JP6953871B2 - Carburized parts and carburized nitride parts - Google Patents
Carburized parts and carburized nitride parts Download PDFInfo
- Publication number
- JP6953871B2 JP6953871B2 JP2017148574A JP2017148574A JP6953871B2 JP 6953871 B2 JP6953871 B2 JP 6953871B2 JP 2017148574 A JP2017148574 A JP 2017148574A JP 2017148574 A JP2017148574 A JP 2017148574A JP 6953871 B2 JP6953871 B2 JP 6953871B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- carburized
- carburizing
- fatigue strength
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
この発明は浸炭部品および浸炭窒化部品に関し、詳しくは歯車等の動力伝達部品として好適なものに関する。 The present invention relates to carburized parts and carburized nitrided parts, and more particularly to those suitable as power transmission parts such as gears.
歯車等の動力伝達部品は、曲げ疲労強度に加え、高いピッチング疲労強度が要求される。このような部品の材料としては、従来JIS SCR420などが用いられ、そこに種々の表面処理による高強度化が施されてきた。 Power transmission parts such as gears are required to have high pitching fatigue strength in addition to bending fatigue strength. As a material for such parts, JIS SCR420 or the like has been conventionally used, and the strength has been increased by various surface treatments.
歯車等におけるピッチングの現象は、歯面と歯面とが擦れ合うことによって発生する高い応力により亀裂発生、亀裂進行及び剥離する現象である。このとき歯面等の接触面には高い面圧が負荷され、さらに繰返し摩擦を受けるため、300℃程度まで温度上昇を引き起こす。よって、歯面強度(ピッチング疲労強度)は軟化抵抗性(高温に保持した時の軟化のしにくさ)と相関がある。 The phenomenon of pitching in gears and the like is a phenomenon in which cracks occur, crack progresses, and peels off due to high stress generated by rubbing between tooth surfaces. At this time, a high surface pressure is applied to the contact surface such as the tooth surface, and the contact surface is repeatedly subjected to friction, which causes the temperature to rise to about 300 ° C. Therefore, the tooth surface strength (pitching fatigue strength) correlates with the softening resistance (difficulty of softening when held at a high temperature).
ピッチング疲労強度の向上策としては、浸炭窒化処理や高濃度浸炭処理が知られている。浸炭窒化処理は処理材の表層に炭素とともに窒素を導入して、焼戻し軟化抵抗を向上させる処理である。一方、高濃度浸炭処理は処理材の表層への炭素供給を増加させ、表層に硬質の炭化物を分散析出させ焼戻し軟化抵抗を向上させる処理である。 Carburizing nitriding treatment and high-concentration carburizing treatment are known as measures for improving pitching fatigue strength. The carburizing nitriding treatment is a treatment in which nitrogen is introduced into the surface layer of the treatment material together with carbon to improve the temper softening resistance. On the other hand, the high-concentration carburizing treatment is a treatment for increasing the carbon supply to the surface layer of the treatment material and dispersing and precipitating hard carbides on the surface layer to improve tempering and softening resistance.
また、ピッチング疲労強度の向上策として、上記の浸炭窒化及び高濃度浸炭を組合せた高濃度浸炭窒化処理も提案されている(下記特許文献1参照)。高濃度浸炭窒化処理は、処理材の表層におけるN量や析出炭化物を制御することで焼戻し軟化抵抗の向上を図るものである。
しかしながら、高濃度浸炭処理ではCが、また高濃度浸炭窒化処理ではC及びNが、鋼材の表層に多く固溶するため、焼入れ後に多量の残留オーステナイト(以下、残留γとする)が生成し易い。多量の残留γが発生すると局所的に表層の硬度が低下して、負荷荷重に耐えられず曲げ疲労強度等が低下してしまう問題があり、高濃度浸炭処理が施された浸炭部品や高濃度浸炭窒化処理が施された浸炭窒化部品については、ピッチング疲労強度及び曲げ疲労強度の両立が図られておらず未だ改善の余地があった。
Further, as a measure for improving the pitching fatigue strength, a high-concentration carburizing nitriding treatment combining the above-mentioned carburizing nitriding and high-concentration carburizing has also been proposed (see Patent Document 1 below). The high-concentration carburizing nitriding treatment aims to improve the temper softening resistance by controlling the amount of N in the surface layer of the treated material and the precipitated carbides.
However, since a large amount of C is dissolved in the surface layer of the steel material in the high-concentration carburizing treatment and C and N in the high-concentration carburizing nitriding treatment, a large amount of retained austenite (hereinafter referred to as residual γ) is likely to be generated after quenching. .. When a large amount of residual γ is generated, the hardness of the surface layer is locally reduced, and there is a problem that the bending fatigue strength etc. cannot be withstood the load. Regarding the carburized nitriding parts that have been subjected to the carburizing nitriding treatment, both the pitching fatigue strength and the bending fatigue strength have not been achieved, and there is still room for improvement.
本発明は以上のような事情を背景とし、浸炭層や浸炭窒化層における残留γの多量生成を抑制して、以てピッチング疲労強度及び曲げ疲労強度を高めた浸炭部品および浸炭窒化部品を提供することを目的としてなされたものである。 Against the background of the above circumstances, the present invention provides a carburized component and a carburized nitride component in which a large amount of residual γ is suppressed in the carburized layer and the carburized nitride layer to enhance the pitching fatigue strength and the bending fatigue strength. It was made for the purpose of doing so.
而して請求項1は浸炭部品に関するもので、質量%で、C:0.14〜0.38%、Si:0.01〜1.50%、Mn:0.20〜2.0%、Cu:0.5%以下、Ni:0.06〜0.8%、Cr:0.50〜4.5%、Mo:0.8%以下、Al:0.010〜0.060%、N:0.005〜0.030%、を含有し、残部Fe及び不可避的不純物の組成を有し且つ下記式(1)を満たす鋼からなり、
浸炭層を表層に有し、該表層は、最表層〜0.05mmであり、炭化物面積率が5〜40%で、更に残留γ量が40%未満であることを特徴とする。
−0.19>−0.102[Si]−0.03[Cu]−0.01[Ni]−0.135[Cr] ・・・式(1)
(但し式(1)中各元素記号は含有質量%を表す)
Therefore, claim 1 relates to a carbonized part, and in terms of mass%, C: 0.14 to 0.38%, Si: 0.01 to 1.50%, Mn: 0.25 to 2.0%, Cu: 0.5% or less, Ni: 0.06 to 0.8 % , Cr: 0.50 to 4.5%, Mo: 0.8% or less, Al: 0.010 to 0.060%, N : Consists of steel containing 0.005 to 0.030%, having the composition of the balance Fe and unavoidable impurities, and satisfying the following formula (1).
