[go: up one dir, main page]

JP6946105B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6946105B2
JP6946105B2 JP2017149664A JP2017149664A JP6946105B2 JP 6946105 B2 JP6946105 B2 JP 6946105B2 JP 2017149664 A JP2017149664 A JP 2017149664A JP 2017149664 A JP2017149664 A JP 2017149664A JP 6946105 B2 JP6946105 B2 JP 6946105B2
Authority
JP
Japan
Prior art keywords
header
refrigerant
row
front row
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017149664A
Other languages
Japanese (ja)
Other versions
JP2019027727A (en
Inventor
秀哲 立野井
秀哲 立野井
芳裕 波良
芳裕 波良
青木 泰高
泰高 青木
将之 左海
将之 左海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2017149664A priority Critical patent/JP6946105B2/en
Priority to ES18842154T priority patent/ES2955923T3/en
Priority to CN201880050493.6A priority patent/CN110998215B/en
Priority to PCT/JP2018/022761 priority patent/WO2019026436A1/en
Priority to EP18842154.9A priority patent/EP3647711B1/en
Publication of JP2019027727A publication Critical patent/JP2019027727A/en
Application granted granted Critical
Publication of JP6946105B2 publication Critical patent/JP6946105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、例えば、空気調和機、冷凍機、輸送用冷凍機、給湯器等に使用される熱交換器に関する。 The present invention relates to, for example, a heat exchanger used in an air conditioner, a refrigerator, a transport refrigerator, a water heater, and the like.

積層された複数の扁平管にそれぞれ冷媒が流れる熱交換器が空気調和機や冷凍機等の機器に使用されており、それらの機器の冷媒回路を構成している。
複数の扁平管が、プレート状あるいはコルゲート状のフィンと、一対のヘッダと組み付けられることで熱交換器が構成される。各扁平管は、両端部で一対のヘッダに接続されており、冷媒回路の配管からヘッダの内部に導入された冷媒が各扁平管へと分配される。各扁平管を流れる冷媒と、その冷媒の流れと直交する方向からフィンや扁平管の間の隙間へ流入する空気とが、熱交換される。
Heat exchangers in which refrigerant flows through a plurality of stacked flat tubes are used in equipment such as air conditioners and refrigerators, and constitute a refrigerant circuit for these equipment.
A heat exchanger is constructed by assembling a plurality of flat tubes with plate-shaped or corrugated fins and a pair of headers. Each flat pipe is connected to a pair of headers at both ends, and the refrigerant introduced into the header from the piping of the refrigerant circuit is distributed to each flat pipe. The refrigerant flowing through each flat pipe and the air flowing into the gap between the fins and the flat pipe from a direction orthogonal to the flow of the refrigerant exchange heat.

熱交換器を蒸発器として機能させる場合、気液二相流の冷媒がヘッダに流入する。ヘッダの内部では、気相冷媒と、気相冷媒よりも密度が大きい液相冷媒との分布が扁平管の積層方向において偏り易い。そのため、各扁平管への冷媒の分配状況が偏り易い。
こうした冷媒の分配状況の均一化を含め、扁平管およびフィンからなる積層体の全体に亘り伝熱量の均一化を図り、それによって必要な性能が十分に得られるように、ヘッダや扁平管において冷媒を効率よく流すことのできるパスの設定、ヘッダの構造、フィンの形状等について、種々の工夫が重ねられてきた。
When the heat exchanger functions as an evaporator, a gas-liquid two-phase flow refrigerant flows into the header. Inside the header, the distribution of the vapor phase refrigerant and the liquid phase refrigerant having a higher density than the vapor phase refrigerant tends to be biased in the stacking direction of the flat tubes. Therefore, the distribution state of the refrigerant to each flat pipe tends to be biased.
Including the uniform distribution of the refrigerant, the amount of heat transfer is made uniform throughout the laminate consisting of the flat pipe and fins, so that the required performance can be sufficiently obtained. Various ideas have been made for the setting of the path, the structure of the header, the shape of the fins, etc.

ところで、所定の熱交換性能に必要な伝熱面積を確保するため、風上と風下を結ぶ方向に複数列の熱交換要素(扁平管およびフィンを含む組付体)を並べる場合がある(例えば、特許文献1)。
特許文献1では、風上側(前列)および風下側(後列)に個別のヘッダはなく、前列の扁平管と後列の扁平管とが単一のヘッダに接続されており、ヘッダの内部には、多数の水平仕切板が設置されている。これらの水平仕切板により仕切られた同一区画に、扁平管積層方向における同じ段の前列の扁平管と後列の扁平管とが連通している。冷媒配管からヘッダ内の各区画へ流入した冷媒は、段毎に、前列および後列の扁平管を流れる。
By the way, in order to secure the heat transfer area required for a predetermined heat exchange performance, a plurality of rows of heat exchange elements (assemblies including flat tubes and fins) may be arranged in the direction connecting the windward and the leeward (for example). , Patent Document 1).
In Patent Document 1, there are no separate headers on the leeward side (front row) and the leeward side (rear row), and the flat pipes in the front row and the flat pipes in the back row are connected to a single header. A large number of horizontal dividers are installed. In the same section partitioned by these horizontal partition plates, the flat pipes in the front row and the flat pipes in the rear row of the same stage in the flat pipe stacking direction communicate with each other. The refrigerant that has flowed from the refrigerant pipe into each section in the header flows through the flat pipes in the front row and the back row for each stage.

特許第5840291号Patent No. 5840291

ヘッダ内部に多数の仕切板を設置すると、冷媒分配の偏りによる伝熱損失を抑制することはできても、部品数の増加を招く。特許文献1のように、前列および後列のヘッダを一つにまとめた場合でも、やはり段数分の仕切板が必要となり、部品数が多いので、ヘッダの内部を仕切板で細かく仕切ることは避けたい。 If a large number of partition plates are installed inside the header, heat transfer loss due to uneven distribution of the refrigerant can be suppressed, but the number of parts increases. Even when the headers in the front row and the back row are combined into one as in Patent Document 1, a partition plate for the number of stages is still required and the number of parts is large, so it is desirable to avoid finely partitioning the inside of the header with the partition plate. ..

また、冬期に蒸発器として機能する熱交換器において、空気との温度差が大きい前列から着霜が進行するため、前列と後列との間で着霜状態の偏りが避けられない。そのため、前列への着霜により風路が閉塞されて後列の風量が低下すると、未だ着霜量が少ないため熱交換可能な後列までも、早期に機能しなくなる。 Further, in a heat exchanger that functions as an evaporator in winter, frost formation proceeds from the front row, which has a large temperature difference with air, so that a bias in the frost formation state between the front row and the back row is unavoidable. Therefore, if the air passage is blocked by frost on the front row and the air volume in the rear row decreases, even the rear row, which can exchange heat because the amount of frost is still small, does not function at an early stage.

以上より、本発明は、前列から進行する着霜の偏りや、ヘッダから各扁平管への冷媒の分配の偏りが存在する中で、伝熱損失を抑えて蒸発性能を確保することのできる熱交換器を提供することを目的とする。 Based on the above, the present invention can suppress heat transfer loss and ensure evaporation performance in the presence of uneven frost formation that progresses from the front row and uneven distribution of refrigerant from the header to each flat tube. The purpose is to provide a exchanger.

本発明の第1の熱交換器は、積層される複数の扁平管と、扁平管に設けられるフィンと、扁平管が積層される積層方向に起立し、扁平管に接続されるヘッダと、を備えた熱交換器であって、ヘッダを通じて扁平管に流入する冷媒と、空気とを熱交換させ、冷媒を蒸発させる蒸発器として機能し、扁平管、フィン、およびヘッダからなる熱交換要素が、空気の流れの上流側に位置する前列と、空気の流れの下流側に位置する後列と、を含んで配列され、前列のヘッダである前列ヘッダを流れる冷媒の流速が、後列のヘッダである後列ヘッダを流れる冷媒の流速よりも大きくなるように、前列ヘッダ内の流路断面積が後列ヘッダ内の流路断面積よりも小さいことを特徴とする。 The first heat exchanger of the present invention comprises a plurality of stacked flat tubes, fins provided on the flat tubes, and a header standing in the stacking direction in which the flat tubes are laminated and connected to the flat tubes. A heat exchanger provided, which functions as an evaporator that exchanges heat between air and a refrigerant flowing into a flat tube through a header to evaporate the refrigerant, and a heat exchange element composed of a flat tube, fins, and a header. The front row located on the upstream side of the air flow and the back row located on the downstream side of the air flow are arranged including the front row, and the flow velocity of the refrigerant flowing through the front row header, which is the header of the front row, is the back row, which is the header of the back row. The flow path cross-sectional area in the front row header is smaller than the flow path cross-sectional area in the back row header so as to be larger than the flow velocity of the refrigerant flowing through the header.

本発明の第1の熱交換器において、積層方向に延びて前列ヘッダおよび後列ヘッダの少なくともいずれかの内部を仕切る仕切部を備え、仕切部により流路断面積が設定されていることが好ましい。 In the first heat exchanger of the present invention, it is preferable that a partition portion extending in the stacking direction and partitioning the inside of at least one of the front row header and the back row header is provided, and the flow path cross-sectional area is set by the partition portion.

本発明の第1の熱交換器において、後列の扁平管の空気の流れ方向における幅が、前列の扁平管の空気の流れ方向における幅よりも広いことが好ましい。 In the first heat exchanger of the present invention, it is preferable that the width of the flat pipes in the back row in the air flow direction is wider than the width of the flat pipes in the front row in the air flow direction.

本発明の第1の熱交換器は、直列に接続された2以上の熱交換要素を備え、最下流の熱交換要素が前列に位置することが好ましい。 The first heat exchanger of the present invention preferably includes two or more heat exchange elements connected in series, with the most downstream heat exchange element located in the front row.

本発明の第1の熱交換器は、直列に接続された3つ以上の熱交換要素を備え、最上流の熱交換要素が前列に位置することが好ましい。 The first heat exchanger of the present invention preferably includes three or more heat exchange elements connected in series, with the most upstream heat exchange element located in the front row.

本発明の第2の熱交換器は、積層される複数の扁平管と、扁平管に設けられるフィンと、扁平管が積層される積層方向に起立し、扁平管に接続されるヘッダと、を備えた熱交換器であって、ヘッダを通じて扁平管に流入する冷媒と、空気とを熱交換させ、冷媒を蒸発させる蒸発器として機能し、扁平管、フィン、およびヘッダからなる熱交換要素が、空気の流れの上流側に位置する前列と、空気の流れの下流側に位置する後列と、を含んで配列され、前列のヘッダである前列ヘッダを流れる冷媒の流速が、後列のヘッダである後列ヘッダを流れる冷媒の流速よりも大きくなるように、前列ヘッダおよび後列ヘッダの少なくとも一方に導入される冷媒の流量を調整する流量調整部を備えることを特徴とする。 The second heat exchanger of the present invention comprises a plurality of stacked flat tubes, fins provided on the flat tubes, and a header standing in the stacking direction in which the flat tubes are laminated and connected to the flat tubes. A heat exchanger provided, which functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and air to evaporate the refrigerant, and a heat exchange element composed of the flat tube, fins, and header. The front row located on the upstream side of the air flow and the back row located on the downstream side of the air flow are arranged including the front row, and the flow velocity of the refrigerant flowing through the front row header, which is the header of the front row, is the back row, which is the header of the back row. It is characterized by including a flow rate adjusting unit that adjusts the flow rate of the refrigerant introduced into at least one of the front row header and the back row header so as to be larger than the flow velocity of the refrigerant flowing through the header.

