JP6951895B2 - Abrasive cloth - Google Patents
Abrasive cloth Download PDFInfo
- Publication number
- JP6951895B2 JP6951895B2 JP2017143436A JP2017143436A JP6951895B2 JP 6951895 B2 JP6951895 B2 JP 6951895B2 JP 2017143436 A JP2017143436 A JP 2017143436A JP 2017143436 A JP2017143436 A JP 2017143436A JP 6951895 B2 JP6951895 B2 JP 6951895B2
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- polishing pad
- forming material
- thickness direction
- abundance ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/564—Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Description
本発明は、研磨布に関する。 The present invention relates to a polishing pad.
従来、シリコンウェハなどの被研磨物を研磨するのに、形成材料として、不織布と、該不織布に含浸された樹脂とを備えた研磨布が用いられている(例えば、特許文献1)。 Conventionally, a polishing cloth provided with a non-woven fabric and a resin impregnated in the non-woven fabric has been used as a forming material for polishing an object to be polished such as a silicon wafer (for example, Patent Document 1).
ここで、研磨布においては、端部ダレが生じることが知られている。
樹脂の含浸量を増やして研磨布を硬くすると端部ダレを防ぐことができるが、その場合は、研磨布を形成する形成材料の存在比率が研磨面において高くなる。
被研磨物の研磨時には、形成材料の存在していない部分(空隙)が削り屑の収容スペースとなるため、樹脂の含浸量を増やしすぎると目詰まりし易くなる。
Here, it is known that edge sagging occurs in polishing cloth.
Increasing the amount of resin impregnated to harden the polishing pad can prevent edge sagging, but in that case, the abundance ratio of the forming material forming the polishing pad increases on the polishing surface.
When polishing the object to be polished, the portion (void) where the forming material does not exist serves as a storage space for shavings, so if the amount of resin impregnated is increased too much, clogging is likely to occur.
そこで、本発明は、上記問題点に鑑み、目詰まり及び端部ダレが生じ難い研磨布を提供することを課題とする。 Therefore, in view of the above problems, it is an object of the present invention to provide a polishing cloth in which clogging and edge sagging are unlikely to occur.
本発明に係る研磨布は、形成材料として、不織布と、該不織布に含浸された樹脂とを備えた研磨布であって、
厚み方向中央部から一方の表面までの前記形成材料の存在比率が30〜60%であり、且つ、前記厚み方向における前記存在比率の最大値と最小値との差が10%以下である。
The polishing pad according to the present invention is a polishing pad provided with a non-woven fabric and a resin impregnated in the non-woven fabric as a forming material.
The abundance ratio of the forming material from the central portion in the thickness direction to one surface is 30 to 60%, and the difference between the maximum value and the minimum value of the abundance ratio in the thickness direction is 10% or less.
斯かる研磨布は、前記厚み方向中央部から一方の表面までの前記形成材料の存在比率が60%以下であることにより、空隙を多く有することになるので、削り屑が多少空隙に詰まっても、研磨レートが低下し難くなる。
また、斯かる研磨布は、前記厚み方向における前記存在比率の最大値と最小値との差が10%以下であることにより、研磨布の表面に空隙が多く存在しやすくなり、その結果、削り屑が多少空隙に詰まっても、研磨レートが低下し難くなる。
さらに、斯かる研磨布は、前記厚み方向中央部から一方の表面までの前記形成材料の存在比率が30%以上であることにより、材料が存在する箇所が多くなり、硬度が高いものとなり、その結果、端部ダレが生じ難くなる。
Since the abundance ratio of the forming material from the central portion in the thickness direction to one surface of the polishing cloth is 60% or less, the polishing cloth has many voids, so that even if the shavings are slightly clogged in the voids. , The polishing rate is less likely to decrease.
Further, in such a polishing pad, since the difference between the maximum value and the minimum value of the abundance ratio in the thickness direction is 10% or less, many voids are likely to be present on the surface of the polishing pad, and as a result, the polishing pad is scraped. Even if some debris is clogged in the voids, the polishing rate is unlikely to decrease.
Further, in such a polishing cloth, since the abundance ratio of the forming material from the central portion in the thickness direction to one surface is 30% or more, the number of places where the material is present increases and the hardness becomes high. As a result, edge sagging is less likely to occur.
以上より、本発明によれば、目詰まり及び端部ダレが生じ難い研磨布を提供し得る。 From the above, according to the present invention, it is possible to provide a polishing cloth in which clogging and edge sagging are unlikely to occur.
以下、添付図面を参照しつつ、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
本実施形態に係る研磨布は、形成材料として、不織布と、該不織布に含浸された樹脂とを備える。
また、本実施形態に係る研磨布では、厚み方向中央部から一方の表面までの前記形成材料の存在比率が30〜60%であり、且つ、前記厚み方向における前記存在比率の最大値と最小値との差が10%以下であることが重要である。
前記厚み方向中央部から一方の表面までの前記形成材料の存在比率は、30〜60%である。
なお、前記一方の表面は、研磨面となる。
The polishing pad according to the present embodiment includes a non-woven fabric and a resin impregnated in the non-woven fabric as a forming material.