It has a carburized layer as a surface layer, and the surface layer is the outermost layer to 0.05 mm, has a carbide area ratio of 5 to 40%, and has a residual γ content of less than 40%.
-0.19> -0.102 [Si] -0.03 [Cu] -0.01 [Ni] -0.135 [Cr] ・ ・ ・ Equation (1)
(However, each element symbol in formula (1) represents the content mass%)
請求項2のものは、請求項1において、前記鋼の合金成分として質量%で、Nb:0.1%以下を更に含有することを特徴とする。 The second aspect of the present invention is characterized in that, in the first aspect, the alloy component of the steel further contains Nb: 0.1% or less in mass%.
請求項3は浸炭窒化部品に関するもので、質量%で、C:0.14〜0.38%、Si:0.01〜1.50%以下、Mn:0.20〜2.0%、Cu:0.5%以下、Ni:0.06〜0.8%、Cr:0.50〜4.5%、Mo:0.8%以下、Al:0.010〜0.060%、N:0.005〜0.030%、を含有し、残部Fe及び不可避的不純物の組成を有し且つ下記式(1)を満たす鋼からなり、
浸炭窒化層を表層に有し、該表層は、最表層〜0.05mmであり、N濃度が質量%で0.05〜0.5%、炭化物面積率が5〜40%で、更に残留γ量が40%未満であることを特徴とする。
−0.19>−0.102[Si]−0.03[Cu]−0.01[Ni]−0.135[Cr] ・・・式(1)
(但し式(1)中各元素記号は含有質量%を表す)
Claim 3 relates to a carbonized nitrided component, in terms of mass%, C: 0.14 to 0.38%, Si: 0.01 to 1.50% or less, Mn: 0.25 to 2.0%, Cu. : 0.5% or less, Ni: 0.06 to 0.8 % , Cr: 0.50 to 4.5%, Mo: 0.8% or less, Al: 0.010 to 0.060%, N: It is made of steel containing 0.005 to 0.030%, having the composition of the balance Fe and unavoidable impurities, and satisfying the following formula (1).
The surface layer has a carburized nitrided layer, the surface layer is the outermost layer to 0.05 mm, the N concentration is 0.05 to 0.5% by mass%, the carbide area ratio is 5 to 40%, and the residual γ is further. The amount is less than 40%.
-0.19> -0.102 [Si] -0.03 [Cu] -0.01 [Ni] -0.135 [Cr] ・ ・ ・ Equation (1)
(However, each element symbol in formula (1) represents the content mass%)
請求項4のものは、請求項3において、前記鋼の合金成分として質量%で、Nb:0.1%以下を更に含有することを特徴とする。 The fourth aspect of the present invention is characterized in that, in the third aspect, the alloy component of the steel further contains Nb: 0.1% or less in mass%.
高濃度浸炭処理や高濃度浸炭窒化処理は、例えば図1に示すような処理パターンで行われる。先ず1次浸炭・焼入れを実施した後、処理材を再度昇温して炭化物を析出させる。その後、再度浸炭(2次浸炭)を行い炭化物を成長させ、その後、焼入れを行なう。
なお、高濃度浸炭処理では、2次浸炭の際にアセチレン等の浸炭ガスを導入するのに対し、高濃度浸炭窒化処理では、2次浸炭の際に浸炭ガスと窒化のためのアンモニアガスとを交互に導入し、浸炭とともに窒化を行なう。
The high-concentration carburizing treatment and the high-concentration carburizing nitriding treatment are performed in a treatment pattern as shown in FIG. 1, for example. First, primary carburizing and quenching are carried out, and then the temperature of the treated material is raised again to precipitate carbides. Then, carburizing (secondary carburizing) is performed again to grow carbides, and then quenching is performed.
In the high-concentration carburizing treatment, a carburizing gas such as acetylene is introduced at the time of the secondary carburizing, whereas in the high-concentration carburizing nitriding treatment, the carburizing gas and the ammonia gas for nitriding are introduced at the time of the secondary carburizing. It is introduced alternately and nitriding is performed together with carburizing.
ところで2次浸炭後の焼入れ時における固溶C濃度は、状態図におけるAcm点の濃度にほぼ対応する。一般に、固溶C濃度が過剰になると、焼入れ後の残留γが多くなり硬さが低下すること、また固溶Cに加えて固溶Nが多くなれば更に残留γが増加することが知られている。
本発明者らは、従来の浸炭処理に比べて鋼材の表層におけるC濃度が高くなる高濃度浸炭処理や、C濃度およびN濃度が高くなる高濃度浸炭窒化処理における残留γの生成を抑制すべく、SCR420材をベースとして各合金元素の添加量を変化させ、850℃における固溶C濃度の変化を調査及び研究したところ、固溶C濃度に対しては、特にSi量及びCr量の影響が大きいことを見出した。
By the way, the solid solution C concentration at the time of quenching after the secondary carburizing substantially corresponds to the concentration at the Acm point in the phase diagram. In general, it is known that when the solid solution C concentration becomes excessive, the residual γ after quenching increases and the hardness decreases, and when the solid solution N increases in addition to the solid solution C, the residual γ further increases. ing.
The present inventors aim to suppress the generation of residual γ in the high-concentration carburizing treatment in which the C concentration in the surface layer of the steel material is higher than that in the conventional carburizing treatment and the high-concentration carburizing nitriding treatment in which the C concentration and the N concentration are high. , The amount of each alloying element added was changed based on the SCR420 material, and the change in the solid solution C concentration at 850 ° C. was investigated and studied. I found it big.
本発明はこのような知見に基づくものであり、鋼中に固溶C濃度の抑制効果の大きいSi,Crを積極添加するとともに、その他の成分を固溶C濃度抑制に対する寄与率に応じて含有させることで焼入れ後の残留γ量の抑制を図ったものである。高濃度浸炭処理において残留γ量を抑制するには、2次浸炭温度である850℃付近における固溶C濃度(即ち、Acm点)を0.90%以下とすることが望ましく、本発明では固溶C濃度に影響を与える合金元素を、上記式(1)を満たすように鋼中に含有させることで850℃における固溶C濃度を0.90%以下に低下させ、焼入れ後に残留γが多量生成する問題の解決を図ったものである。 The present invention is based on such findings, and Si and Cr having a large effect of suppressing the solid solution C concentration are positively added to the steel, and other components are contained according to the contribution rate to the suppression of the solid solution C concentration. This is intended to suppress the amount of residual γ after quenching. In order to suppress the amount of residual γ in the high-concentration carburizing treatment, it is desirable that the solid solution C concentration (that is, the Acm point) at around 850 ° C., which is the secondary carburizing temperature, be 0.90% or less, and in the present invention, it is solid. By incorporating an alloying element that affects the dissolved C concentration in the steel so as to satisfy the above formula (1), the solid solution C concentration at 850 ° C. is reduced to 0.90% or less, and a large amount of residual γ is present after quenching. It is intended to solve the problems that are generated.