本発明の第3の熱交換器は、積層される複数の扁平管と、扁平管に設けられるフィンと、扁平管が積層される積層方向に起立し、扁平管に接続されるヘッダと、を備えた熱交換器であって、ヘッダを通じて扁平管に流入する冷媒と、空気とを熱交換させ、冷媒を蒸発させる蒸発器として機能し、扁平管、フィン、およびヘッダからなる熱交換要素が、空気の流れの上流側に位置する前列と、空気の流れの下流側に位置する後列と、を含んで配列され、前列のヘッダに内在する区画に冷媒を導入する導入部の位置と、後列のヘッダに内在する区画に冷媒を導入する導入部の位置とが、積層方向において異なるように、前列の熱交換要素と、後列の熱交換要素とが積層方向にシフトして配置され、導入部から冷媒が導入される区画には、少なくとも2つの扁平管が配置されていることを特徴とする。 The third heat exchanger of the present invention comprises a plurality of stacked flat tubes, fins provided on the flat tubes, and a header standing in the stacking direction in which the flat tubes are laminated and connected to the flat tubes. A heat exchanger provided, which functions as an evaporator that exchanges heat between air and a refrigerant flowing into a flat tube through a header to evaporate the refrigerant, and a heat exchange element composed of a flat tube, fins, and a header. The position of the introduction part, which is arranged including the front row located on the upstream side of the air flow and the back row located on the downstream side of the air flow, and introduces the refrigerant into the section internal to the header of the front row, and the position of the rear row. and the position of the inlet portion for introducing a refrigerant into compartment inherent in header, differently in the laminating direction, a heat exchange element of the front row, and the back row of heat exchange elements disposed shifted in the stacking direction, from the inlet portion The section into which the refrigerant is introduced is characterized in that at least two flat tubes are arranged .

本発明の第3の熱交換器は、前列において積層方向に積層された2つの熱交換要素と、後列において積層方向に積層された2つの熱交換要素と、を備えることが好ましい。 The third heat exchanger of the present invention preferably includes two heat exchange elements laminated in the stacking direction in the front row and two heat exchange elements laminated in the stacking direction in the rear row.

本発明によれば、後述するように、前列および後列の全体として扁平管の積層方向(上下方向)における伝熱量のバランスを図ることができるので、冷媒分布を均一化するために仕切板を設置しなくても、冷媒分配の偏りによる熱交換性能の低下を回避でき、しかも、着霜が発生するような運転状況でも、少なくとも後列の下段側に熱交換能力を残しつつ、除霜運転に切り替わるまでの時間を遅らせることができる。 According to the present invention, as will be described later, it is possible to balance the amount of heat transfer in the stacking direction (vertical direction) of the flat tubes as a whole in the front row and the back row, so that a partition plate is installed to make the refrigerant distribution uniform. Even if it is not done, the deterioration of heat exchange performance due to the uneven distribution of the refrigerant can be avoided, and even in the operation situation where frost formation occurs, the operation is switched to the defrosting operation while leaving the heat exchange capacity at least on the lower side of the rear row. You can delay the time until.

第1実施形態に係る熱交換器を模式的に示す斜視図である。It is a perspective view which shows typically the heat exchanger which concerns on 1st Embodiment. 図1に示す前列ヘッダと後列ヘッダとを流れる冷媒の流速の違いを説明するための模式図である。It is a schematic diagram for demonstrating the difference in the flow velocity of the refrigerant flowing through the front row header and the back row header shown in FIG. (a)〜(c)は、冷媒流量の程度毎に、前列および後列のそれぞれの各扁平管への液相冷媒の分配状況を示すグラフである。(A) to (c) are graphs showing the distribution status of the liquid phase refrigerant to the respective flat pipes in the front row and the back row for each degree of the refrigerant flow rate. 図1に示す熱交換器の作用を説明するための模式図である。It is a schematic diagram for demonstrating the operation of the heat exchanger shown in FIG. 第1実施形態の変形例に係る前列ヘッダと後列ヘッダとを示す模式図である。It is a schematic diagram which shows the front row header and the back row header which concerns on the modification of 1st Embodiment. 第1実施形態の他の変形例に係る前列の熱交換要素と後列の熱交換要素とを示す模式図である。It is a schematic diagram which shows the heat exchange element of the front row and the heat exchange element of a back row which concerns on another modification of 1st Embodiment. (a)は、第2実施形態に係る熱交換器を示す模式図である。(b)は、第2実施形態の変形例に係る熱交換器を示す模式図である。(c)および(d)は、乾き度が高い場合における液相冷媒分布を示す図である。(A) is a schematic view showing the heat exchanger according to the second embodiment. (B) is a schematic diagram showing a heat exchanger according to a modified example of the second embodiment. (C) and (d) are diagrams showing the liquid phase refrigerant distribution when the degree of dryness is high. (a)は、第3実施形態に係る熱交換器を示す模式図である。(b)は、第3実施形態の変形例を示す模式図である。(A) is a schematic view showing the heat exchanger according to the third embodiment. (B) is a schematic diagram showing a modified example of the third embodiment. (a)および(b)はいずれも、第4実施形態に係る熱交換器を示す模式図である。フィンの図示は省略している。Both (a) and (b) are schematic views showing the heat exchanger according to the fourth embodiment. The fins are not shown.

以下、添付図面を参照しながら、本発明の実施形態について説明する。
〔第1実施形態〕
図1に示す熱交換器1は、前列熱交換要素10と、後列熱交換要素20とを備えている。熱交換器1は、空気調和機や冷凍機、給湯器等の冷媒回路を構成している。その冷媒回路は、圧縮機と、凝縮器と、減圧部と、蒸発器である熱交換器1とを含んで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[First Embodiment]
The heat exchanger 1 shown in FIG. 1 includes a front row heat exchange element 10 and a back row heat exchange element 20. The heat exchanger 1 constitutes a refrigerant circuit such as an air conditioner, a refrigerator, and a water heater. The refrigerant circuit includes a compressor, a condenser, a decompression unit, and a heat exchanger 1 which is an evaporator.

本実施形態の熱交換器1によれば、後述するように、ヘッダ13,23から各扁平管11への冷媒の分配の偏りや、着霜の偏りを受け入れつつ、熱交換性能の低下を抑制する。 According to the heat exchanger 1 of the present embodiment, as will be described later, while accepting the uneven distribution of the refrigerant from the headers 13 and 23 to the flat tubes 11 and the uneven frost formation, the deterioration of the heat exchange performance is suppressed. do.

(熱交換要素)
前列熱交換要素10は、積層される複数の扁平管11(チューブ)と、複数のフィン12と、扁平管11に接続される一対の前列ヘッダ13(13A,13B)とを備えている。
前列熱交換要素10は、前列ヘッダ13(13A)を通じて各扁平管11に流入する冷媒と、扁平管11と直交する方向からフィン12や扁平管11の間の隙間へ流入する空気との間で、熱交換させる。
(Heat exchange element)
The front row heat exchange element 10 includes a plurality of stacked flat tubes 11 (tubes), a plurality of fins 12, and a pair of front row headers 13 (13A, 13B) connected to the flat tubes 11.
The front row heat exchange element 10 is provided between the refrigerant flowing into each flat pipe 11 through the front row header 13 (13A) and the air flowing into the gap between the fins 12 and the flat pipe 11 from the direction orthogonal to the flat pipe 11. , Heat exchange.

前列熱交換要素10と同様に、後列熱交換要素20は、積層される複数の扁平管11と、複数のフィン12と、扁平管11に接続される一対の後列ヘッダ23(23A,23B)とを備えており、後列ヘッダ23(23A)を通じて各扁平管11に流入する冷媒と、空気との間で熱交換させる。
扁平管11およびフィン12は、前列熱交換要素10と後列熱交換要素20とに共通する構成要素である。
Similar to the front row heat exchange element 10, the back row heat exchange element 20 includes a plurality of stacked flat tubes 11, a plurality of fins 12, and a pair of back row headers 23 (23A, 23B) connected to the flat tubes 11. Is provided, and heat is exchanged between the refrigerant flowing into each flat pipe 11 through the rear row header 23 (23A) and the air.
The flat tube 11 and the fin 12 are components common to the front row heat exchange element 10 and the back row heat exchange element 20.

ここで、扁平管11が積層される方向(積層方向)のことを上下方向D1と称するものとする。
また、扁平管11を流れる冷媒と熱交換される空気の流れの上流側を「前」と称し、下流側を「後」と称するものとする。図示しないファン等により吸い込まれた空気が熱交換器1の領域全体に供給されることが好ましい。
前列熱交換要素10と後列熱交換要素20とは、空気の流れる方向(白抜き矢印で示す)に配列されている。各図において、前列を「F」で、後列を「R」で示す。
Here, the direction in which the flat tubes 11 are laminated (stacking direction) is referred to as the vertical direction D1.
Further, the upstream side of the air flow that exchanges heat with the refrigerant flowing through the flat pipe 11 is referred to as "front", and the downstream side is referred to as "rear". It is preferable that the air sucked by a fan or the like (not shown) is supplied to the entire region of the heat exchanger 1.
The front row heat exchange element 10 and the back row heat exchange element 20 are arranged in the direction in which air flows (indicated by white arrows). In each figure, the front row is indicated by "F" and the back row is indicated by "R".

前列熱交換要素10と後列熱交換要素20とは、冷媒回路の配管に並列に接続されている。前列熱交換要素10と後列熱交換要素20とには同じ流量の冷媒が流れる。 The front row heat exchange element 10 and the back row heat exchange element 20 are connected in parallel to the piping of the refrigerant circuit. The same flow rate of refrigerant flows through the front row heat exchange element 10 and the back row heat exchange element 20.

熱交換器1は、少なくとも一部に熱交換要素10,20を備えている。熱交換器1が、熱交換要素10,20に加えて、図示しない他の熱交換要素を備えていてもよい。 The heat exchanger 1 includes heat exchange elements 10 and 20 at least in part. The heat exchanger 1 may include other heat exchange elements (not shown) in addition to the heat exchange elements 10 and 20.

(扁平管)
扁平管11は、内側を冷媒が流れる扁平な管であり、所定の長さで直線状に延びている。扁平管11の両端部はそれぞれヘッダ13(またはヘッダ23)に接続されている。ヘッダ13,23には、扁平管11の端部をヘッダ13,23の内部へと受け入れる挿入孔(図示しない)が形成されている。
複数の扁平管11は、上下方向D1に所定の間隔をおいて互いに平行に積層される。各扁平管11の端部は、ヘッダ13(またはヘッダ23)の内部に開口している。
(Flatten)
The flat pipe 11 is a flat pipe through which the refrigerant flows, and extends linearly with a predetermined length. Both ends of the flat tube 11 are connected to the header 13 (or the header 23), respectively. The headers 13 and 23 are formed with insertion holes (not shown) for receiving the ends of the flat tubes 11 into the headers 13 and 23.
The plurality of flat tubes 11 are laminated in parallel with each other at predetermined intervals in the vertical direction D1. The end of each flat tube 11 is open to the inside of the header 13 (or header 23).

(フィン)
本実施形態のフィン12は、略矩形のプレート状(板状)の外形を有するもので、空気と接触する表面積を拡大するため扁平管11に設けられる。フィン12には、扁平管11がそれぞれ挿入される複数の切欠121が形成されている。前列Fのフィン12と後列Rのフィン12との形状は相違していてもよい。
(fin)
The fin 12 of the present embodiment has a substantially rectangular plate-like (plate-like) outer shape, and is provided on the flat tube 11 in order to increase the surface area in contact with air. The fins 12 are formed with a plurality of notches 121 into which the flat tubes 11 are inserted. The shapes of the fins 12 in the front row F and the fins 12 in the back row R may be different.

図1には、前列F、後列Rのいずれも、一部のフィン12のみを示している。実際には、前列F、後列Rのいずれにおいても、扁平管11の長さ方向に間隔をおいて多数のフィン12が扁平管11の積層体に設けられている。 In FIG. 1, both the front row F and the back row R show only a part of the fins 12. Actually, in both the front row F and the rear row R, a large number of fins 12 are provided in the laminated body of the flat pipe 11 at intervals in the length direction of the flat pipe 11.

プレート状のフィン12に代えて、他の種類のフィンを扁平管11に設けることもできる。例えば、波状のコルゲートフィンを、上下方向D1に隣り合う扁平管11の間に設けることもできる。 Instead of the plate-shaped fin 12, other types of fins may be provided in the flat tube 11. For example, wavy corrugated fins can be provided between the flat tubes 11 adjacent to each other in the vertical direction D1.