Further, in the polishing pad according to the present embodiment, the abundance ratio of the forming material from the central portion in the thickness direction to one surface is 30 to 60%, and the maximum value and the minimum value of the abundance ratio in the thickness direction. It is important that the difference from is 10% or less.
The abundance ratio of the forming material from the central portion in the thickness direction to one surface is 30 to 60%.
The one surface is a polished surface.
「厚み方向中央部から一方の表面までの形成材料の存在比率」、及び、「前記厚み方向における形成材料の存在比率の最大値と最小値との差」は、以下のようにして求めることができる。
すなわち、一方の表面から厚み方向中央部まで100μmごとに断面観察し、各断面において形成材料の存在比率を測定する。
そして、測定した形成材料の存在比率の算術平均値を、「厚み方向中央部から一方の表面までの形成材料の存在比率」とし、測定した形成材料の存在比率における、最大値から最小値を引いた値を「前記厚み方向における形成材料の存在比率の最大値と最小値との差」とする。
なお、各断面における形成材料の存在比率とは、各断面における観察する部分において、観察する部分の面積全体を100%としたときにおける、形成材料が存在する部分の面積の割合を意味する。
The "presence ratio of the forming material from the central portion in the thickness direction to one surface" and the "difference between the maximum value and the minimum value of the abundance ratio of the forming material in the thickness direction" can be obtained as follows. can.
That is, the cross section is observed every 100 μm from one surface to the central portion in the thickness direction, and the abundance ratio of the forming material is measured in each cross section.
Then, the arithmetic mean value of the measured abundance ratio of the forming material is defined as "the abundance ratio of the forming material from the central portion in the thickness direction to one surface", and the minimum value is subtracted from the maximum value in the measured abundance ratio of the forming material. The value is defined as "the difference between the maximum value and the minimum value of the abundance ratio of the forming material in the thickness direction".
The abundance ratio of the forming material in each cross section means the ratio of the area of the portion where the forming material exists in the portion to be observed in each cross section when the entire area of the observed portion is 100%.
前記測定では、CT−scanにより研磨布を撮影する。
具体的には、研磨布の一方の表面から厚み方向中央部まで100μmごとに断面の画像を取得する。そして、断面の画像において、空隙と空隙以外の部分(形成材料が存在する部分)とに分類する二値化処理をすることにより、各断面における前記形成材料の存在比率(面積比率)を測定する。
CT装置としては、ヤマト科学株式会社製の三次元計測X線CT装置(TDM1000H−1)を用いることができる。
また、CT画像処理ソフトとしては、ボリュームグラフィックス株式会社製の画像処理ソフトVGStudio Max 2.1を用いることができる。
さらに、形成材料の存在比率(面積比率)を算出する画像解析ソフトとしては、三谷商事株式会社製のWinRoofを用いることができる。
観察する各断面の面積は、1,300μm×1,300μmとすることができる。
In the above measurement, the polishing pad is photographed by CT-scan.
Specifically, a cross-sectional image is acquired every 100 μm from one surface of the polishing pad to the central portion in the thickness direction. Then, in the image of the cross section, the abundance ratio (area ratio) of the forming material in each cross section is measured by performing a binarization process for classifying the void and the portion other than the void (the portion where the forming material exists). ..
As the CT apparatus, a three-dimensional measurement X-ray CT apparatus (TDM1000H-1) manufactured by Yamato Scientific Co., Ltd. can be used.
Further, as the CT image processing software, the image processing software VGStudio Max 2.1 manufactured by Volume Graphics Co., Ltd. can be used.
Further, as the image analysis software for calculating the abundance ratio (area ratio) of the forming material, WinRof manufactured by Mitani Corporation can be used.
The area of each cross section to be observed can be 1,300 μm × 1,300 μm.
例えば、以下のような条件で、各断面における前記形成材料の存在比率(面積比率)を測定する。 For example, the abundance ratio (area ratio) of the forming material in each cross section is measured under the following conditions.
前記測定においては、以下の視野の大きさで研磨布の断面を連続測定する。
視野の大きさ(縦×横×高さ) : 2,000μm × 2,000μm × 厚み方向全域
また、前記測定の条件は、以下の通りである。
1回転あたりのビュー数 : 1500
フレーム数/ビュー : 10
X線管電圧〔KV〕 : 25.000
拡大軸位置〔mm〕 : 10.000
再構成の画素サイズX〔mm〕 : 0.003880
再構成の画素サイズY〔mm〕 : 0.003880
再構成の画素サイズZ〔mm〕 : 0.003880
In the above measurement, the cross section of the polishing pad is continuously measured with the following field of view.
Field of view size (length x width x height): 2,000 μm x 2,000 μm x entire thickness direction The measurement conditions are as follows.