即ち、本発明の浸炭部品は、上記式(1)を満たすように成分調整された鋼からなり、部品表層に形成された浸炭層の、炭化物面積率を5〜40%とし、更に残留γ量を40%未満としたもので、本発明の浸炭部品によれば、残留γの多量生成に起因する強度低下を防止してピッチング疲労強度及び曲げ疲労強度を共に高めることができる。本発明の浸炭部品は、特に高いピッチング疲労強度及び曲げ疲労強度が要求される歯車等の耐高面圧部品に適用して特に好適なものである。 That is, the carburized component of the present invention is made of steel whose composition has been adjusted so as to satisfy the above formula (1), and the carbide area ratio of the carburized layer formed on the surface layer of the component is 5 to 40%, and the amount of residual γ is further increased. According to the carburized parts of the present invention, it is possible to prevent a decrease in strength due to a large amount of residual γ and increase both pitching fatigue strength and bending fatigue strength. The carburized parts of the present invention are particularly suitable for application to high surface pressure resistant parts such as gears, which require particularly high pitching fatigue strength and bending fatigue strength.
また本発明の浸炭窒化部品は、上記式(1)を満たすように成分調整された鋼からなり、部品表層に形成された浸炭窒化層の、炭化物面積率を5〜40%,残留γ量を40%未満とし、更にN濃度を質量%で0.05〜0.5%としたものである。浸炭窒化部品の場合、表層でのN濃度の増加は、焼戻し軟化抵抗の向上に有効であるが、残留γ量が増加してしまう。このため本発明の浸炭窒化部品では、浸炭窒化層のN濃度を0.05〜0.5%に規定し、残留γ量を40%未満に抑制する。 The carburized nitriding component of the present invention is made of steel whose composition has been adjusted so as to satisfy the above formula (1), and the carbide area ratio of the carburized nitriding layer formed on the surface layer of the component is 5 to 40% and the residual γ content is set. It was set to less than 40%, and the N concentration was set to 0.05 to 0.5% in terms of mass%. In the case of carburized nitrided parts, increasing the N concentration on the surface layer is effective in improving the temper softening resistance, but the amount of residual γ increases. Therefore, in the carburized nitriding component of the present invention, the N concentration of the carburized nitriding layer is defined as 0.05 to 0.5%, and the residual γ amount is suppressed to less than 40%.
次に本発明における各化学成分の限定理由を以下に説明する。
C:0.14〜0.38%
Cは、強度を確保する上で必要な元素であり、部品の芯部硬さを確保するために0.14%以上含有させる。但し、含有量が多くなり過ぎると芯部の靭性が低下し、また冷間鍛造性等の加工性が低下するため、上限を0.38%とする。
Next, the reasons for limiting each chemical component in the present invention will be described below.
C: 0.14 to 0.38%
C is an element necessary for ensuring the strength, and is contained in an amount of 0.14% or more in order to secure the core hardness of the part. However, if the content is too large, the toughness of the core portion is lowered and the workability such as cold forging is lowered, so the upper limit is set to 0.38%.
Si:0.01〜1.50%以下
Siは、浸炭焼入時の固溶C濃度を低下させる効果が大きく、0.01%以上含有させる。但し、含有量が過大になると靭性及び被削性が低下するため、含有量を1.50%以下とする。
Si: 0.01 to 1.50% or less Si has a great effect of lowering the solid solution C concentration at the time of charcoal burning, and contains 0.01% or more. However, if the content is excessive, the toughness and machinability will decrease, so the content should be 1.50% or less.
Mn:0.20〜2.0%
Mnは、芯部の焼入れ性を確保する上で有用な成分であり、その働きのために0.20%以上含有させる。但し、含有量が多くなり過ぎると被削性の低下が懸念されるため、上限を2.0%とする。
Mn: 0.25 to 2.0%
Mn is a useful component for ensuring the hardenability of the core portion, and is contained in an amount of 0.20% or more for its function. However, if the content becomes too large, there is a concern that the machinability will decrease, so the upper limit is set to 2.0%.
Cu:0.50%以下
Cuは、焼入れ性を向上させる働きがある。但し、含有量が過大になると熱間鍛造性が低下するため、含有量を0.50%以下とする。
Cu: 0.50% or less Cu has a function of improving hardenability. However, if the content is excessive, the hot forging property is lowered, so the content is set to 0.50% or less.
Ni:0.06〜0.8%
Niは、焼入れ性を向上させる働きがあり、その働きのために0.06%以上含有させる。但し、含有量が過大になると残留γが増加し、また加工性が低下するため、含有量を0.8%以下とする。
Ni: 0.06 to 0.8 %
Ni is Ri Hatarakigaa improving the hardenability, is contained more than 0.06% for that work. However, if the content becomes excessive, the residual γ increases and the processability decreases, so the content is set to 0.8% or less.
Cr:0.50〜4.5%
Crは、焼入れ性を確保する上で有用な成分である。また、Siとともに浸炭焼入時の固溶C濃度を低下させる効果が大きい。このため0.50%以上含有させる。但し、含有量が多くなり過ぎると加工性、特に被削性が低下する。また焼入れ性が大きくなりすぎ、焼入歪みの増大が懸念されるため、上限を4.5%とする。
Cr: 0.50 to 4.5%
Cr is a useful component for ensuring hardenability. In addition, it has a great effect of reducing the solid solution C concentration at the time of charcoal burning together with Si. Therefore, it is contained in an amount of 0.50% or more. However, if the content is too large, the workability, particularly the machinability, deteriorates. Further, since the hardenability becomes too large and there is a concern that the quenching strain increases, the upper limit is set to 4.5%.
Mo:0.8%以下
Moは、焼入れ性を向上させ、焼戻し軟化抵抗を高める。但し、多量に添加すると加工性、特に被削性が低下するため、上限を0.8%とする。
Mo: 0.8% or less Mo improves hardenability and enhances temper softening resistance. However, if a large amount is added, the workability, especially the machinability, will decrease, so the upper limit is set to 0.8%.
Al:0.010〜0.060%
Alは、結晶粒の粗大化を抑制するピン止めの働きがあり、このピン止め効果を得るために0.010%以上含有させる。但し、含有量が多くなり過ぎると鋼中にAl2O3系介在物が形成され強度の低下を招くため、上限を0.060%とする。
Al: 0.010 to 0.060%
Al has a pinning function of suppressing coarsening of crystal grains, and 0.010% or more is contained in order to obtain this pinning effect. However, if the content becomes too large, Al 2 O 3 inclusions are formed in the steel and the strength is lowered, so the upper limit is set to 0.060%.