熱交換器1を構成する扁平管11、フィン12、前列ヘッダ13、および後列ヘッダ23等の部材は、アルミニウム合金や銅合金等の金属材料から形成されている。これらがロウ材等の接合材を用いて一体化されることで、熱交換器1が構成される。 Members such as the flat tube 11, fins 12, front row header 13, and back row header 23 constituting the heat exchanger 1 are formed of a metal material such as an aluminum alloy or a copper alloy. The heat exchanger 1 is configured by integrating these with a joining material such as a brazing material.

(前列ヘッダ)
一対の前列ヘッダ13は、いずれも前列Fの扁平管11の積層方向(D1)に起立している。これらの前列ヘッダ13に前列Fの各扁平管11が接続される。
一対の前列ヘッダ13は、いずれも筒状に形成されており、上端および下端が塞がれている。
一対の前列ヘッダ13の一方(13A)を通じて各扁平管11に冷媒が流入し、一対の前列ヘッダ13の他方(13B)へは、各扁平管11からそれぞれ冷媒が流出する。
(Front row header)
Each of the pair of front row headers 13 stands upright in the stacking direction (D1) of the flat pipes 11 in the front row F. Each flat tube 11 of the front row F is connected to these front row headers 13.
Each of the pair of front row headers 13 is formed in a cylindrical shape, and the upper end and the lower end are closed.
Refrigerant flows into each flat pipe 11 through one (13A) of the pair of front row headers 13, and the refrigerant flows out from each flat pipe 11 to the other (13B) of the pair of front row headers 13.

前列ヘッダ13Aには、図示しない冷媒配管等から前列ヘッダ13の内部へと冷媒を導入する導入部131が備えられている。前列ヘッダ13Aの内部は、導入部131を通じて導入された冷媒が上方へ向けて流れる流路となっている。
この導入部131が、前列ヘッダ13A内で最も下方に配置された扁平管11よりも下方に位置していれば、最も下方の扁平管11を含めて前列Fの扁平管11のいずれにも、導入部131から浮上する気相冷媒と、気相冷媒と共に持ち上がる液冷媒とを流入させることができるので好ましい。
The front row header 13A is provided with an introduction unit 131 for introducing the refrigerant into the front row header 13 from a refrigerant pipe or the like (not shown). The inside of the front row header 13A is a flow path through which the refrigerant introduced through the introduction section 131 flows upward.
If the introduction portion 131 is located below the flat tube 11 arranged at the lowest position in the front row header 13A, any of the flat tubes 11 in the front row F including the lowermost flat tube 11 can be used. It is preferable because the gas-phase refrigerant floating from the introduction unit 131 and the liquid refrigerant lifted together with the gas-phase refrigerant can flow in.

前列ヘッダ13Aの内部に導入された冷媒は、前列Fの各扁平管11へと分配されて流入する。そして、各扁平管11を冷媒がそれぞれ流れる間に(図1の破線の矢印)、フィン12や扁平管11の間の隙間(風路)を通過する空気と、扁平管11の内側の冷媒との熱交換が行われる。このとき、扁平管11を流れる冷媒が空気から吸熱して蒸発する。 The refrigerant introduced into the front row header 13A is distributed and flows into each flat pipe 11 of the front row F. Then, while the refrigerant flows through each of the flat pipes 11 (dashed line arrow in FIG. 1), the air passing through the gap (air passage) between the fins 12 and the flat pipes 11 and the refrigerant inside the flat pipes 11 Heat exchange takes place. At this time, the refrigerant flowing through the flat tube 11 absorbs heat from the air and evaporates.

各扁平管11を流れた冷媒は、前列ヘッダ13Bの内部で合流し、前列ヘッダ13Bから、熱交換器1の外部の冷媒配管等へと流出する。あるいは、熱交換器1が、前列ヘッダ13Bと接続された他の熱交換要素を備えている場合は、冷媒が前列ヘッダ13Bから他の熱交換要素へと流出する。 The refrigerant flowing through each of the flat pipes 11 merges inside the front row header 13B, and flows out from the front row header 13B to the refrigerant pipe or the like outside the heat exchanger 1. Alternatively, if the heat exchanger 1 includes another heat exchange element connected to the front row header 13B, the refrigerant flows out of the front row header 13B to the other heat exchange element.

(後列ヘッダ)
後列ヘッダ23は、前列ヘッダ13と流路断面積が相違する以外は、前列ヘッダ13と同様に構成されているため、簡単に説明する。
一対の後列ヘッダ23の一方(23A)を通じて、後列Rの各扁平管11に冷媒が流入し、一対の後列ヘッダ23の他方(23B)へは、後列Rの各扁平管11からそれぞれ冷媒が流出する。
(Back row header)
The back row header 23 has the same configuration as the front row header 13 except that the flow path cross-sectional area is different from that of the front row header 13, and thus will be briefly described.
Refrigerant flows into each flat pipe 11 of the back row R through one of the pair of back row headers 23 (23A), and the refrigerant flows out from each flat pipe 11 of the back row R to the other (23B) of the pair of back row headers 23. do.

後列ヘッダ23Aには、冷媒配管等から後列ヘッダ23の内部へと冷媒を導入する導入部231が備えられている。
導入部231を通じて後列ヘッダ23Aの内部に導入された冷媒は、後列Rの各扁平管11へと分配されて流入する。後列Rの各扁平管11を流れた冷媒は、前列Fを経た空気と熱交換された後、後列ヘッダ23Bの内部で合流し、後列ヘッダ23Bから、熱交換器1の外部の冷媒配管、あるいは、他の熱交換要素へと流出する。
The back row header 23A is provided with an introduction portion 231 for introducing the refrigerant from the refrigerant pipe or the like into the inside of the back row header 23.
The refrigerant introduced into the rear row header 23A through the introduction portion 231 is distributed and flows into each flat pipe 11 of the rear row R. The refrigerant flowing through each of the flat pipes 11 in the back row R is heat-exchanged with the air passing through the front row F, and then merges inside the rear row header 23B. , Flows out to other heat exchange elements.

熱交換器1は、基本的に、前列ヘッダ13および後列ヘッダ23が上下方向D1(鉛直方向)に沿うように配置されて使用される。このとき扁平管11は水平方向に延びて、上下方向D1に積層されている。
但し、前列ヘッダ13および後列ヘッダ23が上下方向D1に対して少し傾斜していてもよい。
The heat exchanger 1 is basically used by arranging the front row header 13 and the back row header 23 along the vertical direction D1 (vertical direction). At this time, the flat tube 11 extends in the horizontal direction and is laminated in the vertical direction D1.
However, the front row header 13 and the back row header 23 may be slightly inclined with respect to the vertical direction D1.

(本実施形態の主な特徴)
本実施形態は、前列ヘッダ13を流れる冷媒の流速が、後列ヘッダ23を流れる冷媒の流速よりも大きくなるように、前列ヘッダ13内の流路断面積Af(図2)が後列ヘッダ23内の流路断面積Ar(図2)よりも小さいことを主な特徴とする。
(Main features of this embodiment)
In the present embodiment, the flow path cross-sectional area Af (FIG. 2) in the front row header 13 is in the back row header 23 so that the flow velocity of the refrigerant flowing in the front row header 13 is larger than the flow velocity of the refrigerant flowing in the back row header 23. The main feature is that it is smaller than the flow path cross-sectional area Ar (FIG. 2).

本実施形態の前列ヘッダ13および後列ヘッダ23は、いずれも断面円形状の流路を有しており、前列ヘッダ13の内径は後列ヘッダ23の内径よりも小さい。
なお、前列ヘッダ13および後列ヘッダ23の断面形状は、矩形状や楕円形等、適宜な形状であってよい。
Both the front row header 13 and the back row header 23 of the present embodiment have a flow path having a circular cross section, and the inner diameter of the front row header 13 is smaller than the inner diameter of the back row header 23.
The cross-sectional shape of the front row header 13 and the back row header 23 may be an appropriate shape such as a rectangular shape or an elliptical shape.

図5に示すように、前列ヘッダ13および後列ヘッダ23の内部に垂直仕切板14,24を設置することにより、適切な流路断面積Af,Arを設定することもできる。垂直仕切板14,24のうちいずれか一方のみが設置されてもよい。 As shown in FIG. 5, by installing the vertical partition plates 14 and 24 inside the front row header 13 and the back row header 23, it is possible to set appropriate flow path cross-sectional areas Af and Ar. Only one of the vertical partition plates 14 and 24 may be installed.

垂直仕切板14は、図5の紙面に直交する上下方向D1に沿って起立しており、前列ヘッダ13の内部を、導入部131側の区画141と、扁平管11側の区画142とに仕切っている。
導入部131から区画141に導入された冷媒は、垂直仕切板14の下端部を厚み方向に貫通する開口14Aを通じて、区画142へと流入し、区画142内を上方へと流れながら各扁平管11へと分配される。
The vertical partition plate 14 stands up along the vertical direction D1 orthogonal to the paper surface of FIG. 5, and partitions the inside of the front row header 13 into a section 141 on the introduction portion 131 side and a section 142 on the flat tube 11 side. ing.
The refrigerant introduced from the introduction portion 131 into the compartment 141 flows into the compartment 142 through the opening 14A penetrating the lower end portion of the vertical partition plate 14 in the thickness direction, and flows upward in the compartment 142 to each flat pipe 11 Is distributed to.

垂直仕切板24も、上述の垂直仕切板14と同様に構成されており、後列ヘッダ23の内部を、導入部231側の区画241と、扁平管11側の区画242とに仕切っている。垂直仕切板24の下端部には開口24Aが形成されている。 The vertical partition plate 24 is also configured in the same manner as the vertical partition plate 14 described above, and the inside of the back row header 23 is divided into a compartment 241 on the introduction portion 231 side and a compartment 242 on the flat pipe 11 side. An opening 24A is formed at the lower end of the vertical partition plate 24.

垂直仕切板14と扁平管11との間の間隙の寸法G1と比べて、垂直仕切板24と扁平管11の端部との間の間隙の寸法G2が大きくなるように、垂直仕切板14,24の位置を設定すると、前列ヘッダ13の区画142の流路断面積Afよりも大きい流路断面積Arを、後列ヘッダ23の区画242に与えることができる。 The vertical partition plate 14, When the position of 24 is set, the flow path cross-sectional area Ar larger than the flow path cross-sectional area Af of the section 142 of the front row header 13 can be given to the section 242 of the back row header 23.

(本実施形態による作用)
図2に示すように、冷媒回路の配管から導入部131を通じて前列ヘッダ13Aの内部へと所定の流量で流入した冷媒は、前列ヘッダ13Aの流路断面積Afに対応する流速Vfで前列ヘッダ13Aの内部を上方に向けて流れつつ、前列の各扁平管11へと分配される。
(Action according to this embodiment)
As shown in FIG. 2, the refrigerant that has flowed into the front row header 13A from the piping of the refrigerant circuit through the introduction section 131 at a predetermined flow rate has a flow velocity Vf corresponding to the flow path cross-sectional area Af of the front row header 13A and is the front row header 13A. It is distributed to each flat pipe 11 in the front row while flowing upward inside the pipe.

一方、冷媒回路の配管から導入部231を通じて後列ヘッダ23Aの内部へと、前列ヘッダ13Aの導入部131へ流入する冷媒と同じ流量で流入した冷媒は、後列ヘッダ23Aの流路断面積Arに対応する流速Vrで後列ヘッダ23Aの内部を上方に向けて流れつつ、後列の各扁平管11へと分配される。 On the other hand, the refrigerant flowing from the piping of the refrigerant circuit into the back row header 23A through the introduction section 231 at the same flow rate as the refrigerant flowing into the introduction section 131 of the front row header 13A corresponds to the flow path cross-sectional area Ar of the back row header 23A. It is distributed to each flat tube 11 in the back row while flowing upward through the inside of the back row header 23A at the flow velocity Vr.