Number of views per rotation: 1500
Number of frames / views: 10
X-ray tube voltage [KV]: 25.000
Expansion axis position [mm]: 10.000
Reconstruction pixel size X [mm]: 0.003880
Reconstruction pixel size Y [mm]: 0.003880
Reconstructed pixel size Z [mm]: 0.003880
前記測定で得られた画像から研磨布の厚み方向中央を定める方法は、以下の通りである。
まず、CT画像処理ソフト“VGStudio Max”上において、座標表記機能(ボリューム座標系モード)を用いて、研磨布について、X軸方向、Y軸方向及びZ軸方向それぞれの座標値をmm単位で表示する。
次に、レジストレーション機能を用いて、研磨布の厚み方向が、X、Y、及びZ軸の何れかの一の方向と一致するように、前記ソフトにおける傾きを調整する。
そして、研磨布の一方の表面の厚み方向の座標値と、他方の表面の厚み方向の座標値とから、厚み方向の座標値の平均値を求めることで、研磨布の厚み方向中央の位置を定める。
The method of determining the center of the polishing pad in the thickness direction from the image obtained by the measurement is as follows.
First, on the CT image processing software "VGStudio Max", the coordinate values of the X-axis direction, the Y-axis direction, and the Z-axis direction are displayed in mm units for the polishing cloth using the coordinate notation function (volume coordinate system mode). do.
Next, the registration function is used to adjust the inclination of the polishing pad so that the thickness direction of the polishing pad coincides with the direction of any one of the X, Y, and Z axes.
Then, by obtaining the average value of the coordinate values in the thickness direction from the coordinate values in the thickness direction of one surface of the polishing pad and the coordinate values in the thickness direction of the other surface, the position of the center of the polishing pad in the thickness direction can be determined. stipulate.
断面の画像において、空隙と空隙以外の部分(形成材料が存在する部分)とに分類する二値化処理は、以下の通りである。
二値化処理では、VGStudio Maxで、空隙と空隙以外の部分(形成材料が存在する部分)とに分類するために、断面の画像に関して、コントラストの調整を行う。
コントラストの調整は、Rampモードで行う。
コントラストの調整では、空隙と空隙以外の部分(形成材料が存在する部分)との違いが明確になるようにする。
VGStudio Maxでは、コントラストの調整が“不透明度調整”と表記されている。
具体的には、VGStudio Maxの不透明度調整の画面において、グレイバリューの下限値をピークに設定し、次にグレイバリューの上限値を「該ピークのピーク値+100±5」の範囲に設定する。なお、材料によって光の透過率が異なるので、コントラストの調整範囲は必ずしもこの限りではない。
In the cross-sectional image, the binarization process for classifying the void and the portion other than the void (the portion where the forming material exists) is as follows.
In the binarization process, the contrast of the cross-sectional image is adjusted in order to classify the gap and the portion other than the void (the portion where the forming material exists) in the VGStudio Max.
The contrast is adjusted in the Ram mode.
In adjusting the contrast, the difference between the void and the portion other than the void (the portion where the forming material is present) is made clear.
In VGStudio Max, the contrast adjustment is described as "opacity adjustment".
Specifically, on the screen for adjusting the opacity of VGStudio Max, the lower limit of the gray value is set to the peak, and then the upper limit of the gray value is set to the range of "peak value of the peak + 100 ± 5". Since the light transmittance differs depending on the material, the contrast adjustment range is not necessarily limited to this.
前記コントラストの調整をした2D画像に対し、研磨布の一方の表面から厚み方向中央部まで100μmごとに断面の画像を取得する。 With respect to the contrast-adjusted 2D image, a cross-sectional image is acquired every 100 μm from one surface of the polishing pad to the central portion in the thickness direction.
次に、前記取得した100μmごとの断面の画像について、WinRoofで材料存在率を測定する。
WinRoofにおける測定範囲を「1,300μm×1,300μm」とし、「各断面における観察する部分において、観察する部分の面積全体を100%としたときにおける、形成材料が存在する部分の面積の割合」を、「各断面における形成材料の存在比率」とする。
なお、WinRoofにおける二値化処理では、階調範囲が“127”〜“255”の範囲となる部分を、空隙以外の部分(形成材料が存在する部分)とする。
Next, the material abundance rate is measured by WinLoof for the acquired cross-sectional image of every 100 μm.
The measurement range in WinRoof is "1,300 μm × 1,300 μm", and "the ratio of the area where the forming material exists in the observed portion in each cross section when the entire area of the observed portion is 100%". Is "the abundance ratio of the forming material in each cross section".
In the binarization process in WinLoof, the portion where the gradation range is in the range of "127" to "255" is defined as a portion other than the void (the portion where the forming material exists).
なお、存在比率については、一方の面について述べたが、他方の面についても、一方の面と同様な存在比率となっていることが好ましい。
すなわち、本実施形態に係る研磨布では、厚み方向中央部から他方の表面までの前記形成材料の存在比率が30〜60%であり、且つ、前記厚み方向における前記存在比率の最大値と最小値との差が10%以下であることが好ましい。
Regarding the abundance ratio, one side has been described, but it is preferable that the other side has the same abundance ratio as the one side.