N:0.005〜0.030%
Nは、結晶粒の粗大化を抑制するピン止めの働きがあり、このピン止め効果を得るために0.005%以上含有させる。一方、鋳造時におけるブロー発生を防止するため、上限を0.030%とする。
N: 0.005 to 0.030%
N has a pinning function of suppressing coarsening of crystal grains, and is contained in an amount of 0.005% or more in order to obtain this pinning effect. On the other hand, in order to prevent blow generation during casting, the upper limit is set to 0.030%.
Nb:0.1%以下
Nbは、Alと同様に結晶粒の粗大化を抑制するピン止めの働きがあり選択元素としてさらに含有させることができる(請求項2,4)。但し、含有量が多くなり過ぎると加工性を劣化させたり、粗大な窒化物を生成するため、上限を0.1%とする。
Nb: 0.1% or less Nb, like Al, has a pinning function of suppressing coarsening of crystal grains and can be further contained as a selective element (claims 2 and 4). However, if the content is too large, the workability is deteriorated and coarse nitrides are produced, so the upper limit is set to 0.1%.
−0.19>−0.102[Si]−0.03[Cu]−0.01[Ni]−0.135[Cr] ・・・式(1)
Si,Cu,Ni,Crは、浸炭時の固溶C量を低下させる効果がある。式(1)中Si,Cu,Ni,Crの係数は、それぞれ固溶C量低下に対する寄与度を表している。本発明者らの調査によれば、式(1)の右辺の値が−0.19を下回るように(換言すれば、右辺の値の絶対値が0.19よりも大きくなるように)成分調整することで、850℃での固溶C濃度(Acm点)が0.90%以下に抑えられ、焼入れ後の残留γを減少させることができる。なお、Cu,Ni量が不純物レベルである場合は、Cu,Niの項は除外して計算すればよい。
-0.19> -0.102 [Si] -0.03 [Cu] -0.01 [Ni] -0.135 [Cr] ・ ・ ・ Equation (1)
Si, Cu, Ni, and Cr have the effect of reducing the amount of solid solution C during carburizing. The coefficients of Si, Cu, Ni, and Cr in the formula (1) represent the degree of contribution to the decrease in the amount of solid solution C, respectively. According to the investigation by the present inventors, the component so that the value on the right side of the equation (1) is less than −0.19 (in other words, the absolute value of the value on the right side is larger than 0.19). By adjusting, the solid solution C concentration (Acm point) at 850 ° C. can be suppressed to 0.90% or less, and the residual γ after quenching can be reduced. When the amount of Cu and Ni is at the impurity level, the terms of Cu and Ni may be excluded from the calculation.
表層の炭化物面積率が5〜40%
部品表層に析出する炭化物の面積率を5%以上とすることで、焼戻し軟化抵抗を向上させることができる。但し、面積率が過大になると粗大な炭化物が網状に発生し易くなり疲労強度の低下が懸念されるため、上限を40%とする。
Surface carbide area ratio is 5-40%
By setting the area ratio of the carbides deposited on the surface layer of the component to 5% or more, the temper softening resistance can be improved. However, if the area ratio becomes excessive, coarse carbides are likely to be generated in a mesh pattern, and there is a concern that the fatigue strength may decrease. Therefore, the upper limit is set to 40%.
表層の残留γ量が40%未満
表層に多量の残留γが発生すると、表層の硬さが低下し、特に曲げ疲労強度が低下するため、本発明では表層の残留γ量を40%未満とする。
The amount of residual γ in the surface layer is less than 40% When a large amount of residual γ is generated in the surface layer, the hardness of the surface layer decreases, and in particular, the bending fatigue strength decreases. Therefore, in the present invention, the amount of residual γ in the surface layer is set to less than 40%. ..
表層のN濃度が0.05〜0.5%
浸炭窒化部品の場合は、部品表層(浸炭窒化層)におけるN濃度を0.05%以上とすることで焼戻し軟化抵抗を向上させることができる。但し、N濃度が過大になると残留γが増加して硬さが低下してしまうため、上限を0.5%とする。
Surface N concentration is 0.05-0.5%
In the case of a carburized nitrided component, the temper softening resistance can be improved by setting the N concentration in the component surface layer (carburized nitrided layer) to 0.05% or more. However, if the N concentration becomes excessive, the residual γ increases and the hardness decreases, so the upper limit is set to 0.5%.
以上のような本発明によれば、表層における残留γの多量生成を抑制して、以てピッチング疲労強度及び曲げ疲労強度を共に高めた浸炭部品および浸炭窒化部品を提供することができる。 According to the present invention as described above, it is possible to provide a carburized component and a carburized nitriding component in which both the pitching fatigue strength and the bending fatigue strength are enhanced by suppressing the generation of a large amount of residual γ in the surface layer.
次に本発明の実施例を以下に詳述する。
表1に示す化学組成を有する鋼を150kg高周波誘導炉にて溶製した。得られた鋼塊は、直径Φ90mmの丸棒に圧延あるいは熱間鍛造し、さらにΦ22〜32mmの棒鋼に熱間鍛造して試験用の素材とし、表2に示す各種項目について評価した。
尚、表1において、鋼種a〜p,x(計15種)は本発明の成分範囲の要件を満たす。一方、鋼種q〜w,y(8種)は本発明の成分範囲の要件を満たしていない。具体的には少なくとも式(1)の要件を満たしていない。
Next, examples of the present invention will be described in detail below.
Steels having the chemical compositions shown in Table 1 were melted in a 150 kg high frequency induction furnace. The obtained ingot was rolled or hot forged on a round bar having a diameter of Φ90 mm, and further hot forged on a steel bar having a diameter of 22 to 32 mm to be used as a material for testing, and various items shown in Table 2 were evaluated.
In Table 1, the steel types a to p and x (15 types in total) satisfy the requirements of the component range of the present invention. On the other hand, the steel types q to w and y (8 types) do not satisfy the requirements of the component range of the present invention. Specifically, it does not satisfy at least the requirement of the formula (1).
<固溶C濃度>
表1に示す22鋼種(鋼種a〜x)について、850℃における固溶C濃度を評価した。詳しくは、上記の試験用の素材よりΦ15×100Lの丸棒試験片を作成し、850℃にて真空浸炭処理を実施した。真空浸炭処理は、試験片の表層C濃度が1.5%となるように実施し表層に炭化物を析出させた。そして処理後の試験片を断面で切断し、試験片の表面から所定の深さまで、EPMA線分析を実施した。かかるEPMA線分析では、炭化物に分析ビームが当たると高い値が検出される一方、マトリックス部分では低い値が検出される。このため得られたC濃度曲線は、炭化物が析出する表層付近で上下にはげしくばらつくが、炭化物がなくなりCが固溶している部分になると曲線の大きな乱れが収まる。ここではこの境界の濃度を850℃における固溶C濃度(Acm点)とした。結果は表2に示す通りである。
<Solid solution C concentration>
The solid solution C concentration at 850 ° C. was evaluated for the 22 steel grades (steel grades a to x) shown in Table 1. Specifically, a round bar test piece having a diameter of 15 × 100 L was prepared from the above test material, and vacuum carburized at 850 ° C. The vacuum carburizing treatment was carried out so that the surface layer C concentration of the test piece was 1.5%, and carbides were precipitated on the surface layer. Then, the treated test piece was cut in cross section, and EPMA ray analysis was performed from the surface of the test piece to a predetermined depth. In such EPMA ray analysis, a high value is detected when the carbide is hit by the analysis beam, while a low value is detected in the matrix portion. Therefore, the obtained C concentration curve fluctuates violently up and down near the surface layer where carbides are deposited, but when the carbides disappear and C is solid-solved, the large turbulence of the curve is settled. Here, the concentration at this boundary was defined as the solid solution C concentration (Acm point) at 850 ° C. The results are shown in Table 2.
表2に示すように、850℃における固溶C濃度は、鋼種の組成が本発明の要件を満たしていない(具体的には式(1)右辺の値が−0.19よりも大きい)比較例3〜9において、残留γが増加する目安である0.90%を超えている。これに対し、鋼種の組成が本発明の要件を満たしている実施例1〜14、比較例1,2,10では、850℃における固溶C濃度が何れも0.90%よりも低くなっており、式(1)を満たす組成において固溶C濃度低下の効果が認められた。 As shown in Table 2, the solid solution C concentration at 850 ° C. is a comparison in which the composition of the steel grade does not meet the requirements of the present invention (specifically, the value on the right side of the formula (1) is larger than −0.19). In Examples 3 to 9, the residual γ exceeds 0.90%, which is a guideline for an increase. On the other hand, in Examples 1 to 14 and Comparative Examples 1, 2 and 10 in which the composition of the steel grade satisfies the requirements of the present invention, the solid solution C concentration at 850 ° C. is lower than 0.90%. The effect of lowering the concentration of solid solution C was observed in the composition satisfying the formula (1).
次に、上記の試験用の素材よりΦ15×100Lの丸棒試験片を作製し、以下に示す高濃度浸炭処理を施し、表層C濃度,残留γ量,炭化物面積率及び表層硬さの評価を行った。また、上記の試験用の素材を所定形状に加工した後、高濃度浸炭処理を施した試験片を用いて曲げ疲労強度およびピッチング疲労強度を評価した。
なお、一部の試験片については、高濃度浸炭処理に代えて高濃度浸炭窒化処理を施し、上記評価項目に加えて表層N濃度の測定を行った。
Next, a Φ15 × 100 L round bar test piece was prepared from the above test material, subjected to the high-concentration carburizing treatment shown below, and the surface layer C concentration, residual γ content, carbide area ratio and surface hardness were evaluated. went. Further, after processing the above-mentioned test material into a predetermined shape, bending fatigue strength and pitching fatigue strength were evaluated using a test piece subjected to high-concentration carburizing treatment.
Some of the test pieces were subjected to high-concentration carburizing and nitriding treatment instead of high-concentration carburizing treatment, and the surface layer N concentration was measured in addition to the above evaluation items.
<高濃度浸炭処理/高濃度浸炭窒化処理>
高濃度浸炭処理は、真空浸炭炉を用い、浸炭ガスとしてアセチレンを使用し、図1に示すような処理パターンで、1次浸炭処理および2次浸炭処理を行った。
1次浸炭処理は、最表面のC濃度が1.1%程度となるように、1050℃で70分間浸炭処理を行った後、500℃以下の温度域までガス冷却によって急冷し、炭化物が析出しない程度の高濃度域までCを鋼中に侵入させた。
2次浸炭処理は、850℃の温度で保持して炭化物の析出処理を行った後、そのままの温度を保持して目標のC濃度に応じて30〜90分の間、浸炭処理を実施して浸炭層に析出した炭化物を成長させ、その後油焼入れを行った。そして焼入れ後には180℃×120分の焼戻し処理を実施した。
<High-concentration carburizing treatment / High-concentration carburizing nitriding treatment>
For the high-concentration carburizing treatment, a vacuum carburizing furnace was used, acetylene was used as the carburizing gas, and the primary carburizing treatment and the secondary carburizing treatment were performed in the treatment pattern as shown in FIG.
In the primary carburizing treatment, the carburizing treatment is performed at 1050 ° C. for 70 minutes so that the C concentration on the outermost surface becomes about 1.1%, and then the carburized material is rapidly cooled to a temperature range of 500 ° C. or lower by gas cooling to precipitate carbides. C was allowed to penetrate into the steel to a high concentration range where it did not occur.
In the secondary carburizing treatment, the carbides are precipitated at a temperature of 850 ° C., and then the carburizing treatment is carried out for 30 to 90 minutes depending on the target C concentration while maintaining the same temperature. Carbides precipitated in the carburized layer were grown and then oil-quenched. After quenching, a tempering treatment at 180 ° C. for 120 minutes was carried out.
尚、表2における比較例11は、JIS SCR420相当の鋼を用い、表面のC濃度を共析組成とし真空浸炭処理を施した例であり、比較例11については上記の高濃度浸炭処理を行なっていない。 In addition, Comparative Example 11 in Table 2 is an example in which a steel equivalent to JIS SCR420 was used and vacuum carburizing was performed with the C concentration on the surface as an eutectoid composition, and Comparative Example 11 was subjected to the above high concentration carburizing treatment. Not.
一方、高濃度浸炭窒化処理では、上記高濃度浸炭処理の場合と同様の1次浸炭処理を実施した後、2次浸炭窒化処理を実施した。2次浸炭窒化処理では、上記高濃度浸炭処理の2次浸炭処理と同じ温度・時間の条件の下、浸炭のためのアセチレンガスと、窒化のためのアンモニアガスとを交互に流し、表層に浸炭窒化層を形成した。 On the other hand, in the high-concentration carburizing nitriding treatment, the same primary carburizing treatment as in the case of the high-concentration carburizing treatment was carried out, and then the secondary carburizing nitriding treatment was carried out. In the secondary carburizing nitriding treatment, acetylene gas for carburizing and ammonia gas for nitriding are alternately flowed under the same temperature and time conditions as the secondary carburizing treatment of the above high-concentration carburizing treatment to carburize the surface layer. A nitride layer was formed.
<表層C濃度>
上記高濃度浸炭処理後もしくは高濃度浸炭窒化処理後の試験片を用いて、試験片表面から0.05mmまでの深さのダライ粉を採取しC濃度(質量%)をガス分析にて測定した。
<Surface C concentration>
Using the test piece after the high-concentration carburizing treatment or the high-concentration carburizing nitriding treatment, Dalai powder having a depth of up to 0.05 mm was collected from the surface of the test piece, and the C concentration (mass%) was measured by gas analysis. ..