ここで、導入部131を通じて前列ヘッダ13内へ流入する冷媒と、導入部231を通じて後列ヘッダ23内へ流入する冷媒との流量が同じであり、流路断面積がAf<Arであることにより、流速はVf>Vrとなる。つまり、前列ヘッダ13Aを流れる冷媒の流速Vfは、後列ヘッダ23Aを流れる冷媒の流速Vrよりも大きい。
図2にグレー色で示す矢印の長さが、流速Vf,Vrの相対的な大きさを模式的に表している。
Here, the flow rates of the refrigerant flowing into the front row header 13 through the introduction unit 131 and the refrigerant flowing into the rear row header 23 through the introduction unit 231 are the same, and the flow path cross-sectional area is Af <Ar. The flow velocity is Vf> Vr. That is, the flow velocity Vf of the refrigerant flowing through the front row header 13A is larger than the flow velocity Vr of the refrigerant flowing through the rear row header 23A.
The length of the arrow shown in gray in FIG. 2 schematically represents the relative magnitude of the flow velocities Vf and Vr.

前列ヘッダ13Aおよび後列ヘッダ23Aには、冷媒回路の減圧部を経ることで膨張した気液二相流の冷媒が流入する。その冷媒の気相分を気相冷媒、液相分を液相冷媒と称する。液相冷媒は、浮上する気相冷媒に巻き込まれて上方へと運ばれる。気相冷媒の密度よりも液相冷媒の密度が大きいため、前列ヘッダ13Aおよび後列ヘッダ23Aのそれぞれにおいて、気相冷媒と液相冷媒との上下方向D1における分布が偏り易い。
こうした気相冷媒と液相冷媒との分布状況は、流速Vf,Vrの相違に基づいて、前列ヘッダ13Aと後列ヘッダ23Aとで相違する。
A gas-liquid two-phase flow refrigerant that has expanded through the decompression portion of the refrigerant circuit flows into the front row header 13A and the back row header 23A. The gas phase component of the refrigerant is referred to as a gas phase refrigerant, and the liquid phase component is referred to as a liquid phase refrigerant. The liquid phase refrigerant is caught in the floating vapor phase refrigerant and carried upward. Since the density of the liquid phase refrigerant is higher than the density of the gas phase refrigerant, the distribution of the gas phase refrigerant and the liquid phase refrigerant in the vertical direction D1 tends to be biased in each of the front row header 13A and the back row header 23A.
The distribution of the gas phase refrigerant and the liquid phase refrigerant differs between the front row header 13A and the back row header 23A based on the difference in the flow velocities Vf and Vr.

流速Vfの大きい前列ヘッダ13Aでは、相対的に流速Vrの小さい後列ヘッダ23Aと比べ、液相冷媒がより上方にまで運ばれる。そのため、前列ヘッダ13Aの下端から上端までの流路の上部において、気相冷媒に対する液相冷媒の割合が相対的に高く、当該流路の下部において、気相冷媒に対する液相冷媒の割合が低い。扁平管11を流れる間に気相へと相転移する液相冷媒は、潜熱に基づき、空気から吸熱する。この液相冷媒の流量割合が高いと、空気と冷媒との間の伝熱量が大きい。
図2に示すグレーの矢印の幅は、流量基準の気相冷媒に対する液相冷媒の割合を表している。かかる液相冷媒の流量割合は、下方から上方に向かうにつれて次第に増大する。
In the front row header 13A having a large flow velocity Vf, the liquid phase refrigerant is carried higher than in the back row header 23A having a relatively small flow velocity Vr. Therefore, the ratio of the liquid phase refrigerant to the gas phase refrigerant is relatively high in the upper part of the flow path from the lower end to the upper end of the front row header 13A, and the ratio of the liquid phase refrigerant to the gas phase refrigerant is low in the lower part of the flow path. .. The liquid-phase refrigerant that undergoes a phase transition to the gas phase while flowing through the flat tube 11 absorbs heat from the air based on latent heat. When the flow rate ratio of the liquid phase refrigerant is high, the amount of heat transferred between the air and the refrigerant is large.
The width of the gray arrow shown in FIG. 2 represents the ratio of the liquid phase refrigerant to the flow rate-based gas phase refrigerant. The flow rate ratio of the liquid phase refrigerant gradually increases from the bottom to the top.

一方、流速Vrの小さい後列ヘッダ23Aでは、前列ヘッダ13Aと比べ、液相冷媒が上方まで運ばれ難いため、導入部231から液相冷媒が十分に運ばれる範囲が、後列ヘッダ23Aの流路の下部に留まる。
そのため、上述の前列ヘッダ13Aとは逆に、後列ヘッダ23Aの流路の下部において、気相冷媒に対する液相冷媒の割合が高く、当該流路の上部において、気相冷媒に対する液相冷媒の割合が低い。
On the other hand, in the back row header 23A having a small flow velocity Vr, the liquid phase refrigerant is more difficult to be carried upward than in the front row header 13A. Stay at the bottom.
Therefore, contrary to the above-mentioned front row header 13A, the ratio of the liquid phase refrigerant to the gas phase refrigerant is high in the lower part of the flow path of the back row header 23A, and the ratio of the liquid phase refrigerant to the gas phase refrigerant is high in the upper part of the flow path. Is low.

以上より、前列Fの各扁平管11へと前列ヘッダ13Aから分配される液相冷媒の分配状況、および後列Rの各扁平管11へと後列ヘッダ23Aから分配される液相冷媒の分配状況のいずれにも、上下方向D1における偏りが異なる態様で認められる。 From the above, the distribution status of the liquid phase refrigerant distributed from the front row header 13A to each flat pipe 11 in the front row F, and the distribution status of the liquid phase refrigerant distributed from the rear row header 23A to each flat pipe 11 in the back row R. In each case, the bias in the vertical direction D1 is recognized in a different manner.

図3は、熱交換器1に導入される冷媒の流量が少ない場合(a)と、中程度の場合(b)と、多い場合(c)とにおいて、実験結果に基づき、前列Fおよび後列Rのそれぞれの各扁平管11へ流入した冷媒中の液相冷媒の流量割合(気相冷媒に対する流量比)を示している。前列ヘッダ13Aおよび後列ヘッダ23Aのそれぞれ最も上方に位置する扁平管11から下方へと順に、1,2,3,・・・と番号を与えている。なお、図3(a)〜(c)のデータを得る実験では、7本の扁平管11をそれぞれ備えた前列熱交換要素および後列熱交換要素を使用した。 FIG. 3 shows the front row F and the back row R based on the experimental results when the flow rate of the refrigerant introduced into the heat exchanger 1 is low (a), medium (b), and high (c). The flow rate ratio of the liquid-phase refrigerant (flow rate ratio to the gas-phase refrigerant) in the refrigerant flowing into each of the flat tubes 11 of the above is shown. Numbers 1, 2, 3, ... Are given in order from the flat tube 11 located at the uppermost position of the front row header 13A and the back row header 23A, respectively. In the experiment for obtaining the data of FIGS. 3A to 3C, a front row heat exchange element and a back row heat exchange element having seven flat tubes 11 were used.

図3(a)〜(c)のいずれも、前列Fでは、扁平管11が上方に位置する程、流入する液相冷媒の割合が高く、逆に、後列Rでは、扁平管11が下方に位置する程、流入する液相冷媒の割合が高いという、上述と同様の傾向を示している。
図3(a)〜(c)より、冷媒流量が多くなる程、前列Fの上下方向D1における液相冷媒の流量割合の偏りの度合が大きくなる。また、逆に、後列Rの上下方向D1における液相冷媒の流量割合の偏りの度合は、冷媒流量が多くなる程、小さくなる。この傾向は、前列ヘッダ13の流路断面積が後列ヘッダ23の流路断面積よりも小さいことから定性的に成り立つ。
In all of FIGS. 3A to 3C, in the front row F, the higher the flat tube 11 is located, the higher the proportion of the inflowing liquid phase refrigerant is, and conversely, in the rear row R, the flat tube 11 is downward. The position is higher, the proportion of the inflowing liquid phase refrigerant is higher, showing the same tendency as described above.
From FIGS. 3A to 3C, as the refrigerant flow rate increases, the degree of deviation of the flow rate ratio of the liquid phase refrigerant in the vertical direction D1 of the front row F increases. On the contrary, the degree of deviation of the flow rate ratio of the liquid phase refrigerant in the vertical direction D1 of the rear row R becomes smaller as the refrigerant flow rate increases. This tendency is qualitatively established because the flow path cross-sectional area of the front row header 13 is smaller than the flow path cross-sectional area of the back row header 23.

図3(c)に係る流量としては、着霜が発生し易い状況、例えば、冬期における空調機の暖房運転状況下における熱交換器1の流量が想定されている。このように流量が大きいと、図3(c)のように、前列Fにおいて液相冷媒の上方への偏在が顕著となる。このとき、前列Fの熱交換要素10では、上段を主体として熱交換が行われる。 As the flow rate according to FIG. 3C, it is assumed that frost formation is likely to occur, for example, the flow rate of the heat exchanger 1 under the heating operation state of the air conditioner in winter. When the flow rate is large as described above, the uneven distribution of the liquid phase refrigerant upward in the front row F becomes remarkable as shown in FIG. 3C. At this time, in the heat exchange element 10 in the front row F, heat exchange is performed mainly in the upper stage.

(本実施形態による効果)
本実施形態では、上述したように、前列ヘッダ13と後列ヘッダ23との流路断面積Af,Arを異ならせることにより、前列Fと後列Rとの液相冷媒に、異なる分布を与えている。そうすることで、熱交換器1の全体として、伝熱損失を抑えて熱交換性能を確保する。
(Effect of this embodiment)
In the present embodiment, as described above, by making the flow path cross-sectional areas Af and Ar of the front row header 13 and the back row header 23 different, different distributions are given to the liquid phase refrigerants of the front row F and the back row R. .. By doing so, the heat transfer loss of the heat exchanger 1 as a whole is suppressed and the heat exchange performance is ensured.

図4を参照し、本実施形態の作用を説明する。本実施形態によれば、前列Fおよび後列Rのそれぞれとしては、各扁平管11へ分配される冷媒の液相流量割合に偏りが存在するとしても、熱交換器1の全体として、伝熱量の均一化を図り、熱交換器の容量の制約等がある中でも必要な熱交換性能を確保する。 The operation of this embodiment will be described with reference to FIG. According to the present embodiment, even if there is a bias in the liquid phase flow ratio of the refrigerant distributed to each flat tube 11 in each of the front row F and the back row R, the heat transfer amount of the heat exchanger 1 as a whole is increased. Aim for uniformity and ensure the required heat exchange performance even when there are restrictions on the capacity of the heat exchanger.

流速が大きい前列ヘッダ13(図2)内では、液相冷媒が十分に上方まで運ばれるため、前列ヘッダ13から冷媒が分配された前列Fの扁平管11のうち、液相冷媒の流量割合が大きい上段側の扁平管11を流れる冷媒と空気との間の伝熱量が大きいのに対し、下部における伝熱量は小さい。
一方、前列ヘッダ13と比べて流速が小さい後列ヘッダ23(図2)では、液相冷媒がさほど上方まで運ばれないため、後列ヘッダ23から冷媒が分配された後列Rの扁平管11のうち、液相冷媒の流量割合が大きい下段側の扁平管11を流れる冷媒と空気との間の伝熱量が大きいのに対し、上部における伝熱量は小さい。
In the front row header 13 (FIG. 2) where the flow velocity is large, the liquid phase refrigerant is sufficiently carried upward, so that the flow rate ratio of the liquid phase refrigerant among the flat pipes 11 in the front row F in which the refrigerant is distributed from the front row header 13 is high. The amount of heat transfer between the refrigerant and the air flowing through the large flat tube 11 on the upper stage side is large, while the amount of heat transfer in the lower part is small.
On the other hand, in the back row header 23 (FIG. 2) in which the flow velocity is smaller than that of the front row header 13, the liquid phase refrigerant is not carried so much upward, and therefore, among the flat tubes 11 of the rear row R in which the refrigerant is distributed from the back row header 23, The amount of heat transfer between the refrigerant and the air flowing through the flat tube 11 on the lower stage side where the flow rate ratio of the liquid phase refrigerant is large is large, while the amount of heat transfer in the upper part is small.

図4に示す矢印1に沿って流れる空気は、前列Fの伝熱量が小さい下段側と、後列Rの伝熱量が大きい下段側とを通過する。ここで、液相冷媒の流量割合が低い前列Fの下段側を通過した空気が、冷媒へと十分に放熱されていないとしても、前列Fに続いて流入する後列Rの下段側の扁平管11には、その空気を十分に放熱させるのに足りる量の液相冷媒が流れている。 The air flowing along the arrow 1 shown in FIG. 4 passes through the lower side where the amount of heat transfer is small in the front row F and the lower side where the amount of heat transfer is large in the rear row R. Here, even if the air that has passed through the lower side of the front row F having a low flow rate ratio of the liquid phase refrigerant is not sufficiently dissipated to the refrigerant, the flat pipe 11 on the lower side of the rear row R that flows in following the front row F. A sufficient amount of liquid-phase refrigerant is flowing in the air to sufficiently dissipate the air.

また、図4に示す矢印2に沿って流れる空気は、前列Fの伝熱量が大きい上段側と、後列Rの伝熱量が小さい上段側とを通過する。ここで、前列Fの上段側において、液相冷媒の流量割合の高い冷媒へと既に放熱された空気が、後列Rに流入する。そのため、流入した後列Rの上段側の扁平管11には、前列Fで放熱された後の空気との熱交換に相応の量の液相冷媒が流れていれば足りる。 Further, the air flowing along the arrow 2 shown in FIG. 4 passes through the upper side having a large amount of heat transfer in the front row F and the upper side having a small amount of heat transfer in the rear row R. Here, on the upper side of the front row F, the air that has already been radiated to the refrigerant having a high flow rate ratio of the liquid phase refrigerant flows into the rear row R. Therefore, it is sufficient that a liquid phase refrigerant corresponding to the amount of heat exchange with the air after the heat is dissipated in the front row F flows through the flat tube 11 on the upper stage side of the rear row R that has flowed in.

以上より、前列Fの上段側および下段側、後列Rの上段側および下段側を合わせた熱交換器1の全体に亘り、伝熱損失を避けつつ、伝熱面が有効活用されるので、熱交換器1が小型であっても熱交換性能を十分に確保することができる。本実施形態のように、前列ヘッダ13および後列ヘッダ23に流速差を与えることで、上述のように、前列Fおよび後列Rの全体として上下方向D1における伝熱量のバランスをとることができる。そうすることで、冷媒分配の偏りによる熱交換性能の低下を回避できるため、冷媒分布を均一化するためにヘッダ13,23内に水平仕切板を設置する必要がない。そのため、部品点数の増大を免れるので、熱交換器1の製造コストを抑えることができる。 From the above, the heat transfer surface is effectively utilized over the entire heat exchanger 1 including the upper and lower sides of the front row F and the upper and lower sides of the rear row R, while avoiding heat transfer loss. Even if the exchanger 1 is small, sufficient heat exchange performance can be ensured. By giving a flow velocity difference to the front row header 13 and the back row header 23 as in the present embodiment, as described above, the heat transfer amount in the vertical direction D1 can be balanced as a whole of the front row F and the back row R. By doing so, it is possible to avoid deterioration of the heat exchange performance due to the bias of the refrigerant distribution, so that it is not necessary to install horizontal partition plates in the headers 13 and 23 in order to make the refrigerant distribution uniform. Therefore, since the increase in the number of parts can be avoided, the manufacturing cost of the heat exchanger 1 can be suppressed.

本実施形態とは逆に、流路断面積をAf>Arとなるように定めて、前列ヘッダ13の流速Vfが後列ヘッダ23の流速Vrよりも小さくなるようにしても、冷媒分配の偏りによる性能低下を避ける観点からは、本実施形態の同様の効果を得ることができる。 Contrary to the present embodiment, even if the flow path cross-sectional area is set so that Af> Ar and the flow velocity Vf of the front row header 13 is smaller than the flow velocity Vr of the back row header 23, it is due to the bias of the refrigerant distribution. From the viewpoint of avoiding performance deterioration, the same effect of the present embodiment can be obtained.

さらに、本実施形態は、冷媒分配の偏りに起因する性能低下に加えて、着霜による性能低下にも対応する。空調機の室外熱交換器に使用された熱交換器1において、暖房運転時に熱源である外気の温度が低いと、接触する空気との温度差が後列Rよりも大きい前列Fから着霜が進行する。あるいは、冷蔵・冷凍ショーケース等や冷蔵・冷凍庫等の庫内熱交換器等、熱負荷の冷却に使用される熱交換器1にも着霜が発生する場合があり、その場合も、前列Fから着霜が進行する。 Further, the present embodiment corresponds to the performance deterioration due to frost formation in addition to the performance deterioration due to the bias of the refrigerant distribution. In the heat exchanger 1 used for the outdoor heat exchanger of an air conditioner, if the temperature of the outside air, which is a heat source, is low during heating operation, frost formation proceeds from the front row F, which has a larger temperature difference from the contacting air than the rear row R. do. Alternatively, frost may also occur in the heat exchanger 1 used for cooling the heat load, such as a refrigerator / freezer showcase or an internal heat exchanger in a refrigerator / freezer, and even in that case, the front row F Frost progresses from.

着霜による性能低下を避ける観点からは、本実施形態と同様に、前列ヘッダ13の流速Vfが後列ヘッダ23の流速Vrよりも大きくなるように、ヘッダ13,23の流速Vf,Vrの関係を特定するのが良い。そして、前列Fと後列Rとに同じ流量の冷媒が導入される本実施形態においては、流路断面積がAf<Arに特定される。 From the viewpoint of avoiding performance deterioration due to frost formation, the relationship between the flow velocities Vf and Vr of the headers 13 and 23 is set so that the flow velocity Vf of the front row header 13 is larger than the flow velocity Vr of the back row header 23, as in the present embodiment. Good to identify. Then, in the present embodiment in which the refrigerant having the same flow rate is introduced into the front row F and the rear row R, the flow path cross-sectional area is specified as Af <Ar.

着霜が発生し易い前列Fの中でも、液相流量割合の大きい上段側は、液相流量割合が大きい冷媒により空気が十分に冷却されるため、着霜し易いのに対して、前列Fでも下段側は着霜し難い。つまり、上下方向D1における液相流量割合の偏り(例えば、図3(c))と同様の着霜の偏りが見られる。 Among the front row F where frost is likely to occur, the upper side with a large liquid phase flow rate ratio is easy to frost because the air is sufficiently cooled by the refrigerant with a large liquid phase flow rate ratio, whereas the front row F also tends to frost. The lower side is hard to frost. That is, a bias in the liquid phase flow rate ratio in the vertical direction D1 (for example, a bias in frost formation similar to that in FIG. 3C) can be seen.

ここで、図3(c)に示すように液相流量割合が大きい前列Fの上段側の着霜が進行し、霜により風路が閉塞されることで後列Rの上段側の風量が低下したとする。しかし、この時点で、前列Fの下段側は着霜があまり進行していないので、少なくとも、前列Fの下段側の風下となる後列Rの下段側では風量が維持できている。
つまり、着霜により上段側の熱交換能力が後列Rを含めて失われた後も、下段側においては、後列Rへと空気が送られ、霜の付着していない後列R下段側の伝熱面により熱交換能力が残されているので、除霜運転に切り替わるまでの時間が延長される。
本実施形態によれば、着霜による伝熱損失も抑えることで、除霜運転による暖房運転等の中断を避けて、暖房運転等を継続することができる。
Here, as shown in FIG. 3C, frost formation on the upper side of the front row F, which has a large liquid phase flow rate ratio, progressed, and the air passage was blocked by the frost, so that the air volume on the upper side of the rear row R decreased. And. However, at this point, frost formation has not progressed so much on the lower side of the front row F, so that the air volume can be maintained at least on the lower side of the rear row R, which is leeward of the lower side of the front row F.
That is, even after the heat exchange capacity on the upper row side including the rear row R is lost due to frost formation, air is sent to the rear row R on the lower row side, and heat transfer on the lower row side of the rear row R without frost is attached. Since the heat exchange capacity is left on the surface, the time until switching to the defrosting operation is extended.
According to the present embodiment, by suppressing the heat transfer loss due to frost formation, it is possible to avoid interruption of the heating operation or the like due to the defrosting operation and continue the heating operation or the like.

図6は、前列ヘッダ13と比べて径の大きい後列ヘッダ23に挿入される扁平管11に、前列Fの扁平管11の幅Dfよりも広い幅Drを与えた例を示している。伝熱面積を向上させるため、後列ヘッダ23の径と同程度にまで、空気の流れの方向における扁平管11の幅Drを大きく確保することが好ましい。後列Rの扁平管11の幅Drを拡げることで、熱交換器1の設置に必要なスペースは変えずに、熱交換器1の能力を向上させることができる。
なお、後列Rの扁平管11の幅Drを拡げる代わりに、幅方向に2本の扁平管11を並べてもよい。
FIG. 6 shows an example in which a flat pipe 11 inserted into the back row header 23 having a diameter larger than that of the front row header 13 is given a width Dr wider than the width Df of the flat pipe 11 in the front row F. In order to improve the heat transfer area, it is preferable to secure a large width Dr of the flat tube 11 in the direction of air flow to the same extent as the diameter of the back row header 23. By expanding the width Dr of the flat tube 11 in the rear row R, the capacity of the heat exchanger 1 can be improved without changing the space required for installing the heat exchanger 1.
Instead of expanding the width Dr of the flat pipe 11 in the back row R, two flat pipes 11 may be arranged in the width direction.

〔第2実施形態〕
次に、図7を参照し、本発明の第2実施形態について説明する。
第2実施形態では、直列に接続された複数のパスを備えた熱交換器への適用例を示す。
図7(a)に示す熱交換器2は、直列に接続されたパスに相当する熱交換要素10,20を備えている。この点、第1実施形態の熱交換器1の熱交換要素10,20が冷媒回路の配管に対して並列に接続されるのとは相違する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. 7.
The second embodiment shows an application example to a heat exchanger having a plurality of paths connected in series.
The heat exchanger 2 shown in FIG. 7A includes heat exchange elements 10 and 20 corresponding to paths connected in series. This point is different from the fact that the heat exchange elements 10 and 20 of the heat exchanger 1 of the first embodiment are connected in parallel with the piping of the refrigerant circuit.

図7(a)では、熱交換要素10,20を模式的に示しているが、熱交換要素10,20は、第1実施形態(図1)と同様に構成されている。
つまり、前列熱交換要素10は、図1に示すように、扁平管11、フィン12、および前列ヘッダ13を備えている。後列熱交換要素20も、扁平管11、フィン12、および後列ヘッダ23を備えている。前列ヘッダ13の流路断面積Afは、後列ヘッダ23の流路断面積Arよりも小さいため、前列ヘッダ13の冷媒流速Vfが、後列ヘッダ23の冷媒流速Vrよりも大きい。
この流速差に基づいて、第1実施形態と同様、前列Fおよび後列Rの全体として上下方向D1の伝熱量のバランスが図られるとともに、着霜時に除霜運転に切り替わるまでの時間を遅らせることができる。
Although the heat exchange elements 10 and 20 are schematically shown in FIG. 7A, the heat exchange elements 10 and 20 are configured in the same manner as in the first embodiment (FIG. 1).
That is, the front row heat exchange element 10 includes a flat tube 11, fins 12, and a front row header 13, as shown in FIG. The back row heat exchange element 20 also includes a flat tube 11, fins 12, and a back row header 23. Since the flow path cross-sectional area Af of the front row header 13 is smaller than the flow path cross-sectional area Ar of the back row header 23, the refrigerant flow velocity Vf of the front row header 13 is larger than the refrigerant flow velocity Vr of the back row header 23.
Based on this flow velocity difference, as in the first embodiment, the heat transfer amount in the vertical direction D1 can be balanced as a whole in the front row F and the rear row R, and the time until switching to the defrosting operation at the time of frost formation can be delayed. can.

さて、後列熱交換要素20は、最上流の第1パスP1に相当する。前列熱交換要素10は、第1パスP1に続く第2パスP2に相当する。ここでは、第2パスP2が最下流のパスである。
最上流パスP1から冷媒が流入し、最下流のパスP2まで流れる間に、冷媒の乾き度が増大する。
By the way, the back row heat exchange element 20 corresponds to the most upstream first pass P1. The front row heat exchange element 10 corresponds to the second pass P2 following the first pass P1. Here, the second pass P2 is the most downstream path.
While the refrigerant flows in from the most upstream path P1 and flows to the most downstream path P2, the dryness of the refrigerant increases.

図示しない冷媒配管から第1パスP1の後列ヘッダ23A(図1)へと冷媒が導入されると、後列ヘッダ23Aから、後列Rの各扁平管11へと冷媒が分配される。それらの扁平管11をそれぞれ流れた冷媒は、後列ヘッダ23B(図1)の内部で合流し、U字管17を通って前列Fの第2パスP2へと流入する。そして、第2パスP2の前列ヘッダ13B(図1)内から、前列Fの各扁平管11へと冷媒が分配され、それらの扁平管11をそれぞれ流れた冷媒は、前列ヘッダ13A(図1)から冷媒配管へと流出する。 When the refrigerant is introduced from the refrigerant pipe (not shown) into the rear row header 23A (FIG. 1) of the first pass P1, the refrigerant is distributed from the rear row header 23A to each of the flat pipes 11 in the rear row R. The refrigerants that have flowed through the flat pipes 11 merge inside the back row header 23B (FIG. 1), pass through the U-shaped pipe 17, and flow into the second pass P2 of the front row F. Then, the refrigerant is distributed from the front row header 13B (FIG. 1) of the second pass P2 to each of the flat pipes 11 of the front row F, and the refrigerant flowing through the flat pipes 11 is the front row header 13A (FIG. 1). Flows out to the refrigerant pipe.

ここで、冷媒が空気から吸熱して乾き度が増大すると、液相流量割合の絶対量が減少するため、特に、最下流のパスP2のヘッダ内部に臨む上段側の扁平管11へ液相冷媒を流入させることが難しい。
図7(c)および図7(d)は、いずれも、実験に基づき、冷媒の乾き度が高い場合の液相冷媒分布を示しているが、(c)と(d)ではヘッダの流路断面積が相違する。図7(c)は、ヘッダの流路断面積が典型的な大きさ(例えば、図7のAm)である場合を示し、図7(d)は、ヘッダの流路断面積が典型的な大きさよりも小さい場合を示す。図7(c)、(d)共に、冷媒流量は同一であるため、流路断面積が小さい方が(図7(d))、ヘッダ内の流速が大きい。そのため、図7(d)では、相対的に流速が小さい図7(c)と比べて、より上方の扁平管11まで液相冷媒が到達する。
Here, when the refrigerant absorbs heat from the air and the dryness increases, the absolute amount of the liquid phase flow rate ratio decreases. Is difficult to inflow.
Both FIGS. 7 (c) and 7 (d) show the liquid phase refrigerant distribution when the dryness of the refrigerant is high based on the experiment, but in (c) and (d), the flow path of the header is shown. The cross-sectional area is different. FIG. 7C shows a case where the flow path cross-sectional area of the header is a typical size (for example, Am in FIG. 7), and FIG. 7 (d) shows a typical flow path cross-sectional area of the header. The case where it is smaller than the size is shown. Since the refrigerant flow rates are the same in both FIGS. 7 (c) and 7 (d), the smaller the flow path cross-sectional area (FIG. 7 (d)), the larger the flow velocity in the header. Therefore, in FIG. 7 (d), the liquid phase refrigerant reaches the flat tube 11 above the flat tube 11 as compared with FIG. 7 (c) where the flow velocity is relatively small.

それを踏まえて、図7(a)に示すように、乾き度が最も高くなる最下流のパスP2が前列Fに配置されている。流路断面積が小さいため流速が大きい前列ヘッダ13では、液相冷媒を十分に上方まで持ち上げて、上方に位置する扁平管11へと流入させることができる。そのため、最下流のパスP2の伝熱面も十分に利用して性能に寄与することができる。 Based on this, as shown in FIG. 7A, the most downstream path P2 having the highest dryness is arranged in the front row F. In the front row header 13 having a small flow path cross-sectional area and a large flow velocity, the liquid phase refrigerant can be sufficiently lifted upward and flowed into the flat pipe 11 located above. Therefore, the heat transfer surface of the most downstream path P2 can be fully utilized to contribute to the performance.

〔第2実施形態の変形例〕
図7(b)に示すように、熱交換器2Aが、直列に接続された3つ以上のパスを備えている場合は、図7(a)と同様に最下流の第4パスP4を前列Fに配置するとともに、最上流の第1パスP1も前列Fに配置することが好ましい。
第2パスP2および第3パスP3は、後列Rに配置される。
[Modified example of the second embodiment]
As shown in FIG. 7 (b), when the heat exchanger 2A has three or more paths connected in series, the most downstream fourth pass P4 is in the front row as in FIG. 7 (a). It is preferable to arrange it in F and also arrange the most upstream first pass P1 in the front row F.
The second pass P2 and the third pass P3 are arranged in the back row R.

熱交換器2Aは、4つのパスP1〜P4を備えている。上流側の第1パスP1および第2パスP2は熱交換器2Aにおける下部に位置し、下流側の第3パスP3および第4パスP4は熱交換器2Aにおける上部に位置している。
熱交換器2Aにおける直列回路の上流側では、乾き度が増大した下流側と比べて液相が多いため、同一流路断面積での圧力損失が下流側よりも小さい。そのため、下流側のパスP3,P4と比べて上流側のパスP1,P2の流路断面積を圧力損失が過大にならない程度に抑え(段数(扁平管11の数)を減らし)、それによって熱交換器2Aの高さを抑えている。
The heat exchanger 2A includes four paths P1 to P4. The first pass P1 and the second pass P2 on the upstream side are located at the lower part in the heat exchanger 2A, and the third pass P3 and the fourth pass P4 on the downstream side are located at the upper part in the heat exchanger 2A.
Since the upstream side of the series circuit in the heat exchanger 2A has more liquid phases than the downstream side where the dryness has increased, the pressure loss in the same flow path cross-sectional area is smaller than that on the downstream side. Therefore, the flow path cross-sectional area of the upstream paths P1 and P2 is suppressed to such an extent that the pressure loss does not become excessive as compared with the downstream paths P3 and P4 (the number of stages (the number of flat pipes 11) is reduced), thereby causing heat. The height of the exchanger 2A is suppressed.

図7(b)でも、熱交換要素10,20を模式的に示しているが、熱交換要素10,20は、第1実施形態(図1)と同様に構成されている。
前列ヘッダ13と後列ヘッダ23との流速差に基づいて、第1実施形態と同様、前列Fおよび後列Rの全体として伝熱量のバランスが図られるとともに、着霜時に除霜運転に切り替わるまでの時間を遅らせることができる。
Although the heat exchange elements 10 and 20 are schematically shown in FIG. 7B, the heat exchange elements 10 and 20 are configured in the same manner as in the first embodiment (FIG. 1).
Based on the flow velocity difference between the front row header 13 and the back row header 23, the heat transfer amount of the front row F and the back row R as a whole is balanced as in the first embodiment, and the time until the operation is switched to the defrosting operation at the time of frost formation. Can be delayed.

図7(b)に示す構成において、第1パスP1のヘッダ13A(図1)へと冷媒が導入されると、前列ヘッダ13Aから、前列Fの各扁平管11へと冷媒が分配され、それらの扁平管11をそれぞれ流れた冷媒は、前列ヘッダ13B(図1)の内部で合流し、U字管181を通って後列Rの第2パスP2へと流入する。そして、第2パスP2の後列ヘッダ23B内から、各扁平管11へと冷媒が分配され、それらの扁平管11をそれぞれ流れた冷媒は、後列ヘッダ23AからU字管182を通って上段側の第3パスP3の後列ヘッダ23Aへと流入する。さらに、第3パスP3の扁平管11を流れ、U字管183を通って第4パスP4の前列ヘッダ13Bへと流入する。そして、第4パスP4の扁平管11を流れて冷媒配管へと流出する。 In the configuration shown in FIG. 7B, when the refrigerant is introduced into the header 13A (FIG. 1) of the first pass P1, the refrigerant is distributed from the front row header 13A to each of the flat pipes 11 in the front row F, and these are distributed. The refrigerants that have flowed through the flat pipes 11 of the above merge with each other inside the front row header 13B (FIG. 1), pass through the U-shaped pipe 181 and flow into the second pass P2 of the back row R. Then, the refrigerant is distributed from the back row header 23B of the second pass P2 to each flat pipe 11, and the refrigerant flowing through each of the flat pipes 11 passes from the back row header 23A to the U-shaped pipe 182 on the upper stage side. It flows into the back row header 23A of the third pass P3. Further, it flows through the flat pipe 11 of the third pass P3, passes through the U-shaped pipe 183, and flows into the front row header 13B of the fourth pass P4. Then, it flows through the flat pipe 11 of the fourth pass P4 and flows out to the refrigerant pipe.

図7(b)に示す構成によれば、図7(a)に示す第2実施形態と同様に、乾き度が最も高くなる最下流のパスP4が前列Fに配置されていることで、最下流のパスP4の伝熱面も十分に利用して性能に寄与することができる。
それに加えて、ヘッダ13に流入する冷媒の乾き度が最も低いため冷媒圧損が相対的に小さい最上流のパスP1のヘッダ13、特にパスP1の入口のヘッダ13Aの流路断面積が小さいことで、冷媒圧損に起因する蒸発温度の上昇を抑制することができる。蒸発温度の上昇を抑制することで、蒸発性能の低下を避けることができる。
According to the configuration shown in FIG. 7 (b), as in the second embodiment shown in FIG. 7 (a), the most downstream path P4 having the highest dryness is arranged in the front row F. The heat transfer surface of the downstream path P4 can also be fully utilized to contribute to the performance.
In addition, since the dryness of the refrigerant flowing into the header 13 is the lowest, the flow path cross-sectional area of the header 13 of the most upstream path P1 in which the refrigerant pressure loss is relatively small, particularly the header 13A at the inlet of the path P1, is small. , It is possible to suppress an increase in evaporation temperature due to refrigerant pressure loss. By suppressing the increase in the evaporation temperature, it is possible to avoid a decrease in the evaporation performance.

〔第3実施形態〕
次に、図8を参照し、本発明の第3実施形態について説明する。
図8(a)に示す第3実施形態の熱交換器3は、第1実施形態の熱交換器1(図2)と同様に、前列熱交換要素10と、後列熱交換要素20とを備えている。
前列ヘッダ13の流速Vfが後列ヘッダ23の流速Vrよりも大きくなるように、第1実施形態では、前列ヘッダ13に、後列ヘッダ23の流路断面積Arよりも小さい流路断面積Afを与えているのに対し、第3実施形態では、前列ヘッダ13および後列ヘッダ23にそれぞれ導入される冷媒の流量を調整可能な分配器15(流量調整部)を使用する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG.
Similar to the heat exchanger 1 (FIG. 2) of the first embodiment, the heat exchanger 3 of the third embodiment shown in FIG. 8A includes a front row heat exchange element 10 and a back row heat exchange element 20. ing.
In the first embodiment, the front row header 13 is provided with a flow path cross-sectional area Af smaller than the flow path cross-sectional area Ar of the back row header 23 so that the flow velocity Vf of the front row header 13 is larger than the flow velocity Vr of the back row header 23. On the other hand, in the third embodiment, a distributor 15 (flow rate adjusting unit) capable of adjusting the flow rate of the refrigerant introduced into the front row header 13 and the back row header 23 is used.

キャピラリチューブ等を含んで構成された分配器15は、前列ヘッダ13に流入する冷媒の流量Rfが、後列ヘッダ23に流入する冷媒の流量Rrよりも多くなるように、図示しない冷媒配管から流入した冷媒を所定の流量比で分流させる。
そうすると、前列ヘッダ13には、流量Rfおよび流路断面積Amに対応する流速Vfが与えられ、後列ヘッダ23には、流量Rrおよび流路断面積Amに対応する流速Vrが与えられる。
本実施形態において、前列ヘッダ13の流路断面積Amと後列ヘッダ23の流路断面積Amは同等であるため、Rf/Rr=Vf/Vrである。
The distributor 15 including the capillary tube and the like flows in from a refrigerant pipe (not shown) so that the flow rate Rf of the refrigerant flowing into the front row header 13 is larger than the flow rate Rr of the refrigerant flowing into the rear row header 23. The refrigerant is split at a predetermined flow rate ratio.
Then, the front row header 13 is given the flow velocity Vf corresponding to the flow rate Rf and the flow path cross-sectional area Am, and the back row header 23 is given the flow velocity Vr corresponding to the flow rate Rr and the flow path cross-sectional area Am.
In the present embodiment, the flow path cross-sectional area Am of the front row header 13 and the flow path cross-sectional area Am of the back row header 23 are equivalent, so Rf / Rr = Vf / Vr.

本実施形態によれば、分配器15を備えていることにより、前列ヘッダ13および後列ヘッダ23の流路断面積が同等であるとしても、前列ヘッダ13および後列ヘッダ23に冷媒の流速差を与え、流速の違いによる液相流量割合の上下方向D1における分布に基づいて、第1実施形態と同様の作用効果を得ることができる。
また、径が等しい同一のヘッダを使用することで、熱交換器3の製造時において、前列熱交換要素10および後列熱交換要素20の組み間違えを未然に防ぐことができる。
According to the present embodiment, by providing the distributor 15, even if the flow path cross-sectional areas of the front row header 13 and the back row header 23 are the same, the flow velocity difference of the refrigerant is given to the front row header 13 and the back row header 23. Based on the distribution of the liquid phase flow rate ratio in the vertical direction D1 due to the difference in the flow velocity, the same effect as that of the first embodiment can be obtained.
Further, by using the same headers having the same diameter, it is possible to prevent a mistake in assembling the front row heat exchange element 10 and the back row heat exchange element 20 at the time of manufacturing the heat exchanger 3.

分配器15に代えて、図8(b)に示すように絞り16(流量調整部)を用いることもできる。図示しない冷媒配管から等しい流量で分流した管路のうち、後列ヘッダ23に導入される一方に、絞り16が設けられている。後列ヘッダ23に導入される冷媒に対して絞り16により圧力損失が与えられることにより、後列ヘッダ23へ導入される冷媒の流量Rrは、前列ヘッダ13へ導入される冷媒の流量Rfよりも小さい。 Instead of the distributor 15, a throttle 16 (flow rate adjusting unit) can be used as shown in FIG. 8 (b). Of the pipelines that are separated from the refrigerant pipes (not shown) at the same flow rate, the throttle 16 is provided on one side of the pipeline that is introduced into the rear row header 23. Since the pressure loss is applied by the throttle 16 to the refrigerant introduced into the back row header 23, the flow rate Rr of the refrigerant introduced into the back row header 23 is smaller than the flow rate Rf of the refrigerant introduced into the front row header 13.

〔第4実施形態〕
次に、図9を参照し、本発明の第4実施形態について説明する。
第4実施形態の熱交換器4は、前列Fにおいて上下方向D1に積層された2つの熱交換要素10と、後列Rにおいて上下方向D1に積層された2つの熱交換要素20とを備えている。
この熱交換器4においては、図9に示すように、前列熱交換要素10と、後列熱交換要素20とが上下方向D1にシフトして配置されている、前列熱交換要素10と後列熱交換要素20とは同等の高さに構成されている。
また、前列熱交換要素10と後列熱交換要素20とは冷媒回路の配管に並列または直列に接続されており、前列熱交換要素10と後列熱交換要素20とに同じ流量の冷媒が流れる。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG.
The heat exchanger 4 of the fourth embodiment includes two heat exchange elements 10 laminated in the vertical direction D1 in the front row F and two heat exchange elements 20 laminated in the vertical direction D1 in the rear row R. ..
In this heat exchanger 4, as shown in FIG. 9, the front row heat exchange element 10 and the back row heat exchange element 20 are arranged so as to be shifted in the vertical direction D1. It is configured to have the same height as the element 20.
Further, the front row heat exchange element 10 and the back row heat exchange element 20 are connected in parallel or in series with the piping of the refrigerant circuit, and the same flow rate of refrigerant flows through the front row heat exchange element 10 and the back row heat exchange element 20.

図9(a)および(b)は、いずれも同様に構成された熱交換器4を示している。
熱交換器4は、第1実施形態と同様に構成された前列熱交換要素10および後列熱交換要素20を備えている。但し、第1実施形態とは異なり、前列ヘッダ13と後列ヘッダ23とのそれぞれの流路断面積は、同等である。
9 (a) and 9 (b) both show a heat exchanger 4 having the same configuration.
The heat exchanger 4 includes a front row heat exchange element 10 and a back row heat exchange element 20 configured in the same manner as in the first embodiment. However, unlike the first embodiment, the flow path cross-sectional areas of the front row header 13 and the back row header 23 are the same.

前列熱交換要素10と後列熱交換要素20とが上下方向D1においてシフトしていることで、前列ヘッダ13へ通じる導入部131の位置と、後列ヘッダ23へ通じる導入部231の位置とが、上下方向D1において異なっている。 Since the front row heat exchange element 10 and the back row heat exchange element 20 are shifted in the vertical direction D1, the position of the introduction portion 131 leading to the front row header 13 and the position of the introduction portion 231 leading to the back row header 23 are up and down. Different in direction D1.

冷媒の流量が少ない場合や、乾き度が高い場合は、図9(a)に液相冷媒の分布のイメージを上下方向D1に沿ったグレー色の矢印で示すように、ヘッダ13,23内にそれぞれ流入した液相冷媒の流速がいずれも遅い。そのため、液相冷媒がヘッダ13,23の下部すなわち下段側の扁平管11に流入し易い。
一方、冷媒の流量が多い場合や、乾き度が低い場合は、図9(b)に液相冷媒の分布のイメージを上下方向D1に沿ったグレー色の矢印で示すように、液相冷媒の流速がいずれも速い。そのため、液相冷媒がヘッダ13,23の上部すなわち上段側の扁平管11に流入し易い。
When the flow rate of the refrigerant is low or the dryness is high, the image of the distribution of the liquid phase refrigerant is shown in the headers 13 and 23 by the gray arrow along the vertical direction D1 in FIG. 9A. The flow velocity of each inflowing liquid phase refrigerant is slow. Therefore, the liquid phase refrigerant tends to flow into the flat pipe 11 at the lower part of the headers 13 and 23, that is, the lower stage side.
On the other hand, when the flow rate of the refrigerant is high or the dryness is low, the image of the distribution of the liquid-phase refrigerant is shown by the gray arrow along the vertical direction D1 in FIG. 9 (b). The flow velocity is fast. Therefore, the liquid phase refrigerant tends to flow into the upper part of the headers 13 and 23, that is, the flat pipe 11 on the upper stage side.

そうすると、図4を参照して説明したように、前列Fおよび後列Rの全体として上下方向D1の伝熱量のバランスが図られるとともに、着霜時に除霜運転に切り替わるまでの時間を遅らせることができる。
また、径が等しい同一のヘッダを使用することで、熱交換器4の製造時において、前列熱交換要素10および後列熱交換要素20の組み間違えを未然に防ぐことができる。
Then, as described with reference to FIG. 4, the heat transfer amount in the vertical direction D1 can be balanced as a whole in the front row F and the rear row R, and the time until switching to the defrosting operation at the time of frost formation can be delayed. ..
Further, by using the same headers having the same diameter, it is possible to prevent a mistake in assembling the front row heat exchange element 10 and the back row heat exchange element 20 at the time of manufacturing the heat exchanger 4.

第4実施形態において、前列ヘッダ13や後列ヘッダ23の内部が複数の区画に仕切られていて、各区画に冷媒を導入する導入部が用意されていてもよい。その場合も、前列熱交換要素10と後列熱交換要素20とを上下方向D1にシフトさせることで、前列Fの導入部と後列Rの導入部との高さ位置を異ならせることができるので、同様の作用効果を得ることができる。 In the fourth embodiment, the inside of the front row header 13 and the back row header 23 may be partitioned into a plurality of compartments, and an introduction portion for introducing the refrigerant may be prepared in each compartment. Even in that case, by shifting the front row heat exchange element 10 and the back row heat exchange element 20 in the vertical direction D1, the height positions of the introduction portion of the front row F and the introduction portion of the rear row R can be made different. Similar effects can be obtained.

上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
例えば、本発明の熱交換器が、前列Fおよび後列Rに加え、前列Fと後列Rとの間に位置する中間の1以上の列を備えていてもよい。
In addition to the above, as long as the gist of the present invention is not deviated, the configurations listed in the above embodiments can be selected or changed to other configurations as appropriate.
For example, the heat exchanger of the present invention may include one or more intermediate rows located between the front row F and the back row R in addition to the front row F and the back row R.

上記各実施形態において、熱交換要素10,20はそれぞれ、上下方向D1に積層された複数の扁平管11からなる一列の扁平管要素を備えている。これに限らず、本発明の熱交換要素が、二列、すなわち空気の流れ方向に並ぶ2つの扁平管要素を備えており、それらの扁平管要素が同じヘッダに接続されるように構成されていてもよい。 In each of the above embodiments, the heat exchange elements 10 and 20 each include a row of flat tube elements composed of a plurality of flat tubes 11 stacked in the vertical direction D1. Not limited to this, the heat exchange elements of the present invention include two rows, that is, two flat tube elements arranged in the direction of air flow, and these flat tube elements are configured to be connected to the same header. You may.

1〜4 熱交換器
10 前列熱交換要素
11 扁平管
12 フィン
13,13A,13B 前列ヘッダ
14 垂直仕切板(仕切部)
14A 開口
15 分配器(流量調整部)
16 絞り(流量調整部)
17 U字管
20 後列熱交換要素
23,23A,23B 後列ヘッダ
24 垂直仕切板(仕切部)
24A 開口
121 切欠
131 導入部
141 区画
142 区画
181,182,183 U字管
231 導入部
241 区画
242 区画
Af,Ar,Am 流路断面積
D1 上下方向
Df,Dr 幅
F 前列
G1 寸法
G2 寸法
P1〜P4 パス
R 後列
Rf,Rr 流量
Vf,Vr 流速
1-4 Heat exchanger 10 Front row heat exchange element 11 Flat tube 12 Fins 13, 13A, 13B Front row header 14 Vertical partition plate (partition)
14A Aperture 15 Distributor (Flow rate regulator)
16 Aperture (flow rate adjustment unit)
17 U-shaped tube 20 Back row heat exchange elements 23, 23A, 23B Back row header 24 Vertical partition plate (partition)
24A Opening 121 Notch 131 Introduction 141 Section 142 Section 181, 182, 183 U-shaped tube 231 Introduction 241 Section 242 Section Af, Ar, Am Flow path cross-sectional area D1 Vertical direction Df, Dr Width F Front row G1 Dimension G2 Dimension P1 P4 pass R back row Rf, Rr flow rate Vf, Vr flow velocity

Claims (8)

積層される複数の扁平管と、前記扁平管に設けられるフィンと、前記扁平管が積層される積層方向に起立し、前記扁平管に接続されるヘッダと、を備えた熱交換器であって、
前記ヘッダを通じて前記扁平管に流入する冷媒と、空気とを熱交換させ、前記冷媒を蒸発させる蒸発器として機能し、
前記扁平管、前記フィン、および前記ヘッダからなる熱交換要素が、前記空気の流れの上流側に位置する前列と、前記空気の流れの下流側に位置する後列と、を含んで配列され、
前記前列の前記ヘッダである前列ヘッダを流れる前記冷媒の流速が、前記後列の前記ヘッダである後列ヘッダを流れる前記冷媒の流速よりも大きくなるように、
前記前列ヘッダ内の流路断面積が前記後列ヘッダ内の流路断面積よりも小さい、
ことを特徴とする熱交換器。
A heat exchanger comprising a plurality of stacked flat tubes, fins provided on the flat tubes, and a header standing in the stacking direction in which the flat tubes are laminated and connected to the flat tubes. ,
It functions as an evaporator that evaporates the refrigerant by exchanging heat between the refrigerant flowing into the flat tube through the header and air.
A heat exchange element consisting of the flat tube, the fins, and the header is arranged including a front row located upstream of the air flow and a rear row located downstream of the air flow.
The flow velocity of the refrigerant flowing through the front row header, which is the header in the front row, is larger than the flow velocity of the refrigerant flowing through the back row header, which is the header in the back row.
The flow path cross-sectional area in the front row header is smaller than the flow path cross-sectional area in the back row header.
A heat exchanger characterized by that.
前記積層方向に延びて前記前列ヘッダおよび前記後列ヘッダの少なくともいずれかの内部を仕切る仕切部を備え、
前記仕切部により前記流路断面積が設定されている、
請求項1に記載の熱交換器。
A partition portion extending in the stacking direction and partitioning the inside of at least one of the front row header and the back row header is provided.
The flow path cross-sectional area is set by the partition.
The heat exchanger according to claim 1.
前記後列の前記扁平管の前記空気の流れ方向における幅は、
前記前列の前記扁平管の前記空気の流れ方向における幅よりも広い、
請求項1または2に記載の熱交換器。
The width of the flat tube in the back row in the air flow direction is
Wider than the width of the flat tube in the front row in the air flow direction,
The heat exchanger according to claim 1 or 2.
直列に接続された2以上の前記熱交換要素を備え、
最下流の前記熱交換要素は、前記前列に位置する、
請求項1から3のいずれか一項に記載の熱交換器。
With two or more of the heat exchange elements connected in series
The most downstream heat exchange element is located in the front row.
The heat exchanger according to any one of claims 1 to 3.
直列に接続された3つ以上の前記熱交換要素を備え、
最上流の前記熱交換要素は、前記前列に位置する、
請求項4に記載の熱交換器。
With three or more of the heat exchange elements connected in series
The most upstream heat exchange element is located in the front row.
The heat exchanger according to claim 4.
積層される複数の扁平管と、前記扁平管に設けられるフィンと、前記扁平管が積層される積層方向に起立し、前記扁平管に接続されるヘッダと、を備えた熱交換器であって、
前記ヘッダを通じて前記扁平管に流入する冷媒と、空気とを熱交換させ、前記冷媒を蒸発させる蒸発器として機能し、
前記扁平管、前記フィン、および前記ヘッダからなる熱交換要素が、前記空気の流れの上流側に位置する前列と、前記空気の流れの下流側に位置する後列と、を含んで配列され、
前記前列の前記ヘッダである前列ヘッダを流れる前記冷媒の流速が、前記後列の前記ヘッダである後列ヘッダを流れる前記冷媒の流速よりも大きくなるように、
前記前列ヘッダおよび前記後列ヘッダの少なくとも一方に導入される前記冷媒の流量を調整する流量調整部を備える、
ことを特徴とする熱交換器。
A heat exchanger comprising a plurality of stacked flat tubes, fins provided on the flat tubes, and a header standing in the stacking direction in which the flat tubes are laminated and connected to the flat tubes. ,
It functions as an evaporator that evaporates the refrigerant by exchanging heat between the refrigerant flowing into the flat tube through the header and air.
A heat exchange element consisting of the flat tube, the fins, and the header is arranged including a front row located upstream of the air flow and a rear row located downstream of the air flow.
The flow velocity of the refrigerant flowing through the front row header, which is the header in the front row, is larger than the flow velocity of the refrigerant flowing through the back row header, which is the header in the back row.
A flow rate adjusting unit for adjusting the flow rate of the refrigerant introduced into at least one of the front row header and the back row header is provided.
A heat exchanger characterized by that.
積層される複数の扁平管と、前記扁平管に設けられるフィンと、前記扁平管が積層される積層方向に起立し、前記扁平管に接続されるヘッダと、を備えた熱交換器であって、
前記ヘッダを通じて前記扁平管に流入する冷媒と、空気とを熱交換させ、前記冷媒を蒸発させる蒸発器として機能し、
前記扁平管、前記フィン、および前記ヘッダからなる熱交換要素が、前記空気の流れの上流側に位置する前列と、前記空気の流れの下流側に位置する後列と、を含んで配列され、
前記前列の前記ヘッダに内在する区画に前記冷媒を導入する導入部の位置と、前記後列の前記ヘッダに内在する区画に前記冷媒を導入する導入部の位置とが、前記積層方向において異なるように、
前記前列の前記熱交換要素と、前記後列の前記熱交換要素とが前記積層方向にシフトして配置され
前記導入部から前記冷媒が導入される前記区画には、少なくとも2つの前記扁平管が配置されている、
ことを特徴とする熱交換器。
A heat exchanger comprising a plurality of stacked flat tubes, fins provided on the flat tubes, and a header standing in the stacking direction in which the flat tubes are laminated and connected to the flat tubes. ,
It functions as an evaporator that evaporates the refrigerant by exchanging heat between the refrigerant flowing into the flat tube through the header and air.
A heat exchange element consisting of the flat tube, the fins, and the header is arranged including a front row located upstream of the air flow and a rear row located downstream of the air flow.
The position of the introduction portion for introducing the refrigerant into the section inside the header in the front row and the position of the introduction portion for introducing the refrigerant into the section inside the header in the back row are different in the stacking direction. ,
The heat exchange elements in the front row and the heat exchange elements in the back row are arranged so as to be shifted in the stacking direction .
At least two flat tubes are arranged in the section where the refrigerant is introduced from the introduction portion.
A heat exchanger characterized by that.
前記前列において前記積層方向に積層された2つの前記熱交換要素と、
前記後列において前記積層方向に積層された2つの前記熱交換要素と、を備える、
請求項7に記載の熱交換器。
The two heat exchange elements laminated in the stacking direction in the front row,
The two heat exchange elements laminated in the stacking direction in the back row are provided.
The heat exchanger according to claim 7.
JP2017149664A 2017-08-02 2017-08-02 Heat exchanger Active JP6946105B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017149664A JP6946105B2 (en) 2017-08-02 2017-08-02 Heat exchanger
ES18842154T ES2955923T3 (en) 2017-08-02 2018-06-14 Heat exchanger
CN201880050493.6A CN110998215B (en) 2017-08-02 2018-06-14 Heat exchanger
PCT/JP2018/022761 WO2019026436A1 (en) 2017-08-02 2018-06-14 Heat exchanger
EP18842154.9A EP3647711B1 (en) 2017-08-02 2018-06-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017149664A JP6946105B2 (en) 2017-08-02 2017-08-02 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2019027727A JP2019027727A (en) 2019-02-21
JP6946105B2 true JP6946105B2 (en) 2021-10-06

Family

ID=65233682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017149664A Active JP6946105B2 (en) 2017-08-02 2017-08-02 Heat exchanger

Country Status (5)

Country Link
EP (1) EP3647711B1 (en)
JP (1) JP6946105B2 (en)
CN (1) CN110998215B (en)
ES (1) ES2955923T3 (en)
WO (1) WO2019026436A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217271A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Refrigerant distributor, heat exchanger, and refrigeration cycle device
JP6927352B1 (en) 2020-03-23 2021-08-25 株式会社富士通ゼネラル Heat exchanger
JP6927353B1 (en) 2020-03-23 2021-08-25 株式会社富士通ゼネラル Heat exchanger
JP6930622B1 (en) 2020-03-24 2021-09-01 株式会社富士通ゼネラル Heat exchanger
FR3126768B1 (en) * 2021-09-03 2023-08-11 Valeo Systemes Thermiques HEAT EXCHANGER FOR A REFRIGERANT LOOP
CN116659293A (en) * 2023-04-04 2023-08-29 宇通客车股份有限公司 Condensation heat exchanger and vehicle
WO2024257145A1 (en) * 2023-06-12 2024-12-19 三菱電機株式会社 Heat exchanger and air conditioner

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840291B2 (en) 1976-07-23 1983-09-05 オムロン株式会社 electrical equipment
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
JP3083385B2 (en) * 1992-01-23 2000-09-04 松下冷機株式会社 Heat exchanger
JP2004163036A (en) * 2002-11-14 2004-06-10 Japan Climate Systems Corp Double row heat exchanger
JP4810203B2 (en) * 2004-11-30 2011-11-09 昭和電工株式会社 Heat exchanger
JP4887213B2 (en) * 2007-05-18 2012-02-29 日立アプライアンス株式会社 Refrigerant distributor and air conditioner
JP4827882B2 (en) * 2008-05-08 2011-11-30 三菱電機株式会社 Heat exchanger module, heat exchanger, indoor unit and air-conditioning refrigeration apparatus
KR20120135800A (en) * 2011-06-07 2012-12-17 주식회사 고산 Heat exchanger for combined evaportor and condenser
JP5796518B2 (en) * 2012-03-06 2015-10-21 株式会社デンソー Refrigerant evaporator
CN104350341B (en) * 2012-06-18 2016-07-20 松下知识产权经营株式会社 Heat exchanger and air conditioner
JP2015014397A (en) * 2013-07-04 2015-01-22 パナソニック株式会社 Heat exchanger
JP5741658B2 (en) * 2013-09-11 2015-07-01 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2016121123A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Refrigeration cycle device
JP2017003140A (en) * 2015-06-05 2017-01-05 株式会社デンソー Refrigerant evaporator

Also Published As

Publication number Publication date
EP3647711B1 (en) 2023-07-26
WO2019026436A1 (en) 2019-02-07
EP3647711A4 (en) 2020-09-23
EP3647711A1 (en) 2020-05-06
EP3647711C0 (en) 2023-07-26
JP2019027727A (en) 2019-02-21
ES2955923T3 (en) 2023-12-11
CN110998215A (en) 2020-04-10
CN110998215B (en) 2021-09-14

Similar Documents

Publication Publication Date Title
JP6946105B2 (en) Heat exchanger
CN113330268B (en) Heat exchanger and air conditioner provided with same
US9651317B2 (en) Heat exchanger and air conditioner
JP6927352B1 (en) Heat exchanger
JP6927353B1 (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
WO2014181400A1 (en) Heat exchanger and refrigeration cycle device
JP2018162900A (en) Heat exchanger and air conditioner including the same
JP5716496B2 (en) Heat exchanger and air conditioner
JP6671380B2 (en) Heat exchanger
JP6906141B2 (en) Heat exchanger shunt
JP5608478B2 (en) Heat exchanger and air conditioner using the same
JP7086279B2 (en) Refrigerant distributor, heat exchanger and refrigeration cycle device
JP2011158250A (en) Heat exchanger and refrigerator-freezer mounted with the heat exchanger
JP5962033B2 (en) Heat exchanger and air conditioner equipped with the same
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JP2001221535A (en) Refrigerant evaporator
JP4762266B2 (en) Heat exchanger and refrigerator-freezer equipped with this heat exchanger
JP7292513B2 (en) Heat exchanger and air conditioner using the same
JP7327213B2 (en) Heat exchanger
US20240175599A1 (en) Air conditioner and method for controlling an air conditioner
WO2019207806A1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP2021139532A (en) Heat exchanger
JP2016080303A (en) Refrigerant evaporator

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6946105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150