That is, in the polishing pad according to the present embodiment, the abundance ratio of the forming material from the central portion in the thickness direction to the other surface is 30 to 60%, and the maximum value and the minimum value of the abundance ratio in the thickness direction. The difference from the above is preferably 10% or less.
本実施形態に係る研磨布のAsker−C硬度は、好ましくは80以上、より好ましくは85〜95である。
本実施形態に係る研磨布は、Asker−C硬度が80以上であることにより、被研磨物(例えば、ウェハ等)の端部ダレが生じ難くなるという利点を有する。また、本実施形態に係る研磨布は、Asker−C硬度が95以下であることにより、被研磨物に、欠陥(例えば、傷など)が生じ難くなるという利点を有する。
なお、Asker−C硬度は、SRIS0101(日本ゴム協会標準規格)の規定に従って測定した値を意味する。また、Asker−C硬度は、前記一方の表面で測定する。言い換えれば、Asker−C硬度は、研磨面で測定する。
The Asker-C hardness of the polishing pad according to the present embodiment is preferably 80 or more, more preferably 85 to 95.
The polishing pad according to the present embodiment has an advantage that the edge sagging of the object to be polished (for example, a wafer or the like) is less likely to occur when the Asker-C hardness is 80 or more. Further, the polishing pad according to the present embodiment has an advantage that defects (for example, scratches) are less likely to occur in the object to be polished because the Asker-C hardness is 95 or less.
The Asker-C hardness means a value measured according to the provisions of SRIS0101 (Japan Rubber Association standard). The Asker-C hardness is measured on one of the surfaces. In other words, the Asker-C hardness is measured on the polished surface.
本実施形態に係る研磨布の厚みは、好ましくは0.8〜2.0mm、より好ましくは1.0〜1.5mmである。
本実施形態に係る研磨布は、厚みが0.8mm以上であることにより、研磨機の定盤の状態による研磨性能への悪影響を緩和しやすくなるという利点を有する。また、これにより、例えば、被研磨物を安定的に平坦にしやすくなるという利点もある。
また、本実施形態に係る研磨布は、厚みが2.0mm以下であることにより、研磨時の研磨布の変形量を少なくでき、その結果、被研磨物の端部ダレが生じ難くなるという利点を有する。
The thickness of the polishing pad according to this embodiment is preferably 0.8 to 2.0 mm, more preferably 1.0 to 1.5 mm.
Since the polishing pad according to the present embodiment has a thickness of 0.8 mm or more, it has an advantage that the adverse effect on the polishing performance due to the state of the surface plate of the polishing machine can be easily mitigated. Further, this also has an advantage that, for example, it becomes easy to stably flatten the object to be polished.
Further, since the polishing pad according to the present embodiment has a thickness of 2.0 mm or less, the amount of deformation of the polishing pad during polishing can be reduced, and as a result, there is an advantage that edge sagging of the object to be polished is less likely to occur. Has.
前記不織布を構成する繊維としては、ポリエステル繊維、ナイロン繊維などが挙げられる。
前記不織布の目付けは、好ましくは200〜600g/m2である。
本実施形態に係る研磨布は、不織布の目付けが200g/m2以上であることにより、硬度が高くなりやすくなり、その結果、被研磨物の端部ダレが生じ難くなるという利点を有する。また、本実施形態に係る研磨布は、不織布の目付けが200〜600g/m2であることにより、研磨面に空隙部分を適度な割合で有しやすくなる。その結果、本実施形態に係る研磨布は、斯かる構成により、研磨屑等による空隙の目詰まりによって研磨性能が変動するのを、抑制しやすくなるといった利点を有する。
Examples of the fibers constituting the non-woven fabric include polyester fibers and nylon fibers.
The basis weight of the non-woven fabric is preferably 200 to 600 g / m 2 .
The polishing pad according to the present embodiment has an advantage that the hardness of the non-woven fabric is likely to be increased when the basis weight is 200 g / m 2 or more, and as a result, the edge sagging of the object to be polished is less likely to occur. Further, in the polishing pad according to the present embodiment, since the non-woven fabric has a basis weight of 200 to 600 g / m 2 , it becomes easy to have a void portion on the polished surface at an appropriate ratio. As a result, the polishing pad according to the present embodiment has an advantage that it becomes easy to suppress fluctuations in polishing performance due to clogging of voids due to polishing debris or the like due to such a configuration.
前記樹脂としては、ウレタン樹脂等が挙げられる。 Examples of the resin include urethane resin and the like.
本実施形態に係る研磨布で研磨する被研磨物としては、シリコンウェハなどが挙げられる。 Examples of the object to be polished with the polishing pad according to the present embodiment include a silicon wafer.
本実施形態に係る研磨布は、上記の如く構成されているが、次に、本実施形態に係る研磨布の製造方法について説明する。 The polishing pad according to the present embodiment is configured as described above. Next, a method for manufacturing the polishing pad according to the present embodiment will be described.