<表層N濃度>
上記高濃度浸炭窒化処理後の試験片を用いて、試験片表面から0.05mmまでの深さのダライ粉を採取しN濃度(質量%)をガス分析にて測定した。
<Surface N concentration>
Using the test piece after the high-concentration carburizing and nitriding treatment, Dalai powder having a depth of up to 0.05 mm was collected from the surface of the test piece, and the N concentration (mass%) was measured by gas analysis.
<残留γ量>
上記高濃度浸炭処理後もしくは高濃度浸炭窒化処理後の試験片の最表面をXRDにより測定し、残留γ量を求めた。
<Amount of residual γ>
The outermost surface of the test piece after the high-concentration carburizing treatment or the high-concentration carburizing nitriding treatment was measured by XRD to determine the amount of residual γ.
<炭化物面積率>
上記高濃度浸炭処理後もしくは高濃度浸炭窒化処理後の試験片の横断面を切断、研磨後、ピクラールで腐食し、最表面〜0.05mmの位置内部をSEMで写真撮影し、画像解析をすることにより炭化物の面積率の測定を行った。
<Carbide area ratio>
After cutting and polishing the cross section of the test piece after the above high-concentration carburizing treatment or high-concentration carburizing nitriding treatment, it is corroded with piclar, and the inside of the position from the outermost surface to 0.05 mm is photographed with SEM and image analysis is performed. Therefore, the area ratio of the carbide was measured.
<表層硬さ>
上記高濃度浸炭処理後もしくは高濃度浸炭窒化処理後の試験片の断面部分を切断して埋め込み、硬さ測定用の試験片を作成した。測定にはビッカース硬さ試験機を用い、JIS Z2244に規定された試験方法により、表面下0.05mmの位置の硬さの5点平均を表層硬さとした。また、高濃度浸炭処理後もしくは高濃度浸炭窒化処理後の試験片に300℃で3時間の焼戻し処理を施し、表層の焼戻し硬さの測定を行った。尚、試験荷重は300gとした。
<Surface hardness>
The cross-sectional portion of the test piece after the high-concentration carburizing treatment or the high-concentration carburizing nitriding treatment was cut and embedded to prepare a test piece for hardness measurement. A Vickers hardness tester was used for the measurement, and the 5-point average of the hardness at a position 0.05 mm below the surface was defined as the surface hardness by the test method specified in JIS Z2244. Further, the test piece after the high-concentration carburizing treatment or the high-concentration carburizing nitriding treatment was tempered at 300 ° C. for 3 hours, and the tempering hardness of the surface layer was measured. The test load was 300 g.
<曲げ疲労強度>
曲げ疲労強度は、JIS Z2274に準拠した小野式回転曲げ疲労試験にて評価した。上記の試験用の素材を、図2(A)に示す半径r=1mmの環状切欠を有する丸棒形状の小野式回転曲げ疲労試験片10に加工した後、上記高濃度浸炭処理もしくは高濃度浸炭窒化処理を施し、試験に供した。試験条件は回転数3500rpm、試験温度は室温とした。曲げ疲労強度は107サイクルで破断しない最大応力とした。また、JIS SCR420の真空浸炭材(比較例11)の曲げ疲労強度を1として、ぞれぞれの試験片での曲げ疲労強度向上率を%で表した。
<Bending fatigue strength>
The bending fatigue strength was evaluated by the Ono type rotary bending fatigue test based on JIS Z2274. After processing the above-mentioned test material into a round bar-shaped Ono-type rotary bending
<ピッチング疲労強度>
ピッチング疲労強度は、ローラピッチング試験にて評価した。上記の試験用の素材を、図2(B)に示すように、接触部12aの直径φ26mm,その両側の小径部12bの直径φ23mm,接触部12aの幅28mmの小ローラの試験片12に機械加工した後、上記高濃度浸炭処理もしくは高濃度浸炭窒化処理を施し、試験に供した。
<Pitching fatigue strength>
The pitching fatigue strength was evaluated by a roller pitching test. As shown in FIG. 2B, the above test material is applied to a small
試験片12の相手側となる大ローラは、材質がSUJ2でHRC61となるように焼入れ焼戻し処理を実施した。尚、大ローラの曲率半径は150Rとした。
ローラピッチング試験では、試験片12と相手側大ローラとを2.0〜4.0GPaの種々の面圧で、回転数(試験片12):1500rpmで接触させ、ローラピッチング試験機を用いてそれらを滑り率:−60%で回転させ、107サイクルでピッチングを生じない負荷応力を面疲労強度(ピッチング疲労強度)とした。そしてJIS SCR420の真空浸炭材(比較例11)の面疲労強度を1として、ぞれぞれの試験片での面疲労強度向上率を%で表した。
これらの評価結果を上記表2および図3、図4に示す。
The large roller on the other side of the
In the roller pitching test, the
The evaluation results are shown in Table 2 and FIGS. 3 and 4.
表2に示すように、高濃度浸炭処理もしくは高濃度浸炭窒化処理が施された実施例1〜14、比較例1〜10は、何れも300℃焼戻し硬さが比較例11(SCR420の真空浸炭材)よりも高く維持され、面疲労強度(ピッチング疲労強度)は図4(A)に示すように従来の真空浸炭材(比較例11)よりも良好な値であった。全体として高濃度浸炭処理もしくは高濃度浸炭窒化処理を施したことによる効果が得られている。 As shown in Table 2, Examples 1 to 14 and Comparative Examples 1 to 10 which were subjected to the high-concentration carburizing treatment or the high-concentration carburizing nitriding treatment all had a tempering hardness of 300 ° C. in Comparative Example 11 (vacuum carburizing of SCR420). The surface fatigue strength (pitching fatigue strength) was maintained higher than that of the conventional vacuum carburized material (Comparative Example 11) as shown in FIG. 4 (A). As a whole, the effect of applying the high-concentration carburizing treatment or the high-concentration carburizing nitriding treatment is obtained.
しかしながら比較例1は、表層の炭化物面積率が本発明の下限値5%を下回っており、300℃焼戻しにおける硬さの低下が747HV→645HVと著しく、焼戻し軟化抵抗を向上させる効果が他の例と比較して十分でない。
一方、比較例2は、表層の炭化物面積率が本発明の上限値40%を上回っている。この比較例2は、表層硬さが796HVと高いにも拘らず、図3(A)に示すように曲げ疲労強度が、従来の真空浸炭材(比較例11)よりも低下しており、ピッチング疲労強度と曲げ疲労強度の両立は図られていない。炭化物面積率が過度に大きい比較例2では、炭化物が粗大化するとともにその形状が球状から網状に変化したため、曲げ疲労強度が悪化したものと推測される。
However, in Comparative Example 1, the carbide area ratio of the surface layer was lower than the lower limit of 5% of the present invention, the hardness was significantly reduced at 300 ° C. tempering from 747HV to 645HV, and the effect of improving the tempering softening resistance was another example. Not enough compared to.
On the other hand, in Comparative Example 2, the carbide area ratio of the surface layer exceeds the upper limit of 40% of the present invention. In Comparative Example 2, although the surface hardness was as high as 796 HV, the bending fatigue strength was lower than that of the conventional vacuum carburized material (Comparative Example 11) as shown in FIG. 3 (A), and pitching was performed. Achievement of both fatigue strength and bending fatigue strength is not achieved. In Comparative Example 2 in which the carbide area ratio is excessively large, it is presumed that the bending fatigue strength deteriorated because the carbide became coarse and its shape changed from a spherical shape to a net shape.
他方、比較例3〜8は、表層の炭化物面積率が本発明の規定範囲内であったが、残留γ量は40%以上で本発明の規定値を超えている。このため図3(A)に示すように曲げ疲労強度が、従来の真空浸炭材(比較例11)よりも低下しており、ピッチング疲労強度と曲げ疲労強度との両立は図られていない。残留γ量が40%以上であった比較例3〜8は、見かけ上表層硬さは高いものの、多量の残留γ量が発生しているため局所的に硬さが低下し、曲げ疲労強度が悪化したものと推測される。 On the other hand, in Comparative Examples 3 to 8, the carbide area ratio of the surface layer was within the specified range of the present invention, but the residual γ amount was 40% or more, which exceeded the specified value of the present invention. Therefore, as shown in FIG. 3A, the bending fatigue strength is lower than that of the conventional vacuum carburized material (Comparative Example 11), and the pitching fatigue strength and the bending fatigue strength are not compatible with each other. In Comparative Examples 3 to 8 in which the residual γ content was 40% or more, although the surface hardness was apparently high, the hardness was locally reduced due to the large amount of residual γ content, and the bending fatigue strength was increased. It is presumed that it has deteriorated.
高濃度浸炭窒化処理が施された比較例9,10は、表層の炭化物面積率およびN濃度が本発明の規定範囲内であったが、残留γ量が40%以上で本発明の規定値を超えていたため、図3(A)に示すように曲げ疲労強度が、従来の真空浸炭材(比較例11)よりも低下しており、ピッチング疲労強度と曲げ疲労強度との両立は図られていない。 In Comparative Examples 9 and 10 subjected to the high-concentration carburizing and nitriding treatment, the carbide area ratio and the N concentration of the surface layer were within the specified range of the present invention, but the residual γ amount was 40% or more and the specified values of the present invention were obtained. As shown in FIG. 3A, the bending fatigue strength is lower than that of the conventional vacuum carburized material (Comparative Example 11), and the pitching fatigue strength and the bending fatigue strength are not compatible with each other. ..
これに対し高濃度浸炭処理が施された実施例1〜12は、上記式(1)を満たすように成分調整された鋼からなり、浸炭層の炭化物面積率および残留γ量も本発明の規定範囲内である。これら実施例1〜12は、表2,図4(B)に示すように、何れも300℃焼戻し硬さが比較例11(SCR420の真空浸炭材)よりも高く、面疲労強度(ピッチング疲労強度)は、図4(A)に示すように従来の真空浸炭材(比較例11)よりも良好な結果が得られている。
加えて曲げ疲労強度についても、図3(A)に示すように、従来の真空浸炭材(比較例11)に対して1.0〜6.5%の向上が認められた。即ち、高濃度浸炭処理が施された実施例1〜12は、従来の真空浸炭材(比較例11)に対してピッチング疲労強度と曲げ疲労強度を共に高めることができている。
On the other hand, Examples 1 to 12 subjected to the high-concentration carburizing treatment are made of steel whose composition has been adjusted so as to satisfy the above formula (1), and the carbide area ratio and the residual γ amount of the carburized layer are also specified in the present invention. It is within the range. As shown in Tables 2 and 4 (B), in each of Examples 1 to 12, the tempering hardness at 300 ° C. is higher than that of Comparative Example 11 (vacuum carburized material of SCR420), and the surface fatigue strength (pitching fatigue strength) is higher. ), As shown in FIG. 4A, better results than the conventional vacuum carburized material (Comparative Example 11) are obtained.
In addition, as shown in FIG. 3A, the bending fatigue strength was also improved by 1.0 to 6.5% as compared with the conventional vacuum carburized material (Comparative Example 11). That is, in Examples 1 to 12 subjected to the high-concentration carburizing treatment, both the pitching fatigue strength and the bending fatigue strength can be increased as compared with the conventional vacuum carburized material (Comparative Example 11).
また高濃度浸炭窒化処理が施された実施例13,14は、上記式(1)を満たすように成分調整された鋼からなり、浸炭窒化層の炭化物面積率,残留γ量およびN濃度が本発明の規定範囲内である。これら実施例13,14は、何れも300℃焼戻し硬さが比較例11(SCR420の真空浸炭材)よりも高く維持されている。そのため、面疲労強度(ピッチング疲労強度)については、図4(A)に示すように従来の真空浸炭材(比較例11)よりも良好な結果が得られている。
加えて曲げ疲労強度についても、図3(A)に示すように、従来の真空浸炭材に対して1.3〜2.6%の向上が認められた。即ち、高濃度浸炭窒化処理が施された実施例13,14においても、従来の真空浸炭材(比較例11)に対してピッチング疲労強度と曲げ疲労強度を共に高めることができている。
Further, Examples 13 and 14 subjected to the high-concentration carburizing and nitriding treatment are made of steel whose composition has been adjusted so as to satisfy the above formula (1), and the carbide area ratio, residual γ amount and N concentration of the carburized nitride layer are the present. It is within the specified range of the invention. In each of these Examples 13 and 14, the tempering hardness at 300 ° C. is maintained higher than that of Comparative Example 11 (vacuum carburized material of SCR420). Therefore, as shown in FIG. 4A, better results are obtained for the surface fatigue strength (pitching fatigue strength) than the conventional vacuum carburized material (Comparative Example 11).
In addition, as shown in FIG. 3A, the bending fatigue strength was also improved by 1.3 to 2.6% as compared with the conventional vacuum carburized material. That is, even in Examples 13 and 14 in which the high-concentration carburizing and nitriding treatment is performed, both the pitching fatigue strength and the bending fatigue strength can be increased as compared with the conventional vacuum carburized material (Comparative Example 11).
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。 Examples of the present invention have been described in detail above, but this is merely an example, and the present invention can be carried out in a mode in which various modifications are made without departing from the spirit of the present invention.
Claims (4)
C:0.14〜0.38%
Si:0.01〜1.50%
Mn:0.20〜2.0%
Cu:0.5%以下
Ni:0.06〜0.8%
Cr:0.50〜4.5%
Mo:0.8%以下
Al:0.010〜0.060%
N:0.005〜0.030%
を含有し、残部Fe及び不可避的不純物の組成を有し且つ下記式(1)を満たす鋼からなり、
浸炭層を表層に有し、該表層は、最表層〜0.05mmであり、炭化物面積率が5〜40%で、更に残留γ量が40%未満であることを特徴とする浸炭部品。
−0.19>−0.102[Si]−0.03[Cu]−0.01[Ni]−0.135[Cr] ・・・式(1)
(但し式(1)中各元素記号は含有質量%を表す) By mass% C: 0.14 to 0.38%
Si: 0.01 to 1.50%
Mn: 0.25 to 2.0%
Cu: 0.5% or less Ni: 0.06 to 0.8 %
Cr: 0.50 to 4.5%
Mo: 0.8% or less Al: 0.010 to 0.060%
N: 0.005 to 0.030%
Consists of steel having the composition of the balance Fe and unavoidable impurities and satisfying the following formula (1).
A carburized component having a carburized layer as a surface layer, the surface layer having the outermost layer to 0.05 mm, a carbide area ratio of 5 to 40%, and a residual γ amount of less than 40%.
-0.19> -0.102 [Si] -0.03 [Cu] -0.01 [Ni] -0.135 [Cr] ・ ・ ・ Equation (1)
(However, each element symbol in formula (1) represents the content mass%)
Nb:0.1%以下
を更に含有することを特徴とする浸炭部品。 The carburized part according to claim 1, further containing Nb: 0.1% or less in mass% as an alloy component of the steel.
C:0.14〜0.38%
Si:0.01〜1.50%
Mn:0.20〜2.0%
Cu:0.5%以下
Ni:0.06〜0.8%
Cr:0.50〜4.5%
Mo:0.8%以下
Al:0.010〜0.060%
N:0.005〜0.030%
を含有し、残部Fe及び不可避的不純物の組成を有し且つ下記式(1)を満たす鋼からなり、
浸炭窒化層を表層に有し、該表層は、最表層〜0.05mmであり、N濃度が質量%で0.05〜0.5%、炭化物面積率が5〜40%で、更に残留γ量が40%未満であることを特徴とする浸炭窒化部品。
−0.19>−0.102[Si]−0.03[Cu]−0.01[Ni]−0.135[Cr] ・・・式(1)
(但し式(1)中各元素記号は含有質量%を表す) By mass% C: 0.14 to 0.38%
Si: 0.01 to 1.50%
Mn: 0.25 to 2.0%
Cu: 0.5% or less Ni: 0.06 to 0.8 %
Cr: 0.50 to 4.5%
Mo: 0.8% or less Al: 0.010 to 0.060%
N: 0.005 to 0.030%
Consists of steel having the composition of the balance Fe and unavoidable impurities and satisfying the following formula (1).
The surface layer has a carburized nitrided layer, the surface layer is the outermost layer to 0.05 mm, the N concentration is 0.05 to 0.5% by mass%, the carbide area ratio is 5 to 40%, and the residual γ is further. A carburized nitrided component, characterized in that the amount is less than 40%.
-0.19> -0.102 [Si] -0.03 [Cu] -0.01 [Ni] -0.135 [Cr] ・ ・ ・ Equation (1)
(However, each element symbol in formula (1) represents the content mass%)
Nb:0.1%以下
を更に含有することを特徴とする浸炭窒化部品。 The carburized nitride component according to claim 3, further containing Nb: 0.1% or less in mass% as an alloy component of the steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017148574A JP6953871B2 (en) | 2017-07-31 | 2017-07-31 | Carburized parts and carburized nitride parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017148574A JP6953871B2 (en) | 2017-07-31 | 2017-07-31 | Carburized parts and carburized nitride parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019026899A JP2019026899A (en) | 2019-02-21 |
JP6953871B2 true JP6953871B2 (en) | 2021-10-27 |
Family
ID=65475914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017148574A Active JP6953871B2 (en) | 2017-07-31 | 2017-07-31 | Carburized parts and carburized nitride parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6953871B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7545104B2 (en) * | 2020-01-06 | 2024-09-04 | 日産自動車株式会社 | Manufacturing method for carburized and hardened parts |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3033349B2 (en) * | 1992-07-10 | 2000-04-17 | 株式会社神戸製鋼所 | Carburized steel parts with excellent pitting resistance |
JPH083720A (en) * | 1994-06-16 | 1996-01-09 | Sumitomo Metal Ind Ltd | Steel parts with excellent rolling contact fatigue life and manufacturing method thereof |
JP3410947B2 (en) * | 1998-01-09 | 2003-05-26 | 日産自動車株式会社 | Rolling element of continuously variable transmission and method of manufacturing the same |
-
2017
- 2017-07-31 JP JP2017148574A patent/JP6953871B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019026899A (en) | 2019-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5530763B2 (en) | Carburized steel parts with excellent low cycle bending fatigue strength | |
JP5018586B2 (en) | High strength carburizing induction hardening parts | |
EP2966189B1 (en) | Semi-finished material for induction hardened component and method for producing same | |
JP5872863B2 (en) | Gear having excellent pitting resistance and method for producing the same | |
EP2530178A1 (en) | Case-hardened steel and carburized material | |
JP5333682B2 (en) | Rolled steel bar or wire rod for hot forging | |
JP2011153364A (en) | Crankshaft and method for producing the same | |
WO2016153009A1 (en) | Nitrided or soft nitrided part with excellent wear resistance and pitting resistance, and nitriding and soft nitriding methods | |
JP4687616B2 (en) | Steel carburized or carbonitrided parts | |
JP4941252B2 (en) | Case-hardened steel for power transmission parts | |
JP5206271B2 (en) | Carbonitriding parts made of steel | |
JP5076535B2 (en) | Carburized parts and manufacturing method thereof | |
JP2001073072A (en) | Carbo-nitrided parts excellent in pitching resistance | |
JP4752635B2 (en) | Method for manufacturing soft nitrided parts | |
JP5272330B2 (en) | Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts | |
JP4291941B2 (en) | Soft nitriding steel with excellent bending fatigue strength | |
JP5198765B2 (en) | Rolling member and manufacturing method thereof | |
JP6911606B2 (en) | Nitriding parts and nitriding method | |
JP6953871B2 (en) | Carburized parts and carburized nitride parts | |
WO2017209180A1 (en) | Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method | |
JP2004285384A (en) | High strength carburized component | |
JP7277859B2 (en) | Gas nitrocarburized part and its manufacturing method | |
TWI630278B (en) | Surface hardened steel | |
JP5272609B2 (en) | Carbonitriding parts made of steel | |
JP7295378B2 (en) | Gas nitrocarburized part and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210119 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210913 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6953871 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |