となったときには、前記第2電力ラインの電圧が目標電圧となるように前記昇圧コンバータを間欠的に作動させる間欠昇圧制御を実行すると共に前記電流センサのオフセット量を学習し、
    前記学習したオフセット量と前記電流センサの温度とを用いて補正した補正値で前記電流センサにより検出された検出値を補正した補正後電流値を用いて前記昇圧コンバータを制御する、
    昇圧コンバータ装置の制御方法。
JP2017236104A 2017-12-08 2017-12-08 昇圧コンバータ装置およびその制御方法 Active JP6958307B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017236104A JP6958307B2 (ja) 2017-12-08 2017-12-08 昇圧コンバータ装置およびその制御方法
US16/106,827 US10381931B2 (en) 2017-12-08 2018-08-21 Control system of boost converter and control method thereof
CN201810972639.4A CN109905026B (zh) 2017-12-08 2018-08-24 升压转换器的控制系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017236104A JP6958307B2 (ja) 2017-12-08 2017-12-08 昇圧コンバータ装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2019106744A JP2019106744A (ja) 2019-06-27
JP6958307B2 true JP6958307B2 (ja) 2021-11-02

Family

ID=66696480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017236104A Active JP6958307B2 (ja) 2017-12-08 2017-12-08 昇圧コンバータ装置およびその制御方法

Country Status (3)

Country Link
US (1) US10381931B2 (ja)
JP (1) JP6958307B2 (ja)
CN (1) CN109905026B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200758B2 (ja) * 2019-03-05 2023-01-10 株式会社デンソー 電圧変換装置
JP7600921B2 (ja) * 2021-07-30 2024-12-17 株式会社デンソー モータ制御装置
KR102730630B1 (ko) 2022-10-23 2024-11-14 엑스멤스 랩스 인코포레이티드 구동 회로에 적용되는 감소된 학습 레이트를 갖는 테이블 학습 방법 및 이를 이용한 구동 회로

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075762B2 (ja) * 2003-10-10 2008-04-16 トヨタ自動車株式会社 二次電池における残存容量の算出装置および算出方法
JP4622583B2 (ja) * 2005-03-01 2011-02-02 トヨタ自動車株式会社 故障診断装置および車両
JP4207925B2 (ja) 2005-05-11 2009-01-14 トヨタ自動車株式会社 二次電池の制御装置
JP4640200B2 (ja) * 2006-02-10 2011-03-02 トヨタ自動車株式会社 電圧変換装置および電圧変換器の制御方法
JP4462243B2 (ja) * 2006-07-10 2010-05-12 トヨタ自動車株式会社 負荷駆動装置およびそれを備える車両
JP4479922B2 (ja) * 2006-12-14 2010-06-09 株式会社デンソー 電気自動車の制御装置
JP2011087406A (ja) 2009-10-15 2011-04-28 Toyota Motor Corp 電動車両
US8350543B2 (en) * 2010-11-16 2013-01-08 National Semiconductor Corporation Control circuitry in a DC/DC converter for zero inductor current detection
JP5673354B2 (ja) 2011-05-27 2015-02-18 トヨタ自動車株式会社 燃料電池システム
JP2013017299A (ja) * 2011-07-04 2013-01-24 Toyota Motor Corp 電動機駆動装置
JP5786571B2 (ja) * 2011-09-07 2015-09-30 富士電機株式会社 パワー半導体装置の温度測定装置
JP5899807B2 (ja) * 2011-10-31 2016-04-06 トヨタ自動車株式会社 コンバータ制御装置
JP5807524B2 (ja) * 2011-11-24 2015-11-10 トヨタ自動車株式会社 電圧変換装置の制御装置
DE112012007126T5 (de) * 2012-11-13 2015-08-06 Toyota Jidosha Kabushiki Kaisha Aufwärtswandler-Steuerungsvorrichtung
JP5910752B2 (ja) * 2012-11-13 2016-04-27 トヨタ自動車株式会社 昇圧コンバータの制御装置
JP5900522B2 (ja) 2014-01-22 2016-04-06 トヨタ自動車株式会社 車両の電源装置
JP5958494B2 (ja) * 2014-04-23 2016-08-02 株式会社デンソー スイッチング制御装置
US9448288B2 (en) * 2014-05-20 2016-09-20 Allegro Microsystems, Llc Magnetic field sensor with improved accuracy resulting from a digital potentiometer
JP6398821B2 (ja) * 2015-03-20 2018-10-03 株式会社デンソー 回転電機の制御装置
JP6354685B2 (ja) * 2015-07-10 2018-07-11 トヨタ自動車株式会社 電池の制御装置
JP6667300B2 (ja) 2016-01-22 2020-03-18 ルネサスエレクトロニクス株式会社 電流検出回路及びそれを備えた半導体装置

Also Published As

Publication number Publication date
CN109905026B (zh) 2021-08-13
CN109905026A (zh) 2019-06-18
US10381931B2 (en) 2019-08-13
US20190181758A1 (en) 2019-06-13
JP2019106744A (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
US8710788B2 (en) Brushless motor drive apparatus and drive method
US8773060B2 (en) Brushless motor drive device and drive method
JP6958307B2 (ja) 昇圧コンバータ装置およびその制御方法
JP5952502B2 (ja) 3相ブラシレスモータの駆動装置
JP6324474B1 (ja) モータシステムの制御装置および温度検出状態判定方法
JP5356320B2 (ja) ブラシレスモータの駆動装置
KR101484241B1 (ko) 차량용 배터리 관리 장치
JP5569032B2 (ja) 車両用異常検出装置
CN103323778B (zh) 二次电池状态检测装置以及二次电池状态检测方法
JP5545646B2 (ja) モータ駆動制御装置
JP5782866B2 (ja) 駆動装置および車両
JP6802674B2 (ja) ブラシレスモータおよび制御方法
JP2009254138A (ja) 電動機制御装置
JP2008106720A (ja) エンジンシステム
JP2017192203A (ja) モータ制御装置
JP2017150975A (ja) ハイレート劣化指標推定制御装置
JP2009195091A (ja) 電力装置およびこれを備える駆動装置,車両並びに電力装置の制御方法
JP2000220454A (ja) エンジンの冷却ファン制御装置
JP6056629B2 (ja) モータ制御装置
JP7169218B2 (ja) アクチュエータ制御装置
JP2015204685A (ja) 駆動装置
JP7451260B2 (ja) 駆動装置、および、駆動装置の制御方法
CN115698497B (zh) 控制装置
JP2012223026A (ja) 駆動装置
JP2012100370A (ja) モータ駆動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R151 Written notification of patent or utility model registration

Ref document number: 6958307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250