以下、本実施形態に係る研磨布の製造方法について、ウレタン樹脂を不織布に湿式含浸し、更に、ウレタン樹脂を不織布に乾式含浸するといった二段階含浸処理を行う方法を例に挙げて説明する。 Hereinafter, the method for producing a polishing pad according to the present embodiment will be described by taking as an example a method of performing a two-step impregnation treatment such as wet impregnating a non-woven fabric with urethane resin and dry impregnating the non-woven fabric with urethane resin.
湿式含浸では、ウレタン樹脂を水溶性有機溶媒に溶解させて第1の含浸液を得る。
水溶性有機溶媒としては、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、ジメチルアセトアミドなどが挙げられる。
なお、第1の含浸液は、充填剤を含有してもよい。該充填剤としてはカーボンブラック等が挙げられる。また、第1の含浸液は、分散安定剤を含有してもよい。該分散安定剤としては、界面活性剤等が挙げられる。
次に、第1の含浸液に不織布を漬け、第1の含浸液に漬けた不織布を水に漬ける。これにより、不織布に付着した第1の含浸液のうち水溶性有機溶媒が水に置換されて、ウレタン樹脂が凝固し、不織布の表面でウレタン樹脂が付着する。
In the wet impregnation, the urethane resin is dissolved in a water-soluble organic solvent to obtain a first impregnated liquid.
Examples of the water-soluble organic solvent include dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, dimethylacetamide and the like.
The first impregnating liquid may contain a filler. Examples of the filler include carbon black and the like. Further, the first impregnating liquid may contain a dispersion stabilizer. Examples of the dispersion stabilizer include surfactants and the like.
Next, the non-woven fabric is soaked in the first impregnating liquid, and the non-woven fabric soaked in the first impregnating liquid is soaked in water. As a result, the water-soluble organic solvent in the first impregnating liquid adhering to the non-woven fabric is replaced with water, the urethane resin solidifies, and the urethane resin adheres to the surface of the non-woven fabric.
乾式含浸では、末端基としてイソシアネート基を有するプレポリマーと、活性水素を有する有機化合物たる硬化剤と、有機溶媒とを混合して、第2の含浸液を得る。
前記有機溶媒としては、メチルエチルケトン、アセトン、アルコール、酢酸エチルなどが挙げられる。
そして、湿式含浸した不織布を第2の含浸液に漬け、第2の含浸液に漬けた不織布を乾燥炉で加熱する。これにより、有機溶媒が蒸発され、プレポリマーと硬化剤とが硬化反応してウレタン樹脂が形成され、その結果、不織布の表面にさらなるウレタン樹脂が付着する。
In the dry impregnation, a prepolymer having an isocyanate group as a terminal group, a curing agent as an organic compound having active hydrogen, and an organic solvent are mixed to obtain a second impregnating solution.
Examples of the organic solvent include methyl ethyl ketone, acetone, alcohol, ethyl acetate and the like.
Then, the wet-impregnated non-woven fabric is dipped in the second impregnating liquid, and the non-woven fabric dipped in the second impregnating liquid is heated in a drying oven. As a result, the organic solvent is evaporated, and the prepolymer and the curing agent undergo a curing reaction to form a urethane resin, and as a result, further urethane resin adheres to the surface of the non-woven fabric.
本実施形態に係る研磨布は、上記のように構成されているので、以下の利点を有するものである。 Since the polishing pad according to the present embodiment is configured as described above, it has the following advantages.
即ち、本実施形態に係る研磨布は、形成材料として、不織布と、該不織布に含浸された樹脂とを備えた研磨布である。また、本実施形態に係る研磨布は、厚み方向中央部から一方の表面までの前記形成材料の存在比率が30〜60%であり、且つ、前記厚み方向における前記存在比率の最大値と最小値との差が10%以下である。 That is, the polishing pad according to the present embodiment is a polishing pad provided with a non-woven fabric and a resin impregnated in the non-woven fabric as a forming material. Further, in the polishing pad according to the present embodiment, the abundance ratio of the forming material from the central portion in the thickness direction to one surface is 30 to 60%, and the maximum value and the minimum value of the abundance ratio in the thickness direction. The difference with is 10% or less.
斯かる研磨布は、前記厚み方向中央部から一方の表面までの前記形成材料の存在比率が60%以下であることにより、空隙を多く有することになるので、削り屑が多少空隙に詰まっても、研磨レートが低下し難くなる。
また、研磨布は、製法上、厚み方向中央部から表面にかけて、形成材料の存在比率が大きくなるが、本実施形態に係る研磨布は、前記厚み方向における前記存在比率の最大値と最小値との差が10%以下であることにより、研磨布の表面に空隙が多く存在しやすくなり、その結果、削り屑が多少空隙に詰まっても、研磨レートが低下し難くなる。さらに、斯かる研磨布は、斯かる構成により、厚み方向中央部から一方の表面にかけて前記存在比率の変化が小さくなり、ドレスされても、研磨レートが変化し難くなる。
さらに、斯かる研磨布は、前記厚み方向中央部から一方の表面までの前記形成材料の存在比率が30%以上であることにより、材料が存在する箇所が多くなり、硬度が高いものとなり、その結果、端部ダレが生じ難くなる。
Since the abundance ratio of the forming material from the central portion in the thickness direction to one surface of the polishing cloth is 60% or less, the polishing cloth has many voids, so that even if the shavings are slightly clogged in the voids. , The polishing rate is less likely to decrease.
Further, in the polishing pad, the abundance ratio of the forming material increases from the central portion in the thickness direction to the surface due to the manufacturing method, but the polishing pad according to the present embodiment has the maximum value and the minimum value of the abundance ratio in the thickness direction. When the difference between the two is 10% or less, many voids are likely to be present on the surface of the polishing pad, and as a result, even if some shavings are clogged in the voids, the polishing rate is unlikely to decrease. Further, in such a polishing pad, due to such a configuration, the change in the abundance ratio becomes small from the central portion in the thickness direction to one surface, and even if dressed, the polishing rate is unlikely to change.
Further, in such a polishing cloth, since the abundance ratio of the forming material from the central portion in the thickness direction to one surface is 30% or more, the number of places where the material is present increases and the hardness becomes high. As a result, edge sagging is less likely to occur.
なお、本発明に係る研磨布は、上記実施形態に限定されるものではない。また、本発明に係る研磨布は、上記した作用効果に限定されるものでもない。本発明に係る研磨布は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The polishing pad according to the present invention is not limited to the above embodiment. Further, the polishing pad according to the present invention is not limited to the above-mentioned effects. The polishing pad according to the present invention can be variously modified without departing from the gist of the present invention.
例えば、本実施形態では、二段階含浸処理を行う方法で研磨布を得ているが、湿式含浸或いは乾式含浸のみで研磨布を得てもよい。 For example, in the present embodiment, the polishing pad is obtained by a method of performing a two-step impregnation treatment, but the polishing pad may be obtained only by wet impregnation or dry impregnation.
次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。 Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.
図1及び表1に示す形成材料の存在比率となっており、表2に示す物性を示す実施例1、2の研磨布を作製した。また、図1及び表1に示す形成材料の存在比率となっており、表2に示す物性を示す比較例1の研磨布(市販品)を用意した。
なお、形成材料の存在比率、及び、硬度は上述した方法で測定した。
また、図1の「表面」は、「一方の表面(後述する研磨面)」を意味する。また、実施例及び比較例の研磨布の形成材料の存在比率の測定では、一方の表面から厚み方向中央部まで100μmごとに断面観察したところ、一方の表面からの厚み600μmまで観察することになった。
さらに、表1の「厚み100μmから厚み600μmまでにおける形成材料の存在比率の平均値」は、「厚み方向中央部から一方の表面までの形成材料の存在比率」を意味し、表1の「厚み100μmから厚み600μmまでにおける形成材料の存在比率の最大値と最小値との差」は、「厚み方向における形成材料の存在比率の最大値と最小値との差」を意味する。
また、圧縮率及び圧縮弾性率は、JIS L1096:2010に記載の方法で測定した。
また、通気抵抗値(APR)は、図2に示す装置を用い、空気を研磨布の厚み方向に通過させた際(空気の流量:30L/min、空気の圧力:100Pa)の損失した圧力を意味する。
The polishing pads of Examples 1 and 2 having the abundance ratios of the forming materials shown in FIGS. 1 and 1 and showing the physical properties shown in Table 2 were produced. In addition, the polishing cloth (commercially available) of Comparative Example 1 showing the physical characteristics shown in Table 2 with the abundance ratio of the forming materials shown in FIGS. 1 and 1 was prepared.
The abundance ratio and hardness of the forming material were measured by the above-mentioned method.
Further, the "surface" in FIG. 1 means "one surface (polished surface described later)". Further, in the measurement of the abundance ratio of the polishing pad forming material of the examples and the comparative examples, when the cross section was observed every 100 μm from one surface to the central portion in the thickness direction, the thickness from one surface was observed up to 600 μm. rice field.
Further, "the average value of the abundance ratio of the forming material from the thickness of 100 μm to 600 μm" in Table 1 means "the abundance ratio of the forming material from the central portion in the thickness direction to one surface", and "thickness" in Table 1. The "difference between the maximum value and the minimum value of the abundance ratio of the forming material in the thickness direction from 100 μm to 600 μm" means "the difference between the maximum value and the minimum value of the abundance ratio of the forming material in the thickness direction".
The compressibility and compressive elastic modulus were measured by the method described in JIS L1096: 2010.
The ventilation resistance value (APR) is the pressure lost when air is passed in the thickness direction of the polishing pad (air flow rate: 30 L / min, air pressure: 100 Pa) using the device shown in FIG. means.
実施例及び比較例の研磨布を用いてウェハを研磨した時の研磨レートを測定した。
研磨レートの測定の際の研磨条件を以下に示す。以下の研磨条件で40分間の研磨を8回実施した。40分間の研磨ごとに(ランごとに)ウェハの重量を測定し、研磨前のウェハの重量と研磨後のウェハの重量との差から研磨レート(Removal rate(RR))を求めた。結果を図3及び表3に示す。
なお、表3に示す「RR drop rate」は、Removal rate(RR)の低下率を意味し、下記式で求めた。
RR drop rate(%) = (RR最大値−RR最小値)/RR最大値 × 100(%)
また、ラン間では、目詰まりを解消させるような処理(例えば、ブラシによる処理)などは行わなかった。
さらに、研磨レートの測定では、前記一方の表面を研磨面とした。
研磨機:Strasbaugh 6CA
ウェハ:8”(P−)
研磨液:NP6502(ニッタ・ハース株式会社製)を20倍希釈したもの
研磨液の流量:100mL/min
研磨時間:40min/run
また、実施例1及び比較例1の研磨布の表面及び断面のSEM画像を図4〜7に示す。
The polishing rate when the wafer was polished using the polishing cloths of Examples and Comparative Examples was measured.
The polishing conditions for measuring the polishing rate are shown below. Polishing for 40 minutes was performed 8 times under the following polishing conditions. The weight of the wafer was measured every 40 minutes of polishing (per run), and the polishing rate (Removal rate (RR)) was determined from the difference between the weight of the wafer before polishing and the weight of the wafer after polishing. The results are shown in FIG. 3 and Table 3.
In addition, "RR drop rate" shown in Table 3 means the rate of decrease of Removal rate (RR), and was calculated by the following formula.
RR drop rate (%) = (RR maximum value-RR minimum value) / RR maximum value x 100 (%)
In addition, no treatment for eliminating clogging (for example, treatment with a brush) was performed between the runs.
Further, in the measurement of the polishing rate, one of the surfaces was used as the polishing surface.
Grinding machine: Strasbaugh 6CA
Wafer: 8 "(P-)
Abrasive solution: NP6502 (manufactured by Nitta Haas Co., Ltd.) diluted 20 times. Abrasive solution flow rate: 100 mL / min
Polishing time: 40 min / run
In addition, SEM images of the surface and cross section of the polishing pads of Example 1 and Comparative Example 1 are shown in FIGS. 4 to 7.
図3及び表3に示すように、実施例の研磨布では、比較例に比べて研磨レート(RR)が低下し難かった。
また、表3に示すように、比較例1の研磨布では、「RR最大値−RR最小値」が0.53μm/minであったのに対し、実施例1、2の研磨布では、「RR最大値−RR最小値」が0.06μm/min、0.09μm/minとかなり小さい値であった。
さらに、表3に示すように、比較例1の研磨布では、「RR drop rate」が59%であったのに対し、実施例1、2の研磨布では、「RR drop rate」が8%、11%とかなり小さい値であった。
As shown in FIGS. 3 and 3, in the polishing pad of the example, the polishing rate (RR) was less likely to decrease as compared with the comparative example.
Further, as shown in Table 3, in the polishing pad of Comparative Example 1, the "RR maximum value-RR minimum value" was 0.53 μm / min, whereas in the polishing pads of Examples 1 and 2, "RR maximum value-RR minimum value" was 0.53 μm / min. The "RR maximum value-RR minimum value" was 0.06 μm / min and 0.09 μm / min, which were considerably small values.
Further, as shown in Table 3, in the polishing pad of Comparative Example 1, the "RR drop rate" was 59%, whereas in the polishing pads of Examples 1 and 2, the "RR drop rate" was 8%. , 11%, which was a fairly small value.
Claims (3)
厚み方向中央部から一方の表面まで100μmごとの前記形成材料の存在比率の算術平均値が30〜60%であり、且つ、前記厚み方向における100μmごとの前記存在比率の最大値と最小値との差が10%以下である、研磨布。 A polishing cloth provided with a non-woven fabric and a resin impregnated in the non-woven fabric as a forming material.
The arithmetic mean value of the abundance ratio of the forming material every 100 μm from the central portion in the thickness direction to one surface is 30 to 60%, and the maximum value and the minimum value of the abundance ratio every 100 μm in the thickness direction. Abrasive cloth with a difference of 10% or less.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017143436A JP6951895B2 (en) | 2017-07-25 | 2017-07-25 | Abrasive cloth |
KR1020197034585A KR102586673B1 (en) | 2017-07-25 | 2018-07-18 | polishing cloth |
PCT/JP2018/026805 WO2019021897A1 (en) | 2017-07-25 | 2018-07-18 | Polishing cloth |
CN201880037093.1A CN110709208A (en) | 2017-07-25 | 2018-07-18 | Abrasive cloth |
TW107125084A TWI775900B (en) | 2017-07-25 | 2018-07-20 | Polishing cloth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017143436A JP6951895B2 (en) | 2017-07-25 | 2017-07-25 | Abrasive cloth |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019025549A JP2019025549A (en) | 2019-02-21 |
JP6951895B2 true JP6951895B2 (en) | 2021-10-20 |
Family
ID=65040160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017143436A Active JP6951895B2 (en) | 2017-07-25 | 2017-07-25 | Abrasive cloth |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6951895B2 (en) |
KR (1) | KR102586673B1 (en) |
CN (1) | CN110709208A (en) |
TW (1) | TWI775900B (en) |
WO (1) | WO2019021897A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210084240A (en) * | 2019-12-27 | 2021-07-07 | 니타 듀폰 가부시키가이샤 | Polishing cloth |
KR102305796B1 (en) * | 2020-02-05 | 2021-09-28 | 에스케이실트론 주식회사 | Wafer polishing pad, apparatus and manufacturing method thereof |
JP7481143B2 (en) * | 2020-03-27 | 2024-05-10 | 富士紡ホールディングス株式会社 | Polishing pad, its manufacturing method, and manufacturing method of polished workpiece |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62140769A (en) * | 1985-12-16 | 1987-06-24 | Toyo Cloth Kk | Manufacture of abrasive cloth |
JPH01193166A (en) * | 1988-01-28 | 1989-08-03 | Showa Denko Kk | Pad for specularly grinding semiconductor wafer |
JP2509870B2 (en) * | 1993-06-30 | 1996-06-26 | 千代田株式会社 | Polishing cloth |
JP3664676B2 (en) * | 2001-10-30 | 2005-06-29 | 信越半導体株式会社 | Wafer polishing method and polishing pad for wafer polishing |
JP4890751B2 (en) | 2004-08-04 | 2012-03-07 | ニッタ・ハース株式会社 | Polishing cloth |
JP5204502B2 (en) * | 2007-02-01 | 2013-06-05 | 株式会社クラレ | Polishing pad and polishing pad manufacturing method |
CN101612722A (en) * | 2008-06-25 | 2009-12-30 | 三芳化学工业股份有限公司 | Polishing pad and method for manufacturing the same |
WO2010016486A1 (en) * | 2008-08-08 | 2010-02-11 | 株式会社クラレ | Polishing pad and method for manufacturing the polishing pad |
JP5478956B2 (en) * | 2009-06-26 | 2014-04-23 | ニッタ・ハース株式会社 | Polishing pad for notch polishing |
JP2014139361A (en) * | 2012-12-19 | 2014-07-31 | Kuraray Co Ltd | Composite substrate sheet and method for producing composite substrate sheet |
CN105008614B (en) * | 2013-02-12 | 2017-06-13 | 可乐丽股份有限公司 | The manufacture method of hard sheet and hard sheet |
TWI565735B (en) * | 2015-08-17 | 2017-01-11 | Nanya Plastics Corp | A polishing pad for surface planarization processing and a process for making the same |
-
2017
- 2017-07-25 JP JP2017143436A patent/JP6951895B2/en active Active
-
2018
- 2018-07-18 WO PCT/JP2018/026805 patent/WO2019021897A1/en active Application Filing
- 2018-07-18 CN CN201880037093.1A patent/CN110709208A/en active Pending
- 2018-07-18 KR KR1020197034585A patent/KR102586673B1/en active Active
- 2018-07-20 TW TW107125084A patent/TWI775900B/en active
Also Published As
Publication number | Publication date |
---|---|
KR102586673B1 (en) | 2023-10-06 |
JP2019025549A (en) | 2019-02-21 |
KR20200034952A (en) | 2020-04-01 |
TWI775900B (en) | 2022-09-01 |
CN110709208A (en) | 2020-01-17 |
TW201908061A (en) | 2019-03-01 |
WO2019021897A1 (en) | 2019-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6951895B2 (en) | Abrasive cloth | |
KR20120073200A (en) | Supporting pad | |
DE112007002066B4 (en) | polishing pad | |
CN104385120B (en) | The preparation method of polyurethane polishing pad | |
JP2007260884A (en) | Polishing cloth | |
KR101588925B1 (en) | Retaining pad | |
DE112017003526T5 (en) | POLISHING BODY AND MANUFACTURING METHOD THEREFOR | |
JP2013182952A (en) | Polishing pad and manufacturing method of the same | |
TW201822271A (en) | Carrier for double-side polishing device, double-side polishing device and double-side polishing method | |
JP2021107106A (en) | Abrasive cloth | |
JP7653779B2 (en) | Polishing cloth | |
JP2008030146A (en) | Holding pad | |
JP5777816B2 (en) | Polyurethane resin composition for support pad and polyurethane support pad using the same | |
JP5762668B2 (en) | Polishing pad | |
JP2004335713A (en) | Polishing cloth for finishing polish | |
CN113047056A (en) | Abrasive cloth | |
DE112020005667T5 (en) | Wafer polishing process and silicon wafer | |
KR20220092380A (en) | Polishing cloth | |
JP5478956B2 (en) | Polishing pad for notch polishing | |
JP2007307641A (en) | Polishing cloth and manufacturing method therefor | |
JP2006255828A (en) | Polishing cloth and manufacturing method for it | |
TW202440275A (en) | Polishing pad | |
JP7210205B2 (en) | polishing pad | |
JP5916982B2 (en) | Workpiece holding material | |
DE102022133519A1 (en) | Process for polishing semiconductor substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180713 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200521 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6951895 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |